
This paper is included in the Proceedings of the
2017 USENIX Annual Technical Conference (USENIX ATC ’17).

July 12–14, 2017 • Santa Clara, CA, USA

ISBN 978-1-931971-38-6

Open access to the Proceedings of the
2017 USENIX Annual Technical Conference

is sponsored by USENIX.

iJournaling: Fine-Grained Journaling
for Improving the Latency of Fsync System Call

Daejun Park and Dongkun Shin, Sungkyunkwan University, Korea

https://www.usenix.org/conference/atc17/technical-sessions/presentation/park

iJournaling: Fine-Grained Journaling
for Improving the Latency of Fsync System Call

Daejun Park and Dongkun Shin
Sungkyunkwan University, Korea

pdaejun@skku.edu, dongkun@skku.edu

Abstract
For data durability, many applications rely on syn-
chronous operations such as an fsync() system call.
However, latency-sensitive synchronous operations can
be delayed under the compound transaction scheme of
the current journaling technique. Because a compound
transaction includes irrelevant data and metadata, as well
as the data and metadata of fsynced file, the latency of
an fsync call can be unexpectedly long. In this paper,
we first analyze various factors that may delay an fsync
operation, and propose a novel hybrid journaling tech-
nique, called ijournaling, which journals only the cor-
responding file-level transaction for an fsync call, while
recording a normal journal transaction during periodic
journaling. The file-level transaction journal has only
the related metadata updates of the fsynced file. By re-
moving several factors detrimental to fsync latency, the
proposed technique can reduce the fsync latency, mit-
igate the interference between fsync-intensive threads,
and provide high manycore scalability. Experiments us-
ing a smartphone and a desktop computer showed signif-
icant improvements in fsync latency through the use of
ijournaling.

1 Introduction

The buffered I/O is essential to a high-performance file
system because data can be temporarily buffered in the
main memory until being written back to storage. How-
ever, the buffered I/O cannot guarantee file-system con-
sistency and data durability in the cases of unclean file-
system shutdowns or hardware failures [22]. To ensure
file-system consistency, many file systems have adopted
a journaling technique, which can ensure the atomicity
of a transaction. A transaction is a group of file system
modifications that must be carried out atomically. For
example, the ext4 file system uses the journaling block
device version 2 (JBD2) in the Linux kernel to support

journaling [23]. All file system operations are logged
in the journal area before updating the original file sys-
tem. Therefore, by undoing any incomplete transactions
and redoing all committed transactions, journaling can
be used to maintain the file-system consistency despite
sudden system crashes.

The ext4 file system uses a physical logging scheme
that records the modified blocks [14], rather than logi-
cal logs, which records operations. Because several of
the metadata structures of ext4, such as block bitmap

and inode table, are shared among multiple file op-
erations, it is easier and more efficient to commit mul-
tiple transactions at once rather than commit each file
operation-level transaction individually. For the purpose,
ext4 groups concurrent unrelated transactions into a sin-
gle compound transaction [26], which is periodically
flushed into a reserved storage area, called a journal area.
The compound transactions are maintained in the journal
transaction buffer of the main memory until being com-
mitted to the journal area. The compound transaction
scheme provides a better performance, particularly when
the same metadata structure is frequently updated within
a short period of time.
Ext4 supports three journaling modes: writeback, or-

dered, and data modes. Ordered mode, which is the
default option, journals only the metadata. However, it
enforces an ordering constraint to guarantee file-system
consistency, in which the transaction-related data writes
must be completed before the journal writes of the meta-
data. Therefore, the transaction commit latency will be
lengthy if the size of the associated data is large. A long
transaction commit latency may not be a serious prob-
lem, however, because the journal commit operations are
periodically invoked by a background journaling thread.

Although the file-system consistency and data dura-
bility are supported using a journaling scheme, the data
durability is not immediate. To ensure instant data dura-
bility, users must call a synchronous operation such as an
fsync() or fdatasync(). Most database systems rely

USENIX Association 2017 USENIX Annual Technical Conference 787

on fsync system calls to be assured of immediate data
durability. Recent mobile platforms such as Android also
frequently use fsync system calls [17]. Because an fsync
system call is a synchronous operation, the fsync latency
affects the performance of the application.

When a file system uses journaling, all file-system
changes are updated through the journaling layer. There-
fore, when an application calls an fsync for a modified
file, the journaling thread is awakened on demand, and
the transactions in the transaction buffer are flushed into
the storage immediately, irrespective of the journal com-
mit interval. The fsync operation must wait until the
journal commit operation is completed. In particular, a
compound transaction in the transaction buffer may in-
clude data and metadata updates of other irrelevant files,
as well as the target file of the fsync call (fsynced file). A
long latency for committing a compound journal transac-
tion will increase the latency of an fsync system call [12].

For a short fsync latency, a more fine-grained journal-
ing scheme such as file-level transaction committing is
required. However, under a physical logging scheme,
fine-grained journaling is difficult to implement because
several metadata blocks are shared by multiple file op-
erations. In addition, fine-grained journaling imposes a
high journaling overhead.

Another solution is the use of a logical logging
scheme. For example, XFS [28] and ZFS [7] log the file
operations rather the modified blocks for a synchronous
request. All file system operations are logically-logged
as transactions, which accumulate in memory until they
are committed to the journal area for an fsync call. The
logical logs are replayed during a crash recovery. How-
ever, logical logging requires a large sized transaction
buffer in the memory compared with physical logging,
particularly when the same metadata structure is fre-
quently updated. For example, ZFS generates a 256
bytes of logical log in memory for each write operation.

To address this issue, we propose a hybrid approach
that uses both the normal journaling by JBD2 and
the file-level transaction journaling of our proposed
ijournaling technique. Under a normal periodic jour-
naling operation, the proposed scheme uses a legacy
journaling scheme that flushes the compound transac-
tion. However, if on-demand journaling is invoked by an
fsync call, ijournaling commits only the transactions
related to the fsynced file without flushing the compound
transaction in the transaction buffer. The file-level trans-
actions include only the minimum metadata, through
which all relevant file-system metadata blocks can be re-
covered after a system crash. The ijournaling tech-
nique can eliminate the compound transaction problem
for an fsync call without requiring an additional large
amount of memory space for transaction management,
unlike ZFS. We evaluated the performance improvements

of the proposed journaling scheme on both a smartphone
and a desktop system.

2 Background

Ext4 is the default file system of Linux kernel, and
is widely used on mobile devices such as Android-
based smartphones and desktop computers. Ext4 di-
vides an entire storage space into several block groups.
Two metadata structures, i.e., superblock and group

descriptor table (GDT), describe the general infor-
mation of the overall file system. Each block group has
its own block bitmap and inode bitmap to manage
the allocation status of the data blocks or inode entries.
Each block group also maintains an inode table. Each
inode entry of the inode table is 256 bytes in size and
describes the attributes of a single file or directory. These
metadata structures are allocated in a 4-KB block unit,
and are shared by multiple files or directories. Ext4 sup-
ports an extent-based block-mapping scheme. A single
extent identifies a set of blocks that are logically con-
tiguous within the file and also on the underlying block
device. An inode entry can contain a maximum of four
extent structures internally. If more extents are required,
external extent structures are allocated in the data block
area for indirect pointing.
Ext4 uses a journaling technique. Information regard-

ing pending file-system updates is first written to the
journal to enable an efficient crash recovery. The jour-
nal space is treated as a circular buffer. Once the nec-
essary information has been propagated to its fixed lo-
cation in the ext4 structures, the corresponding journal
logs are identified as checkpointed, and the space can be
reclaimed. All modified metadata blocks are recorded
in a block unit at the journal area even though only a
portion of the metadata blocks is modified. This feature
makes it difficult to implement file-level journaling be-
cause a metadata block is shared by multiple files. One
transaction log in the journal contains a journal header
(JH), several journal descriptor blocks (JDs) to describe
its contents, and a journal commit block (JC) to denote
the end of the transaction.
Ext4 manages the life cycle of each transaction. Each

transaction has a metadata list and an inode list, which
have the metadata blocks and pointers to the inodes mod-
ified by the transaction, respectively. First, a running
transaction is created, and all file-system modifications
are inserted into the running transaction. When the pe-
riodic JBD2 thread is invoked or an fsync() is called,
the transaction state is changed to committing, and the
transaction blocks are written into the journal area. After
the completion of a transaction commit, the transaction
is marked as checkpoint. After the transaction is check-
pointed, it is removed from the transaction list.

788 2017 USENIX Annual Technical Conference USENIX Association

3 Related Work

Prabhakaran et al. [26] observed the storage performance
when a foreground asynchronous sequential stream and a
background random synchronous stream compete to use
the ext3 file system. They showed that the more fre-
quently the background process calls an fsync, the more
traffic is sent to the journal owing to the compound trans-
actions of ext3. The authors proposed an adaptive ap-
proach that selects the best journaling mode for each
transaction according to its I/O pattern. However, this
approach cannot solve the compound transaction prob-
lem completely, and may be unsafe [27].

Jeong et al. [17] revealed the journaling-of-journal
(JoJ) problem on an Android-based smartphone, where
the ext4 file system uses a journaling scheme for data
reliability, and SQLite [3] conducts additional journal-
ing using its own journal file. Their study suggests us-
ing fdatasync() and write-ahead logging (WAL) in
SQLite to reduce the number of journal commits. Here,
fdatasync() does not commit a journal transaction un-
less the file-system metadata relevant to the target file are
changed. However, WAL also generates frequent fsync
calls, and fdatasync() can be effective only when there
are no metadata updates.

To mitigate the JoJ overhead, Shen et al. [27] pro-
posed using the data journaling mode of ext4 adaptively.
Data journaling writes both data and metadata in the jour-
nal area without generating page writes at the original
file system locations during a journal commit operation.
Because a journal commit operation sends only the se-
quential write requests to the storage, the journal commit
latency can be reduced. However, this technique also
flushes compound transactions and cannot completely
avoid a long fsync latency.

There are several approaches that divide a file sys-
tem space into several groups to localize the faults and
transactions of the filesystem, or to avoid the lock con-
tention on shared file-system data structures in memory.
The per-block-group (PBG) journaling scheme [19] ex-
ploits the block groups of ext4. Because each block
group has its own metadata blocks, PBG journaling ex-
tracts a block-group-level transaction including updates
on the fsynced file from a compound transaction, and
commits only the transaction of the target block group.
PBG journaling shows significant improvements in terms
of fsync latency when a fsynced file and other irrelevant
files are allocated in different block groups. However,
a long fsync latency occurs if irrelevant files share the
same block group. The eager synching [8] also uses a
similar technique as PBG journaling.

IceFS [21] proposed a new container abstraction,
called cube, to provide more flexible and configurable
isolations. SpanFS [18] distributes files and directories

among the domains, which are the basic independent
function units for file system services such as data alloca-
tion and journaling. IceFS and SpanFS also cannot avoid
the compound transaction problem within a cube or do-
main. Moreover, IceFS is incompatible with legacy file
systems, and the user should manage the cubes. SpanFS
can generate a large compound transaction across mul-
tiple domains. Xsyncfs [25], NoFS [10], and OptFS [9]
improved the fsync latency by delaying sync operations
or changing the implementation of ordering constraint.

ScaleFS [13] uses a logical logging technique. Op-
eration logs (OpLogs) are generated in its in-memory
file system to record file-system changes. An OpLog
consists of logical file-system operations, and is applied
to the on-disk file system when an fsync is invoked.
ScaleFS applies only dependent operations that are re-
lated to the file or directory being fsynced, which is
a very similar approach to our proposed ijournaling

technique. However, logical logging-based journaling
scheme requires significant changes to the current ext4
file systems. In addition, a performance overhead occurs
because each file-system operation must record its own
OpLog. Our proposed ijournaling follows the physi-
cal logging scheme of ext4, and has little overhead for
managing file-level journals.

Jeong et al. [15] proposed an I/O scheduler technique
that can detect asynchronous I/O requests related with
latency-sensitive file operations such as an fsync call, and
boost them over the other asynchronous I/Os. This tech-
nique improves the fsync latency and can be used along
with our technique because they both handle the differ-
ent underlying reasons for a long fsync latency problem.
However, the number of latency-sensitive asynchronous
I/Os can be minimized under our ijournaling scheme
because only the relevant blocks are flushed by fsync
calls.

Min et al. [24] investigated the performance of
fsync() for a manycore architecture under five widely-
deployed file systems. They showed that most of the
file systems start to degrade in performance when more
than ten cores compete for the file system. In our
ijournaling scheme, a sync operation does not depend
on a single journaling thread and each core has its own
separate ijournal area. Therefore, our scheme provides a
better manycore scalability, which is described in greater
detail in Section 6.

4 Analysis of Fsync Latency in Ext4

When a user process calls an fsync() system call for a
file, the process is blocked, and the system call service in
the kernel performs the following operations, as shown in
Figure 1. First, it updates the related metadata blocks for
the file, inserts them into the running transaction man-

USENIX Association 2017 USENIX Annual Technical Conference 789

Process1

File system

JBD
Tx5 (running)

IB BB

C B

metadata list

inode list

Page cache

write (file A)

Process2

WB

thread

File system

Page cache

IO Scheduler

SYNC queue

block alloc.

insert

requests

ASYNC queue

Process3

write (file B) write (file C)

Storage

B C

Process1 Process2 Process3

fsync (file B)
write (file B)

A

JBD

File system

Page cache

Process1 Process2 Process3

JBD

Tx commit File system

Process1 Process2 Process3

JBD

metadata listinode list

1 1
3 5

2 4
6

1 2 1

Tx5 (running)

IB BB

C B

metadata list

inode list A

IO Scheduler

SYNC queue

ASYNC queue

Storage

1 2

3 1 1 2

2

insert

A
3

1
2

B C

1 1
3 5

2 4
6

A
3

1
2 2

B C

1 1
3 5

2 4
6

A
3

1
2 2

Tx5 (runningà committing)

IB BB

C B

metadata list

inode list A

IO Scheduler

SYNC queue

ASYNC queue

Storage

1 2 1 2

3 4 5 6

2 3 1

Page cache B C

1

Tx commit end

1
3 5

2 4
6

A
3

1
2 2

Tx5 (committingà checkpoint)

IO Scheduler

SYNC queue

ASYNC queue

Storage

1 2 2 3 1

IB BBC B A

blocked wakeup

checkpoint Tx

3

WB

thread

block alloc.

checkpoint Tx

insert

checkpoint Tx

1 2 3 4 5 6

WB

thread

insert

JCJH J J

(a) WB flush thread is flushing

dirty pages

(b) fsync() is called;

data pages are flushed
(c) commit transaction

(d) transaction is completed;

fsync() is completed

Figure 1: Dependency problems of a journal commit.

aged by JBD2, and flushes the data blocks of the fsynced
file, as shown in Figure 1(b). For example, the block

bitmap needs to be modified when an fsync call flushes
newly allocated data blocks. Ext4 uses a delayed block
allocation scheme, and thus, the file-system location for
a data block is determined just before the block is flushed
into storage. The write requests on the data blocks of the
fsynced file are transferred as synchronous requests be-
cause the user process is waiting for the completion of
the system call.

Second, the system call service sends a commit re-
quest for the relevant transaction to JBD2 if the trans-
action state is still running, and waits for the comple-
tion of the commit operation, as shown in Figure 1(c).
In this step, a commit operation cannot be issued im-
mediately if there is another committing transaction be-
cause JBD2 can commit only one transaction at a time.
During a commit operation, JBD2 awaits the completion
of all data write requests relevant to the target transac-
tion. In Figure 1(c), all data blocks of files A, B, and C
must be flushed because the target transaction includes
the inodes. Finally, JBD2 writes the journal blocks in the
journal area after the completion of the data write opera-
tions, as shown in Figure 1(d). A journal block includes
the modified metadata blocks. The final block written
by JBD2 is the journal commit (JC) block, which is fol-
lowed by a flush command. When the flush command is
completed, the fsync() system call is completed, and
the user process can continue with its operations.

Based on its operations, we can find several reasons
for adverse effect on the latency of an fsync system call.
The first reason is the inter-transaction (IT) dependency.
Because ext4 uses a single JBD2 thread, only one trans-
action (i.e., a committing transaction) can be committed
at a time. Protecting concurrent journal commits is im-
portant for preventing multiple journals from being inter-
leaved in the journal area. Furthermore, multiple trans-
actions cannot be committed concurrently because they
share several metadata blocks. Therefore, if the JBD2

thread is committing transaction T xn−1, the next transac-
tion T xn relevant to the fsynced file cannot be changed
into a committing transaction immediately. Such cases
will occur frequently when multiple threads invoke fsync
calls simultaneously. To solve this IT dependency prob-
lem, our ijournaling technique handles an fsync call
at system call service rather than the journaling thread,
and uses separated journal areas.

The second reason is the compound transaction (CTX)
dependency, shown in Figure 1(c). When the JBD2
thread commits the transaction of an fsynced file, the in-
ode list of the committing transaction includes irrelevant
inodes. The JBD2 thread must wait for the completion
of the data block write operations owing to the ordering
constraint of ordered-mode journaling. The CTX depen-
dency is severe when there are many processes generat-
ing file-system write operations. Even when only one
process generates write operations, a CTX dependency
problem can occur if the process updates multiple files.
In some cases, a transaction can include discard com-
mands [1], which have considerably long latencies.

The delayed block allocation technique of ext4 ag-
gravates the CTX problem. The delayed block alloca-
tion has many advantages because it postpones block al-
locations until the page flush time, rather than during a
write() operation [23]. Therefore, the overall perfor-
mance of the file system is higher when delayed alloca-
tion is enabled. However, if an fsync is called just after
the flush kernel thread invocation, as shown in the ex-
ample in Figure 1(a), the flush thread will allocate data
blocks for dirty pages, and register several modified in-
odes in the running transaction during the delayed block
allocation. Then, the commit operation of the journal
transaction will generate many write requests into stor-
age. If an fsync is called before the flush thread is in-
voked, the fsync latency will be short because there are
few modifications to the file system. Therefore, fsync
latencies will fluctuate in a delayed allocation scheme.
On the contrary, if the delayed allocation is disabled, the

790 2017 USENIX Annual Technical Conference USENIX Association

modified inodes will be distributed to different transac-
tions, and the fsync latency will be unrelated with the
flush thread invocation. Nevertheless, a delayed alloca-
tion can demonstrate a better performance and shorter
average fsync latency, as described later in Section 6.
Because our ijournaling scheme commits a file-level
transaction rather than a compound transaction, it can al-
ways demonstrate a short fsync latency irrespective of
the block allocation policy. Throughout our study, we
used delayed allocation as the default scheme.

The last reason is the quasi-async request (QA) de-
pendency revealed in [15]. In Figure 1(a), the writeback
flush thread has sent a write request on data block 1 of file
B before an fsync is called. Whereas the write requests
generated by an fsync system call are sent along with
a SYNC flag, the write requests generated by the flush
thread are sent without the flag. The CFQ I/O sched-
uler in Linux gives lower priorities to requests without a
SYNC flag. Although data block 1 is written by an async
request, the request is latency-sensitive. Such a request is
called a quasi-async request. A long latency will occur
for completion of the quasi-async request, particularly
when there are many competing async requests in the
I/O queue. The QA dependency problem can be solved
through the boosting technique proposed in [15], which
changes a quasi-async request into a sync request. How-
ever, owing to the CTX dependency, the asynchronous
write requests on A and C in Figure 1 must also be
changed to sync requests in the boosting technique. The
ijournaling can mitigate the QA dependency problem
by removing unrelated dependencies. For example, the
fsync call on B does not need to wait for the completion
of write requests on A and C.

5 The iJournaling Scheme

5.1 Main Idea
The goal of ijournaling is to improve the perfor-
mance of an fsync() call while exploiting the advan-
tage of the legacy compound-transaction-based journal-
ing scheme. Only when a process calls an fsync() sys-
tem call, ijournaling is invoked. The ijournaling

scheme generates ijournal transactions (i-transactions)
and flushes them into a reserved ijournal area with-
out committing the normal running transaction of an
fsynced file. The i-transaction includes metadata mod-
ification logs, which are the minimum required informa-
tion through which a crash recovery operation can re-
cover the file-system metadata blocks modified through
an fsync operation. Only file-level metadata such as an
inode entry and the external extent structures of the target
file, and any related directory entries (DEs), are recorded.
Other modified metadata blocks shared by other files,

block

bitmap

0 1

54

2 3

...6

30 31

3534

28 29

3332

Recovered BBijournal transaction

0 1

54

2 3

...6

30 31

3534

28 29

3332

Old block bitmap

i-tx
used block

free block

extent

start block : 30

length : 2

...

...

recover

ijournal Area Metadata Area

Figure 2: Block bitmap recovery with ijournal.

such as GDT, block bitmap, inode bitmap, or inode
table, are not flushed into the ijournal area. They can
be recovered during the crash recovery time using com-
mitted i-transactions. The ijournaling scheme does
not change the normal running transaction used by the
JBD2 thread. Therefore, the metadata blocks committed
by ijournaling are again committed into the normal
journal area through the following periodic JBD2 thread,
which simplifies the crash recovery.

Figure 2 shows an example of a metadata recovery op-
eration of ijournaling. When the file-system recovery
module finds a committed i-transaction in the ijournal
area, it can modify the old block bitmap in the file
system using the extent allocation information, which
can be found from the inode entry or the external ex-
tent structures in the i-transaction. Because two blocks
from block number 30 are allocated for an extent, the
30-th and 31-st bits in the block bitmap must be set.
The inode table and inode bitmap can also be eas-
ily recovered through a recorded inode entry. To imple-
ment ijournaling, no changes are required to the cur-
rent JBD2 journaling scheme. Whereas a normal jour-
naling thread flushes the transaction buffer periodically,
ijournaling is performed in the fsync() system call
service. Therefore, an ijournaling and a normal jour-
naling can be performed simultaneously, and the inter-
transaction dependency is removed. The file-system re-
covery module must be modified to handle ijournal.

5.2 iJournal Transaction

The ijournal area is separated from the normal journal
area. In addition, each processor core uses a separate per-
core ijournal area in order to support manycore scal-
ability. Each ijournal area is managed as a circular
buffer. This scheme needs to allocate space as many as
the number of cores. If the existing normal journal area is
shared by normal journal transactions and i-transactions,
no additional space allocation is required. However, we
should be carefully in allocating blocks in the journal
area to prevent two different journal blocks from being
mixed in the journal area in an interleaved manner, be-
cause a transaction must consist of consecutive blocks.

USENIX Association 2017 USENIX Annual Technical Conference 791

While a JBD2 thread is allocating blocks in the journal
area, the ijournaling must wait until the block allo-
cation is completed. Therefore, separating journal areas
can improve the concurrency of journaling operations.
The required storage space for per-core ijournal area
is small because the the size of an i-transaction is smaller
than that of a normal transaction, and i-transactions will
be invalidated after its corresponding normal transaction
is committed.

Figure 3 shows the structure of an i-transaction, of
which there are two types: file i-transaction and direc-
tory i-transaction. Whereas the file i-transaction has the
metadata information of an fsynced file, the directory i-
transaction has the metadata information of any related
parent directory.

A file i-transaction is composed of one header block,
several external extent blocks (if they exist), and one
commit block. The journal header in the header block
has the same structure as a normal journal header. It
includes the magic number and transaction ID. A file
i-transaction has the same transaction ID as the run-
ning transaction of normal journaling, which includes the
metadata updates of the corresponding fsynced file. Be-
cause the journal transactions are distributed among mul-
tiple journal areas, the crash recovery module must iden-
tify the order of each transaction based on its transaction
IDs. Because there can be multiple fsync calls before the
current running transaction of normal journaling is com-
mitted, several i-transactions will have the same transac-
tion IDs. In particular, for the i-transactions recorded at
different ijournal areas, it is impossible to know the
order of them if they have a same transaction ID. To re-
solve this problem, ijournaling uses a sub-transaction
ID, which is incremented by each fsync call and managed
globally among multiple cores.

The inode number and inode structure in an i-
transaction are used for recovering the inode table,
inode bitmap, and GDT. Each block tag stores the
mapping between an external extent block in the file i-
transaction and its actual file-system block number. The
crash recovery can update the block bitmap using the
internal extent information in the inode structure, the
block tags, and the external extent blocks. The file i-
transaction collects only dirty external extent structures.
To reduce the extent tree search overhead, we modified
the file system to maintain a list of dirty extent blocks
for each uncommitted file and update it during each ex-
tent allocation/free operation. Because only a 20 bytes
of data structure is required for tracking one external ex-
tent, the memory overhead for external extent tracking is
not significant. The commit block indicates whether an
i-transaction has been completely committed.

The directory i-transaction is used to record any rele-
vant directory updates. If a file is fsynced but its parent

journal

header

(12B)

inode

number

(4B)

inode

structure

(256B)

block

tag

(8B)

header block (4KB)

ijournal

header

external

extent

commit

block

external

extent

DE
commit

block
DE

ijournal

header

file i-transaction

directory i-transaction

...

...

block

tag

(8B)

...

Figure 3: Structure of ijournal transaction.

directory entry is not committed before a system crash,
the file will be unreachable after the system recovery. For
example, if directory A and its subdirectory B are created,
and an fsync call for file /A/B/c is called, ijournaling
records all the changed directory information of the di-
rectories of A and B, as well as the changed file informa-
tion of file c. The ijournaling identifies all directories
that are related to the fsynced file and therefore must also
be committed.

To track the uncommitted directories, we added the
uncommitted DE flag in the inode structure. When a
new file is created, the flag is marked in the created
file’s inode to denote that its directory entry has not been
recorded at the parent directory block. The flag is cleared
when the parent directory block is committed by JBD2.
The ijournaling first checks the flag of the fsynced in-
ode. If the flag is marked, the parent directory is also ex-
amined recursively until no more uncommitted directory
is found. At that time, the directory i-transaction of top-
most uncommitted parent directory is first written in the
ijournal area, and then the directory i-transactions of
next-level directories are written in order. Finally, the file
i-transaction of fsynced file is written. Therefore, even
though there is a system crash during the ijournaling, the
recovered file system can maintain its consistency (i.e.,
there is no unreachable file or directory.) Although only
one directory entry in the DE blocks of an uncommitted
directory is related with an fsync call, our scheme records
the entire DE blocks of the uncommitted directory in the
directory i-transaction for fast fsync handling, because it
is time consuming to extract the modified directory en-
tries from the DE blocks. Instead, the recovery process
identifies the modified and valid DE entries to update the
old DE blocks in the file system.

If there are no modified external extent blocks and DE
blocks to be committed by an fsync call, it will be possi-
ble to write a single block i-transaction by recording all
information in the ijournal header, which can reduce the
write traffic on the ijournal area.

The ijournaling will show a slightly difference on
crash recovery compared with the normal journaling
scheme. While the normal journaling can recover all the
other contemporary file operations as well as the fsynced

792 2017 USENIX Annual Technical Conference USENIX Association

file operation, the proposed ijournaling can recover only
the files and directories related to fsync operation. How-
ever, the file system consistency is guaranteed.

To simplify the ijournaling implementation, our
scheme uses the normal journaling for some cases. For
the fsync call for a directory itself, a normal transaction is
committed instead of an ijournal to record all file-system
changes in the subdirectories, as well as in the fsynced
directory entry. This simplifies the journaling by remov-
ing the traversing of the subdirectories. When an inode is
shared by multiple files using hard link and an fsync()

is called for only one file, the file-system consistency can
be broken if ijournaling records the parent directo-
ries of only the fsynced file. To eliminate the traversing
of directories connected by hard links, a normal transac-
tion is committed instead of an ijournal for the case. To
track such a case, we added the uncommitted HL flag
in the inode structure. The flag of a file is marked if the
i link count of its inode is incremented by a hard link
operation. The flag is cleared when a running transac-
tion is committed by the JBD2 thread. The fsync system
call service checks the flag of the target inode, and calls
normal journaling if the flag has been marked.

5.3 Crash Recovery

The ijournal crash recovery module replays only valid
i-transactions. It first scans the normal journal area,
replays the committed but not-yet-checkpointed journal
transactions, and finds the last committed journal trans-
action ID (Max TxID). Because valid i-transactions have
the information on file-system changes after a valid nor-
mal journal transaction is committed, the normal journal
transaction must be replayed before i-transactions. Then,
the recovery module scans the ijournal areas. If an i-
transaction has a transaction ID larger than Max TxID,
it is valid. Otherwise, the i-transaction is ignored since
a normal committed journal transaction includes all the
metadata modifications of the i-transaction. If there
are multiple i-transactions on an inode, only the last i-
transaction with the largest sub-transaction ID is valid
since the last one includes all the metadata modifications
of the previous i-transactions.

Figure 4(a) shows an example of journal commit. At
a time of 30, the normal transaction with the transac-
tion ID (TxID) n is committed and the TxID is incre-
mented to n + 1. Before the next periodic transaction
with TxID = n+ 1 is committed, the files B, C, and D
are modified, and fsync() calls are invoked for the files
C and D by different processor cores. In Figure 4(b),
the i-transactions with (TxID, sub-TxID) = (n+1,0) and
(n+1,1) have the committed file information of the files
C and D, respectively. The system is crashed before
the periodic transaction commit (TxID = n+ 1). In Fig-

Tx
n-1

Tx
n

i-Tx
(n+1,1)

i-Tx
(n,0)

i-Tx
(n+1,0)

Normal

Journal area

Recovery result

10

iJournal

(Core 0)

iJournal

(Core 1)

Tx
n

i-Tx
(n+1,0)

i-Tx
(n+1,1)

fop(A)

JBD2 commit

(TxID = n-1) fsync(A)

time
commit period

2015 3530 454025

JBD2 commit

 (TxID = n)

fop(C)

fsync(C) fsync(D)

fop(D) crashfop(B)

50

fsync(C) fsync(D)

Committed journal

(a) an example scenario of journal commit

(b) file system recovery

Figure 4: Example of journal commit and recovery.

ure 4(b), the i-transaction with TxID = n is invalid be-
cause the normal transaction with TxID = n has been
committed. Therefore, the recovery operation uses only
the i-transactions with TxID = n+1. In Figure 4(a), there
is a file operation on file B before a system crash, but the
operation cannot be recovered by ijournaling. How-
ever, there is no problem in file-system consistency.

For each valid i-transaction, the recovery module mod-
ifies the corresponding inode entry and other metadata
blocks in the file system. Because an fsync call can
generate one file i-transaction and multiple directory i-
transactions, the multiple i-transactions generated by an
fsync call cannot be committed atomically if a system
crash occurs during fsync handling. In addition, the DE
blocks in directory i-transaction also contain information
on irrelevant files. Instead of directly copying the DE
blocks of a directory i-transaction into the file-system
blocks during a crash recovery, the crash recovery opera-
tion first identifies the changed directory entries by com-
paring the two different DE blocks. If the inode pointed
to by a changed directory entry is accessible, the entry is
modified in the DE blocks in the file system.

Figure 5 shows an example of a file-system recovery
under the ijournaling scheme. Initially, the file with
inode number 3 has three external extents, which are
used to access 24 blocks. Through some file operations,
ten blocks (block numbers 50-59) and the corresponding
external extent structure in block number 12 are freed.
Then, six blocks (block numbers 74-79) are appended,
and the external extent in block number 13 is modified.
After the file operations, an fsync is called. Assume
that there is a system crash before a normal journal is
committed. The recovery module builds the inode struc-
ture including the external extent tree with the recorded
i-transactions. By comparing the built inode with the
corresponding inode in storage, the recovery module can
identify the file-system changes by the logged fsync call,
and can replay these changes. When the external ex-
tent block in block number 12 is freed, the original ext4

USENIX Association 2017 USENIX Annual Technical Conference 793

block bitmap

memory

attr.
11
12
13

inode 3

EE
index

external extents

disk

inode

table

block

bitmap

0

(a) initial state
memory

disk

0

JH
extent

[70-79]
JC

inode 3

11 13

journal area

block bitmap inode 3

EE
index

external extents

(b) free [50-59]; write [74-79]; fsync()

memory

(c) crash recovery

inode 3

extent

[20-29]

extent

[50-59]

extent

[70-73]

11 12 13

current extent tree

extent 12 freed

block [50-59] freed

extent 13 modified

block [74-79] alloced

committed actions

inode 3

extent

[20-29]

extent

[70-79]

11 13

recovered extent tree

attr.
11
13

extent

[20-29]

extent

[50-59]

extent

[70-73]
data data data

11 12 13 20 29... 50 59... 70 73...

inode

bitmap

inode

table

block

bitmap

inode

bitmap

extent

[20-29]

extent

[50-59]

extent

[70-73]
data data data

11 12 13 20 29... 50 59... 70 79...

JH JCnormal JDs

11 12 13
21 ... 29 ...20
51 ... 59 ...50
... 74 ... 7970

11 12 13
21 ... 29 ...20
51 ... 59 ...50
... 74 ... 7970

disk

0

JH
extent

[70-79]
JC

inode 3

11 13

journal area

inode

table

block

bitmap

inode

bitmap

extent

[20-29]

extent

[50-59]

extent

[70-73]
data data data

11 12 13 20 29... 50 59... 70 79...

JH JCnormal JDs

external

extent

[20-29]

external

extent

[50-59]

external

extent

[70-73]

external

extent

[20-29]

external

extent

[70-79]

ijournal area

ijournal areajournal area

JH JCnormal JDs

ijournal area

Figure 5: Example of a crash recovery.

journaling records a revocation block at the journal area
to prevent an incorrect replay of the journal, which will
cause a data corruption. The ijournaling scheme skips
the writing of the revocation block because the following
normal journaling will write it.

6 Experiments

6.1 Experiment Environments
To evaluate the effectiveness of ijournaling, an
Android-based smartphone and a desktop computer were
used. The smartphone was equipped with a Samsung
Exynos 5410 (1.6-GHz Quad Cortex-A15 + 1.2-GHz
Quad Cortex-A7) processor, 2 GB of DRAM, and 32
GB of eMMC. The Android OS version was 4.2.2 (Jelly
Bean), and the Linux kernel version was 3.4.5. The desk-
top computer was equipped with an Intel i7-4790 3.6-
GHz CPU, 16 GB of DRAM, and a Samsung 850 Pro
SSD. The desktop Linux version was 4.7.3. The delayed
allocation and ordered-mode journaling were used by de-
fault. The JBD2 thread conducts a journal commit oper-
ation at periodic 5-second intervals.

Linux kernel version 3.8 or later removes the ordering
constraint of the ordered-mode journaling scheme [29].
Therefore, it is not necessary for an fsync call to wait un-
til all data pages relevant to the journal transaction are
flushed into the disk. However, the modified ordered-
mode journaling scheme cannot guarantee file-system
consistency similar to writeback-mode journaling. This
flaw has been fixed at version 4.6.2 [20]. The Linux
kernel versions used in our experiments (i.e., 3.4.5 and
4.7.3) keep a strict ordering constraint in ordered mode
journaling.

6.2 Basic Comparison

We first measured the fsync latencies under different
journaling schemes, normal and ijournaling, on the
desktop and smartphone. The boosting technique [15]
was optionally applied. We ran two programs for the
experiments. One is an fsync-generating thread (fsync
tester), which writes 80 KB of data in a file and calls
an fsync repeatedly. We gave a delay of 0.1 second be-
tween write() and fsync() in order to generate many
quasi-async requests. The other is the fio program [6],
which generates 4 KB of sequential write requests for a
file with a configurable write bandwidth of BGbw. The fio
program was used as a background process, which gen-
erated many data blocks to be flushed during the trans-
action commit operation. We determined the value of
BGbw at each experiment considering the storage band-
width and the target foreground workload.

Figure 6(a) shows the results for the desktop when
BGbw = 400 MB/s. In the normal journaling scheme, the
tail fsync latency at the 95th percentile is longer than 3.5
seconds. This is because the fsync must wait until a large
number of dirty pages are flushed. In our measurement,
1.5 GB of data blocks at maximum were flushed during
an fsync handling. However, ijournaling showed less
than 0.2 seconds of fsync latency. The boosting tech-
nique was not very effective at reducing the fsync la-
tency. Because SSD supports command queueing, most
of the quasi-async requests were sent to storage without a
long delay in the I/O scheduler. Once a request is sent to
storage, the boosting cannot be applied because the host
system cannot control the transferred requests.

Figure 6(b) shows the results for the smartphone when
BGbw = 50 MB/s. The ijournaling scheme also im-
proved the fsync latency in the smartphone. Unlike with
the desktop experiments, the boosting technique was ef-
fective because eMMC is slower than SSD, and does not
support command queueing. By removing the CTX de-
pendency, ijournaling significantly reduced the num-
ber of quasi-async requests and showed a shorter 95th
percentile tail latency without boosting. We also im-
plemented the logical logging scheme in the ext4 file

794 2017 USENIX Annual Technical Conference USENIX Association

(a) desktop (b) smartphone

0

0.2

0.4

0.6

0.8

1

avg. latency 95% tail latency

fs
y

n
c

la
te

n
cy

 (
s)

normal

normal w/ boosting

ijournal

ijournal w/ boosting

logical log

0

1

2

3

4

5

6

avg. latency 95% tail latency

fs
y

n
c

la
te

n
cy

 (
s)

normal
normal w/ boosting
ijournal
ijournal w/ boosting

Figure 6: Fsync latency for different journaling schemes.

(a) desktop (b) smartphone

0

0.2

0.4

0.6

100 200 300 400 500

a
v
e
ra

g
e
 f
sy

n
c

la
te

n
cy

 (
s)

background write bandwidth

(MB/s)

normal
normal w/ boosting
ijournal
ijournal w/ boosting

0

0.1

0.2

0.3

10 20 30 40 50

a
v
e
ra

g
e
 f
sy

n
c

la
te

n
cy

 (
s)

background write bandwidth

(MB/s)

normal
normal w/ boosting
ijournal
ijournal w/ boosting

Figure 7: Changes in fsync latency when varying the
number of concurrent file operations.

system. We followed the design of logical logging in
ZFS. The delayed allocation was disabled in the logical
logging experiments because the logical logging must
generate an operation log for each file operation. The
logical logging showed longer latencies compared with
ijournaling using the boosting scheme. This is be-
cause the logical logging must flush a large size of logs.

To demonstrate the CTX dependency problem in
legacy journaling, we measured the fsync latencies of
fsync tester while varying the write bandwidth of the
background process, i.e., BGbw of fio. Figure 7 shows the
average fsync latencies under four different journaling
schemes. As the background write bandwidth increased,
the fsync latency increased for the normal journaling
scheme because more transactions were merged into a
compound transaction. In particular, when BGbw = 500
MB/s during the desktop experiment, the fsync system
call was not completed until the background fio program
was terminated. However, the ijournaling scheme
showed short latencies even when BGbw was high. The
booting scheme was effective only when ijournaling

is enabled.
Figure 8 compares the fsync latencies in legacy jour-

naling under different block allocation policies. The ex-
periment scenario is same as the scenario of Figure 6(a).
When an fsync() was called while the flush thread was
flushing dirty pages, the fsync latency became signifi-

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40

fs
y

n
c

la
te

n
cy

 (
s)

iterations

delayed alloc no delayed alloc

Figure 8: Fsync latency with and without delayed allo-
cation at a desktop.

cantly high for the delayed allocation scheme. Other-
wise, the latency was short. This is because data blocks
are allocated when the flush thread is invoked. How-
ever, when the delayed allocation is disabled, there are
no significant changes in the fsync latency. The average
fsync latency is shorter when the delayed allocation is
enabled. Because ijournaling can solve the CTX de-
pendency problem, it can mitigate the fluctuating fsync
latency problem of delayed allocation, and thus showed
less than 0.2 seconds latencies as shown in Figure 6(a).

6.3 Manycore Scalability
A critical hurdle in implementing a manycore-scalable
file system is the journaling contention, as reported in
[24]. In particular, a single JBD2 thread handles all
file-system transactions in ext4. Because ijournaling
commits an fsync-related transaction in the system call
service without calling the JBD2 thread, it improves the
manycore scalability. In addition, each core has its own
ijournal area, and thus, multiple fsync calls can be
handled simultaneously at multiple processor cores.

In this experiment, we used a Xeon E5-2630 machine
equipped with 2.4 GHz 8-core CPU, 64 GB of DRAM,
and an Intel 750 NVMe SSD (400GB). The Linux ker-
nel version was 4.7.3. Each core ran a process of sys-
bench [4], which generated 4 KB of sequential write re-
quests on 128 files. Each write() operation was fol-
lowed by an fsync() call. Figure 9 shows the changes
in total bandwidth of the multiple sysbench processes
while increasing the number of processor cores. Three
different journal schemes were tested: normal journal-
ing, ijournaling with one shared ijournal area, and
ijournaling with a separate ijournal area per core.

The rate of increase in the total bandwidth decreased
in normal journaling owing to its inter-transaction de-
pendency problem. While JBD2 commits the transaction
of a process, other processes must await the completion
of the transaction commit. However, ijournaling im-
proves the bandwidth significantly. In particular, when
a separate ijournal area was allocated for each core

USENIX Association 2017 USENIX Annual Technical Conference 795

(a) ramdisk (b) Intel 750 NVMe SSD

0

1

2

3

1 2 3 4 5 6 7 8

b
a
n
d
w

id
th

(G

B
/s

)

number of cores

normal

ijournal

per-core ijournal

0

100

200

300

400

500

1 2 3 4 5 6 7 8

b
a

n
d

w
id

th

(M
B

/s
)

number of cores

Figure 9: Multicore scalability.

(a) WAL journal (b) rollback journal

0%

5%

10%

15%

20%

25%

30%

insert update insert update

w/o BG write w/ BG write

p
e
rf

o
rm

a
n

ce

im

p
ro

v
e
m

e
n

t normal w/ boosting
ijournal
ijournal w/ boosting

0%

30%

60%

90%

120%

150%

180%

insert update insert update

w/o BG write w/ BG write

p
e
rf

o
rm

a
n
ce

im

p
ro

v
e
m

e
n
t normal w/ boosting

ijournal
ijournal w/ boosting

Figure 10: Mobibench results on a smartphone.

and the storage device used was a ramdisk, the total
bandwidth increased linearly as the number of cores in-
creased. When the storage device was an NVMe SSD,
ijournaling showed a linear improvement in the to-
tal bandwidth at up to four cores. When more than four
cores were used, however, the rate of bandwidth increase
was reduced owing to the bandwidth limit of the SSD.

6.4 Benchmark Results

The fsync latency can affect the performance of an ap-
plication if frequent fsync system calls are generated. To
evaluate the performance gain from ijournaling, sev-
eral benchmark programs were used. Figure 10 shows
the results of Mobibench [16], which was designed for
testing the SQLite performance on an Android-based
smartphone. Because SQLite DBMS generates frequent
fsync calls, its performance is closely related to the fsync
latency. One-thousand DB transactions were generated,
and two DB journaling modes, i.e., WAL journal and
rollback journal modes, were used. The fio background
application was optionally executed using BGbw = 30
MB/s. We measured the performance improvement over
the normal journaling scheme.

Even when no background process was used, and
therefore no CTX dependency occurred, ijournaling
improved the DB performance. The performance gain
in WAL journal mode is due to the reduced journal
write traffic of ijournaling. Whereas normal jour-

naling must write multiple metadata blocks in a journal,
ijournaling writes only two ijournal blocks for most
cases because the modified inode entry is put into a 4 KB
ijournal header block. The significant performance gain
in rollback journal mode resulted from the CTX depen-
dency problem. Although no background process was
executed, the SQLite updated multiple files and the roll-
back journal file was truncated for every DB transaction.
Owing to the truncated file, a discard command was in-
cluded in the normal transaction. Therefore, the trans-
action commit was delayed owing to the handling of the
discard command in normal journaling.

When a background process was executed,
ijournaling showed significant performance im-
provements. In normal journaling, a journal commit
invoked by an fsync call flushed about 25 MB of
data blocks owing to the CTX dependency problem.
The improvements achieved through boosting were
poor because the SQLite application calls an fsync()

immediately after a write() operation.
Figures 11(a) and (b) compares the performances of

two smartphone applications under different journaling
schemes. The camera burstshot program took 20 photos,
and the application install program installed Angrybird.
The fio background application was optionally executed
using BGbw = 30 MB/s. These applications also delete
several files, and thus the transaction committed by an
fsync() includes discard commands. Therefore, the
ijournaling scheme reduced the execution times even
when no background application was running. When a
background application was executed, the performance
improvements by ijournaling were more significant.
Because the application install program is computing-
intensive owing to the compilation work for java class
files, its execution time is not significantly affected by
the file-system performance. When we observed only the
fsync latencies, however, there were significant perfor-
mance gains by ijournaling, as shown in Figure 11(c).

Figure 11(d) shows the performance improvements by
ijournaling for the desktop benchmarks. Three work-
loads were used: Percona’s tpcc-mysql [5], YCSB [11],
and FileBench’s varmail [2]. In the tpcc-mysql work-
load, the DB page size was configured to 4 KB, ten ware-
houses were used, 16 connections were applied, and the
running time was 100 seconds. In the case of the YCSB
workload, the MySQL system and a update-heavy work-
load (i.e., Workload A), which has 50% reads and 50%
updates, were used. The varmail workload was run with
the default option. The fio background application was
optionally executed using BGbw = 200 MB/s.

Even when no background application was used,
ijournaling improved the performance on the desktop
benchmarks because these workloads generated multi-
ple concurrent threads that called an fsync() simultane-

796 2017 USENIX Annual Technical Conference USENIX Association

(a) smartphone burstshot (b) smartphone app install (c) app install (fsync latency) (d) desktop benchmark

0

1

2

3

4

5

6

7

w/o BG write w/ BG write

e
la

p
se

d
 t

im
e
 (

s)
normal

normal w/ boosting

ijournal

ijournal w/ boosting

0

10

20

30

40

50

60

w/o BG write w/ BG write

e
la

p
se

d
 t

im
e
 (

s)

normal

normal w/ boosting

ijournal

ijournal w/ boosting

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

w/o BG write w/ BG write

to
ta

l
fs

y
n

c
la

te
n

cy
 (

s)

normal

normal w/ boosting

ijournal

ijournal w/ boosting

0%

50%

100%

150%

200%

w/o BG write w/ BG write

p
e

rf
o

rm
a

n
ce

im

p
ro

v
e

m
e

n
t tpcc-mysql (tpmC)

YCSB (ops/s)

varmail (ops/s)

Figure 11: Real application benchmarks.

ously, and thus the inter-transaction dependency was se-
vere. For example, for the tpcc-mysql workload, 28.3%
of all fsync calls were delayed owing to the IT depen-
dency. In addition, ijournaling reduced the journal
write traffic by 56% owing to its file-level journaling
scheme for the YCSB workload. Most of the transac-
tions committed by fsync() had discard commands in
the varmail workload.

When a background application was executed, there
were no further performance improvements compared
with the case of no background process for the tpcc-
mysql and YCSB workloads because these workloads
had an excessive inter-transaction problem. The varmail
workload is more fsync-intensive. In the case of the var-
mail workload, while a JBD2 was committing a normal
transaction, many fsync calls were delayed owing to the
IT dependency problem in normal journaling. Therefore,
the performance gain by ijournaling was more signif-
icant.

6.5 Crash Recovery Tests
Finally, we conducted crash recovery tests under four
file-system modification scenarios. During each test sce-
nario, a crash was triggered and the system was restarted.
The file-system operations generated during the tests
were printed out, and recorded on a monitoring com-
puter. The required file-system changes were derived
from the logs, and we were able to check whether the
file-system changes were correctly recovered. In addi-
tion, we also checked the file-system consistency using
the e2fsck utility.

In the first scenario, one-thousand files were created
sequentially, among which only odd-numbered files were
fsynced. A system crash was triggered before normal pe-
riodic journaling was invoked. This scenario was able
to test whether ijournaling can recover the inodes of
fsynced files and whether the recovered directory entry
of the parent directory has the entries of only committed
files. In the second scenario, a file was created, and 4 KB
of data were appended to the file repeatedly. After each 4
KB write, an fsync was called. To make external extent

blocks, a crash was triggered after the file size reached
larger than 1 GB. This test covered the correctness of ex-
ternal extent tracking. For the third scenario, more than
two depths of directories were made, and an fsync for a
file at leaf node was called. This scenario was able to
check whether all related parent directories were recov-
ered. For the last scenario, ten threads were generated,
each of which executed file operations randomly selected
among mkdir, create, write, truncate, unlink, and
fsync. For each of these scenarios, we ascertained that
ijournaling can correctly recover the fsynced files and
their related directories without any file-system inconsis-
tencies.

7 Conclusion

We rely on the journaling of data updates for file-system
consistency, and synchronous writes for data durability.
However, latency-sensitive synchronous operations such
as an fsync() system call can be delayed under the com-
pound transaction scheme of the current journaling tech-
nique. Because a compound transaction includes irrele-
vant data and metadata, as well as those of fsynced file,
the fsync latency can be unexpectedly long. In this pa-
per, we first analyzed the affecting factors that may delay
an fsync operation, and proposed a novel hybrid journal-
ing technique, called ijournaling, which journals only
the related file-level transactions of an fsync call and re-
covers the file-system consistency through file-level jour-
nals upon a crash recovery. Experiments using real de-
vices showed that there are significant improvements to
the fsync latencies when using ijournaling, and that
many synchronous applications can benefit from the pro-
posed ijournaling technique.

Acknowledgements
We would like to thank Theodore Ts’o, who was our
shepherd, and anonymous reviewers for their valuable
comments and suggestions. This work was supported
by the National Research Foundation of Korea (NRF)
grant funded by the Korea government (MSIP). (No.
2016R1A2B2008672)

USENIX Association 2017 USENIX Annual Technical Conference 797

References

[1] Ext4 filesystem. https://www.kernel.org/doc/Documenta-
tion/filesystems/ext4.txt.

[2] Filebench. http://filebench.sourceforge.net/.

[3] SQLite. https://sqlite.org.

[4] Sysbench. https://github.com/akopytov/sysbench.

[5] tpcc-mysql. https://github.com/Percona-Lab/tpcc-mysql.

[6] J. Axboe. FIO - flexible IO tester. http://freshmeat.net
/projects/fio/.

[7] Jeff Bonwick and Bill Moore. ZFS: The last word in file
systems. http://wiki.illumos.org/download/attachments/
1146951/zfs last.pdf, 2007.

[8] Li-Pin Chang, Po-Han Sung, and Po-Hung Chen. Fast file
synching for applications in flash-based android devices.
In Proceedings of the 3rd Non-Volatile Memory Systems
and Applications Symposium, pages 1–6, 2014.

[9] Vijay Chidambaram, Thanumalayan Sankaranarayana
Pillai, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Optimistic crash consistency. In Proceedings of
the 24th ACM Symposium on Operating Systems Princi-
ples, SOSP’13, pages 228–243, 2013.

[10] Vijay Chidambaram, Tushar Sharma, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. Consistency
without ordering. In Proceedings of the 10th USENIX
Conference on File and Storage Technologies, FAST’12,
pages 101–116, 2012.

[11] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with YCSB. In Proceedings of the 1st
ACM Symposium on Cloud Computing, SoCC’10, pages
143–154, 2010.

[12] Jonathan Corbet. Solving the ext3 latency problem.
http://lwn.net/Articles/328363/.

[13] Rasha Eqbal. ScaleFS: A multicore-scalable file system.
Master’s thesis, Massachusetts Institute of Technology,
August 2014.

[14] Jim Gray and Andreas Reuter. Transaction Processing:
Concepts and Techniques. Morgan Kaufmann Publishers,
Inc., 1993.

[15] Daeho Jeong, Youngjae Lee, and Jin-Soo Kim. Boosting
quasi-asynchronous I/O for better responsiveness in mo-
bile devices. In Proceedings of the 13th USENIX Confer-
ence on File and Storage Technologies, FAST’15, pages
191–202, 2015.

[16] Sooman Jeong, Kisung Lee, Jungwoo Hwang, Seongjin
Lee, and Youjip Won. AndroStep: Android storage per-
formance analysis tool. In Software Engineering Work-
shops, pages 327–340, 2013.

[17] Sooman Jeong, Kisung Lee, Seongjin Lee, Seoungbum
Son, and Youjip Won. I/O stack optimization for smart-
phones. In Proceedings of the 2013 USENIX Annual
Technical Conference, ATC’13, pages 309–320, 2013.

[18] Junbin Kang, Benlong Zhang, Tianyu Wo, Weiren Yu,
Lian Du, Shuai Ma, and Jinpeng Huai. SpanFS: A scal-
able file system on fast storage devices. In Proceedings
of the 2015 USENIX Conference on Usenix Annual Tech-
nical Conference, ATC’15, pages 249–261, 2015.

[19] Yunji Kang and Dongkun Shin. Per-block-group journal-
ing for improving fsync response time. In Proceedings
of the 18th IEEE International Symposium on Consumer
Electronics, pages 22–25, 2014.

[20] Jan Kara. ext4: fix data exposure after a crash.
https://patchwork.kernel.org/patch/9156691/, 2016.

[21] Lanyue Lu, Yupu Zhang, Thanh Do, Samer Al-Kiswany,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Physical disentanglement in a container-based
file system. In Proceedings of the 11th USENIX Sympo-
sium on Operating Systems Design and Implementation,
OSDI’14, pages 81–96, 2014.

[22] Ao Ma, Chris Dragga, Andrea C. Arpaci-Dusseau,
Remzi H. Arpaci-Dusseau, and Marshall Kirk Mckusick.
Ffsck: The fast file-system checker. ACM Transactions
on Storage, 10(1):2:1–2:28, 2014.

[23] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas,
and L. Vivier. The new ext4 filesystem: Current status and
future plans. In Proceedings of the Ottowa Linux Sympo-
sium, 2007.

[24] Changwoo Min, Sanidhya Kashyap, Steffen Maass, and
Taesoo Kim. Understanding manycore scalability of file
systems. In Proceedings of the 2016 USENIX Annual
Technical Conference, ATC’16, pages 71–85, 2016.

[25] Edmund B. Nightingale, Kaushik Veeraraghavan, Pe-
ter M. Chen, and Jason Flinn. Rethink the sync.
ACM Transactions on Computer Systems, 26(3):6:1–6:26,
2008.

[26] Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Analysis and evolution of
journaling file systems. In Proceedings of the 2005
USENIX Annual Technical Conference, ATC’05, pages
105–120, 2005.

[27] Kai Shen, Stan Park, and Meng Zhu. Journaling of jour-
nal is (almost) free. In Proceedings of the 12th USENIX
Conference on File and Storage Technologies, FAST’14,
pages 287–293, 2014.

[28] Adam Sweeney, Doug Doucette, Wei Hu, Curtis Ander-
son, Mike Nishimoto, and Geoff Peck. Scalability in the
xfs file system. In Proceedings of the 1996 USENIX An-
nual Technical Conference, ATC’96, pages 1–14, 1996.

[29] Theodore Ts’o. ext4: remove calls to ext4 jbd2 file
inode() from delalloc write path. http://git.kernel.org/
cgit/linux/kernel/git/torvalds/linux.git/commit/?id=
f3b59291a69d0b734be1fc8be489fef2dd846d3d, 2012.

798 2017 USENIX Annual Technical Conference USENIX Association

