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Abstract

The performance of an OS’s networking stack can be

measured by its achieved throughput, CPU utilization,

latency, and per-flow fairness. To be able to drive in-

creasing line-rates at 10Gbps and beyond, modern OS

networking stacks rely on a number of important hard-

ware and software optimizations, including but not lim-

ited to using multiple transmit and receive queues and

segmentation offloading. Unfortunately, we have ob-

served that these optimizations lead to substantial flow-

level unfairness.

We describe Titan, an extension to the Linux network-

ing stack that systematically addresses unfairness arising

in different operating conditions. Across both fine and

coarse timescales and when NIC queues are undersub-

scribed and oversubscribed, we find that the Titan can

reduce unfairness by 58% or more when compared with

the best performing Linux configuration. We also find

that improving fairness can lead to a reduction in tail

flow completion times for flows in an all-to-all shuffle

in a cluster of servers.

1 Introduction

Many large organizations today operate data centers

(DCs) with tens to hundreds of thousands of multi-core

servers [37, 35, 20]. These servers run a variety of

applications with different performance needs, ranging

from latency-sensitive applications such as web services,

search, and key-value stores, to throughput-sensitive ap-

plications such as Web indexing and batch analytics.

With the scale and diversity of applications growing, and

with applications becoming more performance hungry,

data center operators are upgrading server network in-

terfaces (NICs) from 1Gbps to 10Gbps and beyond. At

the same time, operators continue to aim for multiplexed

use of their servers across multiple applications to ensure

optimal utilization of their infrastructure.

The main goal of our work is to understand how we

can enable DC applications to drive high-speed server

NICs while ensuring key application performance goals

are met—i.e., throughput is high and latency is low—and

key infrastructure performance objectives are satisfied—

i.e., CPU utilization is low and applications share re-

sources fairly.

Modern end-host network stacks offer a variety

of optimizations and features to help meet these

goals. Foremost, many 10Gbps and faster NICs

provide multiple hardware queues to support multi-

core systems. Recent advances in the network stack

(RPS [7]/RFS [6]/XPS [11]) allow systematic assign-

ment of these queues and the flows using them to CPU

cores to reduce cross-core synchronization and improve

cache locality. In addition, provisions exist both in hard-

ware and in the operating system for offloading the pack-

etization of TCP segments, which vastly reduces CPU

utilization [22]. Likewise, modern OSes and NIC hard-

ware provide a choice of software queuing logics and

configurable queue size limits that improve fairness and

lower latencies by avoiding bufferbloat [19].

The first contribution of this paper is a systematic ex-

ploration of the performance trade-offs imposed by dif-

ferent combinations of optimizations and features for

four key metrics, namely, throughput, latency, CPU uti-

lization, and fairness. We study performance under ex-

tensive controlled experiments between a pair of multi-

core servers with 10G NICs where we vary the level of

oversubscription of queues.

We find that existing configuration options can opti-

mize throughput and CPU utilization. But, we found

that across almost every configuration there is substan-

tial unfairness in the throughput achieved by different

flows using the same NIC: some flows may transmit at

twice the throughput or higher than others, and this can

happen at both fine and coarse time scales. Such unfair-

ness increases tail flow completion times and makes data

transfer times harder to predict. We find that this unfair-
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ness between flows arises because of three key aspects of

today’s networking stacks:

Foremost, OSes today use a simple hash-based scheme

to assign flows to queues, which can easily lead to

hash collisions even when NIC queues are undersub-

scribed (fewer flows than queues). Even a more op-

timal flow-to-queue assignment can result in flow im-

balance across queues especially under moderate over-

subscription (when the number of flows is only slightly

larger than the number of queues).

Second, NIC schedulers strive for equal throughput

from each transmit queue and thus service packets from

queues in a strict round-robin fashion. Flows that share a

queue as a result receive only a fraction of the throughput

of those that do not. Even over long periods, a flow may

receive half its fair-share throughput or less.

Finally, segmentation offload, which is crucial for low-

ering CPU utilization, exacerbates head-of-line blocking

because a large segment of a flow must be transmitted

before a segment from a different flow can be transmit-

ted out of the same queue. This becomes acute at high

levels of oversubscription, when there may be multiple

segments from different flows in each queue. In this case,

head-of-line blocking is also exacerbated by the number

of queues that are in use. The NIC performs round robin

scheduling of packets from different queues, and the OS

aims to keep the same number of bytes enqueued in each

hardware queue. If a large segment of the same size is in

every queue, a newly arrived packet will have to wait for

every enqueued segment to be sent before it can be sent,

regardless of which queue it uses.

The second contribution of this paper is an extension

to the Linux networking stack called Titan that incorpo-

rates novel ideas to overcome the above fairness issues.

First, Titan uses dynamic queue assignment (DQA) to

evenly distribute flows to queues based on current queue

occupancy. This avoids flows sharing queues in under-

subscribed conditions. Second, Titan adds a new queue

weight abstraction to the NIC driver interface and a dy-

namic queue weight assignment (DQWA) mechanism in

the kernel, which assigns weights to NIC queues based

on current occupancy. In Titan, NICs use deficit round-

robin [36] to ensure queues are serviced according to

computed weights. Third, Titan adds dynamic segmen-

tation offload sizing (DSOS) to dynamically reduce the

segment size and hence reduce head-of-line blocking un-

der over-subscription, which balances improvements to

fairness against increased CPU utilization.

We implement Titan in Linux, and, using experiments

both without and with network congestion, we show

that Titan greatly reduces unfairness in flow throughput

across a range of under- and oversubscription conditions

and both at short and long timescales. In many cases,

there is near zero unfairness, and in the cases where it re-

mains, Titan reduces unfairness by more than 58%. Our

experiments on a cluster of servers show that Titan offers

the most fair flow completion times and decreases flow

completion times at the tail (90th percentile).

Titan can increase CPU utilization and latency. We

have designed Titan so as to try to minimize its impact

on CPU utilization. In our experiments, Titan with DQA

and DQWA often increases CPU utilization by less than

10%, although in the worst case it increases CPU utiliza-

tion by 17% and 27% with and without pinning queues

to cores, respectively. Also, Titan often matches the RTT

latency of unmodified Linux with average latencies rang-

ing from 123–660µs. At most, Titan increases latency

by 134µs, and DSOS often reduces latency by more than

200µs. Still, latency under load still remains higher than

when there is no other traffic using the NIC (32µs).

Current best practices for preventing long-running

bulk data transfers from impacting latency sensitive traf-

fic is to isolate different traffic classes in different priori-

ties [26, 20]. Titan is compatible with DCB, so DCB pri-

orities can still be used to isolate latency-sensitive traffic

from bulk traffic in Titan. At the NIC level, this is ac-

complished by allocating dedicated pools of NIC queues

for each DCB priority.

In the next section we provide background material on

server networking stacks. Section 3 describes the design

of Titan, and Section 4 has information on the imple-

mentation. Sections 5 and 6 describe our methodology

and evaluation. We follow with related work and then

we conclude.

2 Background

Networking in modern OSes is complex. There are mul-

tiple cooperating layers involved, and each layer has its

own optimizations and configurations. Further, there are

multiple different dimensions by which the performance

of a server’s network stack can be measured, and dif-

ferent configurations have subtle performance trade-offs.

Figure 1 shows the different layers involved in a server’s

network stack (server-side networking), and Table 1 lists

the most significant configuration options.

2.1 Server Networking Queue Configura-

tions

We focus on the transmit (TX) side of networking be-

cause choices made when transmitting segments have a

much larger potential to impact fairness: a server has

no control over what packets it receives and complete

control over what segments it transmits. Although the

RX-side of networking is important, TX and RX are

largely independent, so recent improvements to the RX
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Figure 1: Different server-side TX networking designs:

(a) Single queue (SQ) TX networking. (b) Multiqueue

(MQ) TX networking. (c) Multicore-partitioned (XPS)

multiqueue TX networking.

side [25, 18, 30] are complementary to improvements to

the TX side.

In an OS, data from application buffers are passed as

a segment (smaller than some maximum segment size)

through many different layers of the network stack as it

travels to the NIC, where it is turned into one or more

packets on the wire. Both the design of each layer that

touches a segment and the interfaces between them can

impact performance.

There are many ways of connecting the layers of a net-

working stack that differ in the number of NIC transmit

queues and the assignment of queues to CPU cores. Fig-

ure 1 illustrates three designs. Figure 1a shows how the

OS interfaces with a single queue NIC (SQ). Figures 1b

and 1c show two different ways for an OS to interface

with a multiqueue NIC. The first (MQ) allows for flows

on any core to use any NIC queue. The second partitions

queues into pools that are dedicated to different cores,

which we refer to by its name in Linux, XPS (transmit

packet steering) [11].

Single Queue (SQ): In this design, segments from mul-

tiple competing applications (and containers/VMs) des-

tined for the same output device are routed by the TCP/IP

stack first to a per-device software queue and then to a

per-device hardware queue (Figure 1a). The software

queue (Qdisc in Linux) may implement any scheduling

policy. The hardware transmit queues are simple FIFOs.

On a multicore system, SQ can lead to increased re-

source contention (locking, cache coherency, etc.). Thus,

SQ has largely been replaced by designs that use multi-

ple independent software and hardware transmit queues.

Nevertheless, SQ offers the OS the most control over

packet scheduling because the NIC will transmit pack-

ets in the exact order chosen by the OS.

Multiqueue (MQ): To avoid SQ’s resource contention

overheads, many 10 Gbps and faster NICs provide mul-

tiple hardware transmit and receive queues (MQ). Most

OSes use multiple partitioned software queues, one for

each hardware queue. Figure 1b illustrates MQ in Linux.

Note that queues are not pinned to individual cores in

this model, although flows may be assigned to queues.

This allows computation to be migrated to idle or under-

utilized cores [32] at the expense of performance isola-

tion provided by dedicating queues to cores. Given a

multiqueue NIC, by default, Linux will use MQ.

The driver that we use (ixgbe) sets the number of

queues to be equal to the number of cores by default.

However, modern NICs typically can provide more hard-

ware queues than cores, and using more queues than

cores can be advantageous.

Moving to a multiqueue NIC requires that the OS im-

plement some mechanism for assigning traffic to queues.

In Linux, queue assignment is determined by RSS hash-

ing for incoming flows and by a per-socket hash for out-

going flows. Because the number of open sockets may be

much larger than both the number of NIC queues and the

number of simultaneously active sockets, hash collisions

would be expected given this approach regardless of the

specific hash algorithm that is used.

In MQ, NICs must implement some algorithm for pro-

cessing traffic from the different queues because they can

only send a single packet at a time on the wire. Both

the Intel 82599 and Mellanox ConnectX-3 NICs perform

round-robin (RR) scheduling across competing queues

of the same priority [2, 31]. Because of this, MQ can

increase HOL blocking latency. If a multi-packet seg-

ment is enqueued in an empty queue, the time to send

this entire segment in MQ will be the transfer time in SQ

multiplied by the number of active queues. For example,

sending a single 64KB segment at 10Gbps line-rate takes

52µs, while sending a 64KB segment from 8 different

queues takes 419µs. Further, if all of the queues are full,

the queueing latency of the NIC for any new segment is

at least equal to the minimum number of bytes enqueued

in a queue times the number of queues.

Multicore-Partitioned Multiqueue (XPS): The third

networking design partitions NIC queues across the

available CPUs, which can reduce or eliminate the inter-

core communication performed for network I/O and im-

prove cache locality. This configuration (transmit packet

steering or XPS [11]) is particularly important for per-

formance isolation because it ensures VMs/containers on

one core do not consume CPU resources on another core

to perform I/O. As in MQ, when a core can use multiple

queues, hashing is used to pick which queue individual

flows are assigned to in Linux.

In Linux, partitioning queues across cores involves

significant configuration. XPS assigns NIC TX queues to

a pool of CPUs. Because many TX queues can share an

interrupt, interrupt affinity must also be configured cor-

rectly for XPS to be effective.
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Config Purpose Expected Impact

Segmentation offloading (TSO/GSO) Offload or delay segment packetization Increases to segment sizes should reduce CPU utilization, in-

crease latency, and hurt fairness

Choice of software queue (Qdisc) Optimize for different performance goals Varies

Assignment of queues to CPU cores (XPS, etc.) Improve locality and performance isolation Improved assignment should reduce CPU utilization

TCP queue occupancy limits (TCP Small Queues) Avoid bufferbloat Decreasing should reduce CPU utilization and latency up to

a point of starvation.

Hardware queue occupancy limits (BQL) Avoid head-of-line (HOL) blocking Decreasing the byte limit should reduce latency up to a point

of starvation. Further decreases should decrease throughput.

Table 1: A table that lists the different server-side network configurations investigated in this study, their purpose, and

their expected performance impact.

2.2 Optimizations and Queue Configura-

tions

There are many additional configurations and optimiza-

tions that impact network performance. Combined with

the above queue configurations, these options induce key

trade-offs in terms of latency, throughput, fairness and

CPU utilization.

TSO/GSO: Segmentation offloading allows the OS to

pass segments larger than the MTU through the net-

work stack and down to the NIC. This reduces the num-

ber of times the network stack is traversed for a given

bytestream. There are many per-segment operations in

an OS networking stack, so increasing segment sizes re-

duces CPU utilization [28].

Many NICs are capable of packetizing a TCP seg-

ment without CPU involvement, called TCP Segmen-

tation Offloading (TSO). For NICs that do not support

TSO, Generic Segmentation Offloading (GSO) provides

some of the benefit of TSO without hardware support by

passing large segments through the stack and segmenting

only just before passing them to the driver.

TSO/GSO hurts latency and fairness by causing HOL

blocking. Competing traffic must now wait until an en-

tire segment is transmitted. Further, sending large seg-

ments can cause bursts of congestion in the network [24].

To avoid the problems associated with TSO/GSO, Linux

does not always send as large of segments as possible.

Instead, Linux automatically reduces the size of TSO

segments to try to ensure that at least one segment is

sent each millisecond [9]. In effect, this causes Linux to

use smaller segments on slow networks while still using

as large of segments as possible on fast networks. (e.g.

10 Gbps and beyond).

Software Queue Discipline: Before segments are

passed to a hardware queue, they are processed by a soft-

ware queue (Qdisc). By default, the queuing discipline

in Linux is FIFO (pfifo fast), which is sub-optimal

for latency and fairness. Linux implements at least two

other superior policies: (1) The prio policy strictly pri-

oritizes all traffic from a configurable class over all other

traffic, improving latency. (2) The sfq policy imple-

ments Stochastic Fair Queueing (SFQ) using the defi-

cient round robin (DRR) scheduling algorithm [36] to

fairly schedule segments from competing flows regard-

less of differing segment sizes.

TSO Interleaving: Transmitting an entire TSO segment

at once for a given queue can significantly increase la-

tency and harm fairness, even if each queue is serviced

equally. Some NICs address this with TSO interleav-

ing [2, 31], which sends a single MTU sized packet from

each queue in round-robin even if TSO segments are en-

queued. This can lead to fairer packet scheduling as long

as there is only one flow per-queue. HOL blocking can

still occur if there are multiple flows in a queue.

TCP Queue Occupancy Limits: Enqueuing too

many bytes for a flow into software queues causes

bufferbloat [19], which can hurt latency and fairness.

TCP Small Queues (TSQ) [10] limits the number of out-

standing bytes that a flow may have enqueued in either

hardware or software queues to address this problem.

Once the limit is reached (256KB by default in Linux),

the OS waits for the driver to acknowledges that some

segments for that flow have been transmitted before en-

queuing more data. As long as more bytes are enqueued

per-flow than can be transmitted by the NIC before the

next interrupt, TSQ can still drive line-rate while reduc-

ing bufferbloat.

In Linux, the enqueueing of additional data for flows

sharing a queue in TSQ happens in batches. This is a

side-effect of Linux using the freeing of an skbuff as

a signal that it has been transmitted and skbuffs only

being freed by the driver in batches in the TX interrupt

handler.

Hardware queue occupancy limits: Hardware queues

are simple FIFOs, so increasing the bytes enqueued per-

hardware queue directly increases HOL blocking latency.

Byte Queue Limits (BQL) [1] in Linux limits the total

amount of data enqueued in a hardware queue. However,

it is important to enqueue at least as many bytes as can

be sent before the next TX interrupt, otherwise starvation

may ensue. A recent advancement is Dynamic Queue

Limits (DQL) [1], which dynamically adjusts each hard-

ware queue’s BQL independently so as to decrease HOL

blocking while avoiding starvation.

2.3 Configuration Trade-off Study

We studied the impact of the aforementioned config-

urations on server-side performance (CPU utilization,
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Cvanilla: Default Linux networking stack incurs significant latency and unfairness, regardless of how many NIC queues are used, but has

high throughput and low CPU.

C1: No TSQ: TSQ is an important optimization. Disabling can cause significant latency and unfairness.

C2: Improved software

scheduling:

Improving the software scheduler can significantly reduce latency and increase fairness, especially when only a single NIC queue

is used. Comes at the cost of CPU utilization.

C3: No BQL: BQL is an important optimization because disabling it can lead to increased latency and decreased fairness.

C4: 64KB BQL: Setting BQL too small decreases latency but hurts fairness at long timescales with many flows.

C5: No TSO: Disabling segmentation offloading hurts every performance metric because CPUs saturate.

C6: 16KB GSO: Using a smaller GSO size than the default (64KB) improves fairness at short timescales (ms), increases CPU utilization.

Cmax: C2 + 256KB BQL: Dynamic Queue Limits (DQL) leads to a higher queue limit than necessary to avoid starvation. If BQL is manually set smaller, it

is possible to reduce latency and improve fairness.

Table 2: Summary of experimental results for different networking configurations.

throughput, latency, and fairness). Our high-level take-

aways are listed in Table 2. These are synthesized from

the raw results presented for each combination of work-

load, queue configuration, and optimization, which we

detail in a technical report [40]. Table 3 in Section 6

shows the raw results for default Linux (Cvanilla) and

the best performing configuration (Cmax). These results

show that using SFQ for the queuing discipline with TCP

small queues enabled and byte queue limits manually

set to 256KB tend to out-perform all other combinations

across different queue configurations. This is denoted

by Cmax, which we henceforth focus on as the baseline

best-performing MQ/XPS configuration today.

While we find that using multiqueue NICs can gener-

ally offer low CPU utilization and high throughput, we

also find that the current Linux networking stack is un-

able to provide fairness at any time scale across flows

at any subscription level. In the undersubscribed case,

the central problem with MQ in Linux is the assign-

ment of flows to queues. At low oversubscription, un-

fairness is uniformly high at short (1ms) and long (1 sec)

timescales. We find that this largely occurs because some

queues have more flows than others, and flows that share

a queue send half as much data as those that do not. At

high oversubscription, fairness is uniformly worse, as

hashing is not perfect and leads to variable number of

flows per queue, and a flow sharing a queue with 9 other

flows will send much more slowly than one sharing with

5. However, using the best practices, exemplified partic-

ularly by configuration Cmax, can have substantial bene-

fits over vanilla Linux without optimizations (Cvanilla).

2.4 Summary

Multiqueue NICs allow different CPU cores to perform

network I/O independently, which is important for reduc-

ing the CPU load of network I/O caused by locking and

cross-core memory contention. Each core can use inde-

pendent software queueing disciplines feeding indepen-

dent hardware queues. Further, TSO reduces CPU uti-

lization by allowing the OS to treat multiple sequential

packets as a single large segment. However, as a conse-

quence, a packet scheduler in the NIC is now responsi-

ble for deciding which queue is allowed to send packets

out on the wire. Because the NIC performs round-robin

scheduling across competing hardware queues and TSO

segments cause HOL blocking, the NIC will emit an un-

fair packet schedule when the network load is asymmet-

rically partitioned across the NIC’s hardware queues and

when multiple flows share a queue.

3 Titan

This section presents the design of Titan, an OS net-

working stack that that introduces new mechanisms for

improving network fairness with multiqueue NICs. To

improve fairness, Titan dynamically adapts the behavior

of the many different layers of an OS’s network stack to

changes in network load and adds a new abstraction for

programming the packet scheduler of a NIC. Specifically,

Titan comprises the following components: Dynamic

Queue Assignment (DQA), Dynamic Queue Weight As-

signment (DQWA), and Dynamic Segmentation Offload

Sizing (DSOS).

Given a fixed number of NIC queues, we target the

three behavior modes of behavior we previously de-

scribed: undersubscribed, low oversubscription, and

high oversubcription. Titan is designed to improve

server-side networking performance regardless of which

mode a server currently is operating in, and the different

components of Titan are targeted for improving perfor-

mance in each of these different regimes. The rest of this

section discusses the design of these components.

3.1 Dynamic Queue Assignment (DQA)

When it is possible for a segment to be placed in more

than one queue, the OS must implement a queue assign-

ment algorithm. In Linux, a per-socket hash is used to

assign segments to queues. Even when there are fewer

flows than queues (undersubscribed), hash collisions can

lead to unfairness.

Titan uses Dynamic Queue Assignment (DQA) to

avoid the problems caused by hash collisions when there

are fewer flows than queues. Instead of hashing, DQA

chooses the queue for a flow dynamically based on the

current state of the software and hardware queues. DQA

assigns flows to queues based on queue weights that are

internally computed by Titan. In other words, there are
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two components to DQA: an algorithm for computing

the OS’s internal weight for each queue and an algorithm

for assigning a segment to a queue based on the current

weight of every software/hardware queue that the seg-

ment can use.

Queue weight computation: Titan uses the current traf-

fic that is enqueued in a software/hardware queue pair to

compute a weight for each queue. We assume that the OS

can assign a weight to each network flow based on some

high-level policy. Titan dynamically tracks the sum of

the weights of the flows sharing the same queue: it up-

dates a queue’s weight when a flow is first assigned to a

queue and when a TX interrupt frees the last outstanding

skbuff for the flow.

Queue assignment algorithm: Dynamically tracking

queue occupancy can allow a queue assignment algo-

rithm to avoid hash collisions. Our goals in the design

of a DQA are to avoid packet reordering and provide ac-

curate assignment without incurring excessive CPU uti-

lization overheads. We use a greedy algorithm to assign

flows to queues with the aim of spreading weight evenly

across all queues. This algorithm selects the queue with

the minimum weight.

The main overhead of our current implementation of

DQA is that it reads the weights of every queue a flow

may use. XPS reduces this overhead by reducing the

number of queue weights that need to be read: if a flow is

not allowed to use a queue, DQA will not read its weight.

Although not necessary, our current implementation in-

troduces a lock to serialize queue assignment per XPS

pool. We are currently investigating using a lock-free

priority queue to allow multiple cores to simultaneously

perform queue assignment without reading every queue’s

weight while still avoiding choosing the same queues.

In order to avoid packet reordering, DQA only

changes a flow’s queue assignment when it has no

outstanding bytes enqueued in a software or hardware

queue. This also has the added benefit of reducing the

CPU overheads of queue assignment because it will be

run at most once per TX interrupt/NAPI polling interval

and often only once for as long as a flow has backlogged

data and is allowed to send by TCP. However, this also

implies that unfairness can arise as flows complete be-

cause remaining flows are not rebalanced.

3.2 Dynamic Queue Weight Assignment

(DQWA)

DQA computes queue weights to perform queue assign-

ment. However, these queue weights are only an OS con-

struct. The NIC does not perform scheduling decisions

based on these weights; it services queues based on sim-

ple round-robin instead. During periods of oversubscrip-

tion, this can lead to unfairness.

To solve this problem, Titan modifies NIC drivers

to expose a queue weight abstraction whereby higher

levels of the network stack can cause the NIC sched-

uler to service queues in proportion to the OS’

weights. This is accomplished by introducing the

new ndo set tx weight network device operation

(NDO) for drivers to implement. The OS calls this func-

tion whenever it updates a queue’s weight, which allows

the NIC driver to dynamically program the NIC sched-

uler. We call this Dynamic Queue Weight Assignment

(DQWA). Although simple, this new function allows the

NIC to generate a fair packet schedule provided that the

NIC scheduler is capable of being programmed.

The main overhead of DQWA is that each update gen-

erates a PCIe write. Like DQA, DQWA weights only

need to be changed at most once per TX interrupt/NAPI

polling interval. However, if necessary, the number of

DQWA updates can also be rate limited.

While not all commodity NICs allow weight setting,

it is a small addition to mechanisms already present. A

NIC scheduler must implement a scheduling algorithm

that provides per-queue fairness even if different sized

segments are enqueued. To modify this algorithm to ser-

vice queues in proportion to different weights is simple;

we borrow the classic networking idea of Deficit Round

Robin (DRR) scheduling [36]. Specifically, by allocat-

ing each queue its own pool of credits that are decreased

proportional to the number of bytes sent by the queue,

DRR can provide per-queue fairness. Providing an inter-

face to modify the allocation of credits to queues enables

the NIC to configure DRR to service queues in propor-

tion to different weights.

We implement the ndo set tx weight in the

ixgbe driver by configuring the NIC scheduler’s per-

queue DRR credit allocation.

3.3 Dynamic Segmentation Offload Sizing

(DSOS)

When segments from competing flows share the same

software/hardware queue pair, the size of a GSO seg-

ment becomes the minimum unit of fairness. Under pe-

riods of heavy oversubscription, the GSO size can be-

come the major limiting factor on fairness because of the

HOL blocking problems that large segments cause. Im-

portantly, improving the interleaving of traffic from mul-

tiple different flows at finer granularities can also benefit

network performance [18].

Currently, the only way to improve the fairness of soft-

ware scheduling is by reducing the GSO size. How-

ever, this only improves fairness when multiple flows

share a single queue. Otherwise, TSO interleaving in

the NIC provides per-packet fairness independent of the
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GSO (TSO) size. Reducing the GSO size when the net-

work queues are not oversubscribed only wastes CPU.

Dynamic Segmentation Offload Sizing (DSOS) en-

ables an OS to reduce GSO sizes for improved fairness

under heavy load while avoiding the costs of reducing

GSO sizes when NIC queues are not oversubscribed.

This provides a better CPU utilization trade-off than was

previously available.

In DSOS, packets are segmented from the default GSO

size to a smaller segment size before being enqueued in

the per-queue software queues only if multiple flows are

sharing the same queue. (In our current implementation,

re-segmentation happens in all queues as soon as there

is oversubscription.) Segmentation in DSOS is identi-

cal to the implementation of GSO except that segmen-

tation happens before Qdisc instead of after. Because

the software queue (Qdisc) is responsible for fairly

scheduling traffic from different flows, this enables the

OS to generate a fair packet schedule while still ben-

efiting from using large segments in the TCP/IP stack.

Further, many multiqueue NICs also support passing a

single segment as a scatter/gather list of multiple regions

in memory. This enables a single large segment to be

converted into multiple smaller segments without copy-

ing the payload data. If automatic TSO sizing generates

segments smaller than the DSOS segment size, then no

additional work is done.

4 Implementation

We implemented Titan in Linux 4.4.6 and modified In-

tel’s out-of-tree ixgbe-4.4.6 release [4] to support

the new ndo set tx weight NDO. We were able to

implement this new NDO in this driver from the pub-

lic hardware datasheets [2]. In a similar spirit, Titan

is open source and available at https://github.

com/bestephe/titan.

There is one major limitation in our current ixgbe

driver implementation. We were only able to program

the packet scheduler on the Intel 82599 NIC when it

was configured in VMDq mode. As a side-effect, this

causes the NIC to hash received packets (received side

steering, or RSS) to only four RX queues. This ef-

fectively decreases the NIC’s RX buffering capacity, so

enabling this configuration can increase the number of

packet drops. To try to mitigate the impact of reduc-

ing the receive buffering capacity of the NIC, we modi-

fied the ixgbe-4.4.6 driver to enable a feature of the

82599 NIC that immediately triggers an interrupt when

the number of available RX descriptors drops below a

threshold.

During development, we found a problem with the

standard Linux software queue scheduler. Linux tries to

dequeue packets from software queues in a batch and

enqueue them in their corresponding hardware queue

whenever a segment is sent from any TCP flow. When

multiple ACKs are received in a single interrupt, multi-

ple TCP flows may try to create new skbuffs and en-

queue them. If no bytes are enqueued in the software

queues for two flows, and then ACKs for both flows ar-

rive, the second flow will not have a chance to enqueue

new skbuffs in the software queues before packets are

dequeued from the software queue until the hardware

queue is filled up to the BQL limit. In general, send-

ing segments to the NIC as soon as the first TCP flow

sends a segment may cause later TCP flows to miss an

opportunity to send, leading to unfairness.

In Titan, we improve fairness with TCP Xmit Batch-

ing. With this mechanism, all of the TCP flows that en-

queue segments at the same time in TSQ are allowed to

enqueue packets into their respective software queues be-

fore any packets are dequeued from software queues and

enqueued in the hardware queues. This is accomplished

by changing the per-CPU TSQ tasklet in Linux so en-

queuing a segment returns a pointer to a Qdisc. Pack-

ets are dequeued from the returned Qdiscs only after all

pending segments have been enqueued.

5 Methodology

To evaluate Titan, we perform experiments by sending

data between two servers and within a cluster of servers.

In the two server experiments, we use a cluster of

three servers connected to a dedicated TOR switch via

10 Gbps Ethernet cables. One server is a source, another

a sink, and the third server is for monitoring. The switch

is a Broadcom BCM956846K-02. The first and second

server are the traffic source and sink respectively. Both of

these servers have a 4-core/8-thread Intel Xeon E5-1410

CPU, 24GB of memory, and connect to the TOR with

Intel 82599 10 Gbps NICs [2]. We configure the switch

to use port mirroring to direct all traffic sent by the first

server to the third server. To monitor traffic, this server

uses an Intel NetEffect NE020 NIC [5], which provides

packet timestamps accurate to the microsecond.

We perform two types of two server experiments.

First, we generate traffic using at most one iperf3 [3]

client per core pinned to different CPUs. Each client only

uses a single thread. Because the fairness problems only

arise when load is asymmetric, we distribute the flows

across cores such that half of the cores have twice as

many active flows as the other half of the cores. To mea-

sure latency, we use sockperf [8]. To measure CPU

utilization, we use dstat. To avoid impacting CPU uti-

lization by measuring latency, we measure latency and

CPU utilization in separate experiments. Second, we use

YCSB [12] to request both small and large values from

memcached from different threads. We perform all of
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the two server experiments with the NIC configured in

VMDq mode.

In the cluster workloads, we use a cluster of 24 servers

on CloudLab. Each of the servers has 2 10-core In-

tel E5-2660 v2 CPUs and 256GB of memory. All the

servers connect to a Dell Networking S6000 switch via

Intel 82599 NICs. Inspired by shuffle workloads used

in prior work [13, 33, 22], we have all 24 servers simul-

taneously open a connection to every other server and

send 1GB. We measure flow completion times. Because

iperf3 opens up additional control connections that

can impact performance, we use a custom application to

transfer data in this workload.

We compare Titan against two base configurations:

Cvanilla, which is the default Linux configuration, and

Cmax, which uses the MQ configuration system with a

GSO size of 64KB, a TCP small queues limit of 256KB,

and byte queue limits manually set to 256KB. In Cmax,

interrupt coalescing on the NIC is also configured so that

the NIC will use an interrupt interval of 50µs. In other

words, the NIC will wait at least 50µs after raising an

interrupt before it will be raised again. In the 2 server

experiments, the traffic sink always uses configuration

Cmax. Large receive offload (LRO) is disabled in all of

the experiments because it can increase latency. We per-

form all experiments 10 times and report the average.

6 Evaluation

First, we evaluate the performance impact of individ-

ual components of Titan in the absence of any network

congestion. Second, we evaluate Titan on a cluster of

servers. In summary, we find that Titan is able to im-

prove fairness on multiqueue NICs while only having a

small impact on other metrics.

We study the following four metrics:

1. We measure CPU utilization as the sum percent of

the time each core was not idle during a one sec-

ond interval, summed across all cores and averaged

across the duration of the experiment.

2. We measure network throughput as the total number

of bytes that were sent per second across all flows,

averaged across the duration of the experiment.

3. We measure latency with sockperf and report av-

erage latency. When we configure Linux software

queues (Qdiscs), we prioritize the port used by

sockperf above all other traffic.

4. We use a normalized fairness metric inspired by

Shreedhar and Varghese [36]. For every flow i ∈ F ,

there is some configurable quantity fi that expresses

i’s fair share. In all of our experiments, fi is 1. If

sent i(t1, t2) is the total number of bytes sent by flow

i in the interval (t1, t2), then the fairness metric FM

is as follows:

FM(t1, t2) =

max{i, j ∈ F |sent i(t1, t2)/ fi − sent j(t1, t2)/ f j}

In other words, the fairness metric FM(t1, t2) is the in-

stantaneous worst case difference in the normalized bytes

sent by any two competing flows over the time interval.

Ideally, the fairness metric should be a small constant no

matter the size of the time interval [36].

For our experiments, we do not report this ideal FM

but instead use normalized fairness NFM(τ), which is the

fairness metric FM over all intervals of duration τ , nor-

malized to the fair share of data for a flow in the interval.

NFM(τ) = FM(τ)∗
line rate∗ τ

∑ j∈F f j

−1

For example, with 10 flows, a flow’s fair share of a 10

Gbps link over 1 second is 128MB; if the highest FM

over a 1-second interval is 64 MB, then NFM is 0.5.

Note that NFM can exceed 1 when some flows get much

higher performance than others.

6.1 Two Server Performance

There are multiple complementary components to Titan,

and we evaluate the impact of individual components on

performance in the absence of network congestion. Ta-

ble 3 shows the performance of different components

of Titan for each metric. The expected benefit of Titan

is improved fairness, but it is possible for Titan to hurt

throughput, latency, or CPU utilization. These results

show that Titan is able to significantly improve fairness

often without hurting throughput and latency and with a

small increase in CPU utilization (often < 10%)

Dynamic Queue Assignment: DQA ensures that when

there are fewer flows than queues, each flow is assigned

its own queue. The Cmax (hashing) and DQA results

in Figure 2 shows the fairness differences between using

hashing and DQA for assigning flows to queues given

8 hardware queues and a variable number of flows. We

report NFM, the normalized fairness metric.

With hashing, fairness is good with 3 flows as there are

few collisions. However, with more flows, the unfairness

of hashing is high at short and long timescales because

there are often hash collisions. Unfairness is bad because

of HOL blocking while waiting for GSO/TSO-size seg-

ments and hashing leading to uneven numbers of flows

per queue.

In contrast, with DQA there is no unfairness in the

undersubscribed case, as DQA always assigns every flow

its own queue. In the low oversubscription case of 12

flows, there is also unfairness because some flows must
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Config

3 flows, 8 Queue (1 per CPU)

Config

12 flows, 8 Queues (1-per CPU)

TPut CPU Latency NFM NFM TPut CPU Latency NFM NFM

(Gbps) (%) (µs) (1ms) (1s) (Gbps) (%) (µs) (1ms) (1s)

Cvanilla 9.4 64 298 0.33 0.31 Cv: 9.4 58 912 1.83 1.23

Cmax: SFQ/Prio + 256KB BQL 9.4 72 125 0.16 0.15 Cmax: 9.4 55 912 1.79 1.39

Titan1: DQA 9.4 78 123 0.00 0.00 T1: 9.4 66 657 1.17 0.78

Titan2: DQA + DQWA 9.4 77 124 0.00 0.01 T2: 9.4 70 516 1.10 0.12

Titan3: DQA + DQWA + DSOS (16KB) 9.4 82 180 0.02 0.02 T3: 9.4 96 395 0.55 0.17

XPS: Cmax + XPS 9.4 54 130 0.16 0.15 XPS: 9.4 55 526 1.87 1.55

TitanXPS1: DQA 9.4 55 126 0.00 0.00 TX1: 9.4 49 660 1.32 0.87

TitanXPS2: DQA + DQWA 9.4 57 121 0.01 0.00 TX2: 9.4 50 505 0.68 0.11

TitanXPS3: DQA + DQWA + DSOS (16KB) 9.4 65 128 0.04 0.01 TX3: 9.4 59 269 0.66 0.23

48 flows, 8 Queue (1 per CPU) 192 flows, 8 Queues (1-per CPU)

Cvanilla 9.4 72 2019 5.01 1.95 Cv: 9.4 98 3881 15 3.32

Cmax: SFQ/Prio + 256KB BQL 9.4 83 653 4.06 1.58 Cmax: 9.1 109 604 6.93 1.39

Titan1: DQA 9.4 89 660 3.83 0.38 T1: 9.5 118 554 8.35 0.54

Titan2: DQA + DQWA 9.4 87 585 3.85 0.46 T2: 9.5 103 509 8.42 0.49

Titan3: DQA + DQWA + DSOS (16KB) 9.3 103 285 2.92 0.80 T3: 9.4 113 342 3.50 0.80

XPS: Cmax + XPS 9.4 53 639 4.37 1.49 XPS: 9.5 119 517 10 2.66

TitanXPS1: DQA 9.4 61 660 5.02 1.58 TX1: 9.5 113 552 8.46 0.76

TitanXPS2: DQA + DQWA 9.4 62 606 3.92 0.50 TX2: 9.5 123 519 8.28 0.57

TitanXPS3: DQA + DQWA + DSOS (16KB) 9.4 76 333 1.83 0.53 TX3: 9.4 138 300 3.50 0.81

Table 3: The performance of different OS configurations given 3, 12, 48, and 192 flows spread across 8 cores.
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Figure 2: The impact of the individual aspects of Titan

on short-term and long-term fairness.

share queues, and without DQWA to program weights in

the NIC, all queues are serviced equally. With 48 flows,

DQA has low unfairness over long timescales because it

will place exactly 6 flows in each queue.

Dynamic Queue Weight Assignment: DQWA enables

an OS to pass queue weights, in this case the number of

flows, to the NIC so that queues with more flows receive

more service. Figure 2 shows the fairness of the DQA

queue assignment algorithms when DQWA is enabled.

These results show that over short timescales, DQWA

has little impact as it takes time for queue weights to fix

transient unfairness, and in highly oversubscribed cases

HOL blocking is the major cause of unfairness. Over

longer timescales, DQWA improves the fairness at low

levels of oversubscription because the NIC is able to give

more service to queues with more flows. At high levels of

oversubscription, DQA is able to evenly distribute flow

weights across queues, so DQWA is not able to further

improve fairness.

We note that DQA is a software-only solution that has

the largest impact in undersubcribed cases and helps at

both short and long timescales. DQWA helps most in (i)

oversubscribed cases and (ii) over longer timescales. In

addition, DQWA requires hardware support that, while

minimal, may not be present in all NICs. Also, we evalu-

ated DQWA with hashing instead of DQA, and we found

that DQWA also improves fairness without DQA.

Dynamic Segmentation Offload Sizing: DSOS ad-

dresses HOL blocking by reducing segment size from the

default 64KB to a smaller size dynamically under over-

subscription. We compare DQA and DQWA with and

without DSOS for 16KB DSOS segment sizes. Figure 2

shows that DSOS improves fairness at the 1ms timescale.

In the 3 and 6 flow cases there is no oversubscription, so

DSOS leaves the GSO size at 64KB. For 12, 24, and 48

flows, though, DSOS reduces the segment size to reduce

HOL blocking. At short timescales, this improves fair-

ness. Over longer timescales, DSOS can slightly hurt

fairness. This is because DSOS can increase CPU uti-

lization.

XPS: So far, our evaluation has focused our discus-

sion on the multiqueue NIC configuration (MQ). Trans-

mit packet steering (XPS; Section 2.1) assigns pools

of queues to pools of CPUs and behaves differently

than MQ. To understand these differences, Figure 2 also

shows the fairness of Titan when XPS is configured. For

the most part, this figure shows that XPS has little impact
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on network fairness in Titan.

The biggest change in Figure 2 is that XPS improves

the fairness of DSOS (with both DQA and DQWA en-

abled) at short timescales during oversubscription. When

there are 48 flows, using a 16KB dynamic segment size

with XPS almost halves NFM at short time scales. The

reason for this is because XPS reduces the CPU over-

heads of DSOS (Table 3). This is because XPS improves

cache locality.

CPU Utilization, Throughput and Latency: While the

goal of Titan is improved fairness, it must not come at the

cost of increased CPU utilization, decreased throughput,

or increased latency. Tables 3 compares the performance

of Titan with Cvanilla and Cmax.

At all subscription levels, throughput is almost always

identical with Titan and standard Linux networking op-

tions. Similarly, CPU utilization is slightly higher with

Titan. It must do more work for queue assignment and

weight-setting. During oversubscription, DSOS must

segment and process smaller segments. Fortunately, en-

abling XPS reduces the CPU utilization of all of the fea-

tures of Titan.

Regardless of the subscription level, Titan can increase

latency. In the absence of any other traffic, the average

baseline latency we observed is 32µs. In the presence of

bulk transfers, the minimum average latency we observe

is 121µs, and the highest average latency we observe is

3.9ms. This high latency is because the HOL blocking

latency of the NIC (for a given priority) is at least equal

to the minimum number of bytes enqueued in any queue

multiplied by the number of active queues. Although we

find that latency in general is high, we observe that Ti-

tan does not significantly hurt latency. The latency of

Titan is often near that of Cmax, and at most Titan in-

creases latency by 134µs. When NIC queues are over-

subscribed, we observe that DSOS can reduce latency by

over 200µs. Further, we also looked at tail latency and

found that the 90th percentile latency for Titan is never

more than 200µs higher than the average.

Currently, the best practice for addressing this prob-

lem is to use DCB priorities to isolate high priority traffic

onto independent pools of NIC queues that are serviced

with higher priority by the NIC hardware. Traffic in one

DCB priority is not able to increase the latency of traffic

in a higher DCB priority.

In summary, we find that overall Titan greatly im-

proves fairness across a wide range of subscription lev-

els, often at no or negligible throughput or latency over-

heads. Titan can cause a small increase in CPU utiliza-

tion, often less than 10%. At most, this increase is 17%

and 27% with and without XPS, respectively.

Finally, we have also performed experiments to evalu-

ate the impact of Titan on average and tail request com-

pletion times in memcached. These experiments use
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Figure 3: The impact of Titan on fairness on a cluster of

servers performing a shuffle.
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Figure 4: The impact of Titan on flow completion times

(FCT) on a cluster of servers performing a shuffle.

YCSB with 7 request threads, 6 of which request 512KB

values, while the remaining thread requests small objects

(2–64KB). We find that Titan is able to reduce the aver-

age and 99th percentile completion times for the small

objects by 3.2–10.6% and 7.3–32%, respectively. This

is because Titan is able to avoid HOL blocking latency

through dynamic queue assignment.

6.2 Cluster Performance

In order to evaluate the cluster performance of Titan,

we measure the impact of improving the fairness of the

packet stream emitted by a server when there is net-

work congestion and when there are more communicat-

ing servers. To do so, we perform an all-to-all shuffle

for different cluster sizes where each server simultane-

ously opens connections to every other server and trans-

fers 1GB of data. This workload is inspired by the shuffle

phase of Map/Reduce jobs.

Figure 3 shows the impact of Titan on network per-

formance in a cluster of 6, 12, and 24 servers. We plot

a CDF of the difference in the completion time of the

earliest completing flow and that of the last completing

flow. First, Figure 3 confirms that without Titan flow

fairness is a problem in a cluster of servers. Both the

default Linux configuration (Cvanilla) and an optimized

Linux configuration (Cmax) behave similarly and show

substantial variation in completion times. In contrast,

with Titan unfairness substantially improves at all three

subscription levels and is consistently much better than

Cvanilla and Cmax.

Further, we find that Titan is not only able to improve

fairness, but that improving fairness also reduces the tail
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flow completion times (>80th percentile) for the flows in

the shuffle as well. To show why, Figure 4 shows a CDF

of the flow completion times across all the flows in the

shuffle for different cluster sizes. This figure shows that

Titan provides more consistent flow completion times.

Because of this, the fastest flows (<20th percentile) in

Cvanilla and Cmax complete faster. However, this comes

at the expense of tail flow completion times. Figure 4

shows that Titan can reduce the tail of the flow comple-

tion time distribution (>80th percentile).

Finally, for this test, DQA (without DQWA or DSOS)

is enough to get most of the fairness benefit of Titan. At

small cluster sizes, we found that DQWA can still further

improve fairness. Unfortunately, we discovered that con-

figuring our NICs into VMDq mode reduces RX buffer-

ing capacity and hurts completion times. Because our

implementation of DQWA requires VMDq mode to pro-

gram queue weights, we cannot evaluate DQWA’s benefit

for large clusters.

7 Related Work

Titan is closely related to SENIC [31] and Silo [23]1.

SENIC argues that NICs in the future will be able to pro-

vide enough queues such that two flows will never have

to share the same queue. In contrast, Silo builds a system

for fairly scheduling traffic from competing VMs using

a single transmit queue (SQ) because of the control it

gives to the OS. Titan introduces a middle ground that

can achieve some of the benefits of both designs.

Many projects in addition to Silo have used the SQ

model. In particular, the SQ model is popular for emulat-

ing new hardware features not yet provided by the under-

lying hardware [31, 21, 25]. This is because it provides

the OS with the most control over packet scheduling.

Similar to Titan, PSPAT [34] performs per-packet

scheduling in a dedicated kernel thread that is separated

from applications and device drivers with two sets of

lock-free queues. Making per-packet scheduling deci-

sions in PSPAT instead of per-segment decisions in Titan

can significantly improve fairness and latency, and Titan

can cause PCIe contention that is avoided in PSPAT by

only issuing PCIe writes from a single core. If PSPAT

were extended to use multiple independent scheduling

threads to drive independent NIC queues, then program-

ming the NIC scheduler with DQWA in Titan would be

complementary.

There has been recent work on building networks that

provide programmable packet scheduling [38, 29, 16],

allowing flows to fairly compete [15, 41, 39], and per-

forming traffic engineering in the network [13, 22, 17,

1The Titan Missile Museum is located in a silo. We imagine it is

scenic.

33, 14, 18]. Titan is motivated by similar concerns and

is complementary. If the packet schedule emitted by a

server is not fair, then the end-server can become the

main limiting factor on fairness, not the network. Thus,

Titan can improve the efficacy of the aforementioned

techniques.

Affinity-Accept [30] improves connection locality on

multicore processors, and Fastsocket [27] improves the

multicore scalability of the Linux stack when a server

handles many short-lived network connections. Titan is

complementary to both of these designs. Titan bene-

fits from their improvements in connection setup, while

these designs can benefit from improved flow fairness in

Titan.

8 Conclusions

With increasing datacenter (DC) server line rates it be-

comes important to understand how best to ensure that

DC applications can saturate high speed links, while also

ensuring low latency, low CPU utilization, and per-flow

fairness. While modern NICs and OS’s support a va-

riety of interesting features, it is unclear how best to

use them towards meeting these goals. Using an exten-

sive measurement study, we find that certain multi-queue

NIC configurations are crucial to ensuring good latency,

throughput and CPU utilization, but substantial unfair-

ness remains. To this end, we designed Titan, an exten-

sion to the Linux network stack that incorporates three

main ideas – dynamic queue assignment, dynamic queue

weights, and dynamic segmentation resizing. Our eval-

uation using both experiments between two servers on

an uncongested network and between a cluster of servers

shows that Titan can reduce unfairness across a range of

conditions while minimally impacting the other metrics.

Titan is complementary with a variety of other

DC host networking optimizations, such as DCB and

receive-side network optimizations. Titan’s sender-side

fairness guarantees are crucial to ensure the efficacy of

in-network fair-sharing mechanisms. Finally, the three

main ideas in Titan can be employed alongside other sys-

tems, e.g., those for DC-wide traffic scheduling and other

existing systems optimized for short-lived connections.
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