
This paper is included in the Proceedings of the
2017 USENIX Annual Technical Conference (USENIX ATC ’17).

July 12–14, 2017 • Santa Clara, CA, USA

ISBN 978-1-931971-38-6

Open access to the Proceedings of the
2017 USENIX Annual Technical Conference

is sponsored by USENIX.

E-Team: Practical Energy Accounting
for Multi-Core Systems

Till Smejkal and Marcus Hähnel, TU Dresden; Thomas Ilsche, Center for Information Services
and High Performance Computing (ZIH) Technische Universität Dresden; Michael Roitzsch,

TU Dresden; Wolfgang E. Nagel, Center for Information Services and High Performance
Computing (ZIH) Technische Universität Dresden; Hermann Härtig, TU Dresden

https://www.usenix.org/conference/atc17/technical-sessions/presentation/smejkal

E-Team: Practical Energy Accounting for Multi-Core Systems

Till Smejkal1, Marcus Hähnel1, Thomas Ilsche2, Michael Roitzsch1, Wolfgang E. Nagel2, and
Hermann Härtig1

1Operating Systems Group,TU Dresden
2Center for Information Services and High Performance Computing (ZIH), TU Dresden

firstname.lastname@tu-dresden.de

Abstract
Energy-based billing as well as energy-efficient soft-
ware require accurate knowledge of energy consumption.
Model-based energy accounting and external measure-
ment hardware are the main methods to obtain energy
data, but cost and the need for frequent recalibration have
impeded their large-scale adoption. Running Average
Power Limit (RAPL) by Intel R© enables non-intrusive,
off-the-shelf energy monitoring, but only on a per-socket
level. To enable apportioning of energy to individ-
ual applications we present E-Team, a non-intrusive,
scheduler-based, easy-to-use energy-accounting mecha-
nism. By leveraging RAPL, our method can be used on
any Intel system built after 2011 without the need for ex-
ternal infrastructure, application modification, or model
calibration. E-Team allows starting and stopping mea-
surements at arbitrary points in time while maintaining a
low performance overhead. E-Team provides high accu-
racy, compared to external instrumentation, with an error
of less than 3.5 %.

1 Introduction
Energy has become the major factor constraining the util-
ity of today’s systems. For mobile platforms, which rely
heavily on battery life, energy efficiency is an impor-
tant differentiator for applications and devices. Being
more energy efficient is a competitive advantage. In data-
centers, energy is nowadays dominating the operation
costs, necessitating energy-based payment models [21].

Accurate accounting of energy is paramount to op-
timize energy consumption and to enable energy-based
billing. Software developers rely on energy consump-
tion statistics to find and fix energy bugs [31] and im-
prove the energy efficiency of their algorithms [18]. But
software development already requires developers’ atten-
tion to non-functional properties, like responsiveness and

security. To enable energy efficient systems developers
need a measurement infrastructure that is easy to use and
cost-effective to deploy.

As energy characteristics often only manifest during
runtime of the deployed application, such infrastructure
must be non-intrusive in production environments by not
incurring any performance loss or energy penalty when
not in use. Still, enabling on-the-fly measurement of in-
dividual applications or parts of the system should be as
easy as executing a simple command.

1.1 State of the Art
External measurement hardware is accurate [23], but can
only provide machine-level measurements. Inference
based solutions [35, 25, 7] are more flexible, but require
calibration. We strive for a solution combining the re-
spective advantages.

Intel introduced the Running Average Power Limit
(RAPL) technology in Sandy Bridge

TM
CPUs [33]. It

provides a power limiting infrastructure that is automat-
ically calibrated during startup and exposes energy mea-
surements. While not providing per-application energy
values, it removes the need for expensive, specialized ex-
ternal measurement hardware and comes with zero setup
effort. We introduce RAPL in Section 2.

Simple inference-based models, using CPU time or
retired instructions, fail to accurately capture energy
consumption of complex workloads making energy ap-
portioning infeasible. We illustrate this point by mea-
suring a busy loop that does not touch any data, and
FIRESTARTER [14], a CPU burner application designed
for high power-usage. Figure 1 shows the result of the
experiment. We establish a baseline by measuring the en-
ergy consumption of each app in isolation using RAPL.
Then we run both programs at the same time, scheduled
by Linux’ CFS, measure the system-level end-to-end en-

USENIX Association 2017 USENIX Annual Technical Conference 589

0 200 400 600 800 1,000

E-Team
Insns

CPU time
Baseline

549.88
770.68

451.74
549.26

408.39
180.04

498.98
404.37

Energy (CPU+Memory) [J]

busy-loop FIRESTARTER

Figure 1: Energy attribution based on instructions retired
(Insns) and CPU time, compared to E-Team

ergy consumption and apportion it based on CPU time
and based on instructions retired. Both methods are in-
capable of correctly attributing energy consumption. We
also give a short glimpse of the result of our solution,
E-Team, which is able to accurately capture the energy
consumption for both applications.

1.2 Contributions
We present the design and implementation of an oper-
ating system service for accurate and efficient measure-
ment of per-application CPU energy use on multi-core
systems using RAPL. Our key contributions are:
• A scheduler design to circumvent the limitations of

RAPL using team scheduling (Section 3.1) and a
Linux implementation (Section 4).

• A user-accessible interface to start and stop energy ac-
counting of individual thread groups (Section 4.2).

• A scheduler integration of RAPL for short code paths
(Section 2.3).

• An evaluation using standard benchmarks (NPB [1])
and real-world scenarios with multiple individually
measured applications running in parallel (Section 5).

• A validation of our implementation’s accuracy using a
precise external measurement setup (Section 6).

2 RAPL for Energy Measurements
Starting with the Sandy Bridge generation, Intel CPUs
provide the Running Average Power Limit technology
(RAPL) [33]. As the name implies, RAPL is intended for
power-limiting, but also provides energy counters. Due
to the widespread availability and the fact that it requires
no additional instrumentation, RAPL is used extensively
for power and energy estimation [12, 16, 11, 39].

2.1 Basic RAPL Operation
RAPL provides energy measurements for four domains:
Package (PKG) the whole processor package,
Cores (PP0) aggregate of all cores in a package,
Graphics (PP1) the CPU-integrated graphics process-

ing unit (not available on server platforms), and

Memory (DRAM) memory. Although officially only
supported on server platforms [20], this domain is
also available on desktop processors since Haswell.

The initial implementation of RAPL was based on a
model using micro-architectural events to estimate en-
ergy consumption [8]. Hackenberg et al. [13] have re-
vealed systematic errors in the RAPL energy counters,
e.g. bias towards certain workloads and contradictory re-
sults when using Hyper-Threading. For Haswell genera-
tion processors, RAPL has been demonstrated to provide
accurate measurements without systematic errors [15],
hence the results presented in Section 5 and 6 were pro-
duced on Haswell desktop and server systems.

2.2 Limitations of Basic RAPL
Contrary to performance counters, RAPL counters are
exposed exclusively through Model-Specific Registers
(MSRs) that are only readable from kernel space. A
number of methods exist in Linux to read the MSR
in the kernel and make the values accessible to ap-
plications: Performance monitoring libraries such as
PAPI [26] or LIKWID [38], and dedicated third-party
drivers [24]. Since Linux 3.12, RAPL is usable as power-
cap driver. Since Linux 3.14 RAPL is accessible via the
perf performance monitoring framework as system-wide
performance-counter.

Another fundamental difference to conventional per-
formance counters is that RAPL values are updated with
an approximate frequency of 1 kHz [20] only, while per-
formance counters are updated continuously. The update
is not associated with a timestamp, preventing identifica-
tion of stale values. The discrete updates make it diffi-
cult to measure code paths running shorter than or close
to the counter’s 1 ms update interval. The number of up-
dates cannot be accurately determined: considering, for
example, a piece of code running for 2.5 ms, it makes
a large difference in terms of attributed energy whether
there were two or three updates during that time.

This is especially visible in time-shared systems where
switching between programs happens frequently. In
these systems traditional performance counters are multi-
plexed by saving and restoring their values on every con-
text switch. Such a technique cannot be trivially applied
for RAPL because of the aforementioned update behav-
ior. Counter values may be outdated at the point of con-
text switching leading to significant measurement errors.

Similar to other measurement-based methods, men-
tioned in Section 1.1, the RAPL design cannot mea-
sure energy for individual cores or applications. Instead
RAPL accounts the combined energy for all cores in a
socket. This makes apportioning energy to an applica-
tion executing in a multi-processor system with multiple,

590 2017 USENIX Annual Technical Conference USENIX Association

(a)

t [ms]0 1 2 3 4 5 6

foo

call return

(b)

t [ms]0 1 2 3 4 5 6

foo

call

RAPL read RAPL read

return

Figure 2: Synchronized measurement for short code

concurrently running applications non-trivial. In Sec-
tion 3 we present the design of our scheduler-based mea-
surement service. It ensures that, at any point in time, the
cores of one socket are assigned exclusively to programs
that should be measured together.

2.3 Measuring Short Code Paths
To address the problem of RAPL’s fixed update inter-
vals, we use a method from our previous work on mea-
suring short code-paths [16]. When measuring a short
code path, both the start and the end of the measure-
ment may fall between the update points of the RAPL
energy counter as illustrated in Figure 2 (a). The shorter
the measured code path (here less than 3 ms) the higher
the influence of measurement inaccuracies on the result.
The measurement window, indicated by the dotted arrow,
is offset against the code execution, delineated by call
and return. The offset results in the inclusion of irrele-
vant code at the start and the omission of relevant code at
the end. A solution to this problem is to synchronize the
measurement time to counter updates. For the start of the
measurement, this is achieved by repeatedly reading the
ENERGY_STATUS register until it changes, indicating a
RAPL update. Only then the measured code is executed.

Synchronizing the end of the function is not as simple.
Just waiting for the next update will skew the measure-
ment as the result would include the energy consumed
while waiting. In our previous work, we propose to fill
the time until the next update with a workload of fixed
and known energy consumption [16]. Since polling the
counter is needed to detect the update, using the polling
loop as this defined workload elegantly solves the prob-
lem. Listing 1 shows pseudo-code for the algorithm exe-
cuted when the function of interest terminates. The value
of ePerClock is determined in a one-time calibration
step performed by measuring the cost of repeatedly read-
ing the RAPL counter over an interval of several updates
(less than one second in total). Subtracting the known
cost of the loop ensures that the returned value only con-
tains energy consumed by measured code, thus effec-

f in ish_measurement () {
cyc les = rd tscp () ;
e _ s t a r t = RAPLRead () ;

while (RAPLRead () == e _ s t a r t) { }

cyc les = rd tscp () − cyc les ;
return RAPLRead () − ePerClock ∗ cyc les ;

}

Listing 1: Algorithm for leaving measured code

Time
C1

C2

PE

PO

Wrong Energy Accounting

Figure 3: Miss-accounted energy in normal scheduling

tively increasing the RAPL resolution and removing the
constraint imposed by the update interval. Figure 2 (b)
shows how this solution synchronizes the measurement
with RAPL updates. The striped part before the mea-
sured code may have arbitrary energy consumption, the
part at the end is the described polling loop. We call this
mechanism short-time RAPL.

2.4 Accounting Individual Processes
Figure 3 illustrates the challenge in accounting energy
for individual processes using socket-local measure-
ments. When using RAPL directly to measure process
PE running on core C1, while an unrelated process PO
executes in parallel on core C2, the final energy con-
sumption will be incorrect. During the time marked in
the graph the measurement will include the energy con-
sumed by both programs. The example in Section 1.1
shows, that time-proportional accounting does not suf-
fice to circumvent this problem as instruction types and
access patterns are not taken into account. More sophisti-
cated performance-counter-based models require exten-
sive calibration leading to a significant deployment cost.
Accordingly, we propose a different approach.

3 Energy Measurement as a Kernel Service
Our solution, E-Team, enables energy accounting on a
per-application basis in multi-core systems through spe-
cialized scheduling. The main challenge of introducing
a measurement infrastructure into a production system is
to minimize the accompanying performance impact. The
system should run as usual if there are no active measure-
ments and hardware modifications should not be neces-
sary. However, some overhead may be acceptable dur-
ing troubleshooting or application development. Even in
development scenarios isolating individual applications
that are part of a complex system may be worthwhile to
pinpoint energy bugs. Naïvely restricting the system to
a single core or running the application of interest exclu-

USENIX Association 2017 USENIX Annual Technical Conference 591

sively in the system solves the energy accounting prob-
lem but does not resemble production system behavior.

For the remainder of this paper, we refer to individ-
ually executing programs as processes. Processes may
be comprised of many execution contexts called threads.
Each thread is scheduled as a task by the scheduler and
has an assigned task structure in the kernel.

We introduce the concept of teams. A team is an arbi-
trary group of tasks whose energy is accounted together.
Teams get exclusive access to their assigned CPU socket
to prevent tasks of different teams from running on the
same socket in parallel. This enables the use of the
socket-wide energy measurements of RAPL to account
the team’s energy consumption. Tasks of a team are
scheduled on the team’s socket according to any schedul-
ing scheme. Thereby energy characteristics caused by
interaction between measured tasks are largely preserved
and performance degradation is limited.

We call this approach team scheduling. For the re-
mainder of this paper we refer to a team that is measured
as a measured team. There exists exactly one team con-
taining all tasks that should not be measured (the non-
measured team). To enforce the team-scheduling policy,
we added a new scheduler to Linux.

3.1 Team Scheduling
The design of the E-Team scheduler guarantees that no
tasks belonging to different teams run on the same socket
at the same time. We want to enforce the following prop-
erties in our energy measurement service:

Property 1 (Team Interactivity): Teams are interruptible
to enable interaction between different teams and main-
tain system responsiveness.

Property 2 (Task Interactivity): Tasks of a team share
the team’s cores fairly to enable task interaction and pre-
serve the team’s energy characteristics.

Property 3 (Accuracy): The scheduler limits switches
between teams to curtail measurement errors due to mul-
tiplexing and uses short-time RAPL as required.

Property 4 (Non-invasiveness): In the absence of mea-
surements, the system behaves like an unmodified system.

Property 5 (Usability): Starting and stopping measure-
ments is possible at any point in time, either initiated by
the user or the program itself. Teams grow and shrink
when tasks are created, destroyed, added, or removed.

To account energy for individual processes we propose
to assign sockets exclusively to teams (measured teams
or non-measured) in a time-multiplexed fashion. This
leads to the main invariant of our scheduler:

Invariant 1: On any socket only tasks of the same team
can run concurrently at any point in time.

Property 2 requires cores to be time-multiplexed be-
tween tasks of a team. The team scheduler controls
which tasks can run on which socket at any given time
based on policy and team-membership. A task sched-
uler distributes the tasks assigned to a socket between its
cores. The team scheduler makes no assumptions about
the task scheduler policy and the policy can be set per
team. This allows to use the Completely Fair Scheduler
(CFS) as task scheduler.

The team scheduler manages a list of teams (team run-
queue), whereas each team consists of tasks called team
members. One item in the team runqueue is the non-
measured team. Teams are activated and deactivated by
the team scheduler only as a whole. To activate a team,
the team scheduler first deactivates the currently running
team. It then dequeues the new team, affinitizes its tasks
to the socket and notifies the responsible task scheduler
to reschedule. Deactivation of a team entails removing
all its tasks from the socket and adding the team back
to the team runqueue. This design enforces Invariant 1.
Only tasks of one team are available to the socket-local
task scheduler to be scheduled.

When all tasks in the system belong to the same team,
team scheduling is reduced to a no-op. This is the case
when no measurements are taken as the non-measured
team then contains all tasks. Together with the possibil-
ity to run arbitrary scheduling schemes within the task
schedulers, this enforces Property 4.

While not implemented by us the extension of the pro-
posed scheme to multiple sockets is straightforward. A
running team can occupy multiple sockets at the same
time. The team scheduler may remove or add sockets to
a team as necessary. The maximum number of simulta-
neously active teams is limited by the number of sock-
ets. Having multiple teams active on different sockets
does not affect accounting accuracy, as each socket has
its own RAPL domains.

The architecture of E-Team can be thought of as core-
local scheduling with socket-level coordination.

3.2 Fine-Grained Context Switching
Property 3 is the hardest to enforce. Although the team
scheduling approach guarantees that energy is only ac-
counted for measured tasks, we still need to ensure that
processes which execute for short times due to blocking
are accounted accurately. To minimize overhead we try
to switch teams only every 100 ms or more. This results
in an error of about 1 % due to the fixed RAPL counter
update intervals. The team scheduling frequency is tun-

592 2017 USENIX Annual Technical Conference USENIX Association

STOP CFS IDLE

Scheduling Classes

Core Scheduler
schedule()

Scheduler

uses

Processor

Core 0 Core 1

R
un

qu
eu

e
0

R
un

qu
eu

e
1

uses

Figure 4: Linux scheduler architecture

able, allowing the system operator to trade overhead
against interactivity. More frequent team switches lead
to higher system responsiveness at the expense of more
overhead of the E-Team mechanism. Irrespective of the
configured time-slice length, the measurement has to be
stopped when all tasks within a measured team yield the
CPU, which is regularly the case with I/O-bound work-
loads. To avoid measurement errors due to short execu-
tions, we employ the short-time RAPL technique intro-
duced in Section 2.3 if less than 50 ms of the time slice
are used. Otherwise we read the RAPL counters directly.
This allows us to guarantee the accuracy property for all
workloads, even interactive and I/O-heavy ones, while
limiting the performance impact for compute-intensive
workloads and execution phases.

4 Implementation
We implemented our energy measurement service E-
Team as a scheduling class in the Linux kernel. The ker-
nel patch and user tools are available on GitHub1.

4.1 Scheduler Implementation
The general architecture of the Linux scheduling frame-
work is illustrated in Figure 4. It consists of a core sched-
uler, which invokes the scheduling classes implementing
the actual policies. Scheduling classes are sorted by pri-
ority. The highest priority is given to the STOP class, the
lowest to the IDLE class. Schedulers maintain per-core
runqueues, enabling them to make core-local schedul-
ing decisions, which removes one of the bottlenecks in
many-core systems. Usually, tasks in Linux are sched-
uled by the Completely Fair Scheduler (CFS). We prior-
itize the team scheduler above CFS.

The team scheduler must ensure that only tasks be-
longing to the same team are assigned to the same socket.
The team scheduler maintains a list of teams (the team
runqueue) where a team is a pointer to a list of the tasks
that comprise the team. We illustrate the team scheduling
process in Figure 5. As soon as the team scheduler de-
cides — based on its team scheduling policy — to switch

1https://github.com/TUD-OS

Core 0 Core 1

Ta
sk

R
Q

C
FS

R
Q

Ta
sk

R
Q

C
FS

R
QCurrent

Team

Team
RQ

1

2

2

2

3 3

Figure 5: Scheduling a team for energy measurement

the team running on a socket it clears the core-local task
runqueues . The team scheduler then picks the new team
(step 1) and distributes its tasks to the cores of the socket
(step 2) by enqueuing them in the task runqueues of the
cores. CPU affinity is respected during this step. The
core-local task schedulers are then triggered to resched-
ule the tasks in their task runqueue according to their
scheduling policy (step 3). If there are not enough tasks
in a team to occupy all cores of the assigned sockets,
the idle task is scheduled on the remaining cores. This
causes these cores to enter energy-saving states. When
all the tasks in a team have terminated or the team’s time
slice is exhausted, the next team is scheduled.

Non-measured tasks are treated as an implicit team
which is not managed by the team scheduler. In our im-
plementation, they are not implemented as an actual team
but as tasks kept in the core-local runqueues of CFS.
These tasks are scheduled in between measured teams
by yielding to CFS in order to enforce the interactivity
property. How frequently E-Team yields to CFS depends
on the number of non-measured tasks and the number of
tasks in the measured teams, allowing fairness properties
similar to CFS to be enforced.

Time-sliced round-robin with a base time-slice length
of 100 ms was chosen as the team-scheduling policy. The
base time-slice length is configurable. The actual length
of the time slice depends on the number of ready tasks in
the teams (i.e. the load). A team with more tasks waiting
in its runqueues will get proportionally more time than a
less-loaded team. This leads to fair multiplexing of CPU
time between the team scheduler and the regular tasks in
the system scheduled by CFS. We found a 100 ms base
time-slice length to be a good compromise between over-
head, accounting accuracy, and system-responsiveness.
CFS chooses a similar base time-slice length for a sys-
tem with CPU intensive load [6, Table 7-2]. Shortening
the default time slice can improve responsiveness at the
cost of higher overhead for frequent switching and more
frequent use of the short-time RAPL mechanism. Please
note that the default time-slice length is independent of
the timer frequency. For all our experiments the timer

USENIX Association 2017 USENIX Annual Technical Conference 593

still ticked with a frequency of 1 kHz, thus invoking the
scheduler every millisecond. The default time slice is a
scheduler parameter that determines the default amount
of time each process gets before it is rescheduled. The
actual time may be less.

Tasks in the task runqueue are scheduled using time-
sliced round-robin, but it would also be possible to use
CFS as the task scheduling policy. Especially when mea-
suring large teams containing many tasks with different
priorities, CFS would better preserve the execution char-
acteristics of the unmodified system.

When the E-Team scheduler does not schedule a mea-
sured team, it will yield to CFS, which then schedules the
non-measured tasks as it normally would. This is an ad-
vantage of the implementation of the non-measured team
using the normal CFS runqueues. Accordingly the sys-
tem performs exactly as if it was unmodified whenever
no tasks are in measured teams.

4.2 User-Level Tooling
Teams are formed by assigning a process to the E-Team
scheduler. E-Team then automatically adds threads cre-
ated by the process to the process’s team. Although this
simplified grouping was sufficient for our evaluation, it
would also be possible to move individual threads to a
team, disable the automatic addition of newly created
threads, or combine several processes in one team.

The decision to use a specialized scheduler supports
the usability property (see Section 3.1). Scheduler as-
signment is performed by starting the measured program
through a tool such as schedtool. Alternatively our
own tool energy can be used with the added benefit of
outputting the energy consumption after program termi-
nation (like the Unix time utility does for time). Appli-
cations can start and stop measurement at arbitrary points
in time by calling sched_setscheduler to move
the process between the E-Team scheduler and CFS.

Applications can read their energy consumption from
a file in their procfs subdirectory. Procfs provides run-
time parameters and statistics of each process. We added
two entries, energystat and loopstat, which pro-
vide access to the energy consumption and statistics
about the scheduler’s operation (number of time slices
executed, short-time RAPL statistics, etc.), respectively.
Listing 2 shows example output for the energy data.

Both files can be read during program execution to get
regularly updated energy and statistics values. The con-
tent of the files will not change when the process is not
measured and retains the values from when the process
left the E-Team scheduling class. The files will retain
their final values when the process stops being measured
by leaving the E-Team scheduling class.

root@measure$ cat / proc /100 / energys ta t
package (uJ) : 1052792342
dram (uJ) : 54277983
core (uJ) : 842365434
gpu (uJ) : 89234
updates : 303
avg_loop_time (us) : 180

Listing 2: Example data provided by E-Team

5 Evaluation
To deliver on our promise of accurate energy accounting,
we evaluate our system by first establishing a baseline
using an unmodified system and then analyzing the en-
ergy and time overhead in three scenarios. We start by
measuring a single application running alone on a Linux
system. We then add background load and execute two
applications in parallel, measuring them individually. Fi-
nally, we investigate the influence of short scheduling in-
tervals and the effects of short-time RAPL.

Measurements were performed on a single-socket
quad-core Intel R© Haswell Core

TM
i7-4770 machine with

3.4 GHz nominal frequency and 2×4 GiB of DDR3
CL9 RAM clocked at 1333 MHz. We disabled Hyper-
Threading and Turbo Boost, to make the individual mea-
surements more deterministic and maintain compara-
bility between single-application and multi-application
runs. These options could otherwise lead to different be-
havior based on thread assignment and the decisions of
Turbo Boost. We used a Linux 4.2.3 kernel in our exper-
iments. Although we measured energy for all available
RAPL domains, we only present PKG energy for brevity.
The other domains showed comparable results.

5.1 Baseline and Overhead
Our first measurements establish the baseline for the rest
of our evaluation. Baseline measurements were per-
formed on a Linux system stripped down to the mini-
mum necessary to run the benchmarks: We ran the sys-
tem from an initrd with no system services interfering
with execution. We believe the measured energy to con-
form to the energy consumed by the benchmarks. We use
the NAS Parallel Benchmarks (NPB) [1], version 3.1, as
benchmarks. Presented data is averaged over 20 consec-
utive runs. Error bars are not given in graphs if the stan-
dard deviation is below 1 %. Figure 6 shows the end-to-
end measurement of the benchmarks for wall-clock time,
cpu time and package energy (measured by the PKG
counter). The benchmarks were scheduled using CFS.
No parts of our kernel modification were active during
the runs. Time was determined using the time com-
mand, while energy was measured by reading the RAPL
MSR at the start and end of the benchmark. We measured
each benchmark running with one to four threads.

594 2017 USENIX Annual Technical Conference USENIX Association

W
al

l-
cl

oc
k

tim
e
[s
]

0

20

40

60

80

1 thread 2 threads 3 threads 4 threads
C

PU
tim

e
[s
]

0

50

100

PK
G

en
er

gy
[k

J]

bt.
A

cg
.B

ep
.B ft.

B
is.

C
lu.

A
mg.C sp

.A
ua

.A

0

1

2

Figure 6: Baselines for wall-clock time, CPU time and
PKG energy for different NPB kernels

We do not include the DC benchmark in our mea-
surements because it mixes computation with extensive
I/O. We found that its CPU time deviates significantly
(>10 %) from wall-clock time when run as single ap-
plication with one thread. The effect increases with the
number of threads. This makes an end-to-end measure-
ment meaningless as too much of the time is spent out-
side the benchmark. This is one of the cases that cannot
be measured reliably without E-Team. We evaluate sim-
ilar cases in Section 5.4 and will show a detailed discus-
sion of DC in Section 6, when comparing against exter-
nal measurements. For the other benchmarks, wall-clock
time matched CPU time for the single-core case, result-
ing in a usable end-to-end baseline for energy.

Next, we repeated the baseline measurement using E-
Team. This measurement and all the following in this
section were performed on a normal Arch Linux system
that was not stripped down. Ideally, the results obtained
from E-Team would show the same wall-clock time and
CPU time as the baseline. We also expected slightly
lower energy consumption than the baseline, since E-
Team does not account energy that is consumed by ker-
nel tasks or by other processes in the system. Figure 7
shows the results of our measurements relative to the
baseline. Team scheduling increases the wall-clock time
of each benchmark. The more threads the program has,
the longer it executes compared to the baseline, since

W
al

l-
cl

oc
k

tim
e
[%

]

−2

0

2

4

1 thread 2 threads 3 threads 4 threads

C
PU

Ti
m

e
[%

]

−2

0

2

PK
G

en
er

gy
[%

]
bt.

A
cg

.B
ep

.B ft.
B

is.
C

lu.
A

mg.C sp
.A

ua
.A

−2

0

2

Figure 7: Wall-clock time, CPU time, and PKG energy
measured using team scheduling compared to baseline.

background load in the system, even if single-threaded,
blocks the whole measured program from running on the
CPU. This is expected and the worst-case overhead is
approximately 4 %. As we had hoped, CPU time did
not increase significantly, which shows that the perfor-
mance impact of our scheduler is negligible at less than
1 % in most cases. As long as there are enough tasks in
all the teams, total performance of the system will not
suffer. For package energy, our measurements are in the
expected range with a difference relative to the baseline
of less than 2 %. For most benchmarks we even measure
less consumption due to the exclusion of unrelated work
performed by the system. The measurements prove that
our method combines low overhead with high precision.

5.2 Surveying Individual Groups of Tasks
After demonstrating that E-Team performs as good as the
end-to-end measurements, we will show that our mea-
surements stay accurate even in the presence of other
tasks that are scheduled by the system. We introduce
background load by running a single-threaded busy loop
concurrently to the NPB suite. An empty busy loop does
not touch any data and thus avoids any cache interference
that could lead to changes in energy consumption.

Figure 8 shows the results of this experiment. We
omit wall-clock time, as it is not a useful metric to com-
pare against in this case. Wall-clock time will increase
compared to the baseline in any case due to the intro-

USENIX Association 2017 USENIX Annual Technical Conference 595

C
PU

tim
e
[%

]

−2

0

2

1 thread 2 threads 3 threads 4 threads
PK

G
en

er
gy

[%
]

bt.
A

cg
.B

ep
.B ft.

B
is.

C
lu.

A
mg.C sp

.A
ua

.A

−2

0

2

Figure 8: Per-application CPU time and PKG energy
(relative to the baseline) as determined by E-Team with
a background application running in parallel.

duced background load. For CPU time, we see an over-
head of at most 2 %, while energy measurements are
slightly below the baseline. We suspect the encountered
energy reduction to be an artifact of precision limits of
the RAPL counters. The busy-loop consumes signifi-
cantly less energy than the benchmarks and we spec-
ulate that internal RAPL state influenced by this low-
power activity bleeds into the results for the much more
energy-consuming benchmarks. To test this hypothesis,
we replaced the busy-loop with FIRESTARTER, which
consumes more energy than the benchmarks. In this ex-
periment, energy consumption increased relative to the
baseline (e.g., 1.6 % for ft.B). This result indicates that
inaccuracies within RAPL caused the measurement er-
rors we observed. RAPL counters for DRAM proved less
susceptible to this effect.

5.3 Multiple Measurements
One feature of our scheduler is that we can extract and
measure a single application out of a number of applica-
tions running in parallel on the system. To demonstrate
this feature we executed all application-pairs of the NPB
suite (except for DC due to the lack of a meaningful base-
line), measuring only one application of the pair. The re-
sults can be seen in Figure 9. We used scheduling slices
of 100 ms to limit interference between the benchmarks.
We ran this benchmark for one to four threads and com-
pared the results against baseline.

As a guide to read Figure 9, consider the row with
ft.B in the rightmost pane showing four threads in Fig-
ure 9b: Selecting the column is.C shows that the mea-
sured energy consumption of ft.B, when running concur-
rently with is.C, is 4 % below the baseline. No statement

is made about is.C in this cell. Our worst-case error is
6 % for the DRAM energy (not shown) when running
ua.A concurrently with itself. This may be attributed to
either measurement errors introduced by our scheduler,
errors in the RAPL model (i.e. incorrect energy values),
or interference between the programs, despite the long
scheduling interval. We will discuss the cause of this di-
vergence in Section 6. Even a 6 % error is still on par
with model-based estimation techniques [32, 37, 5].

5.4 Short Scheduling Intervals
Particularly challenging for E-Team are applications that
execute in short bursts, blocking in-between execution
phases. Interactive GUI or multimedia applications as
well as I/O-bound applications are examples that exhibit
such behavior. They require rescheduling more often
than our default time slice of 100 ms by yielding the
CPU. Every time all the threads in the currently running
team yield the CPU, we must switch to another team. If
the last switch was not at least 50 ms ago, we need to per-
form short-time RAPL (refer to Section 2.3), to avoid in-
accuracies introduced by the time-discrete updates of the
RAPL counters. To evaluate the benefits of short-time
RAPL for scheduling, we implemented a synthetic, in-
teractive load that executes a busy loop for 5.4 ms, subse-
quently blocks for 1 s and then repeats the procedure 50
times. We compare short-time RAPL and naïve, update-
oblivious multiplexing of the counter. As baseline we
measure the busy loop that occupies the CPU as long as
our synthetic workload (270 ms), but runs uninterrupted.
Figure 10 shows the results. The energy measured by E-
Team matches the baseline. When using naïve, update-
oblivious multiplexing our measurements exhibit an er-
ror of up to 10 %. In contrast, short-time measurements
only exhibit an error of 0.2 %. We conclude, that E-Team
can reliably measure interactive and I/O-intensive tasks
that yield the CPU frequently.

5.5 Practical Scenarios
Virtual machines We used qemu-kvm to run two
VMs with Debian Jessie 8.4 64-bit, each given one core
and 2 GiB of RAM. One VM was serving files over
HTTP, the other was a malicious VM wasting CPU cy-
cles by executing FIRESTARTER. We ran both VMs in
parallel on Arch Linux using E-Team. Each VM received
300 s CPU time. The fileserver used 1034.1 J while the
malicious VM used 7013.8 J. Based on this information
a data-center operator could use appropriate billing or re-
duce the CPU time allocated to the malicious VM.

Single-Core Sampling We show the effectiveness of
sampling to reduce overhead for single-threaded work-

596 2017 USENIX Annual Technical Conference USENIX Association

bt.A
cg.B
ep.B
ft.B
is.C
lu.A

mg.C
sp.A
ua.A

bt
.A

cg
.B

ep
.B

ft
.B

is
.C

lu
.A

m
g.

C
sp

.A
ua

.A

1 thread

bt
.A

cg
.B

ep
.B

ft
.B

is
.C

lu
.A

m
g.

C
sp

.A
ua

.A

2 threads

bt
.A

cg
.B

ep
.B

ft
.B

is
.C

lu
.A

m
g.

C
sp

.A
ua

.A

3 threads

bt
.A

cg
.B

ep
.B

ft
.B

is
.C

lu
.A

m
g.

C
sp

.A
ua

.A

4 threads

−5

0

5

D
iff

er
en

ce
[%

]

(a) CPU Time

bt.A
cg.B
ep.B
ft.B
is.C
lu.A

mg.C
sp.A
ua.A

bt
.A

cg
.B

ep
.B

ft
.B

is
.C

lu
.A

m
g.

C
sp

.A
ua

.A
1 thread

bt
.A

cg
.B

ep
.B

ft
.B

is
.C

lu
.A

m
g.

C
sp

.A
ua

.A

2 threads

bt
.A

cg
.B

ep
.B

ft
.B

is
.C

lu
.A

m
g.

C
sp

.A
ua

.A

3 threads

bt
.A

cg
.B

ep
.B

ft
.B

is
.C

lu
.A

m
g.

C
sp

.A
ua

.A

4 threads

−5

0

5

D
iff

er
en

ce
[%

]

(b) Package Energy

Figure 9: Benchmarks in the rows are measured while running concurrently with the benchmarks in the columns.
Shown is the relative difference to the baseline. We repeated this experiment for thread counts from one to four.

0 2 4 6

Baseline
Short-time

Naïve

6.31
6.3

5.68

Energy [J]

Figure 10: Short-time RAPL and update-oblivious mea-
surements compared to baseline

020406080100
0

500

1,000

1,500

Sampling rate [%]

E
ne

rg
y
[J
]

020406080100
0

20

40

60

80

Sampling rate [%]

B
an

dw
id

th
[M

B
/s
]

Energy ep.B
Bandwidth Redis

Figure 11: Redis throughput vs. ep.B measurement ac-
curacy at various sampling rates

loads. Our setup consists of a single-threaded mea-
sured instance of ep.B running in parallel with unmea-
sured Redis, a popular in-memory database. To reduce
the performance impact of isolating ep.B we employ
random sampling. Figure 11 shows the throughput of
memtier_benchmark at default configuration. At 10 %
sampling we achive 86.4 % of the baseline performance
of Redis, while maintaining 99 % measurement accuracy
for ep.B. Like DC from NPB, Redis’ I/O-intensive nature
complicates determining an energy baseline. We thus
omit its energy values.

6 External Validation
When running multiple teams in parallel, as done in Sec-
tion 5.3, we do not know the cause of any aberrations
from the baseline. Causes may be interference between
threads, RAPL inaccuracies, or accounting errors in E-
Team. To rule out the latter, we verify E-Team results
using a secondary, external measurement infrastructure.

6.1 Measurement Setup
To verify the accuracy of our results, we use a sophis-
ticated high-resolution power measurement infrastruc-
ture, which has been thoroughly verified [19]. It has
been adapted to a Haswell-EP with two-socket Xeon E5-
2690 v3 and a total of 256 GiB DDR4-2133 ECC RAM
that we use as evaluation platform in this section.

We compare the results of RAPL against direct cur-
rent (DC) measurements at inputs of each socket’s volt-
age regulators. Both sockets are measured at a sampling
rate of 500 kSa/s, to track power consumption between
scheduling events. Data obtained from the external mea-
surement infrastructure correspond to the sum of PKG
and DRAM consumption according to RAPL. Because
we measure at the input of the voltage regulators, the
external measurements cover some components on the
mainboard that are not measured by RAPL. Therefore
RAPL reports less power consumption than the external
measurements, even if both are perfectly accurate in their
own power domain.

The verification is focused on identifying potential
systematic inaccuracies introduced by our novel tech-

USENIX Association 2017 USENIX Annual Technical Conference 597

0 200 400 600 800

is.C

ft.B

312.54

783.42

321.89

792.34

Energy [J]

E-Team External

Figure 12: ft.B and is.C PKG energy using E-Team and
external measurement with 12 threads per application

0 200 400 600 800 1,000

E-Team
External

995.1
1,034.86

Energy [J]

Figure 13: dc.W measured with E-Team and externally

nique. To compare the measured reference against the
power domain of RAPL, we apply a model to map be-
tween the two. The model is trained on measurements
of different workload kernels executed at various thread-
counts and configurations as described in [4]. Training is
performed on a non-modified Linux system using contin-
uous RAPL and reference measurements. Linear regres-
sion provides the final slopes and intercepts separately
for each socket with R2 > 0.999.

Since the external measurement traces not only con-
tain the power usage of the measured program but also
of other tasks executed in parallel, a post-processing step
was necessary to identify the regions in the traces dur-
ing which the program of interest actually executed. For
this purpose, we used an additional trace, generated by
the E-Team scheduler, which indicates when each pro-
gram was scheduled on the processor. We had to syn-
chronize the traces, because they have timestamps from
different clocks. We generated a special energy pattern
before and after every measurement to correlate the mea-
surement and scheduler traces.

6.2 Results
To validate our measurements from Section 5, we exe-
cute selected benchmarks on the instrumented hardware.
We present the case of ft.B running together with is.C,
which we already used in Section 5.3, as they exhibit
significantly different power usage of 110 W and 80 W
per socket, respectively. The results in Figure 12 show
that our measurement is very accurate with an error of
1.1 % for ft.B and 2.9 % for is.C. The 12-core configura-
tion used for the figure represents the worst case for this
benchmark. The error decreased with fewer threads. We
also examined the DC benchmark, which we were not
able to evaluate in Section 5. We measured dc.W run-

18.4 18.6 18.8 19 19.2 19.4

40

50

60

70

Time [s]

Po
w

er
[W

]

is.C (E-Team) ft.B (E-Team) system external

Figure 14: Power characteristics over time

ning with two threads and compared the external mea-
surement to the E-Team result. Figure 13 shows that even
for this I/O-intensive benchmark E-Team’s error is only
3.5 %. Over 20 consecutive runs we observed a standard
deviation well below 1 % in all cases.

Figure 14 shows that our E-Team implementation ac-
curately tracks energy consumption over time. We ran
is.C and ft.B in parallel, each in its own measured team
and read their respective procfs entry repeatedly. We
used a time slice of 200 ms. The characteristics of the
external measurement match those of the internal one.
The dips visible in the power consumption reported by
E-Team (e.g. at 18.95 s) are caused by switches between
teams or scheduling of the non-measured team. Tasks
in the non-measured team yielded after very short time
leading to short interruptions of the measured teams.

7 Limitations
E-Team provides accurate energy accounting for arbi-
trary groups of threads using socket-wide energy mea-
surements. But this feature comes at a cost: a team al-
ways needs exclusive access to the socket. Accordingly,
resources remain unused if teams cannot spread across
all cores of the socket. The pathological example for
this is a team that consists of a single thread. However,
E-Team allows on-the-fly starting and stopping of mea-
surements and thereby supports random sampling. This
creates a trade-off space between measurement accuracy
and performance overhead. In cases where the perfor-
mance overhead of E-Team is prohibitive, limiting the
measurement duration to short sampling intervals allows
for acceptable performance at a slight loss of accuracy.

For I/O-bound workloads short-time RAPL is required
more often, incurring additional overhead. In the worst
case this translates to 1 ms overhead per team switch.
Our experiments with dc.W showed only a performance
degradation of 4.7 % in the worst case. We further ex-
amined a worst-case scenario for I/O-bound workloads
by running grep recursively over the Linux source
tree. We identified the extreme case showing 150 %
overhead (155.32 s vs. 62.30 s) when flushing the buffer

598 2017 USENIX Annual Technical Conference USENIX Association

cache before the run. We also measured Redis running
memtier_benchmark and achived 30 % to 80 % of native
performance for data sizes of 32 B to 128 kB despite its
I/O-intensive nature. To measure such scenarios, we ad-
vice the use of random sampling.

8 Related Work
As energy efficiency is a cross-cutting concern, it has
been approached from both the hardware and software
side. On the hardware side, external measurement meth-
ods, such as those proposed by Hönig et al. [18], have im-
proved significantly in sampling speed and accuracy over
existing solutions, such as the frequently used Watts-
Up power meter [9]. External measurements as data
sources integrate well with our method, but introduce the
need for additional hardware. Intel’s RAPL addresses
this problem by providing self-calibrating models [33].
Hackenberg et al. have shown that RAPL produces accu-
rate energy estimates in recent versions [15] and compare
various measurement methods [13].

Below the application layer, system architects
construct runtimes and scheduling frameworks to
model [30], account [29], and control [34] platform en-
ergy use. Several methods using performance counter
based power models [22, 9, 36, 3, 2] exist. They exhibit
relative errors in the range of 5 % to 10 % but can, con-
trary to RAPL, include other components such as disks.
However, models require calibration, which has to be
performed for each individual CPU. McCullough et al.
found variations between individual CPUs of the exact
same type to be too large to calibrate based on CPU
model and have shown that linear CPU energy models
are intrinsically limited in their accuracy [27].

There are various approaches using performance-
counter-based models to apportion energy to VMs or
applications. Shen et al. investigate Power Containers,
which use model-based apportioning of energy to appli-
cations [36]. They use external recalibration during run-
time, thus relying on additional hardware. Their meth-
ods exhibit relative errors of up to 11 % on Sandy Bridge
CPUs. Bertran et al. account energy for VMs using a
model-based approach and report 5 % relative error [3].

For high performance computing (HPC) systems,
Georgio et al. have shown a SLURM-based job man-
agement system, which allows accounting of energy to
jobs [12]. Their approach is limited to account energy on
a per-node level. While suitable for typical HPC systems,
it does not cover cloud or data-center scenarios with mul-
tiple simultaneous users per machine.

To schedule groups of tasks Ousterhout introduced co-
scheduling [28] and an Feitelson et al. presented gang-
scheduling [10]. Our method builds on these approaches.

9 Conclusion & Future Work

We presented the design and implementation of E-Team,
a facility that enables accurate measurement of energy
consumption for individual threads or groups of threads
in a system. We isolate groups of interest using team
scheduling. This enables us to use a system-wide mea-
surement method, such as Intel’s RAPL, while still be-
ing able to apportion energy consumption per thread or
group of threads. To address the discrete nature of the
RAPL readings, we employ short-time measurements
to accommodate for applications that are interactive or
yield the CPU often. We are able to isolate arbitrary
parts of a system and apportion their energy with an er-
ror of at most 3.5 % compared to external measurements.
Our methods provide greater accuracy than many exist-
ing model-based approaches and our validation shows
that E-Team can apportion energy faithfully. To the best
of our knowledge, our implementation is the first to allow
practical, high-precision, per-application energy attribu-
tion in a multi-core system without relying on manual
calibration or external measurement equipment.

Our implementation is applicable to a wide range of
devices. E-Team does not rely on RAPL but can use
other energy measurement techniques such as sensors
available on mobile platforms [17] or hand-held devices.

Some ideas of our design are not yet implemented and
are left for future work. We did not implement simulta-
neous execution of different teams on different sockets.
The challenge in accounting energy on multiple sockets
concurrently is that applications running on one socket
can cause energy usage in another socket. Remote mem-
ory access is one example for such behavior. We leave
the implementation of a cgroup-like interface to future
work as well. Such an interface could prove useful to
combine threads of multiple applications into one mea-
sured team. While we implemented random sampling, a
detailed discussion of the performance and accuracy im-
plications is left for future work, due to space constraints.

In summary, our work represents a significant step
forward for data-center energy accounting, energy-based
billing, and energy profiling of applications in produc-
tion systems. E-Team provides a cheap, accurate, and
easy-to-use solution for on-the-fly energy accounting.

Acknowledgements

This work is supported by the German Research Foun-
dation (DFG) within the CRC 912 - HAEC. The authors
would like to thank Mario Bielert for his work on the
verification of the external measurement system.

USENIX Association 2017 USENIX Annual Technical Conference 599

References
[1] BAILEY, D. H., BARSZCZ, E., BARTON, J. T., BROWNING,

D. S., CARTER, R. L., DAGUM, L., FATOOHI, R. A., FRED-
ERICKSON, P. O., LASINSKI, T. A., SCHREIBER, R. S., ET AL.
The NAS parallel benchmarks. International Journal of High
Performance Computing Applications 5, 3 (1991), 63–73.

[2] BASMADJIAN, R., AND DE MEER, H. Evaluating and mod-
eling power consumption of multi-core processors. In Future
Energy Systems: Where Energy, Computing and Communication
Meet (e-Energy), 2012 Third International Conference on (2012),
IEEE, pp. 1–10.

[3] BERTRAN, R., BECERRA, Y., CARRERA, D., BELTRAN,
V., GONZALEZ, M., MARTORELL, X., TORRES, J., AND
AYGUADE, E. Accurate energy accounting for shared virtual-
ized environments using PMC-based power modeling techniques.
In Grid Computing (GRID), 2010 11th IEEE/ACM International
Conference on (2010), IEEE, pp. 1–8.

[4] BIELERT, M. Evaluating power estimation techniques: A
methodological approach. Master’s thesis, Technische Univer-
sität Dresden, 2016.

[5] BOSE, P., MARTONOSI, M., AND BROOKS, D. Modeling and
analyzing CPU power and performance: Metrics, methods, and
abstractions. Tutorial, ACM SIGMETRICS (2001).

[6] BOVET, D., AND CESATI, M. Understanding The Linux Kernel.
Oreilly & Associates Inc, 2005.

[7] COLMANT, M., KURPICZ, M., FELBER, P., HUERTAS, L.,
ROUVOY, R., AND SOBE, A. Process-level power estimation in
VM-based systems. In Proceedings of the Tenth European Con-
ference on Computer Systems (2015), ACM, p. 14.

[8] DAVID, H., GORBATOV, E., HANEBUTTE, U. R., KHANNA,
R., AND LE, C. RAPL: Memory power estimation and capping.
In Proceedings of the 2010 ACM/IEEE International Symposium
on Low-Power Electronics and Design (2010), ISLPED, IEEE,
pp. 189–194.

[9] DO, T., RAWSHDEH, S., AND SHI, W. ptop: A process-level
power profiling tool. In Proceedings of the 2nd workshop on
power aware computing and systems (HotPowerâĂŹ09) (2009).

[10] FEITELSON, D. G., AND RUDOLPH, L. Gang scheduling perfor-
mance benefits for fine-grain synchronization. Journal of Parallel
and Distributed Computing 16, 4 (1992), 306–318.

[11] GAUTHAM, A., KORGAONKAR, K., SLPSK, P., BALACHAN-
DRAN, S., AND VEEZHINATHAN, K. The implications of shared
data synchronization techniques on multi-core energy efficiency.
In Presented as part of the 2012 Workshop on Power-Aware Com-
puting and Systems (2012).

[12] GEORGIOU, Y., CADEAU, T., GLESSER, D., AUBLE, D.,
JETTE, M., AND HAUTREUX, M. Energy accounting and con-
trol with SLURM resource and job management system. In Dis-
tributed Computing and Networking. Springer, 2014, pp. 96–118.

[13] HACKENBERG, D., ILSCHE, T., SCHÃŰNE, R., MOLKA, D.,
SCHMIDT, M., AND NAGEL, W. E. Power measurement tech-
niques on standard compute nodes: A quantitative comparison.
In Performance Analysis of Systems and Software (ISPASS), 2013
IEEE International Symposium on (April 2013), pp. 194–204.

[14] HACKENBERG, D., OLDENBURG, R., MOLKA, D., AND
SCHONE, R. Introducing FIRESTARTER: A processor stress
test utility. In Green Computing Conference (IGCC), 2013 Inter-
national (2013), IEEE, pp. 1–9.

[15] HACKENBERG, D., SCHONE, R., ILSCHE, T., MOLKA, D.,
SCHUCHART, J., AND GEYER, R. An energy efficiency feature
survey of the Intel Haswell processor. In Parallel and Distributed
Processing Symposium Workshop (IPDPSW), 2015 IEEE Inter-
national (2015), IEEE, pp. 896–904.

[16] HÄHNEL, M., DÖBEL, B., VÖLP, M., AND HÄRTIG, H. Mea-
suring energy consumption for short code paths using RAPL.
SIGMETRICS Perform. Eval. Rev. 40, 3 (Jan. 2012), 13–17.

[17] HÄHNEL, M., AND HÄRTIG, H. Heterogeneity by the numbers:
A study of the ODROID XU+E big.LITTLE platform. In 6th
Workshop on Power-Aware Computing and Systems (HotPower
14) (2014).

[18] HÖNIG, T., JANKER, H., EIBEL, C., MIHELIC, O., AND
KAPITZA, R. Proactive energy-aware programming with PEEK.
In 2014 Conference on Timely Results in Operating Systems
(TRIOS 14) (2014).

[19] ILSCHE, T., HACKENBERG, D., GRAUL, S., SCHUCHART, J.,
AND SCHÖNE, R. Power measurements for compute nodes:
Improving sampling rates, granularity and accuracy. In 2015
Sixth International Green and Sustainable Computing Confer-
ence (IGSC) (Dec. 2015), The sixth international green and sus-
tainable computing conference, pp. 1–8.

[20] INTEL. Intel 64 and IA-32 Architectures Software Developer’s
Manual Volume 3A, 3B, and 3C: System Programming Guide,
Sep 2014. Section 14.9.

[21] JIMENEZ, V., GIOIOSA, R., CAZORLA, F. J., VALERO, M.,
KURSUN, E., ISCI, C., BUYUKTOSUNOGLU, A., AND BOSE,
P. Energy-aware accounting and billing in large-scale computing
facilities. IEEE Micro, 3 (2011), 60–71.

[22] KANSAL, A., ZHAO, F., LIU, J., KOTHARI, N., AND BHAT-
TACHARYA, A. A. Virtual machine power metering and provi-
sioning. In Proceedings of the 1st ACM Symposium on Cloud
Computing (New York, NY, USA, 2010), SoCC ’10, ACM,
pp. 39–50.

[23] KONSTANTAKOS, V., CHATZIGEORGIOU, A., NIKOLAIDIS, S.,
AND LAOPOULOS, T. Energy consumption estimation in embed-
ded systems. Instrumentation and Measurement, IEEE Transac-
tions on 57, 4 (2008), 797–804.

[24] Krapl: Intel RAPL driver exposing the RAPL interface in sysfs.
https://github.com/TUD-OS/krapl.

[25] LI, T., AND JOHN, L. K. Run-time modeling and estimation of
operating system power consumption. In Proceedings of the 2003
ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems (New York, NY, USA, 2003),
SIGMETRICS ’03, ACM, pp. 160–171.

[26] MCCRAW, H., RALPH, J., DANALIS, A., AND DONGARRA,
J. Power monitoring with PAPI for extreme scale architectures
and dataflow-based programming models. In Proceedsings of
the 2014 IEEE International Conference on Cluster Computing
(2014), CLUSTER, IEEE, pp. 385–391.

[27] MCCULLOUGH, J. C., AGARWAL, Y., CHANDRASHEKAR, J.,
KUPPUSWAMY, S., SNOEREN, A. C., AND GUPTA, R. K.
Evaluating the effectiveness of model-based power characteri-
zation. In Proceedings of the 2011 USENIX Conference on
USENIX Annual Technical Conference (Berkeley, CA, USA,
2011), USENIXATC’11, USENIX Association, pp. 12–12.

[28] OUSTERHOUT, J. K. Scheduling techniques for concurrent sys-
tems. In ICDCS (1982), vol. 82, pp. 22–30.

600 2017 USENIX Annual Technical Conference USENIX Association

[29] PATHAK, A., HU, Y. C., AND ZHANG, M. Where is the energy
spent inside my app?: Fine grained energy accounting on smart-
phones with eprof. In Proceedings of the 7th ACM European
Conference on Computer Systems (New York, NY, USA, 2012),
EuroSys ’12, ACM, pp. 29–42.

[30] PATHAK, A., HU, Y. C., ZHANG, M., BAHL, P., AND WANG,
Y.-M. Fine-grained power modeling for smartphones using sys-
tem call tracing. In Proceedings of the 6th ACM European Con-
ference on Computer Systems (2011), EuroSys, ACM, pp. 153–
168.

[31] PATHAK, A., JINDAL, A., HU, Y. C., AND MIDKIFF, S. P.
What is keeping my phone awake?: Characterizing and detecting
no-sleep energy bugs in smartphone apps. In Proceedings of the
10th International Conference on Mobile Systems, Applications,
and Services (2012), MobiSys, ACM, pp. 267–280.

[32] RIVOIRE, S., RANGANATHAN, P., AND KOZYRAKIS, C. A
comparison of high-level full-system power models. HotPower
8 (2008), 3–3.

[33] ROTEM, E., NAVEH, A., ANANTHAKRISHNAN, A., RAJWAN,
D., AND WEISSMANN, E. Power-management architecture of
the Intel microarchitecture code-named Sandy Bridge. IEEE Mi-
cro 32, 2 (2012), 20–27.

[34] ROY, A., RUMBLE, S. M., STUTSMAN, R., LEVIS, P., MAZ-
IÈRES, D., AND ZELDOVICH, N. Energy management in mo-
bile devices with the Cinder operating system. In Proceedings of
the 6th ACM European Conference on Computer Systems (2011),
EuroSys, ACM, pp. 139–152.

[35] RYFFEL, S. LEA2P – The linux energy attribution and account-
ing platform. Master’s thesis, Swiss Federal Institute of Technol-
ogy (ETH), Zurich, Switzerland (2009).

[36] SHEN, K., SHRIRAMAN, A., DWARKADAS, S., ZHANG, X.,
AND CHEN, Z. Power containers: An OS facility for fine-grained
power and energy management on multicore servers. In Pro-
ceedings of the Eighteenth International Conference on Architec-
tural Support for Programming Languages and Operating Sys-
tems (New York, NY, USA, 2013), ASPLOS ’13, ACM, pp. 65–
76.

[37] SNOWDON, D. C., PETTERS, S. M., AND HEISER, G. Accurate
on-line prediction of processor and memory energy usage under
voltage scaling. In Proceedings of the 7th ACM &Amp; IEEE
International Conference on Embedded Software (New York, NY,
USA, 2007), EMSOFT ’07, ACM, pp. 84–93.

[38] TREIBIG, J., HAGER, G., AND WELLEIN, G. LIKWID: A
lightweight performance-oriented tool suite for x86 multicore en-
vironments. In Proceedings of the 39th International Confer-
ence on Parallel Processing Workshops (2010), ICPPW, IEEE,
pp. 207–216.

[39] WANG, W., CAVAZOS, J., AND PORTERFIELD, A. Energy auto-
tuning using the polyhedral approach. In Proceedings of the 4th
International Workshop on Polyhedral Compilation Techniques,

S. Rajopadhye and S. Verdoolaege, Eds., Vienna, Austria (2014).

USENIX Association 2017 USENIX Annual Technical Conference 601

