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Abstract

Troubleshooting network performance issues is a chal-

lenging task especially in large-scale data center net-

works. This paper presents deTector, a network mon-

itoring system that is able to detect and localize net-

work failures (manifested mainly by packet losses) ac-

curately in near real time while minimizing the moni-

toring overhead. deTector achieves this goal by tightly

coupling detection and localization and carefully select-

ing probe paths so that packet losses can be localized

only according to end-to-end observations without the

help of additional tools (e.g., tracert). In particular, we

quantify the desirable properties of the matrix of probe

paths, i.e., coverage and identifiability, and leverage an

efficient greedy algorithm with a good approximation ra-

tio and fast speed to select probe paths. We also propose

a loss localization method according to loss patterns in

a data center network. Our algorithm analysis, experi-

mental evaluation on a Fattree testbed and supplementary

large-scale simulation validate the scalability, feasibility

and effectiveness of deTector.

1 Introduction

A variety of services are hosted in large-scale data cen-

ters today, e.g., search engines, social networks and file

sharing. To support these services with high quality, data

center networks (DCNs) are carefully designed to effi-

ciently connect thousands of network devices together,

e.g., a 64-ary Fattree [9] DCN has more than 60,000

servers and 5,000 switches. However, due to the large

network scale, frequent upgrades and management com-

plexity, failures in DCNs are the norm rather than the

exception [21], such as routing misconfigurations, link

flaps, etc. Among these failures, those leading to user-

perceived performance issues (e.g., packet losses, latency

spikes) are among the first priority to be detected and

eliminated promptly [27, 26, 21], in order to maintain

high quality of service (QoS) for users (e.g., no more

than a few minutes of downtime per month [21]) and to

increase revenue for operators.

Rapid failure recovery is not possible without a good

network monitoring system. There have been a number

of systems proposed in the past few years [36, 26, 37,

48]. Several limitations still exist in these systems that

prohibit fast failure detection and localization.

First, existing monitoring systems may fail to detect

one type of failures or another. Traditional passive mon-

itoring approaches, such as querying the device counter

via SNMP or retrieving information via device CLI when

users have perceived some issues, can detect clean fail-

ures such as link down, line card malfunctions. How-

ever, gray failures may occur, i.e., faults not detected or

ignored by the device, or malfunctioning not properly re-

ported by the device due to some bugs [37]. Active mon-

itoring systems (e.g., Pingmesh [26], NetNORAD [37])

can detect such failures by sending end-to-end probes,

but they may fail to capture failures that cause low rate

losses, due to ECMP in data center (§2).

Second, probe systems such as Pingmesh and NetNO-

RAD inject probes between each pair of servers with-

out selection, which may introduce too much bandwidth

overhead. In addition, they typically treat the whole

DCN as a black box, and hence require many probes to

cover all parallel paths between any server pair with high

probability.

Third, failures in the network can be reported in these

active monitoring systems, but the exact failure locations

cannot be pinpointed automatically. The network opera-

tor typically learns a suspected source-destination server

pair once packet loss happens. Then she/he needs to re-

sort to additional tools such as tracert to verify the issue

and locate the faulty spot. However, it may be difficult

to play back the issues due to transient failures. Hence

this diagnosis approach (i.e., separation of detection and

localization) may take several hours or even days to pin-

point the fault spot [21], yet ideally the failures should
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be repaired as fast as possible before users complain.

A desirable monitoring system in a DCN should meet

three objectives: exhaustive failure detection (i.e., detect-

ing as many types of losses as possible), low overhead

and real-time failure localization. In this paper, we seek

to investigate the following question: if we are aware of

the network topology of a DCN, can we design a much

better network monitoring system that achieves all these

goals? Our answer is deTector, a topology-aware net-

work monitoring system that we design, implement and

evaluate following the three design objectives. The secret

weapon of deTector is a carefully designed probe matrix

(§4), which achieves good link coverage, identifiability

and evenness. deTector is designed to detect and localize

network failures manifested by user-perceptible perfor-

mance problems such as packet losses and latency spikes

in large-scale data centers. We mainly focus on packet

loss in this paper, but deTector can also handle latency

issues by treating a round trip time (RTT) larger than a

threshold as a packet loss. Throughout the paper, we use

“failure localization”, “fault localization” and “loss lo-

calization” interchangeably. Specifically, we make the

following contributions in developing deTector.

� As compared to the existing active monitoring sys-

tems adopting end-to-end probes (e.g., Pingmesh [26],

NetNORAD [37]), we treat each switch instead of the

whole network as a blackbox, i.e., our system requires

the knowledge of the network topology and routing pro-

tocols in a DCN (i.e., topology-aware) and we use source

routing to control the probing path. In order to achieve

real-time failure localization, we couple detection and lo-

calization closely and only rely on end-to-end measure-

ments to localize failures without the help of other tools

(e.g., fbtracert [3]). To make it possible, we quantify

several desirable properties of probe matrix (e.g., iden-

tifiability) and propose a greedy algorithm to minimize

probe cost. To address the scalability issue in DCNs, we

apply several optimization heuristics and exploit charac-

teristics of the DCN topology to accelerate path compu-

tation (§4).

� We modify a failure localization algorithm based

on packet loss characteristics in large-scale data centers.

Compared to the existing algorithms, our algorithm runs

within seconds and achieves higher accuracy and lower

false positive rate (§5).

� We implement and evaluate our system on a 4-

ary Fattree testbed built with 20 switches. The experi-

ments show that deTector is practically deployable and

can accurately localize failures in near real time with

less probe overhead, e.g., for 98% accuracy, deTector re-

quires 3.9x and 1.9x times fewer probes than Pingmesh

and NetNORAD while localizing failures 30 seconds in

advance without the use of other loss localization tools.

Our supplementary simulation further shows that deTec-

tor achieves greater than 98% accuracy in failure local-

ization with a less than 1% false positive ratio for most

failures in large-scale DCNs (§6). We have open sourced

deTector [6].

2 Motivation

DCNs are usually multi-stage Clos networks with multi-

ple paths between commodity servers for load balancing

and fault tolerance [9, 22, 26, 45]. Each DCN has its

favorable routing protocols for path selection. For exam-

ple, in a Fattree topology [9] and a VL2 topology [22],

the shortest paths between any two ToRs are typically

used in practice [30]. We describe how existing mon-

itoring systems fall short in achieving the three design

objectives. Table 1 shows detailed comparison among

deTector and the existing systems.

The passive approach stores packet statistics on switch

counters, which are polled from SNMP or CLI periodi-

cally. In Fig. 1, if link AB is down, the switch counters

will show a lot of packet losses. However, if the fail-

ure is a gray failure rather than link down, it may go

undetected. For example, when silent packet drops oc-

cur, the switch do not show any packet drop hints (e.g.,
syslog errors) due to various reasons (e.g., ASIC deficit),

and hence SNMP data may not be fully trustworthy [26].

Furthermore, switches counters can be noisy, such that

problems identified by this approach may or may not lead

to end-to-end delay or loss perceived by users.

Pingmesh and NetNORAD adopt an end-to-end prob-

ing approach to measure network latency and packet loss.

Pingmesh selects probe paths by constructing two com-

plete graphs within a DCN: one includes all servers under

the same ToR switch (i.e., the switch in the edge layer in

Fig. 1) and the other spans all ToR switches. NetNORAD

is similar to Pingmesh but places pingers in a few pods

instead of all servers. Their approaches simplify the de-

sign but bring quite significant overhead (§6). Although

gray failures can be captured, it is difficult to detect fail-

ures causing low rate losses (e.g., 1%) of a link, when

ECMP is adopted in the DCN: there are many paths be-

Figure 1: A 4-radix Fattree topology: failure on link AB
can be detected by sending probes from s1 to s3.
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Table 1: Comparison among deTector and existing representative monitoring systems

Gray failures Low rate loss Failure localization Transient failures Timeliness Overhead

SNMP/CLI No No Yes Yes minutes switch resources

Pingmesh [26] Yes No No, need Netbouncer No minutes many probes

NetNORAD[3] Yes No No, need fbtracert No minutes many probes, switch CPU

deTector Yes Yes Yes Yes near real-time minimal probes

tween a pair of servers, low-rate losses on a particular

link may not affect much the overall end-to-end loss rate

between the two servers.

The exact location of losses cannot be pinpointed us-

ing Pingmesh or NetNORAD, since they do not know

which paths the probes take (e.g., due to ECMP). There-

fore, other tools such as Netbouncer [4] and fbtracert [3]

are needed, which send additional probes to play back the

losses. These post-alarm tools may fail to pinpoint tran-

sient failures, those caused by transient bit errors, non-

atomic rule updates or network upgrade (e.g., a transient

inconsistency between the link configuration and rout-

ing information [21]). To pinpoint such failures, close

coupling of detection and localization is required, so that

losses are localized only according to detection data, in-

stead of additional probes after detection alarms. Such

coupling further enables near real-time fault localization.

3 System Design

3.1 Architecture
deTector includes four loosely coupled components: a

controller, a diagnoser, pingers and responders, as de-

picted in Fig. 2.

Figure 2: System architecture

Controller. The logical controller periodically con-

structs the probe matrix indicating the paths for sending

probes (see §4 for details). We mainly focus on failure lo-

calization on links inter-connecting switches, as the fault

on a link connecting a server with a ToR switch can be

easily identified as discussed in the next paragraph. The

probe matrix indicates paths between ToRs. Since we do

not rely on ToRs with ping capability, probes are sent by

2–4 selected servers (pingers) under each ToR.

Pinger. Each pinger receives the pinglist from the con-

troller, which contains server targets, probe format and

ping configuration (§6.1). The probe paths from a ToR

switch to different destinations are distributed among

pinglists of pingers under the ToR switch, with each path

distributed to at least 2 pingers for fault tolerance. In

this way, in case that one pinger is down, other pingers

in the same rack can still probe the paths, avoiding any

large drop in link coverage. To detect failure on links

connecting servers and the respective ToRs, pingers are

also responsible for probing other servers under the same

ToR. The number of probe paths for each pinger is no

more than a hundred even for a large DCN (§4.4). The

probe packets are sent over UDP. Though TCP is used to

carry most traffic in a DCN, the DCN does not differenti-

ate TCP and UDP traffic (e.g., the forwarding behavior)

in the vast majority of cases [37, 26], and hence UDP

probes can also manifest network performance. When a

pinger detects a probe loss, it confirms the loss pattern

by sending two probe packets of the same content addi-

tionally.

Responder. The responder is a lightweight module

running on all servers. Upon receiving a probe packet,

the responder echoes it back. A responder does not retain

any states and all probing results are logged by pingers.

Diagnoser. Each pinger records packet loss informa-

tion and sends it to the diagnoser for loss localization.

These logs are saved into a database for real-time anal-

ysis and later queries. The diagnoser runs the PLL al-

gorithm (§5) to pinpoint packet losses and estimates the

loss rates of suspected links.

For the controller and the diagnoser to be fault-tolerant

and scalable, we can use existing solutions (e.g., Soft-

ware Load-Balancer [41, 26]).

3.2 Workflow Overview
deTector works in three steps in cycles: path computa-

tion, network probing and loss localization.

Path computation. At the beginning of each cycle,

the controller reads the data center topology and server

health from data center management service (e.g., [31]),

and selects the minimal number of probe paths (§4). The

controller then selects pingers in each ToR, constructs

and dispatches the pinglists to them.

Network probing. Next, probe packets are sent along

the specified paths across the DCN. Since data center

usually adopts ECMP for load balancing, we have to

use source routing to control the path traveled by each

probe packet, which can be implemented using various
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methods.1 A general and feasible solution is to employ

packet encapsulation and decapsulation to create end-to-

end tunnels, though it may cause encapsulating packets

twice in virtualized networks created by VXLAN [1] or

NVGRE [2]. Take the Fattree network in Fig. 1 as an

example: fixing a core switch, there is only one path be-

tween two inter-pod servers; we can use IP-in-IP encap-

sulation to wrap the probe on a server; after the packet ar-

rives at the core switch, the outer header is removed and

the packet is routed to the real destination. Such a source

routing mechanism incurs little overhead on servers and

core switches.

Loss localization. The probe loss measurements are

aggregated and analyzed by our loss localization algo-

rithm (§5) on the diagnoser. We pinpoint the faulty links,

estimate the loss rates, and send alerts to the network op-

erator for further action (e.g., examining switch logs).

4 Probe Matrix Design

The main limitation of existing monitoring systems is

that the probe path selection is far from optimum, such

that not enough useful information can be collected and

additional probes are needed to reproduce losses for lo-

calization. In this section, we elaborate how we carefully

select probe paths to overcome such a limitation.

4.1 Problem

Consider a data center network graph G = (V,E), where

V is the set of switches and E is the set of links. R is the

m×n routing matrix defined by

Ri, j =

{
1 if link j is on path i
0 otherwise

where m is the number of paths and n = |E| is the num-

ber of links. The possible paths and the routing matrix

are decided by the routing protocols employed in the data

center, e.g., ECMP is typically used to exploit k2/4 paral-

lel paths between any two ToRs in a k-ary Fattree. Fig. 3

gives a routing matrix R with 3 paths and 3 links. Note

that each link in a DCN is typically bi-directional. Once

we select a path from server s1 to server s2 and send a

probe, the reverse path from s2 to s1 is automatically se-

lected, since the response packet can probe faults along

the reverse direction. When we identify that link AB has

failed, it implies that the failure may lie in either direc-

tion of the link, switch A, or switch B.

1Source routing protocols have been designed in some DCNs like

BCube [24] and DCell [25]; [30, 32] introduce other solutions for ex-

plicit path control.

R =

⎛
⎝

l1 l2 l3
p1 1 1 0

p2 1 0 1

p3 0 0 1

⎞
⎠ → R’ =

⎛
⎝

l1 l2 l3 l12 l13 l23

1 1 0 1 1 1

1 0 1 1 1 1

0 0 1 0 1 1

⎞
⎠

Figure 3: Extend routing matrix with virtual links

Problem 1 Given a DCN routing matrix R, select a set
of paths to construct a probe matrix P, such that P si-
multaneously (1) minimizes the number of paths, and
achieves (2) α-coverage and (3) β -identifiability.

Minimizing the number of probe paths is desirable for

minimizing network bandwidth consumption and anal-

ysis overhead, such that we may finish probing and di-

agnosing the entire DCN in merely a few minutes. Un-

der the same probing bandwidth budget, it allows each

pinger to probe the same set of paths more frequently.

α-coverage requires that each link is covered by at

least α paths in the probe matrix. Covering a link multi-

ple times brings higher statistical accuracy for loss detec-

tion, as well as better resilience to pinger failures (since a

link is more likely to be covered by probes from multiple

pingers).

β -identifiability states that the simultaneous failures of

any (no more than) β links in the DCN can be localized

correctly. For the routing matrix in Fig. 3, suppose we

select p1 and p2 to constitute the probe matrix, i.e., the

probe matrix contains the first two rows of R. If 2 or

more links fail simultaneously, the faulty links cannot be

correctly identified, as the observation from the end is

the same, i.e., packet losses are observed on both paths.

On the other hand, if only one link is faulty, the bad link

can be identified effectively: losses are observed on both

paths, p1, or p2 if link 1, 2, or 3 is faulty, respectively.

Therefore, the probe matrix achieves 1-identifiability, but

not 2 or higher identifiability. Better identifiability con-

tributes to higher accuracy of loss localization.

We find that Problem 1 is NP-hard for general DCNs

as the Minimum Set Cover Problem is a special case of

the problem. We hence resort to an approximation algo-

rithm to compute the probing path, which is at the heart

of deTector.

4.2 PMC Algorithm
We extend a well-known greedy algorithm [13] for con-

structing a probe matrix achieving 1-identifiability to one

achieving β -identifiability, as well as α-coverage using

a minimal number of probe paths.

In a probe matrix, a link belongs to a set of paths. To

achieve 1-identifiability, the path sets of different links

should all be different, so that losses can be observed on

a particular set of paths to identify the faulty link. Recall

that the set of links in our DCN is E. Once we select

a path from the set of all feasible paths decided by the

58    2017 USENIX Annual Technical Conference USENIX Association



routing matrix based on some criterion, it splits E into

two subsets E1 and E2, containing links on the selected

path and the other links, respectively. If we do not ob-

serve any packet loss on this path, it implies that all links

in E1 are good; otherwise, there must be at least one bad

link in E1. Similarly, we select another path to further

split E1 and E2 into smaller subsets, and repeat this pro-

cedure. Eventually if we can obtain subsets each con-

taining only one link, then the probe matrix constructed

using the selected paths achieves 1-identifiability (since

the set of paths traversing each link is unique); other-

wise, there does not exist a 1-identifiable probe matrix in

the DCN. Throughout the process, if we always select a

path whose links are present in the largest number of link

sets to further split the link sets as much as possible, we

will end up with the minimal number of paths needed.

To achieve β -identifiability, we expand the DCN

graph G with “virtual links”. A virtual link is a com-

bination of multiple physical links, and the set of paths a

virtual link belongs to can be computed by “OR”-ing to-

gether the paths including the individual links [13]. For

the example in Fig. 3, the original routing matrix R is

extended to R’ with three additional virtual links l12, l13

and l23 added; the column corresponding to the virtual

link l12 can be computed by “OR”-ing the two columns

corresponding to links l1 and l2. For β -identifiability,

∑
2≤i≤β

C(|E|, i) virtual links should be added in the DCN

graph (routing matrix), corresponding to all combina-

tions of 2 to β links in the original graph. Then we can

run the above algorithm for constructing 1-identifiable

matrix based on the new routing matrix, and the result-

ing probe matrix achieves β -identifiability.

The probe matrix does not achieve even path coverage

among the links yet. For example, for a 1-identifiable

probe matrix constructed on a 64-ary Fattree, the gap

between the maximal and minimal numbers of probing

paths passing through any two links can be as large as

188. To achieve better evenness (i.e., spreading paths and

thus probe overhead evenly among the physical links),

we introduce a link weight w[link], denoting the num-

ber of paths that the link resides on, and ensure that it is

no smaller than α for any physical link. We also define

a score for each (extended) path, i.e., the path includes

virtual links from the extended routing matrix R’:

score(path) = ∑
link∈path

w[link]−# of link sets on path

(1)

Here the link sets are the split link sets produced by the

procedure above. We say that a link set is on a path if the

link set contains at least one (physical or virtual) link of

the path. Thus, a lower score indicates that the links on

the path are not covered much by paths already selected

and/or more link sets can be split if the path is selected

Algorithm 1 Probe Matrix Construction (PMC) Algo-

rithm

Require: R, α , β
1: Initialize w, score to 0, setnum to 1, sel paths to /0

2: R’← LINKOR(R,β )
3: paths← all paths in R’, physlinks← E
4: while (setnum �= |E| ‖ physlinks �= /0) && paths �= /0

do
5: for path ∈ paths do
6: update score[path] according to (1)

7: path← argminpath′∈paths score[path′]
8: sel paths← sel paths∪{path}
9: paths← paths/{path}

10: for physlink on path do
11: w[physlink]← w[physlink]+1

12: if w[physlink]> α then
13: physlinks← physlinks/{physlink}
14: update setnum as the total number of link sets

after split by path
15: return probe matrix constructed by paths in sel paths

(retaining only physical links on the paths)

in the above procedure. We strive to achieve better even-

ness among the links while guaranteeing α-coverage, by

always selecting a path with the lowest score.

Our Probe Matrix Construction algorithm, PMC, is

summarized in Alg. 1. We first reduce the problem of

constructing a β -identifiable matrix to one constructing

1-identifiable matrix, by adding virtual links to the orig-

inal routing matrix of the DCN graph (line 2, where

LINKOR denotes the method for extending routing ma-

trix discussed above). Then in each iteration we update

the score of each (extended) path (lines 5-6) and select

a path which has the minimal score among all candi-

date paths (lines 7-8). We remove the selected path from

the candidate path set (line 9), and update the weight of

physical links (w[physlink]) on the selected path (lines

10-11) and the total number of link sets that the already

selected paths can split into (line 14, which corresponds

to the procedure discussed in the second paragraph of

this subsection). If the number of paths that cover one

(physical) link exceeds α , we remove the link from the

set of all links (line 12-13). The loop stops when the

probe matrix achieves α-coverage (i.e., the set physlinks
is empty) and β -identifiability (i.e., the number of link

sets split equals the number of links), or there are no

more candidate paths (i.e., the set paths is empty).

Theorem 1 The PMC algorithm achieves (1− 1
e ) ap-

proximation of the optimum in terms of the total number
of probe paths selected, where e is natural logarithm.

We can prove Theorem 1 by showing that the score

of a path set is monotone, submodular and non-negative.
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The detailed proof is in the technical report [7]. In prac-

tice, the PMC algorithm performs much better than the

(1− 1
e ) ≈ 0.63 approximation ratio (§4.4). The issue of

this algorithm, however, is the computation time. The

time complexity of the algorithm is O(m2), where m is

the number of paths, since in the worst case we may up-

date the scores of all paths in each iteration and end up

with selecting all paths. In a 64-radix Fattree, there are

about 4.3×109 desirable paths among ToRs. As we will

see in §4.4, the algorithm is still too slow for any data

center at a reasonable scale, and we adopt a number of

optimizations to further speed it up.

4.3 Algorithm Speedup
To speed up the PMC algorithm, we apply several opti-

mizations based on the following three observations.

Observation 1 Problem 1 can be divided into a series of
subproblems.

We can construct a bipartite graph according to the rout-

ing matrix: one partition corresponds to paths and the

other consists of links; an edge exists between a path

node and a link node if the link is on the path. We observe

that if the routing matrix can be partitioned into sets of

paths with no links in common, then the problem can be

divided into independent subproblems. For example, in

Fig. 1, paths traversing the red link have no link overlap-

ping with paths traversing the blue link. Therefore, the

bipartite graph can typically be divided into connected

subgraphs and each subgraph represents a smaller rout-

ing matrix and hence a subproblem. Finding connected

subgraphs can be done in linear time by traversing the

bipartite graph once. Then the PMC algorithm can be

applied to the subproblems in parallel.

Observation 2 The score of each path is non-decreasing
over all iterations.

It can be proved that the score of a path is non-decreasing

(Appendix A in [7]). Inspired by the CELF algorithm for

outbreak detection in networks [38], we adopt a strategy

called lazy update which defers the update of a path score

as much as possible even though we know the score is

outdated. Specifically, we maintain a min-heap for all

paths with scores as the keys and only update the score

of a path when the path is at the top of the heap. After

score update, if the path still stays at the top of the heap,

i.e., the path has the minimal score among all available

paths, we will select the path as a probe path, even though

some path scores have yet to be updated. The correctness

of this heuristic is guaranteed by submodularity of the

score of a path set: the marginal gain provided by a path

selected in the current iteration can not be larger than that

provided by the path in the previous iteration.

Observation 3 The DCN topology is typically symmet-
ric.

Due to symmetry, when a path is selected, all its topo-

logically isomorphic paths can be selected. For example

in Fig. 1, if the dashed green path spanning Pod 1 and

Pod 2 is selected, then the dashed purple path spanning

Pod 3 and Pod 4 may be a good choice too. This helps us

reduce the scale of the problem since the routing matrix

R can be reduced to a smaller matrix by excluding paths

that are topologically isomorphic to other paths. For ex-

ample, if the green path is in the matrix, we do not need

to include the purple path. For this purpose, we first need

to compute the symmetric components in a DCN graph.

There are many fast algorithms available for symmetry

discovery [17, 15], e.g., O2 [15] can finish computation

within 5 seconds for a Fattree(100) DCN, and we only

need to precompute it once for a DCN.

4.4 Performance

We run our PMC algorithm on a Dell PowerEdge R430

rack server with 10 Intel Xeon E5-2650 CPUs and 48GB

memory, to test its running time and number of paths se-

lected. We compare results on three well-known DCNs,

Fattree [9], VL2 [22] and BCube [24].2

Running time. Table 2 shows the algorithm run-

ning time for constructing a probe matrix achieving 2-

coverage and 1-identifiability. The strawman approach is

our PMC algorithm without any optimizations. The last

three columns contain results when the respective opti-

mization is in place (in addition to the previous one(s)).

The results show that PMC can efficiently select probe

paths for very large DCNs. Specifically, without algo-

rithm speedup, the computation time of PMC can be

larger than 24 hours; after each optimization, the time de-

creases significantly and we can compute the probe ma-

trix for Fattree(72), VL2(140,120,100) and BCube(8,4)

within 18 seconds, 86 seconds and 70 seconds, respec-

tively. We note that the running time in case of problem

decomposition for VL2 and BCube is a bit longer than

that of strawman. This is because decomposition does

not apply to the two DCN topologies, but we need extra

time to decide whether the matrix is decomposable.

Path number. Table 3 shows the number of selected

paths with different α and β in different DCNs. Com-

pared with the number of original paths in DCNs, PMC

only selects a small percentage of paths. We can prove

that the least number of paths for achieving 1-coverage

and 1-identifiability is k3/5 for any k-ary Fattree (Ap-

pendix B in [7]). Thus, a Fattree(64) DCN needs at least

52428 paths and our algorithm selects slightly more, i.e.,

2BCube is a server centric architecture and we treat servers as

switches to run our algorithm.
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Table 2: Algorithm running time (seconds) with α = 2,β = 1 in different DCNs

DCNs # of nodes # of links # of original paths Strawman Decomposition Lazy update Symmetry reduction

Fattree(12) 612 1296 184,032 231.458 5.216 0.506 0.126

Fattree(24) 4,176 10,368 11,902,464 > 24h 1381.226 23.254 0.280

Fattree(72) 99,792 279,936 8,703,770,112 > 24h > 24h > 24h 17.054

VL2(20, 12, 20) 1,282 1,440 70,800 22.030 23.126 0.77 0.253

VL2(40, 24, 40) 9,884 10,560 4,588,800 7387.412 7470.476 39.028 1.404

VL2(140,120,100) 424,390 436,800 4,938,024,000 > 24h >24h >24h 85.567

BCube(4, 2) 112 192 12,096 4.871 4.936 0.227 0.117

BCube(8, 2) 704 1,536 784,896 4050.776 4390.168 9.854 0.220

BCube(8, 4) 53,248 163,840 5,368,545,280 > 24h > 24h > 24h 69.778

Table 3: Number of selected paths with different (α ,β )

DCNs Original paths
Selected paths with (α,β )
(1, 0) (1, 1) (3, 2)

Fattree(32) 66,977,792 4,096 7,680 12,288

Fattree(64) 4,292,870,144 32,768 61,440 98,304

VL2(72,48,40) 107,371,008 864 1,440 2,640

VL2(128,96,80) 2,415,132,672 3,072 5,760 9,216

BCube (8,2) 784,896 1,712 2,016 2,832

BCube (8,4) 5,368,545,280 49,152 70,572 119,556

61440 paths. This implies that pingers under each se-

lected ToR in the Fattree are only responsible for probing

about 60 paths, much fewer than that of Pingmesh (about

2000-5000 paths). We also find that VL2 requires much

fewer paths than Fattree and BCube. This is because VL2

has a much smaller number of links between switches

(12288 links in VL2(128, 96,80)), as compared to Fat-

tree (131072 links in Fattree(64)) and BCube (163840

links in BCube(8,4)).

Note that the number of selected path may change

when the third optimization, based on topology symme-
try, is in place. Our evaluation shows that the number of

selected paths with symmetry reduction is very similar to

that without symmetry reduction. This is consistent with

the result in [30], and we hence omit the analysis.

Results for β ≥ 3. The probe matrices we constructed

above achieve at most 2-identifiability. For β ≥ 3, the

computation of PMC is not efficient in large DCNs. For

the example of a 48-ary Fattree, computing a probe ma-

trix achieving 3-identifiability requires at least 24 hours,

even when we apply all speedup optimizations in §4.3.

The fundamental reason is that the routing matrix R be-

comes much larger when the number of column increases

from n to ∑
1≤i≤β

C(n, i), by adding virtual links. However,

surprisingly, we find that 2-identifiability is enough for

loss localization in DCNs, as we will see in §6.4.

5 Loss Localization

5.1 Data Pre-processing

After collecting the probe data, the first step is to pre-

process the data, removing outliers and normal cases.

Severe packet losses could be caused by bad pingers and

responders (e.g., the server is down or was rebooting dur-

ing probing, thus causing many false alarms [37]). Such

outliers can be identified by keeping track of the status

of servers using a watchdog service. In addition, a link

normally has a regular low loss rate, e.g., 10−4–10−5,

due to transient congestion, bit errors, which should not

be considered as failures [26]. To exclude such nor-

mal cases, we filter out paths with extremely low packet

loss rates by setting a threshold on the number of packet

losses in a period of time or on packet loss ratio (e.g.,
10−3 [26, 21]).3 After pre-processing, the loss data that

remain (in the form of (path, number o f losses)) are

likely manifest of network failures rather than noises.

5.2 Problem
Our fault localization problem is: given end-to-end

packet loss observations, find the smallest set of faulty

links that best explains the observations. This problem is

NP-hard as it can be reduced to the NP-complete Min-

imum Hitting Set Problem [18]. Besides, we face two

challenges not existed in previous work:

Much larger problem scale. Our study focuses

on large-scale DCN networks, different from smaller

networks investigated in the existing loss localization

work [10, 18, 42]. At our problem scale, the existing

algorithms are not fast enough (taking tens of seconds or

even minutes) for real-time loss localization.

Different loss patterns. Network failures are mainly

exhibited as two kinds of packet losses: full packet loss

and partial packet loss, meaning that all or part of the

packets traversing a link are dropped. Existing tomog-

raphy techniques assume that if all links on a path are

good, then the path is good [19]. This is not true in case

of partial packet loss in data centers, e.g., packet black-

hole may lead to losses on a link only for a subset of

paths using that link.

5.3 PLL Algorithm
Based on the Tomo algorithm in [18], we design an effi-

cient Packet Loss Localization algorithm, PLL, to local-

3To avoid inaccuracy of the threshold approach, we can use statis-

tical hypothesis testing to look at loss rates over time for noisy data

filtering [27].
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ize packet losses in DCNs (see [7] for more details). The

basic idea of PLL is as follows.

Step 1: Divide the problem into a series of subprob-

lems, by decomposing the probe matrix following the

same steps discussed for decomposing the routing matrix

in §4.3. For each subproblem, run the following steps.

Step 2: If all probe paths traversing a link experience

no packet loss, we exclude the link. For the remaining

links, we calculate a hit ratio for each link, i.e., the ratio

of the number of observed lossy paths through the link

over the number of all probe paths using the link [34].

Step 3: We compute a score for each link as the num-

ber of lost packets that the link can explain, i.e., if a link

lies in the packet path, we say the link can explain the

packet loss.

Step 4: Among those links whose hit ratios are larger

than a preset threshold, we greedily select the link with

the maximal score and remove those losses this link can

explain.

Step 5: Repeat Step 3 and Step 4 until no loss remains

unexplained.

PLL differs from Tomo mainly in handling partial

packet losses, i.e., we use a hit ratio threshold to filter

suspected links. Setting the threshold requires network

operator’s experience and, if possible, by learning from

real loss data. The analysis on setting this threshold is

presented in [7] due to space constraint and we set it to

0.6 by default in our experiments.

We have compared performance of PLL and other ex-

isting loss localization methods (e.g., Tomo, SCORE [34]

and OMP [42]), and present the results in [7]. The results

show that given the same probe matrix, PLL achieves 2%

higher accuracy (defined as true positive ratio, i.e., the

percentage of bad links correctly identified as bad over

all truly bad links), 2% lower false positive ratio (i.e.,
the percentage of good links incorrectly identified as bad

over all correctly and incorrectly identified links), and

is an order of magnitude faster (e.g., localizing failures

within 1 second in a large DCN with 82944 links) than

the other algorithms.

6 Implementation and Evaluation

6.1 Implementation
We run the controller on one Dell server (or it can run in

a distributed fashion over multiple servers for large-scale

networks). A watchdog service also runs on the server

for monitoring the health of other servers and removing

bad ones. The controller runs the PMC algorithm to re-

compute the probe matrix every 10 minutes, based on the

current network topology from the watchdog service.4

4Once a link or a switch has failed, we remove related link(s) from

the routing matrix to avoid selecting bad paths for probing. Note that

The computed probe matrix is divided into XML pinglist

files for dispatching to pingers. A pinglist file contains

file version, the pinger’s IP address, IP addresses of re-

sponders, transport port numbers, the packet-sending in-

terval and IP addresses of core switches. Our measure-

ment shows that the controller can handle 4473 pinglist

requests per second on average with maximal bandwidth

consumption 688.56Mb/s using one core. Since pingers

are deployed on a small number of servers (about 10%

among all servers), the controller can support more than

100,000 pingers by slightly randomizing the time when

pingers request for pinglists in each cycle.

Each pinger implements a communication module and

a probing module. The communication module is re-

sponsible for connections with the controller and the di-

agnoser. It fetches the pinglist file from the controller

by an HTTP GET request in every cycle (i.e., 10 min-

utes). The probing module generates probe packets ac-

cording to the pinglist and encapsulates them by IP-in-IP

(§3.1). In our experiments, a pinger loops over a range

of ports for each path, and emits several packets for ev-

ery port. Each probe packet has an average size of 850

Bytes, carrying a specified DSCP value in the IP header

to test different QoS classes [12]. If there is no response

for a probe within 100ms, we mark it as a loss. A pinger

repeatedly sends packets by looping through the paths in

the pinglist for multiple times (for statistical accuracy),

at the rate of 10 packets per second. Every 30 seconds,

the pinger aggregates the probing results (i.e., the number

of packet losses and the number of packets sent on each

probe path) into an XML file and sends it to the diagnoser

by an HTTP POST request. The responder module runs

in the userspace of all servers, which listens to a particu-

lar port, and upon packet arrival, it adds a timestamp and

sends the packet back. The pinger and responder incur

little overhead on servers, as we will see in §6.3.

The diagnoser is a Web server module running on the

same server where the controller is in our experiments. It

runs the PLL algorithm for fault localization once every

half a minute, using collected probe results in the past

30 seconds. Given the limited number of servers in our

testbed, we run a virtual machine to emulate a server.

6.2 Experiment Setup
We build a 4-ary Fattree testbed with 20 ONetSwitch [5,

29, 28], each equipped with FPGA-based hardware re-

configurable dataplane, four 1GbE ports and one ded-

icated management port. Though we do not require

programmable switches in deTector, employing SDN

switches facilitates our emulation of various failure cases

that may happen in a real-world DCN. Specifically, we

categorize all losses into three types:

it does not affect symmetry computation which only pre-runs once on

the original DCN topology.
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Full packet loss. We install OpenFlow rules with high

priority to drop all packets coming from a particular port,

to emulate a faulty link with full packet loss. To emulate

a switch down case, we install rules to drop all packets at

the switch.

Deterministic partial loss. Packets with certain fea-

tures (e.g., specific IPs, port numbers) may be dropped

on a link deterministically, e.g., in case of packet black-

hole or misconfigured routing rules. To emulate such

failures, we install rules on the switches to match and

drop packets with certain headers.

Random partial loss. Sometimes packets on a link

are dropped randomly, as caused by bit flips, CRC er-

rors, buffer overflow, etc. SDN switches do not support

random packet dropping. To emulate such losses, we in-

stall rules on the switches to redirect all packets on an

emulated bad link to the SDN controller, and the SDN

controller drops the received packets with certain proba-

bility, following the pattern extracted from [12].

Due to no access to loss data in real-world data centers,

we produce the above loss types according to the failure

measurements in [20] and traffic measurements in [12].

Specifically, we set parameters such as link vs. switch

failure percentage, link loss rates (ranging from 10−4 to

1), failure probabilities for switches in different tiers, all

based on the above measurements. The loss distribu-

tion for links in different tiers is extracted from Fig. 3

in [12]. Aside from deTector, we also implement the

probing modules of Pingmesh and NetNORAD on our

testbed for performance comparison, as well as their fail-

ure localization tools, Netbouncer and fbtracert. Since

we do not know some of their implementation details

(e.g., how data pre-processing is done), we implement

those details in the same way across all three systems.

6.3 Performance

We first investigate how probing itself affects the whole

DCN. We use realistic packet traces (including informa-

tion such as packet header, timestamp) from a univer-

sity data center [11] (mostly HTTP flows) to generate

workload traffic in our testbed, where each server con-

tinuously replays flows based on the packet traces and

sends them to a random receiver. We evaluate how our

probing frequency (i.e., the number of probes a pinger

sends per second) affects the performance of the PLL al-

gorithm, the overhead on the pinger, and RTT and jitter

experienced by the workload traffic. In each minute of

our experiment, we emulate a failure randomly picked

among the three types of failures, with the failed switches

or links randomly picked in the DCN. We run our exper-

iment for 2000 minutes and obtain the average results.

Fig. 4 shows that a higher probe sending frequency

leads to a higher accuracy and a lower false positive ra-

(a) Performance of PLL (b) CPU, memory and band-

width overhead on pingers

(c) RTT of workload traffic (d) Jitter of workload traffic

Figure 4: Sensitivity test of sending frequency

tio (Fig. 4(a)), but causes higher CPU utilization and

bandwidth consumption on pingers (Fig. 4(b)) as well

as slightly larger fluctuation of the RTT (Fig. 4(c)) and

jitter (Fig. 4(d)) experienced by the workload. We find

that 10–15 probes per second is good enough since we

can still achieve higher than 95% accuracy and a lower

than 3% false positive ratio, while only consuming about

100Kbps bandwidth, 0.4% CPU and 13MB memory on

each pinger. Besides, it does not introduce apparent de-

lay and jitter variations for workload traffic. Note that the

overhead of a responder is much smaller than a pinger

because it resumes fewer tasks (e.g., no communication

with the controller and the diagnoser), and hence the re-

sults are omitted.5 In all our experiments, the pinger

sends 10 packets per second by default (i.e., the red

square in Fig. 4).

We then compare the accuracy, false positive ratio and

overhead among deTector, Pingmesh and NetNORAD.

Since Pingmesh can not localize failures by itself, once it

detects a suspected source-destination server pair, we use

Netbouncer [4] to go through all possible paths between

this server pair for loss localization. As for NetNORAD,

similarly, we use fbtracert [3] to probe all possible paths

between the suspected server pair. The interval of loss

data collection is 30 seconds for three systems.

Fig. 5 shows the comparison when one failure is emu-

lated in the testbed (the failure is randomly picked as in

the previous experiment). The number of (ping and re-

ply) probes in the figure includes probes sent for detec-

tion and probes for localization (if any) in each minute

of the experiment. More probes indicate not only more

5Even when we place the pinger and responder on the same server,

the overhead is negligible.
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Figure 5: Accuracy and false positives of three monitor-

ing systems with different number of probes per minute

Figure 6: Results comparison with multiple failures

bandwidth consumption, but also higher CPU and mem-

ory usage. For deTector, we use a probe matrix with 1-

identifiability and 3-coverage (since it is impossible to

achieve 2-identifiability in a 4-ary Fattree). As we can

see, deTector achieves high accuracy and a low false pos-

itive ratio with a much smaller number of probes, be-

cause deTector covers more types of losses (e.g., low rate

loss) and takes carefully planned paths. For instance, to

achieve 98% accuracy and 1% false positives, deTector,

NetNORAD and Pingmesh need to send 7200, 20700

and 35100 probes per minute, respectively. When the

probe overhead is same (same number of probes sent per

minute), the accuracy and false positive ratio achieved

by deTector is better than those of NetNROAD; as com-

pared to Pingmesh, the accuracy of deTector is much bet-

ter, while the false positive ratio of Pingmesh is slightly

smaller sometimes, since it possibly probes all paths.

Fig. 6 further shows the accuracy and false positive

ratio with multiple failures, when the probe overhead is

fixed to be the same, i.e., 5850 probes per minute. de-
Tector always achieves much better performance than

Pingmesh and NetNORAD. Note that deTector also de-

tects and localizes failures much faster than NetNORAD

and Pingmesh (30 seconds in advance in our experi-

ments), because deTector does not need any other diag-

nosis tools to send an additional round of probes for loss

localization, while others do.

6.4 Simulation
We supplement our experimental evaluation with simula-

tions, to investigate how identifiability of the probe ma-

Table 4: Accuracy in a 18-radix Fattree, with probe ma-

trices of different levels of coverage and identifiability

(α,β ) # of paths
Accuracy (%) with # of failed links

1 5 10 20 50

(1,0) 729 30.56 30.87 30.30 30.26 29.19

(2,0) 1485 58.43 57.43 57.08 56.81 57.11

(3,0) 2187 68.22 70.61 69.89 70.40 70.14

(1,1) 1269 94.74 93.37 94.21 93.43 90.29

(1,2) 1512 99.26 99.06 99.02 98.77 95.92

(1,3) 2349 99.63 99.63 99.67 99.62 98.07

trix influences the accuracy of our failure localization,

when running deTector in larger Fattree networks.

We first vary α and β for probe matrix construction

in an 18-radix Fattree. Table 4 shows that higher cov-

erage and higher identifiability lead to higher accuracy,

while the overhead (i.e., the number of selected paths)

does not increase much. Also, we find that identifiability

is more effective and desirable than coverage for failure

localization, since a 1-identifiability matrix increases the

accuracy a lot (from one with 0-identifiability guarantee),

with much less overhead than a 3-coverage probe matrix.

Note that further increasing the level of identifiability

for β > 1 does not increase the accuracy much, and probe

matrices achieving 1-identifiability can already lead to

higher than 90% accuracy. According to the measure-

ments in [12], less than 10% failure events (failures oc-

curring concurrently) contain more than four failures and

less than 1% failure events contain more than 20 failures.

This implies that a probe matrix with 1-identifiability

can guarantee higher than 93% accuracy for 90% fail-

ure events and 2-identifiability provides a 98% accuracy

for 99% failure events.

The result is surprising but reasonable: Since we use

a number of optimizations (§4.3) to reduce the size of

the routing matrix, the PMC algorithm in fact achieves

β ′-identifiability (where β ′ is larger than β used in

the algorithm) for the whole probe matrix, rather than

β -identifiability computed for each small probe matrix

(corresponding to a small network topology). Therefore,

deTector may fail to localize all failures only if more

than β failures appear in a small topology, which occurs

with relatively low probability. This shows that using a

probe matrix with a low level of identifiability guaran-

tee is good enough to identify a much larger number of

concurrent failures.

In addition, by examining the failure events that deTec-
tor fails to localize with a low identifiability probe ma-

trix but can identify using a high identifiability matrix,

we find that higher identifiability achieves better results

only when the number of simultaneously failed links is

very large. Such a failure event with many concurrent

link failures is usually triggered by a common bug in

practice (e.g., 180 links fail simultaneously due to sched-

uled maintenance to multiple aggregation switches [20]),
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Table 5: Fault localization performance with probe ma-

trix of 2-identifiability in a 48-ary Fattree

# of failed links 1 5 10 20 50

Accuracy (%) 98.95 98.99 98.98 98.93 98.87

False positive (%) 0.01 0.02 0.02 0.02 0.02

False negative (%) 1.05 1.01 1.02 1.07 1.13

and thus those faulty links are spatially clustered. In such

cases, operators can locate the failure spot effectively ac-

cording to the positions of most failed links.

We further examine the fault localization accuracy,

false positive and false negative (bad links incorrectly

identified as good) ratios achieved using a probe matrix

of 2-identifiability in a 48-ary Fattree. Table 5 shows that

the false positive and false negative ratios remain in a

very low level. In particular, the false positive rate is ex-

tremely low (< 1%), which is desirable in practice [18].

The false negatives are mainly caused by losses of ex-

tremely low loss rate and intermittent losses which may

happen at longer intervals (than 1 minute) [23]. Since it

takes longer time to expose these losses, we can further

reduce false negatives by examining loss measurements

in larger time windows, e.g., 10 minutes.

7 Discussions

Packet entropy. deTector tries to increase packet en-

tropy (i.e., different packet patterns) by varying IP ad-

dresses, port numbers and DSCP values, to cover as

many failures as possible. However, our implementa-

tion uses IP-in-IP encapsulation for source routing, and

hence the range of destination IP addresses is somewhat

limited. In addition, since we use UDP for network

probing, deTector may not be able to detect failures re-

lated to other protocols, e.g., misconfigured TCP param-

eters [26]. Adopting other source routing solutions and

adding more protocols to increase packet entropy are part

of our future work.

Loss diagnosis. While deTector can localize where

packet drops occur, it does not know what causes the

drops, e.g., software bugs, misconfigured rules or bursty

traffic. This is a common deficiency of existing monitor-

ing systems, since network diagnosis is rather complex.

However, it is possible to distinguish full losses, deter-

ministic partial losses, random partial losses and losses

due to congestion, to narrow down the diagnosis scope

(e.g., using machine learning approaches), since they ex-

hibit different loss characteristics. We consider this as a

promising future direction to explore.

Beyond deTector. As opposed to probe-based solutions

like deTector, there are some recent efforts on embedding

metadata in the packet header to trace packet path for net-

work debugging (e.g., CherryPick [46], PathDump [47]).

Our technique can be applied to reduce the overhead in-

volved in these approaches, i.e., only packets travers-

ing those paths computed by the PMC algorithm need

to carry routing information in the packet headers.

8 Related Work

Probe design. Many existing work (e.g., [14, 18, 43, 33,

27]) exploit logs on switches, or utilize multicast or net-

work coding for network probing. Instead, we treat each

switch as a blackbox, and adopt a topology-aware end-

to-end probing approach. Some studies [16, 40, 23] es-

timate loss rates of all links, while we aim at identifying

bad links (i.e., failure spots). Zeng et al. [48] and Nico-

las et al. [23] propose monitoring solutions for backbone

networks that do not apply in DCNs due to scalability,

and the main difference lies in probe matrix design.

Fault localization. Our goal of accurately identify-

ing faulty links falls squarely in the area of binary net-

work tomography. Tomography algorithms such as Sher-

lock [10], Tomo [18], GREEDY [35], SCORE [34] and

OMP [42] do not work well for DCNs due to their prob-

lem scales and loss characteristics. Our PLL algorithm is

built on these work and conquers their limitations.

DCN monitoring. Our work mainly differs from ex-

isting monitoring systems such as Pingmesh [26] and

NetNORAD [37] in the design of probe matrix. We

argue that loss detection and localization must be cou-

pled together to localize more failures (e.g., transient fail-

ures) in real time with low overhead. Carefully designed

probe matrix is the key to achieve them. LossRadar [39]

is a switch-based solution but it requires programmable

switches. Dapper [44] and Zipkin [8] are distributed trac-

ing systems to gather timing data for root-cause analysis.

9 Conclusion

deTector is a real-time, low-overhead and high-accuracy

monitoring system for large-scale data center networks.

At its core is a carefully designed probe matrix, con-

structed by a scalable greedy path selection algorithm

with minimized probe overhead. We also design an ef-

ficient failure localization algorithm according to differ-

ent patterns of packet losses. Our analysis, testbed ex-

periments and large-scale simulations show that deTec-
tor is highly scalable, practically deployable with low

overhead, and can localize failures with high accuracy

in near real time.
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