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Abstract

How to preserve users’ privacy while supporting high-utility
analytics for low-latency stream processing?

To answer this question: we describe the design,
implementation and evaluation of PRIVAPPROX, a data
analytics system for privacy-preserving stream processing.
PRIVAPPROX provides three important properties: (i)
Privacy: zero-knowledge privacy guarantee for users, a
privacy bound tighter than the state-of-the-art differential
privacy; (ii) Utility: an interface for data analysts to
systematically explore the trade-offs between the output
accuracy (with error estimation) and the query execution
budget; (iii) Latency: near real-time stream processing based
on a scalable “synchronization-free” distributed architecture.

The key idea behind our approach is to marry two tech-
niques together, namely, sampling (used for approximate
computation) and randomized response (used for privacy-
preserving analytics). The resulting marriage is complemen-
tary — it achieves stronger privacy guarantees, and also
improves the performance for stream analytics.

1 Introduction

Many online services continuously collect users’ private
data for real-time analytics. Much of this data arrives as a
data stream and in huge volumes, requiring real-time stream
processing based on distributed systems [143} 21].

In the current ecosystem of data analytics, the analysts
usually have direct access to users’ private data, and must be
trusted not to abuse it. However, this trust has been violated
in the past [28, 49} 62, 169]. A pragmatic ecosystem has
two desirable, but contradictory design requirements: (i)
stronger privacy guarantees for users, and (i7) high-utility
stream analytics in real time. Users seek stronger privacy,
while analysts strive for high-utility analytics in real time.

To meet these two design requirements, there is a
surge of novel computing paradigms that address these
concerns, albeit separately. Two such paradigms are
privacy-preserving analytics to protect user privacy and
approximate computation for real-time analytics.

*University of Edinburgh

#Nokia Bell Labs

Privacy-preserving analytics. Recent privacy-preserving
analytics systems favor a distributed architecture to avoid
central trust (see §8|for details), where users’ private data
is stored locally on their respective client devices. Data an-
alysts use a publish-subscribe mechanism to run aggregate
queries over the distributed private dataset of a large number
of clients. Thereafter, such systems add noise to the aggregate
output to provide useful privacy guarantees, such as differen-
tial privacy [32]. Unfortunately, these state-of-the-art systems
normally deal with single-shot batch queries, and therefore,
these systems cannot be used for real-time stream analytics.

Approximate computation. Approximate computation is
based on the observation that many data analytics jobs are
amenable to an approximate rather than the exact output (see
§8]for details). Such applications include speech recognition,
computer vision, machine learning, and recommender
systems. For such an approximate workflow, it is possible
to trade accuracy by computing over a subset (usually
selected via a sampling mechanism) instead of the entire
input dataset. Thereby, data analytics systems based on
approximate computation can achieve low latency and
efficient utilization of resources. However, the existing
systems for approximate computation assume a centralized
dataset, where the desired sampling mechanism can be
employed. Thus, existing systems are not compatible with
the distributed privacy-preserving analytics systems.

The marriage. In this paper, we make the observation
that the two computing paradigmes, i.e., privacy-preserving
analytics and approximate computation, are complementary.
Both paradigms strive for an approximate instead of the
exact output, but they differ in their means and goals for
approximation. Privacy-preserving analytics adds explicit
noise to the aggregate query output to protect user privacy,
whereas approximate computation relies on a representative
sampling of the entire dataset to compute over only a
subset of data items to enable low-latency/efficient analytics.
Therefore, we marry these two existing paradigms together
in order to leverage the benefits of both. The high-level
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idea is to achieve privacy (via approximation) by directly
computing over a subset of sampled data items (instead
of computing over the entire dataset) and then adding an
explicit noise for privacy preservation.

To realize this marriage, we designed an approximation
mechanism that also achieves privacy-preserving goals
for stream analytics. Our design (see Figure [T) targets a
distributed setting, similar as aforementioned, where users’
private data is stored locally on their respective personal
devices, and an analyst issues a streaming query for analytics
over the distributed private dataset of users. The analyst’s
streaming query is executed on the users’ data periodically
(a configurable epoch) and the query results are transmitted
to a centralized aggregator via a set of proxies. The analyst
interfaces with the aggregator to get the aggregate query
output periodically.

We employ two core techniques to achieve our goal.

Firstly, we employ sampling [60] directly at the user site
for approximate computation, where each user randomly
decides whether to participate in answering the query in the
current epoch. Since we employ sampling at the data source,
instead of sampling at a centralized infrastructure, we are
able to squeeze out the desired data size (by controlling the
sampling parameter) from the very first stage in the analytics
pipeline, which is essential in low-latency environments.

Secondly, if the user participates in the query answering
process, we employ a randomized response [37] mechanism
to add noise to the query output at the user site, again locally
at the source of the data in a decentralized fashion. In
particular, each user locally randomizes the truthful answer
to the query to achieve the differential privacy guarantees
(§3.22). Since we employ noise addition at the source of
data, instead of adding the explicit noise to the aggregate
output at a trusted aggregator or proxies, we enable a
truly “synchronization-free” distributed architecture, which
requires no coordination among proxies and the aggregator
for the mandated noise addition.

The last, but not the least, silver bullet of our design: it
turns out that the combination of the two aforementioned
techniques (i.e., sampling and randomized response) leads
us to achieve zero-knowledge privacy [41]], a privacy bound
tighter than the state-of-the-art differential privacy [32].

To summarize, we present the design and implementation
of a practical system for privacy-preserving stream analytics
in real time. In particular, our system is a novel combination
of the sampling and randomized response techniques, as well
as a scalable “synchronization-free” routing scheme which

employs a light-weight XOR-based encryption scheme [26].

The resulting system ensures zero-knowledge privacy,
anonymization, and unlinkability for users (§2.2). Altogether,
we make the following contributions:
e We present a marriage of the sampling and randomized
response techniques to achieve improved performance
and stronger privacy guarantees.

Clients / Users Analysts

Cq A1
Cy — | Proxies Aggregator |—— A3
Ch Am

Users' private Streaming query & budget

data is stored
locally

Query result

Figure 1: System overview.

e We present an adaptive query execution interface for
analysts to systematically make a trade-off between the
output accuracy and the query execution budget.

e We present a confidence metric on the output ac-
curacy using a confidence interval to interpret the
approximation due to sampling and randomization.

To empirically evaluate our approach, we implemented
our design as a fully functional prototype in a system
called PRIVAPPROX based on Apache Flink [21] and
Apache Kafka [7]. In addition to stream analytics, we
further extended our system to support privacy-preserving
“historical” batch analytics over users’ private datasets. The
evaluation based on micro-benchmarks and real-world case
studies shows that this marriage is, in fact, made in heaven!

2 Overview

2.1 System Architecture

PRIVAPPROX is designed for privacy-preserving stream
analytics on distributed users’ private dataset. Figure
depicts the high-level architecture of PRIVAPPROX. Our
system consists of four main components: clients, proxies,
aggregator, and analysts.

Clients locally store users’ private data on their respective
personal devices, and subscribe to queries from the system.
Analysts publish streaming queries to the system, and also
specify a query execution budget. The query execution bud-
get can either be in the form of latency guarantees/SLAs,
output quality/accuracy, or the computing resources for query
processing. Our system ensures that the computation remains
within the specified budget.

At a high-level, the system works as follows: a query
published by an analyst is distributed to clients via the
aggregator and proxies. Clients answer the analyst’s query
locally over the users’ private data using a privacy-preserving
mechanism. Client answers are transmitted to the aggregator
via anonymizing proxies. The aggregator aggregates re-
ceived answers from the clients to provide privacy-preserving
stream analytics to the analyst.

2.2 System Model

Query model. PRIVAPPROX supports the SQL query lan-
guage for analysts to formulate streaming queries, which are
executed periodically at the clients as sliding window compu-
tations [14]. While queries can be complex, the results of a
query are expressed as counts within histogram buckets, i.e.,
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each bucket represents a range of the query’s answer values.
Specifically, each query answer is represented in the form
of binary buckets, where each bucket stores a value ‘1’ or ‘0’
depending on whether or not the answer falls into the value
range represented by that bucket. For example, an analyst can
learn the driving speed distribution across all vehicles in San
Francisco by formulating an SQL query “SELECT speed
FROM vehicle WHERE location=‘San Fran-
cisco’”. The analyst can then define 12 answer buckets
on speed: ‘07, ‘1~107, ‘11~20, ---, ‘81~90’, *91~100’, and
“>100’. If a vehicle is moving at 15 mph in San Francisco,
it answers ‘1 for the third bucket and ‘0’ for all others.

Our query model supports not only numeric queries as
described above, but also non-numeric queries. For non-
numeric queries, each bucket is specified by a matching rule
or a regular expression. Note that, at first glance, our query
model may appear simple; however, it has been shown to be
effective for a wide-range of analytics algorithms [19, 20].

Threat model. Analysts are potentially malicious. They may
try to violate the PRIVAPPROX’s privacy model (described
later), i.e., de-anonymize clients, build profiles through the
linkage of queries and answers, or remove the added noise
from answers.

Clients are potentially malicious. They could generate
false or invalid responses to distort the query result for the
analyst. However, we do not defend against the Sybil at-
tack [31]], which is beyond the scope of this work [[75].

Proxies are also potentially malicious. They may transmit
messages between clients and the aggregator in contravention
of our system protocols. PRIVAPPROX includes at least two
proxies, and there are at least two proxies which do not
collude with each other.

The aggregator is assumed to be honest-but-curious.
The aggregator faithfully conforms to the system protocols,
but may try to exploit the information about clients. The
aggregator does not collude with any proxy nor the analyst.

Finally, we assume that all the end-to-end communica-
tions use authenticated and confidential connections (e.g.,
protected by long-lived TLS connections), and no system
component could monitor all network traffic.

Privacy model. Our privacy properties include: (i) zero-
knowledge privacy, (ii) anonymity, and (iii) unlinkability.
All aggregate query results in the system are independently
produced under the zero-knowledge privacy guarantees [41].
The zero-knowledge privacy metric builds upon differential
privacy [32]], and provides a tighter bound on privacy
guarantees compared to differential privacy. Informally,
zero-knowledge privacy states that essentially everything that
an adversary can learn from the output of an zero-knowledge
private mechanism could also be learned using the aggregate
information. Anonymity means that no system component
can associate query answers or query requests with a
specific client. Finally, unlinkability means that no system

component can join any pair of query requests or answers
to the same client, even to the same anonymous client.

We give a sketch of the privacy analysis in §4] while we
also provide the formal definition, analysis, and proof in the
technical report [64].

3 Design

PRIVAPPROX consists of two main phases (see Figure [T)):
submitting queries and answering queries. In the first phase,
an analyst submits a query (along with the execution budget)
to clients via the aggregator and proxies. In the second phase,
the query is answered by the clients in the reverse direction.

3.1 Submitting Queries

To perform statistical analysis over users’ private data streams,
an analyst creates a query using the query model described
in In particular, each query consists of the following
fields, and is signed by the analyst for non-repudiation:

Query:: <Q]D,SQL,A[71} 7f7W75> (1)

e (Ojp denotes a unique identifier of the query. This can
be generated by concatenating the identifier of the
analyst with a serial number unique to the analyst.

e SQOL denotes the actual SQL query, which is passed on
to clients and executed on their respective personal data.

e Aln| denotes the format of a client’s answer to the query.
The answer is an n-bit vector where each bit associates
with a possible answer value in the form of a “0” or
“1” per index (or answer value range).

e f denotes the answer frequency, i.e., how often the
query needs to be executed at clients.

e w denotes the window length for sliding window
computations [13]. For example, an analyst may only
want to aggregate query results for the last ten minutes,
which means the window length is ten minutes.

e O denotes the sliding interval for sliding window
computations. For example, an analyst may want to
update the query results every one minute, and so the
sliding interval is set to one minute.

After forming the query, the analyst sends the query, along
with the query execution budget, to the aggregator. Once
receiving the pair of the query and query budget from the
analyst, the aggregator first converts the query budget into
system parameters for sampling (s) and randomization (p,q).
We explain these system parameters in the next section
Hereafter, the aggregator forwards the query and the
converted system parameters to clients via proxies.

3.2 Answering Queries

After receiving the query and system parameters, we next
explain how the query is answered by clients and processed
by the system to produce the result for the analyst. The query
answering process involves four steps including (i) sampling
at clients for low-latency approximation; (ii) randomizing
answers for privacy preservation; (iii) transmitting answers
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via proxies for anonymization and unlinkability; and finally,
(iv) aggregating answers with error estimation to give a
confidence level on the approximate result.

3.2.1 Step I: Sampling at Clients

We make use of approximate computation to achieve low-
latency execution by computing over a subset of data items
instead of the entire input dataset. Specifically, our work
builds on sampling-based techniques [8| 9l 42} 53,165 in the
context of “Big Data” analytics. Since we aim to keep the
private data stored at individual clients, PRIVAPPROX applies
an input data sampling mechanism locally at the clients. In
particular, we use Simple Random Sampling (SRS) [60].

Simple Random Sampling (SRS). SRS is considered as a
fair way of selecting a sample from a given population since
each individual in the population has the same chance of be-
ing included in the sample. We make use of SRS at the clients
to select clients that will participate in the query answering
process. In particular, the aggregator passes the sampling
parameter (s) on to clients as the probability of participating
in the query answering process. Thereafter, each client flips a
coin with the probability based on the sampling parameter (s),
and decides whether to participate in answering a query. Sup-
pose that we have a population of U clients, and each client
i has an answer a;. We want to calculate the sum of these
answers across the population, i.e., ):lela,-. To compute an
approximate sum, we apply the SRS at clients to get a sample
of U’ clients. The estimated sum is then calculated as follows:

.Uy
T= U Zai +error 2)

i=1

Where the error bound error is defined as:

error=1\/Var(%) 3)

Here, t is a value of the ¢-distribution with U’ — 1 degrees
of freedom at the 1 — /2 level of significance, and the
estimated variance Var(%) of the sum is:

v’ , u-U
70 (
v’ U

Var(%) = ) )
Where 67 is the sample variance of the sum.

Note that, in this paper, we assume that all clients
produce the input stream with data items following the same
distribution, i.e., all clients’ data streams belong to the same
stratum. We further extend our sampling mechanism with
the stratified sampling technique [53] to deal with varying
distributions of data streams. We cover the algorithm and
evaluation of stratified sampling in the technical report [64].

3.2.2 Step II: Answering Queries at Clients

Clients that participate in the query answering process make
use of the randomized response technique [37] to preserve
answer privacy, with no synchronization among clients.

Randomized response. Randomized response protects
user’s privacy by allowing individuals to answer sensitive
queries without providing truthful answers all the time, yet
it allows analysts to collect statistical results. Randomized
response works as follows: suppose an analyst sends a query
to individuals to obtain the statistical result about a sensitive
property. To answer the query, a client locally randomizes
its answer to the query [37]. Specifically, the client flips
a coin, if it comes up heads, then the client responds its
truthful answer; otherwise, the client flips a second coin
and responds “Yes” if it comes up heads or “No” if it comes
up tails. The privacy is preserved via the ability to refuse
responding truthful answers.

Suppose that the probabilities of the first coin and the
second coin coming up heads are p and g, respectively. The
analyst receives N randomized answers from individuals,
among which Ry, answers are “Yes”. Then, the number of
original truthful “Yes” answers before the randomization
process can be estimated as:

Ey_Ry—(l—;J)quN 5)

Suppose A, and E, are the actual and the estimated
numbers of the original truthful “Yes” answers, respectively.
The accuracy loss 1) is then defined as:

- ’A — ©

Ay

It has been proven in [36] that, the randomized response
mechanism achieves e-differential privacy [32]], where:

—n( Pr[Response="Yes|Truth="Yes| )

7
Pr[Response=Yes|Truth=No] ™

More specifically, the above randomized response
mechanism achieves e-differential privacy, where:

p+(1—p)><q)

e=In( (1-p)xq

®)

The reason is that, if a truthful answer is “Yes”, then
with the probability of ‘p+ (1 — p) x ¢’, the randomized
answer will still remain “Yes”. Otherwise, if a truthful
answer is “No”, then with the probability of ‘(1 —p) x ¢’,
the randomized answer will become “Yes”.

It is worth mentioning that, combining the randomized
response with the sampling technique described in Step I, we
achieve not only differential privacy but also zero-knowledge
privacy [41] which is a privacy bound tighter than differential
privacy. We sketch out the proof in §4] with details in the
technical report [64].

3.2.3 Step III: Transmitting Answers via Proxies

After producing randomized responses, clients transmit them
to the aggregator via the proxies. To achieve anonymity
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<M|p, Mg >

Proxy # 1

<Mp, Mg, Mg >

Aggregator

Mg =M@ Mg

Proxy # 2

<M|p, My >

Figure 2: XOR-based encryption with two proxies.

and unlinkability of the clients against the aggregator and
analysts, we utilize the XOR-based encryption together
with source rewriting, which has been used for anonymous
communications [26} 27, 30%67]].

XOR-based encryption. At a high-level, the XOR-based
encryption employs extremely efficient bit-wise XOR
operations as its cryptographic primitive compared to ex-
pensive public-key cryptography. This allows us to support
resource-constrained clients, e.g., smartphones and sensors.
The underlying idea of this encryption is simple: if Alice
wants to send a message M of length / to Bob, then Alice and
Bob share a secret Mk (in the form of a random bit-string of
length /). To transmit the message M privately, Alice sends
an encrypted message ‘Mg =M & Mg’ to Bob, where ‘@’
denotes the bit-wise XOR operation. To decrypt the message,
Bob again uses the bit-wise XOR operation: M =M ®Mk.

Specifically, we apply the XOR-based encryption to
transmit clients’ randomized answers as follows. At first,
each randomized answer is concatenated with its associated
query identifier Q;p to build a message M:

M = Qip,RandomizedAnswer ©)]

Thereafter, the client generates (n — 1) random [-bit
key strings Mg, with 2 < i < n using a cryptographic
pseudo-random number generator (PRNG) seeded with a
cryptographically strong random number. The XOR of all
(n—1) key strings together forms the secret M.

My =EPMx, (10)
i=2

Next, the client performs an XOR operation with M and
Mgk to produce an encrypted message ME.

Mg =M&My (11)

As a result, the message M is split into n messages
(Mg Mg, - Mg,). Afterwards, a unique message identifier
M;p is generated, and sent along with the split messages to
the n proxies via anonymous channels enabled by source
rewriting [30 (67].

Client— Proxy| : (M;p,ME)

. . (12)
Client — Proxyi: (Myp,Mkx;)

Upon receiving the messages (either (Mjp, Mg) or
(Mip, Mk;)) from clients, the n proxies transmit these
messages to the aggregator.

The message identifier Mjp ensures that Mp and all
associated Mg, will be joined later to decrypt the original
message M at the aggregator. Note that, (M;p,Mg) and all
(Mip, Mk;) are computationally indistinguishable, which
hides from the proxies if the received data contains the
encrypted answer or is just a pseudo-random bit string.

3.24 Step IV: Generating Result at the Aggregator

At the aggregator, all data streams ((Mjp, Mg) and
(Mip, Mk;)) are received, and can be joined together to
obtain a unified data stream. Specifically, the associated
Mg and M, are paired by using the message identifier
M;jp. To decrypt the original randomized message M from
the client, the XOR operation is performed over Mg and
Mgk: M = Mg ® My with Mg being the XOR of all Mg;:
Mg =@ ,Mk,. As the aggregator cannot identify which of
the received messages is Mg, it just XORs all the n received
messages to decrypt M.

The joined answer stream is processed to produce the
query results as a sliding window. For each window, the
aggregator first adapts the computation window to the
current start time ¢ by removing all old data items, with
timestamp < t, from the window. Next, the aggregator
adds the newly incoming data items into the window. Then,
the answers in the window are decoded and aggregated to
produce the query results for the analyst. Each query result
is an estimated result which is bound to a range of error due
to the approximation. The aggregator estimates this error
bound using equation [3]and produces a confidence interval
for the result as: queryResult + errorBound. The entire
process is repeated for every window.

Note that an adversarial client might answer a query many
times in an attempt to distort the query result. However, we
can handle this problem, for example, by applying the triple
splitting technique [26].

Error bound estimation. We provide an error bound
estimation for the aggregate query results. The accuracy loss
in PRIVAPPROX is caused by two processes: (i) sampling
and (ii) randomized response. Since the accuracy loss of
these two processes is statistically independent (see §0),
we estimate the accuracy loss of each process separately.
Furthermore, Equation ] indicates that the error induced by
sampling can be described as an additive component of the
estimated sum. The error induced by randomized response
is contained in the a; values in Equation Therefore,
independent of the error induced by randomized response,
the error coming from sampling is simply being added upon.
Following this, we sum up both independently estimated
errors to provide the total error bound of the query results.
To estimate the accuracy loss of the randomized response
process, we make use of an experimental method. We
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run several micro-benchmarks at the beginning of the
query answering process (without performing the sampling
process) to estimate the accuracy loss caused by randomized
response. We measure the accuracy loss using Equation [6}

On the other hand, to estimate the accuracy loss of the
sampling process, we apply the statistical theory of the
sampling techniques. In particular, we first identify a desired
confidence level, e.g., 95%. Then, we compute the margin
of error using Equation E} Note that, to use this equation the
sampling distribution must be nearly normal. According to
the Central Limit Theorem (CLT), when the sample size U’
is large enough (e.g., > 30), the sampling distribution of a
statistic becomes close to the normal distribution, regardless
of the underlying distribution of values in the dataset [[72].

3.3 Practical Considerations

We next present two design enhancements to further improve
the practicality of PRIVAPPROX.

3.3.1 Historical Analytics

In addition to providing real-time data analytics, we further
extend PRIVAPPROX to support historical analytics. The his-
torical analytics workflow is essential for the data warehous-
ing setting, where analysts wish to analyze user behaviors
over a longer time period. To facilitate historical analytics,
we support the batch analytics over user data at the aggregator.
The analyst can analyze users’ responses stored in a fault-
tolerant distributed storage (e.g., HDES) at the aggregator to
get the aggregate query result over the desired time period.

We also extend the adaptive execution interface for
historical analytics, where the analyst can specify query
execution budget, for example, to suit dynamic pricing in
spot markets in the cloud deployment. Based on the query
budget, we can perform an additional round of sampling at
the aggregator to ensure that the batch analytics computation
remains within the query budget (see the evaluation details
in the technical report [64]).

3.3.2 Query Inversion

In the current setting, some queries may result in very few
truthful “Yes” answers in users’ responses. For such cases,
PRIVAPPROX can only achieve lower utility of query results
because the fraction of truthful “Yes” answers is distant from
the second randomization parameter g (see experimental
results in §§]) For instance, if ¢ is set to a high value (e.g.,
q=0.9), having only a few truthful “Yes” answers will affect
the overall utility of the query result. To address this issue,
we propose a query inversion mechanism. If the fraction of
truthful “Yes” answers is too small or too large compared to
the g value, then the analysts can invert the query to calculate
the truthful “No” answers instead of the truthful “Yes” an-
swers. In this way, the fraction of truthful “No” answers gets
closer to g, resulting in a higher utility of the query result.

4 Privacy Analysis

PRIVAPPROX achieves the strong privacy properties
(i) differential privacy and (ii) zero-knowledge privacy as
introduced in §2.2] This section only provides a sketch of
the full proof. The detailed proof along with the empirical
evaluation is available in the technical report [64].

The basic idea is that all data from the clients is already
differentially private due to the use of randomized response.
Furthermore, the combination with sampling at the clients
makes it zero-knowledge private as well. Following the
privacy definitions [32| 41], any computation upon the
results of differentially as well as zero-knowledge private
algorithms is guaranteed to be private.

Intuitively, differential privacy limits the information that
can be learned about any individual i by the difference occur-
ring from either including i’s sensitive data in a differentially
private computation or not. Zero-knowledge privacy on the
other hand also gives the adversary access to aggregate infor-
mation about the remaining individuals. Essentially, every-
thing that can be learned about individual i can also be learned
by having access to some aggregate information upon them.
(i) Differential privacy. Differential privacy is already
fulfilled by randomized response [36]. However, due to the
use of client-side sampling, a tighter privacy bound can be de-
rived. Consequently, we show that sampling and randomize
response commute and how to derive the combined bound
given the sampling and randomize response parameters.
The commutative property is shown by showing statistical
indistinguishability of applying a sampling and randomize
response in that order and vice versa. Furthermore, we show
that sampling can be decomposed into pre- and post-sampling
by leveraging the commutative property of multiplication.
(ii) Zero-knowledge privacy. The zero-knowledge privacy
property follows from combining a differentially private
algorithm (randomized response) with an aggregation
function (sampling) as given in the seminal work on
zero-knowledge privacy [40]. More detail is available in the
technical report [64].

S Implementation
We implemented PRIVAPPROX as an end-to-end stream
analytics system. Figure 3] presents the architecture of our
prototype. Our system implementation consists of three main
components: (i) clients, (ii) proxies, and (iii) the aggregator.
First, the query and the execution budget specified by the
analyst are processed by the initializer module to
decide on the sampling parameter (s) and the randomization
parameters (p and g). These parameters along with the query
are then sent to the clients.

Clients. We implemented Java-based clients for mobile
devices as well as for personal computers. A client makes
use of the sampling parameter (based on the sampling
module) to decide whether to participate in the query answer-
ing process (§3.2.1)). If the client decides to participate then
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Figure 3: PRIVAPPROX architecture. Historical analytics
pipeline at the aggregator is not shown for clarity.

the query answer module is used to execute the input
query on the local user’s private data stored in SQLite [5].
The client makes use of the randomized response to execute
the query (§3.22). Finally, the randomized answer is
encrypted using the XOR-based encryption module;
thereafter, the encrypted message and the key messages are
sent to the aggregator via proxies (§3.2.3).

Proxies. We implemented proxies based on Apache Kafka
(which internally uses Apache Zookeeper [4] for fault
tolerance). In Kafka, a ropic is used to define a stream of
data items. A stream producer can publish data items to
a topic, and these data items are stored in Kafka servers
called brokers. Thereafter, a consumer can subscribe to the
topic and consume the data items by pulling them from
the brokers. In particular, we make use of Kafka APIs to
create two main topics: key and answer for transmitting the
key message stream and the encrypted answer stream in the
XOR-based encryption protocol, respectively (§3.2.3).

Aggregator. We implemented the aggregator using Apache
Flink for real-time stream analytics and also for historical
batch analytics. At the aggregator, we first make use of the
join method (using the aggregation module) to com-
bine the two data streams: (i) encrypted answer stream and
(ii) key stream. Thereafter, the combined message stream is
decoded (using the XOR-based decryption module)
to reproduce the randomized query answers. These answers
are then forwarded to the analytics module. The analyt-—
ics module processes the answers to provide the query re-
sult to the analyst. Moreover, the error estimation
module is used to estimate the error (§3.2.4), which we
implemented using the Apache Common Math library. If
the error exceeds the error bound target, a feedback mecha-
nism is activated to re-tune the sampling and randomization
parameters to provide higher utility in the subsequent epochs.

6 Evaluation: Microbenchmarks
We first evaluate PRIVAPPROX using microbenchmarks.

#1: Effect of sampling and randomization parameters.
We measure the effect of randomization parameters on

Table 1: Utility and privacy of query results with different
randomization parameters p and q.

p | g [ Accuracyloss () [ Privacy Level (€)

0.3 0.0278 1.7047
03 | 0.6 0.0262 1.3862
0.9 0.0268 1.2527
0.3 0.0141 2.5649
06 | 0.6 0.0128 2.0476
0.9 0.0136 1.7917
0.3 0.0098 4.1820
09 | 0.6 0.0079 3.5263
0.9 0.0102 3.1570

the utility and the privacy guarantee of the query results.
In particular, the utility is measured by the query results’
accuracy loss (Equation [6)), and privacy is measured by the
level of achieved zero-knowledge privacy (Equation 19 in
the technical report [64]). In the experiment, we randomly
generated 10,000 original answers, 60% of which are “Yes”
answers. The sampling parameter s is set to 0.6.

Table[T|shows that different settings of the two randomiza-
tion parameters, p and ¢, do affect the utility and the privacy
guarantee of the query results. The higher p means the higher
probability that a client responds with its truthful answer. As
expected, this leads to higher utility (i.e., smaller accuracy
loss 1) but weaker privacy guarantee (i.e., higher privacy
level €). In addition, Table E]also shows that the closer we set
the probability g to the fraction of truthful “Yes” answers (i.e.,
60% in this microbenchmark), the higher utility the query
result provides. Nevertheless, to meet the utility and privacy
requirements in various scenarios, we should carefully
choose the appropriate p and ¢. In practice, the selection of
the € value depends on real-world applications [54].

We also measured the effect of sampling parameter on
the accuracy loss. Figure[d] (a) shows that the accuracy loss
decreases with the increase of sampling fraction, regardless
of the settings of randomization parameters p and q. The
benefits reach diminishing returns after the sampling fraction
of 80%. The system operator can set the sampling fraction
using resource prediction model [78H80] for any given SLA.

#1I: Error estimation. To analyze the accuracy loss, we
first measured the accuracy loss caused by sampling and
randomized response separately. For comparison, we also
computed the total accuracy loss after running the two pro-
cesses in succession as in PRIVAPPROX. In this experiment,
we set the number of original answers to 10,000 with 60%
of which being “Yes” answers. We measured the accuracy
loss of the randomized response process by setting the
sampling parameter to 100% (s= 1) and the randomization
parameters p and g to 0.3 and 0.6, respectively. Meanwhile,
we measured the accuracy loss of the sampling process
without the randomized response process by setting p to 1.

Figure 4 (b) indicates that the accuracy loss caused by the
two processes is statistically independent of each other. In ad-
dition, the accuracy loss of the two processes can effectively
be added together to calculate the total accuracy loss.
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Figure 4: (a) Accuracy loss with varying sampling and randomization parameters. (b) Accuracy loss caused by sampling
and randomized response processes, combined and individually. (¢) Accuracy loss with varying numbers of clients.
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Table 2: Comparison of crypto overheads (# operations/sec). The public-key crypto schemes use a 1024-bit key.

Encryption Decryption
Phone [ Laptop [ Server Phone [ Laptop [ Server
RSA [10] 937 16% 2,770 341x 4,909 275x% 126 | 25890x 698 | 23666x 859 | 26401x
Goldwasser [27] | 2,106 7x 17,064 55x | 22902 59% 127 | 25686x | 6,329 2610x | 7,068 3209x
Paillier [66] 116 | 129x 489 | 1930x 579 | 2335x 72 | 45308x 250 | 66076x 309 | 73392x
PRIVAPPROX [ 15,026 [ 943,902 [ 1,351,937 [ 3,262,186 [ 16,519,076 [ 22,678,285

#I11: Effect of the number of clients. We next analyzed
how the number of participating clients affects the utility of
the results. In this experiment, we fix the sampling and ran-
domization parameters s, p and g to 0.9, 0.9 and 0.6, respec-
tively, and set the fraction of truthful “Yes” answers to 60%.

Figuref] (c) shows that the utility of query results improves
with the increase of the number of participating clients, and
few clients (e.g., < 100) may lead to low-utility query results.

Note that increasing the number of participating clients
leads to higher network overheads. However, we can tune
the number of clients using the sampling parameter s and
thus decrease the network overhead (see §7.2)#11).

#IV: Effect of the fraction of truthful answers. We
measured the utility of both the native and the inversed
query results with different fractions of truthful “Yes”
answers. In this experiment, we still keep the sampling and
randomization parameters s, p and ¢ to 0.9, 0.9 and 0.6,
respectively, and set the total number of answers to 10,000.

Figure [5] (a) shows that PRIVAPPROX achieves higher

utility as the fraction of truthful “Yes” answers gets closer
to 60% (i.e., the g value). In addition, when the fraction
of truthful “Yes” answers y is too small compared to the g
value (e.g., y=0.1), the accuracy loss is quite high at 2.54%.
However, by using the query inversion mechanism (§3.3.2),
we can significantly reduce the accuracy loss to 0.4%.

#V: Effect of answer’s bit-vector sizes. We measured the
throughput at proxies with various bit-vector sizes of client
answers (i.e., A[n] in §3.1). We conducted this experiment
with a 3-node cluster (see §7.1] for the experimental setup).
Figure [3] (b) shows that the throughput, as expected, is
inversely proportional to the answer’s bit-vector sizes.

#VI: Computational overhead of crypto operations. We
compared the computational overhead of crypto operations
used in PRIVAPPROX and prior systems. In particular, these
crypto operations are XOR in PRIVAPPROX, RSA in [10],
Goldwasser-Micali in [27], and Paillier in [66]]. In this ex-
periment, we measured the number of crypto operations that
can be executed on: (i) Android Galaxy mini III smartphone
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Table 3: Throughput (# operations/sec) at clients.

# operations/sec [ Phone [ Laptop | Server
SQLite read 1,162 19,646 23,418
Randomized response 168,938 | 418,668 1,809,662
XOR encryption 15,026 | 943,902 1,351,937
Total 1,116 17,236 22,026

running Android 4.1.2 with a 1.5 GHz CPU;; (ii) MacBook
Air laptop with a 2.2 GHz Intel Core i7 CPU running OS
X Yosemite 10.10.2; and (7ii) Linux server running Linux
3.15.0 equipped with a 2.2 GHz CPU with 32 cores.

Table [2] shows that the XOR operation is extremely
efficient compared with the other crypto mechanisms. This
highlights the importance of XOR encryption in our design.

#VII: Throughput at clients. We measured the throughput
at clients. In particular, we measured the number of
operations per second that can be executed at clients for the
query answering process. In this experiment, we used the
same set of devices as in the previous experiment. Table [3]
presents the throughput at clients. To closely investigate the
overheads, we measured the individual throughput of three
sub-processes in the query answering process: (i) database
read, (ii) randomized response, and (iii) XOR encryption.
The result indicates that the performance bottleneck in the
answering process is actually the database read operation.

#VIII: Comparison with related work. First, we com-
pared PRIVAPPROX with SplitX [26]], a high-performance
privacy-preserving analytics system. Since PRIVAPPROX
and SplitX share the same architecture, we compare the
latency incurred at proxies in both systems.

Figure E] shows that, with different numbers of clients,
the latency incurred at proxies in PRIVAPPROX is always
nearly one order of magnitude lower than that in SplitX.
The reason is simple: unlike PRIVAPPROX, SplitX requires
synchronization among its proxies to process query answers
in a privacy-preserving fashion. This synchronization creates
a significant delay in processing query answers, making
SplitX unsuitable for dealing with large-scale stream ana-
lytics. More specifically, in SplitX, the processing at proxies
consists of a few sub-processes including adding noise to
answers, answer transmission, answer intersection, and
answer shuffling; whereas, in PRIVAPPROX, the processing
at proxies contains only the answer transmission. Figure [§]
also shows that with 10° clients, the latency at SplitX is 40.27
sec, whereas PRIVAPPROX achieves a latency of just 6.21
sec, resulting in a 6.48 x speedup compared with SplitX.

Next, we compared PRIVAPPROX with a recent privacy-
preserving analytics system called RAPPOR [73]. Similar
to PRIVAPPROX, RAPPOR applies a randomized response
mechanism to achieve differential privacy. However,
RAPPOR is not designed for stream analytics, and therefore,
we compared PRIVAPPROX with RAPPOR for privacy only.
To make an “apples-to-apples” comparison between PRIVAP-
PROX and RAPPOR in terms of privacy, we make a mapping

108

Splitx  —e—
102 [ PrivApprox —a—
10"
100
10"
102 -

108

SplitX transmission
SplitX computation
SplitX shuffling

Latency (seconds)

102 10° 104 105 108 107 108
Number of clients

Figure 6: Comparison between SplitX and PRIVAPPROX.

between the system parameters of the two systems. We set
the sampling parameter s = 1, and the randomized parameters
p=1—f,q=0.5 in PRIVAPPROX, where f is the parameter
used in the randomized response process of RAPPOR [73]].
In addition, we set the number of hash functions used in
RAPPOR to 1 (h=1) for a fair comparison. In doing so, the
two systems have the same randomized response process.
However, since PRIVAPPROX makes use of the sampling
mechanism before performing the randomized response, PRI-
VAPPROX achieves stronger privacy. Figure 5] (c) shows the
differential privacy level of RAPPOR and PRIVAPPROX with
different sampling fractions s. It is worth mentioning that, by
applying the sampling mechanism, PRIVAPPROX achieves
stronger privacy (i.e., zero-knowledge privacy) for clients.

7 Evaluation: Case Studies

We next present our experience of using PRIVAPPROX in
the following two case studies: (i) New York City (NYC)
taxi ride, and (ii) household electricity consumption.

7.1 Experimental Setup

Cluster setup. We used a cluster of 44 nodes connected
via a Gigabit Ethernet. Each node contains 2 Intel Xeon
quad-core CPUs and 8 GB of RAM running Debian 5.0. We
deployed two proxies with Apache Kafka, each of which
consists of 4 Kafka broker nodes and 3 Zookeeper nodes.
We used 20 nodes to deploy Apache Flink as the aggregator.
In addition, we employed the remaining 10 nodes to replay
the datasets to generate data streams for the evaluation.

Datasets. For the first case study, we used the NYC Taxi
Ride dataset from the DEBS 2015 Grand Challenge [S1].
For the second case study, we used the Household Electricity
Consumption dataset [6)].

Queries. For the NYC taxi ride case study, we created a
query: “What is the distance distribution of taxi rides in New
York?”. We defined the query answer with 11 buckets as
follows: [0, 1) mile, [1, 2) miles, [2, 3) miles, [3, 4) miles, [4,
5) miles, [5, 6) miles, [6, 7) miles, [7, 8) miles, [8, 9) miles,
[9, 10) miles, and [10, +oc) miles.

For the second case study, we defined a query to analyze
the electricity usage distribution of households over the past
30 minutes. The query answer format is as follows: [0, 0.5]
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Figure 8: Throughput at proxies and the aggregator with
different numbers of CPU cores and nodes.
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kWh, and (2.5, 3] kWh.

Evaluation metrics. We evaluated PRIVAPPROX using four
key metrics: throughput, latency, utility, and privacy level.
Throughput is defined as the number of data items processed
per second, and latency is defined as the total amount of time
required to process a certain dataset. Utility is the accuracy
loss defined as | &1maie—cxact | \here estimate and exact are
the query results produced by applying PRIVAPPROX and the
native computation, respectively. Finally, privacy level (€;)
is calculated using Equation 19 in the technical report [64].
For all measurements, we report the average over 10 runs.

7.2  Results from Case Studies

#1: Scalability. We measured the scalability of the two main
system components: proxies and the aggregator. We first
measured the throughput of proxies with different numbers
of CPU cores (scale-up) and different numbers of nodes
(scale-out). This experiment was conducted on a cluster of
4 nodes. Figure 8| (a) shows that, as expected, the throughput
at proxies scales quite well with the number of CPU cores
and nodes. In the NYC Taxi case study, with 2 cores, the
throughput of each proxy is 512,348 answers/sec, and with
8 cores (1 node) the throughput is 1,192,903 answers/sec;
whereas, with a cluster of 4 nodes each with 8 cores, the
throughput of each proxy reaches 2,539,715 answers/sec.
In the household electricity case study, the proxies achieve
relatively higher throughput because the message size is
smaller than in the NYC Taxi case study.

We next measured the throughput at the aggregator.
Figure 8| (b) depicts that the aggregator also scales quite well
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Figure 9: Total network traffic and latency at proxies with
different sampling fractions at clients.

when the number of nodes for aggregator increases. The
throughput of the aggregator, however, is much lower than
the throughput of proxies due to the relatively expensive
join operation and the analytical computation at the
aggregator. We notice that the throughput of the aggregator
in the household electricity case study does not significantly
improve in comparison to the first case study. This is
because the difference in the size of messages between the
two case studies does not affect much the performance of
the join operation and the analytical computation.

#I1: Network bandwidth and latency. Next, we conducted
the experiment to measure the network bandwidth usage. By
leveraging the sampling mechanism at clients, our system re-
duces network traffic significantly. Figure[9|(a) shows the to-
tal network traffic transferred from clients to proxies with dif-
ferent sampling fractions. In the first case study, with the sam-
pling fraction of 60%, PRIVAPPROX can reduce the network
traffic by 1.62; whereas in the second case study, the reduc-
tion is 1.58 <. Besides the benefit of saving network band-
width, PRIVAPPROX also achieves lower latency in process-
ing query answers by leveraging approximate computation.
To evaluate this advantage, we measured the effect of sam-
pling fractions on the latency of processing query answers.
Figure[9] (b) depicts the latency with different sampling frac-
tions at clients. For the first case study, with the sampling
fraction of 60%, the latency is 1.68 x lower than the execu-
tion without sampling; whereas, in the second case study, this
value is 1.66 x lower than the execution without sampling.

#I11: Utility and privacy. Figure [7| (a)(b)(c) show the
utility, the privacy level, and the trade-off between them,
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respectively, with different sampling and randomization
parameters. The randomization parameters p and g vary in
the range of (0, 1), and the sampling parameter s is calculated
using Equation 19 in the technical report [64]. Here, we
show results only with the NYC Taxi dataset. As the
sampling parameter s and the first randomization parameter
p increase, the utility of query results improves (i.e., accuracy
loss gets smaller) whereas the privacy guarantee gets weaker
(i.e., privacy level gets higher). Since the NYC Taxi dataset
is diverse, the accuracy loss and the privacy level change
in a non-linear fashion with different sampling fractions
and randomization parameters. Interestingly, the accuracy
loss does not always decrease as the second randomization
parameter g increases. The accuracy loss gets smaller when
q =0.3. This is due to the fact that the fraction of truthful
“Yes” answers in the dataset is 33.57% (close to g=0.3).

8 Related Work

Privacy-preserving analytics. Since the notion of dif-
ferential privacy [32, 34]], a plethora of systems have
been proposed to provide differential privacy with cen-
tralized databases [46} 48] 152 15659 63| 168]]. In practice,
however, such central trust can be abused, leaked, or
subpoenaed [28} 49,162, |69].

To overcome the limitations of the centralized database
schemes, recently a flurry of systems have been proposed
with a focus on preserving user privacy (mostly, differential
privacy) in a distributed setting where the private data is kept
locally [101126} 27,1331 1431 1441147, 1551161} [71} [74]]. However,
these systems are designed to deal with the “one-shot” batch
queries only, whereby the data is assumed to be static.

To overcome the limitations of the aforementioned
systems, several differentially private stream analytics
systems have been proposed [22} 23| [35] 38| 45| 166} [70].
Unfortunately, these systems still contain several technical
shortcomings that limit their practicality. One of the first
systems [35] updates the query result only if the user’s
private data changes significantly, and does not support
stream analytics over an unlimited time period. Subsequent
systems [23| 45] remove the limit on the time period, but
introduce extra system overheads. Some systems [66) [70]
leverage expensive secret sharing cryptographic operations
to produce noisy aggregate query results. These systems,
however, cannot work at large scale under churn; more-
over, in these systems, even a single malicious user can
substantially distort the aggregate results without detection.
Recently, some other privacy-preserving distributed stream
monitoring systems have been proposed [22}38]]. However,
they all require some form of synchronization, and are
tailored for heavy-hitter monitoring only. Streaming data
publishing systems like [76] use a stream-privacy metric at
the cost of relying on a trusted party to add noise. In contrast,
PRIVAPPROX does not require a trusted proxy or aggregator
to add noise. Furthermore, PRIVAPPROX provides stronger

privacy properties (i.e., zero-knowledge privacy).
Sampling and randomized response. Sampling and
randomized response, also known as input perturbation
techniques, are being studied in the context of privacy-
preserving analytics, albeit they are explored separately. For
instance, the relationship between sampling and privacy is
being investigated to provide k-anonymity [24]], differential
privacy [S9]], and crowd-blending privacy [40]. In contrast,
we show that sampling combined with randomized response
achieves the zero-knowledge privacy, a privacy bound strictly
stronger than the state-of-the-art differential privacy.
Randomized response [37, (77]] is a surveying technique
in statistics, since 1960s, for collecting sensitive information
via input perturbation. Recently, Google in a system called
RAPPOR [73] made use of randomized response for
privacy-preserving analytics. Like RAPPOR, PRIVAPPROX
utilizes randomized response. However, RAPPOR is
designed for heavy-hitter collection, and does not deal with
the situation where clients’ answers to the same query are
changing over time. Therefore, RAPPOR does not fit well
with the stream analytics. Furthermore, since we combine
randomized response with sampling, PRIVAPPROX provides
a privacy bound tighter than RAPPOR.

Approximate computation. Approximation techniques
such as sampling [11} 25/ 39]], sketches [29], and online
aggregation [S0] have been well-studied over the decades
in the databases community. Recently, sampling-based
systems [18, 9l 42, 53| 165] have also been shown effective
for “Big Data” analytics. We build on the advancements of
sampling-based techniques. In particular, our work builds
on IncApprox [53], a data analytics system that combines
incremental computation [12, [I5H18] and approximate
computation. However, we differ in two crucial aspects. First,
we perform sampling in a distributed way as opposed to sam-
pling in a centralized dataset. Second, we extend sampling
with randomized response for privacy-preserving analytics.

9 Conclusion

In this paper, we presented PRIVAPPROX, a privacy-
preserving stream analytics system. Our approach builds on
the observation that both computing paradigms — privacy-
preserving data analytics and approximate computation —
strive for approximation, and can be combined together
to leverage the benefits of both. Our evaluation shows
that PRIVAPPROX not only improves the performance
to support real-time stream analytics, but also achieves
provably stronger privacy guarantees than the state-of-the-art
differential privacy. PRIVAPPROX s source code is publicly
available: https://PrivApprox.github.io,
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