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Abstract

When synchronization primitives such as locking and
read-copy update (RCU) execute within virtual ma-
chines (VMs), preemption can cause multi-second la-
tency spikes, increasing peak memory footprint and frag-
mentation inside VMs, which in turn may trigger swap-
ping or VM ballooning. The resulting CPU utilization
and memory footprint increases can negate the server-
consolidation benefits of virtualization. Although pre-
emption of lock holders in VMs has been well-studied,
the corresponding solutions do not apply to RCU due to
its exceedingly lightweight read-side primitives.

This paper presents the first evaluation of RCU-reader
preemption in a virtualized environment. Our evaluation
shows 50% increase in the peak memory footprint and
155% increase in fragmentation for a microbenchmark,
23.71% increase in average kernel CPU utilization, 2.9×
increase in the CPU time to compute a grace period and
2.18× increase in the average grace period duration for
the Postmark benchmark.

1 Introduction

Virtualization brings server-consolidation benefits to the
cloud environment by multiplexing physical resources
across virtual machines (VMs), but can lead to prob-
lematic preemption. For example, preemption of the
virtual CPU (vCPU) holding a lock can cause latency
spikes [18] because other vCPUs continue spinning to
acquire the lock until the lock-holder vCPU resumes.

Well-known solutions to lock-holder preemption in-
clude priority inheritance [16, 8], and more recent work
proposes solutions for the preemption of vCPUs hold-
ing locks [18, 14, 17, 2, 20, 23, 21]. Unfortunately, the
heavyweight solutions proposed for lock-holder vCPU
preemption, such as priority inheritance, do not apply to
RCU because (1) RCU’s read-side primitives must be ex-
ceedingly lightweight, and (2) preemption of RCU read-

ers provokes different failure modes such as increased
memory footprint. Nevertheless, preemption of vCPUs
executing RCU readers has received little attention.

To the best of our knowledge, this is the first evaluation
of vCPU preemption within RCU readers.

2 The RCU synchronization technique

Read-Copy-Update (RCU) [9, 12, 13] is a highly
scalable structured-deferral [11] synchronization tech-
nique. RCU read-side critical sections are bounded by
rcu read lock() and rcu read unlock(), which are
bounded population-oblivious wait-free primitives that
need not directly synchronize with writers. In conse-
quence, each writer must guarantee that all data struc-
tures may be safely traversed by readers at all times.

For example, a writer deleting an object from
a linked list first removes the object, then uses
synchronize rcu() to wait for all pre-existing readers
to finish. Because new readers cannot gain a reference
to the newly removed object, once all pre-existing read-
ers complete, only the writer will have a reference to that
object, which can then be safely freed. This writer-wait
time period is called an RCU grace period (GP). Writers
that cannot block may instead use call rcu(), which
posts an RCU callback that invokes a specified function
with a specified argument after the completion of a sub-
sequent GP. Although GPs can be expensive, batching
optimizations allow thousands of synchronize rcu()

and call rcu() requests to share a single GP [15], re-
sulting in extremely low per-request GP overhead.

While the RCU-reader preemption problem is appli-
cable across all RCU variants, this paper focuses on the
“classic” RCU used by server builds of the Linux kernel.
The “classic” RCU prohibits readers from executing any
sort of context switch, as is also prohibited for spinlock
holders. Therefore, any time interval during which all
CPUs execute a context switch is by definition an RCU
GP, as illustrated by Figure 1 [9, 12].
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Figure 1: Linux-kernel grace period (GP). Red critical
sections marked might hold references to the deferred
object.

3 The RCU-reader preemption problem

RCU GPs cannot complete while a vCPU is preempted
within an RCU read-side critical section. Thus, calls to
synchronize rcu() cannot return, and although calls
to call rcu() continue to return immediately, their
callbacks cannot be invoked. Linux-kernel code can
therefore continuously invoke call rcu(), resulting in
an unbounded quantity of memory that cannot be reused
until the GP completes.

For example, consider an RCU-protected hash table
that is searched incessantly and updated frequently, with
deletions invoking call rcu() to safely free old hash-
table elements after a GP has elapsed. Suppose that just
one vCPU is preempted within an RCU read-side criti-
cal section, but that the other vCPUs continue execution
unhindered. These other vCPUs will continue their reads
and updates, but because GPs cannot complete, elements
deleted from the hash table cannot be freed until the pre-
empted vCPU resumes its execution. This will increase
memory footprint, which can in turn increase CPU uti-
lization, for example, due to increased numbers of cache
and TLB misses. CPU utilization can also increase be-
cause RCU takes increasingly aggressive measures in an
attempt to force the preempted vCPU to execute the con-
text switch needed to allow GP to complete. Unfortu-
nately, these measures are futile because the vCPU itself
has been preempted.

The RCU-reader preemption vs lock-holder preemp-
tion: While the usual symptom of lock-holder preemp-
tion is to hang all or part of the system, RCU-reader pre-
emption instead bloats memory footprints.

Techniques to handle lock-holder preemption such as
preemption-aware scheduling [23, 21] make the hyper-
visor aware of lock contention within the guest, and can
be augmented by hardware support [20]. For instance,
Intel’s hardware-based Pause-Loop Exiting feature can
detect a vCPU spinning on a lock. However, these tech-

niques cannot be applied directly to RCU because RCU’s
server-build read-side primitives do not make any state
change detectable by hypervisor or hardware (in fact
the RCU’s server-build read-side primitives are a no-
op [10]). Although read-side primitives could make such
a state change, doing so is problematic for two reasons.
First, RCU’s primary goal is zero or low-overhead read-
side primitives, so RCU must push such overheads to
writers. Second, state-change overheads are unaccept-
able for read-only or read-mostly data structures track-
ing the systems hardware configuration (e.g., active disks
and online CPUs) where the read-to-write ratio (e.g., ac-
cessing a disk to replacing a disk) is well in excess of ten
to the ninth power.

Therefore, alternative approaches are required to han-
dle the RCU-reader preemption problem.

4 Impact of RCU-reader preemption

In this section we discuss both primary and secondary
impacts due to the RCU-reader preemption problem.

Latency: Guest OSes invoking synchronize rcu()

can incur latency spikes of several seconds on overcom-
mitted hosts. These spikes’ durations depend directly on
the vCPU preemption time.

Transient memory spikes: As discussed earlier, when
using call rcu(), GP delay due to vCPU preemption
can cause transient memory-footprint spikes, which can
in turn increase peak memory footprint.

Fragmentation inside VMs: Frequent transient
memory-footprint spikes can scatter the kernel pages
throughout the system, which can increase external
memory fragmentation [4]. This fragmentation can
cause premature memory-allocation failure, especially
for hugepage allocations.

Swapping and Ballooning: Cloud environments often
provision memory on an as-needed basis in order to re-
duce memory costs. Increased peak-memory footprint
can trigger swapping, degrading performance and gen-
erating additional I/O load.

Furthermore, some cloud service providers oversub-
scribe memory because VMs do not always consume
all their memory [22]. The combination of memory-
footprint spikes and oversubscription can cause balloon
drivers [19] to be frequently invoked as the hypervisor
reacts to these spikes, further increasing overhead.

CPU utilization: The above issues can increase CPU uti-
lization. For example, fragmentation might trigger com-
paction, which can consume significant CPU time while
scanning and migrating memory.
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VM density and consolidation: Increased peak-
memory footprint require VMs to be provisioned with
more memory, degrading VM density and consolidation,
in turn increasing costs and energy utilization.

5 Factors influencing the impact of RCU-
reader preemption

vCPU preemption time: GP-completion delays depend
on vCPU preemption duration, which in turn depends on
the hypervisor’s CPU overcommit factor; higher over-
commit factors increase vCPU preemption frequency
which increases GP-completion delays.

RCU read-side critical section length: GP duration de-
pends on read-side critical-section duration which, in the
non-preemptible kernels this paper focuses on, depends
on the time between voluntary context switches. As a
rule of thumb, the longer this time, the greater the proba-
bility of preemption, and thus the greater the probability
of GP-completion delays.

Objects allocation and defer free rate: Given vCPUs
being preempted within RCU read-side critical sec-
tions, workloads that invoke call rcu() frequently
will see larger memory-footprint spikes than workloads
that instead use synchronize rcu(). Of the workloads
that invoke call rcu() frequently, those that allocate
larger blocks of memory will see correspondingly larger
memory-footprint spikes.

Total kernel time: Compute-intensive workloads spend
little time in the kernel, which in turn means a given
vCPU spends little time executing in-kernel RCU read-
side critical sections. Therefore, RCU-reader preemption
has a smaller effect on these workloads.

6 Evaluation

We evaluate a mail server benchmark, a memory-
allocator intensive microbenchmark and a namespace
cloning microbenchmark to understand the RCU-reader
preemption impact under different stress conditions.

6.1 Benchmarks

Postmark [5] simulates a mail server’s file create, delete,
read and write operations. We run the benchmark on an
in-memory filesystem starting with 128K files.

Memory microbenchmark, implemented as a kernel
module, allocates an object of size 1K followed by a call
to call rcu() to reclaim the object after a GP.

Clone microbenchmark measures how quickly a new
namespace can be cloned by calling the clone() system
call in a loop from a user space program. Namespace
cloning, for example, is employed by chroot jailing to
create filesystem-isolated processes [6] and also in web
server security that places the per user worker process
into an isolated network [1].

6.2 Test setup
The host is an Intel Xeon E5-4640 processor having 64
CPUs (4 CPU sockets, 8 cores per socket and two-way
hyper-threading) and 236 GB of physical memory. The
host uses KVM [7] virtualization under Linux kernel
4.5.0 for both host and guests. Baseline measurements
boot only the VM running the benchmark.

Experiment 1:

Instance vCPUs CPU Affinity Memory
VM1 32 0–31 8 GB
VM2 32 32–63 8 GB
VM3 8 0–31 4 GB
VM4 8 32–63 4 GB

VM1 runs Postmark benchmark with 32 instances. VM2
runs memory microbenchmark with 32 parallel kernel
threads. Both VM3 and VM4 run a bursty workload with
8 user space process. The bursty workload randomly ex-
ecutes 0.1 to 10 million arithmetic operations followed
by randomly sleeping for 1 to 200 milliseconds.

Experiment 2:

Instance vCPUs CPU Affinity Memory
VM1 64 0–63 8 GB
VM2 16 0–31 8 GB

VM1 runs the clone microbenchmark and VM2 runs 16
CPU-hogging user processes on 32 vCPUs.

6.3 Results

Postmark: The file create and delete operations issued
by the Postmark benchmark allocate filesystem objects
such as inode and dentry (directory entry), and delete
the objects by invoking call rcu(). While the reclama-
tion of the deferred objects’ memory is delayed due to
longer GPs, other benchmark threads continue perform-
ing file creation and deletion resulting in increased mem-
ory footprint.

Figure 2 reveals memory-footprint spikes in overcom-
mit scenario due to delayed reclamation of inode and
dentry objects. The vCPU preemption induces longer
GPs which in turn delays the reclamation of deferred ob-
jects. There are no spikes in the baseline scenario be-
cause timely GP completion results in timely reclamation
of memory.
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Figure 2: Memory trace and GP durations for the first 100 seconds of the Postmark benchmark execution

Description Baseline Overcommit
Mean GP duration (ms) 57.6 (± 10.8) 125.9 (± 114.3)
Max GP duration (ms) 89.93 2372.12
Min GP duration (ms) 5.62 4.32
90th %-tile (ms) 60.05 251.36
50th %-tile (ms) 59.99 80.18
CPU consumed per GP (µs) 633.85 1833.54

Table 1: GP statistics for the Postmark benchmark

Table 1 shows a 2.18× increase in the average GP
duration due to 6.33× increase in the number of RCU-
reader preemption events extending GP duration. RCU’s
aggressive context-switch forcing results in a 2.9× in-
crease in GP-computation time and further contributes to
a 23.71% increase in kernel CPU utilization on overcom-
mitted hosts.

Scattering of kernel pages due to frequent memory-
footprint spikes results in a 32.5% increase in external
fragmentation (computed using the debugfs “unusable
free space index” for huge page allocations [3]) during
benchmark execution when the host is overcommitted.

The above factors contribute to a 66.73% decrease in
the throughput of the Postmark benchmark. However,
the throughput is also affected by other factors includ-
ing increased context-switch rates, preemption of vCPU
holding a spinlock and reduction in number of vCPU
assigned to the VM during host overcommit. We are
currently investigating how much of this throughput de-
crease is due to RCU-reader preemption.

Memory microbenchmark: We run a memory-
allocator-intensive benchmark to evaluate and under-
stand the impact of RCU-reader preemption on GP dura-
tions and memory-footprint spikes. The microbenchmark
issues 2.5K pairs of allocations and call rcu() invoca-
tions per second per CPU. It also invokes the scheduler

Description Baseline Overcommit
Mean GP duration (ms) 53.27 (± 13.4) 69.39 (± 30.4)
Max GP duration (ms) 87.66 317.59
Min GP duration (ms) 8.88 9.13
90th %-tile (ms) 60.18 109.98
50th %-tile (ms) 59.94 60.32
CPU consumed per GP (µs) 860.26 1095.72

Table 2: GP statistics for the memory microbenchmark

after every ten allocation-call rcu() pairs to limit the
duration of the resulting RCU read-side critical sections.

Figure 3 shows memory-footprint spikes of several
hundred MBs due to longer GPs when the host is over-
committed. The resulting RCU-reader preemption re-
sults in a 50% increase in the peak memory footprint
(and an 842 MB increase in peak memory footprint), a
30.26% increase in the average GP duration (Table 2)
and a 155.32% increase in external fragmentation.

This microbenchmark shows a significant memory-
footprint sensitivity to GP duration: A short 100-
millisecond GP delay results in spikes of several hundred
MBs in the memory footprint. In contrast, the Postmark
benchmark, with its lower call rcu() frequency, has
a smaller memory-footprint sensitivity to GP duration,
so that a longer 400-millisecond GP delay results in a
memory-footprint spike of only about 50-100 MB.

Clone microbenchmark: The clone system call allo-
cates several kernel objects during namespace cloning
which are passed to call rcu() when the last process
exits that namespace. The clone microbenchmark there-
fore repeatedly invokes clone in a loop.

Figure 4 reveals occasional spikes in GP duration in-
side the VM running clone microbenchmark, even when
the host’s average CPU utilization is 28%. Such spikes
depend on the vCPU preemption timing and result in
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Figure 3: Memory trace and GP durations for the first 150 seconds of the memory microbenchmark execution
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Figure 4: Memory trace and GP duration for the clone
microbenchmark when the host is overcommitted

1 GB memory-footprint spikes persisting for several sec-
onds. This result means that adding VMs (thus increas-
ing the rate of clone invocations) can have the counter-
productive effect of disproportionately increasing mem-
ory footprint due to increased RCU-reader preemption.

7 Discussion

RCU-reader preemption on an overcommitted host can
result in latency spikes, increasing peak memory foot-
print and fragmentation within VMs. These increases
can in turn increase CPU utilization due to increases in
cache and TLB misses and due to additional memory-
compaction operations. This increase in CPU utilization
can reduce or even negate the cost and energy-efficiency
benefits of server consolidation.

Cloud service providers and VM users should consider
host overcommit ratios and workload sensitivities to de-
layed GPs while provisioning VM resources. Although
GP-sensitive workloads can be identified via kernel pro-

filing of call rcu() and synchronize rcu() invoca-
tions, it is currently difficult to determine the required
changes to per-VM resource provisioning.

Furthermore, given systems with CPU overcommit, a
CPU-consumption spike in one VM might cause a GP-
duration spike in another VM. This sort of cross-VM in-
teraction poses significant challenges for VM resource
provisioning, which further motivates an effective so-
lution to the problem of preemption of vCPUs running
RCU read-side critical sections.

We are therefore currently investigating a holistic so-
lution for the RCU-reader preemption problem that com-
bines changes to the Linux-kernel RCU implementation,
the guest-OS memory allocator, the hypervisor scheduler
and the subsystems using RCU. The solution aims to re-
duce the GP duration on overcommitted hosts.

8 Conclusion

This paper introduces the RCU-reader vCPU preemption
problem and demonstrates that it has significant and far-
reaching performance impacts. We are investigating po-
tential solutions to this problem.
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