
This paper is included in the Proceedings of the
2017 USENIX Annual Technical Conference (USENIX ATC ’17).

July 12–14, 2017 • Santa Clara, CA, USA

ISBN 978-1-931971-38-6

Open access to the Proceedings of the
2017 USENIX Annual Technical Conference

is sponsored by USENIX.

Glamdring: Automatic Application Partitioning
for Intel SGX

Joshua Lind, Christian Priebe, Divya Muthukumaran, Dan O’Keeffe, Pierre-Louis Aublin,
and Florian Kelbert, Imperial College London; Tobias Reiher, TU Dresden; David Goltzsche,

TU Braunschweig; David Eyers, University of Otago; Rudiger Kapitza, TU Braunschweig;
Christof Fetzer, TU Dresden; Peter Pietzuch, Imperial College London

https://www.usenix.org/conference/atc17/technical-sessions/presentation/lind

Glamdring: Automatic Application Partitioning for Intel SGX

Joshua Lind
Imperial College London

Christian Priebe
Imperial College London

Divya Muthukumaran
Imperial College London

Dan O’Keeffe
Imperial College London

Pierre-Louis Aublin
Imperial College London

Florian Kelbert
Imperial College London

Tobias Reiher
TU Dresden

David Goltzsche
TU Braunschweig

David Eyers
University of Otago

Rüdiger Kapitza
TU Braunschweig

Christof Fetzer
TU Dresden

Peter Pietzuch
Imperial College London

Abstract
Trusted execution support in modern CPUs, as offered by
Intel SGX enclaves, can protect applications in untrusted
environments. While prior work has shown that legacy
applications can run in their entirety inside enclaves, this
results in a large trusted computing base (TCB). Instead,
we explore an approach in which we partition an applica-
tion and use an enclave to protect only security-sensitive
data and functions, thus obtaining a smaller TCB.

We describe Glamdring, the first source-level parti-
tioning framework that secures applications written in
C using Intel SGX. A developer first annotates security-
sensitive application data. Glamdring then automatically
partitions the application into untrusted and enclave
parts: (i) to preserve data confidentiality, Glamdring uses
dataflow analysis to identify functions that may be ex-
posed to sensitive data; (ii) for data integrity, it uses back-
ward slicing to identify functions that may affect sensitive
data. Glamdring then places security-sensitive functions
inside the enclave, and adds runtime checks and crypto-
graphic operations at the enclave boundary to protect it
from attack. Our evaluation of Glamdring with the Mem-
cached store, the LibreSSL library, and the Digital Bitbox
bitcoin wallet shows that it achieves small TCB sizes and
has acceptable performance overheads.

1 Introduction
Applications are increasingly deployed in potentially un-
trusted third-party data centres and public cloud environ-
ments such as Amazon AWS [3] and Microsoft Azure [4].
This has a major impact on application security [1]: ap-
plications must protect sensitive data from attackers with
privileged access to the hardware or software, such as
system administrators. Applications that rely on crypto-
graphic techniques to protect sensitive data [60, 63, 82]
limit the operations that can be carried out; fully homo-
morphic encryption [32] allows arbitrary operations but
adds substantial overhead.

A new direction for securing applications in untrusted

environments is to use trusted execution mechanisms of-
fered by modern CPUs such as Intel’s Software Guard
Extensions (SGX) [42]. With Intel SGX, user code and
data are protected as part of secure enclaves. An enclave
is a separate memory region that is encrypted transpar-
ently by the hardware and isolated from the rest of the
system, including higher-privileged system software.

Haven [6], Graphene [55, 81] and SCONE [2] have
demonstrated the feasibility of executing entire applica-
tions inside enclaves by adding sufficient system sup-
port, such as a library OS or the C standard library,
to the enclave. By placing all code inside the enclave,
these approaches, however, have a large trusted comput-
ing base (TCB) that violates the principle of least priv-
ilege [67]: all enclave code executes at a privilege level
that allows it to access sensitive data. An attacker only
needs to exploit one vulnerability in the enclave code
to circumvent the security guarantees of trusted execu-
tion [78]. The number of bugs even in well-engineered
code is proportional to the size of the code [54].

To partially mitigate this problem, proposals for secur-
ing applications with enclaves [68, 72, 73] introduce ad-
ditional checks in enclave code to prevent it from com-
promising the confidentiality or integrity of enclave data.
Such approaches, however, restrict the allowed behaviour
of enclave code, e.g. prohibiting general enclave code
from interacting with memory outside of the enclave [68].
This limits the applicability of trusted execution mecha-
nisms for arbitrary applications.

We want to explore a different design point for se-
curing applications with trusted execution by placing
only security-sensitive functions and data inside the en-
clave. We exploit the observation that only a subset of
all application code is security-sensitive [11, 71, 74], and
ask the question: “what is the minimum functionality
of an application that must be placed inside an en-
clave to protect the confidentiality and integrity of its
security-sensitive data?” Our goal is to develop a princi-
pled approach that (i) partitions applications into security-

USENIX Association 2017 USENIX Annual Technical Conference 285

sensitive enclave and security-insensitive non-enclave
parts; (ii) gives guarantees that the security-sensitive en-
clave code cannot violate the confidentiality or integrity
of sensitive enclave data, even under attack; and (iii) has
an acceptable performance overhead despite the limita-
tions of current SGX implementations [16].

In our approach, we use static program analysis to iden-
tify a security-sensitive subset of the application code.
Being conservative, it allows us to robustly identify the
subset of functions that may be exposed to or modify sen-
sitive data. This analysis is independent of application
input, which may be controlled by an attacker, and thus is
resilient against attacks on the enclave interface, as long
as the assumptions made by the static analysis are en-
forced at runtime.

We describe Glamdring, a new framework for secur-
ing C applications using Intel SGX. Glamdring parti-
tions applications at the source code level, minimising
the amount of code placed inside an enclave. To parti-
tion an application, a developer first annotates input and
output variables in the source code that contain sensitive
data and whose confidentiality and integrity should be
protected. Glamdring then performs the following steps:
(1) Static dataflow analysis. To prevent disclosure of
sensitive data, functions that may potentially access sen-
sitive data must be placed inside the enclave. Glamdring
performs static dataflow analysis [65] to detect all func-
tions that access sensitive data or data derived from it. It
tracks the propagation of sensitive data through the appli-
cation, starting with the annotated inputs.
(2) Static backward slicing. To prevent an attacker from
compromising the integrity of sensitive output data, func-
tions that update sensitive data must be placed inside
the enclave. Here Glamdring uses static backward slic-
ing [84], starting from the set of annotated output vari-
ables, to identify functions that can affect the integrity of
this data. It creates a backward slice with all source code
that the sensitive output variables depend on.
(3) Application partitioning. Glamdring now partitions
the application by placing all of the security-sensitive
functions identified above inside the enclave. This creates
an enclave boundary interface that constitutes all parame-
ters passed to enclave functions and accesses to untrusted
global variables. Any sensitive data that crosses the en-
clave interface is transparently encrypted and signed by
the enclave code or trusted remote client, respectively. For
performance reasons, some security-insensitive functions
may be moved inside the enclave.
(4) Source code generation. Finally, Glamdring trans-
forms the application using a source-to-source compiler
based on the LLVM/Clang compiler toolchain [14, 49].
It (i) generates appropriate entry/exit points at the en-
clave boundary with the required cryptographic opera-
tions; (ii) ensures that memory allocations for data struc-

tures are performed inside or outside of the enclave de-
pending on the nature of the data; and (iii) adds runtime
checks at the enclave boundary to ensure that the invari-
ants required for the soundness of the static analysis hold.
The output of this phase is an untrusted binary and a
trusted shared library that executes inside the enclave.

We evaluate the security and performance properties of
Glamdring by applying it to three applications: the Mem-
cached key/value store [24], the LibreSSL library [7], and
the Digital Bitbox bitcoin wallet [70]. Our experiments
show that Glamdring creates partitioned versions of these
applications with TCBs that contain 22%–40% of the
lines of code of the applications. Despite their strong secu-
rity guarantees, the partitioned applications execute with
between 0.3×–0.8× of the performance of the original
versions.

2 Background
Protecting application data is crucial. Past incidents
have shown that data breaches [41] and integrity viola-
tions [75] can have a major impact on users [30] and the
reputation of application providers [59].

Today applications are deployed frequently in un-
trusted environments such as public clouds, controlled by
third-party providers. In addition to the application being
vulnerable, the underlying infrastructure (i.e. the operat-
ing system (OS) and hypervisor) may be untrusted by the
application owner, and software-based solutions imple-
mented as part of the OS [17,46] or hypervisor [13,20,39]
cannot protect application data.

New hardware security features, such as Intel SGX,
offer a solution through a trusted execution model. It
supports memory and execution isolation of application
code and data from the rest of the environment, including
higher-privileged system software. In this work, we ad-
dress the problem of how developers can protect only the
security-sensitive code and data of an application using
trusted execution.

2.1 Threat model
We consider code to be security-sensitive if it accesses
sensitive data directly or can impact the confidentiality
or integrity of data indirectly. For example, in the Mem-
cached [24] store, assuming that key/value pairs are sen-
sitive, functions that store key/value pairs are security-
sensitive, while ones for network handling are not.

The adversary’s goal is to either disclose confidential
data or damage its integrity. We consider a powerful and
active adversary, such as a malicious system administra-
tor, who has control over the hardware and software of the
machine executing the application. The adversary may
therefore (i) access or modify any data in memory or disk;
(ii) view or modify the application code; and (iii) modify
the OS or other system software.

We do not consider denial-of-service (DoS) attacks—

286 2017 USENIX Annual Technical Conference USENIX Association

an adversary with full control over the machine can de-
cide to not run the application. Such attacks can be de-
tected and potentially mitigated using replication [21].
Similar to other work, we also ignore side-channel attacks
that exploit timing effects [83] or page faults [86], but
there exist dedicated mitigation strategies [10, 19].

2.2 Trusted execution with Intel SGX
Intel’s Software Guard Extensions (SGX) [42] allow ap-
plications to protect the confidentiality and integrity of
code and data, even when an attacker has control over all
software (OS, hypervisor and BIOS) and physical access
to the machine, including the memory and system bus.

SGX provides applications with a trusted execution
mechanism in the form of secure enclaves. Enclave code
and data reside in a region of protected memory called
the enclave page cache (EPC). Only application code
executing inside the enclave is permitted to access the
EPC. Enclave code can access the memory outside the
enclave. An on-chip memory encryption engine encrypts
and decrypts cache lines in the EPC that are written to
and fetched from memory. As enclave code is always ex-
ecuted in user mode, any interaction with the OS through
system calls, e.g. for network or disk I/O, must execute
outside of the enclave.

Using Intel’s SGX SDK [43], developers can create
enclave libraries that are loaded into an enclave and ex-
ecuted by a CPU with SGX support. A developer de-
fines the interface between the enclave code and other,
untrusted application code: (i) a call into the enclave is re-
ferred to as an enclave entry call (ecall). For each defined
ecall, the SDK adds instructions to marshal parameters
outside, unmarshal the parameters inside the enclave and
execute the function; and (ii) outside calls (ocalls) al-
low enclave functions to call untrusted functions outside.
Added SDK code leaves the enclave, unmarshals the pa-
rameters, calls the function, and re-enters the enclave.

Any ecalls and ocalls introduce a performance over-
head because the hardware must perform certain actions
to maintain the security guarantees of SGX. Enclave code
must also verify the integrity of accessed data, such as pa-
rameters of ecalls, return values of ocalls, and data read
from untrusted memory.

2.3 Security with trusted execution
Next we explore the design space for securing application
data using trusted execution and discuss the trade-offs
with respect to (i) the size of the TCB; (ii) the complexity
of the enclave interface; (iii) the development effort; and
(iv) the generality of the approach.

With Intel SGX, the TCB consists of the enclave code
and the trusted hardware. Following the principle of least
privilege [67], only the parts of an application that re-
quire access to sensitive data should be executed within
an enclave. As studies have shown [54,69], the number of

Enclave
Application

Standard libraries

Library OS

Host OS

System/
Hyper calls

Sensitive
app code

Non-sensitive
app code

Non-sensitive
app data

Sensitive
app data

(a) Complete
enclave interface

Enclave
Application logic

Host OS

Read/
Write

Trusted shim library

Sensitive
app code

Sensitive
app data

(b) Predefined
enclave interface

Enclave
Application

Application

Host OS

Standard libraries

Trusted shim library

Function
calls

Sensitive
app code

Non-sensitive
app code

Non-sensitive
app data

Sensitive
app data

Untrusted
memory
accesses

(c) Application-
specific interface

Figure 1: Design alternatives for the use of enclaves

software bugs, and thus potential security vulnerabilities,
increases proportionally with the code size. This makes
it important to minimise the size of the TCB.

The complexity of the enclave interface, however, im-
pacts the security of enclave code and data. For exam-
ple, security-sensitive application code inside the en-
clave must still interact with the untrusted environment
to perform I/O. Return values from system calls must
be checked to protect against Iago attacks [12], in which
an attacker compromises the OS kernel to force enclave
code to disclose or modify sensitive enclave data. Creat-
ing a principled enclave interface makes it easier to reason
about the infeasibility of particular attacks.

Important factors that determine the adoption of a
given approach for securing applications with secure en-
claves are the development effort and whether it is gen-
erally applicable to any application. Fig. 1 shows three
design alternatives for protecting applications using se-
cure enclaves:
Complete enclave interface. As shown in Fig. 1a, the ap-
proach adopted by systems such as Haven [6], SCONE [2]
and Graphene [55,81] provides isolation at a coarse gran-
ularity by executing a complete application inside an en-
clave. Haven runs unmodified Windows applications us-
ing the Drawbridge library OS [61]; Graphene uses a
library OS in the enclave to run Linux applications; and
SCONE places a modified version of the standard C li-
brary in the enclave for supporting recompiled Linux ap-
plications. Both security-sensitive and insensitive appli-
cation code and data reside within the enclave, increasing
the TCB size.

The enclave interface supports a complete set of sys-
tem/hyper calls, which cannot be handled inside the en-
clave. The interface is application-independent, but its
complexity (in terms of number of distinct calls and their
input parameters) depends on the adopted system abstrac-
tion. The required system support within the enclave fur-
ther adds to the TCB size.

While this approach incurs low development effort,

USENIX Association 2017 USENIX Annual Technical Conference 287

Secure enclave
library

Untrusted
app code

Code
annotation Annotated code

Static dataflow
analysis

Static backward
slicing

path/to/file1function1
path/to/file2function2
path/to/file3function3
path/to/file4function4
path/to/file5function5
path/to/file5function5
path/to/file6function6
path/to/file7function7
path/to/file8function8

Partition specification
for confidentiality

path/to/file1function1
path/to/file2function2
path/to/file3function3
path/to/file4function4
path/to/file5function5
path/to/file5function5
path/to/file6function6
path/to/file7function7
path/to/file8function8

Partition specification
for integrity

Creation of
partition spec.

path/to/file1function1
path/to/file2function2
path/to/file3function3
path/to/file4function4
path/to/file5function5
path/to/file5function5
path/to/file6function6
path/to/file7function7
path/to/file8function8

Partition
specification

(PS)

Source-to-source
transformation

Enclave
library

Interface
hardening

Code Analysis2

App
source
code

User input provided

Automated step

Code Generation41 Code Annotation Code Partitioning3

Static program
analysis PDG

Figure 2: Overview of the Glamdring framework

as it can execute mostly unmodified applications, and is
generic across applications, it cannot mask fundamental
limitations of SGX when trying to provide a complete
enclave interface. For example, SCONE cannot support
applications that use the fork() system call.
Predefined enclave interface. Fig. 1b shows an ap-
proach in which applications must adhere to a prede-
fined restricted enclave interface [68, 72, 73]. For exam-
ple, VC3 [68] protects map/reduce jobs using enclaves
and forces map/reduce tasks to interact with the untrusted
environment only through a particular interface. The en-
clave contains a small trusted shim library, resulting in a
smaller TCB compared to the previous approach.

This approach results in a minimal enclave interface—
VC3’s interface consists of only two calls, one to read
encrypted key/value pairs and another to write them as
the job output. This limited interaction of the enclave
with the outside simplifies protection: it is possible to
add dynamic checks that enforce security invariants [72],
e.g. preventing enclave code from accessing untrusted
memory except through the enclave interface.

The security benefits of this approach are offset by its
limited applicability. Given the predefined enclave inter-
face, the approach can only be used with applications that
interact with the untrusted environment in specific ways,
such as map/reduce tasks.
Application-specific enclave interface. We explore an-
other design point. We exploit the fact that, for many ap-
plications, only a subset of code handles sensitive data,
while other code is not security-sensitive and does not
need protection [9, 71, 74]. As shown in Fig. 1c, this
makes it possible to partition the application to reduce
the TCB size, leaving code and data that is not security-
sensitive outside the enclave.

Past work has shown that partitioning can be done by
hand so that complex applications can exploit enclaves [9,
58]. Instead, we want to explore the hypothesis that it is
feasible to use principled techniques, such as program
analysis, to partition applications for secure enclaves, and
provide security guarantees about the enclave code and
its interface to the untrusted environment.

With this approach, the enclave interface now becomes
application-specific: a set of ecalls and ocalls is required
between trusted and untrusted application code. In con-
trast to a complete enclave interface, fewer system calls
need ocalls because application code that is placed out-

side the enclave can issue system calls directly.
Since application data now also exists outside the en-

clave, enclave code must be allowed to access untrusted
memory. This means that it is no longer possible to pro-
hibit all memory accesses, as with the predefined enclave
interface [72]. Instead, it is important to give security
guarantees that, despite the richer application-specific en-
clave interface, the untrusted environment cannot disclose
sensitive enclave data or compromise its integrity.

3 Glamdring Design
We present Glamdring, a framework for protecting exist-
ing C applications by executing security-sensitive code in
an Intel SGX enclave. Glamdring targets the following re-
quirements: it must protect the confidentiality of sensitive
input data and the integrity of sensitive output data (R1);
apply the principle of least privilege, minimising the code
that can access sensitive data (R2); automate changes to
the application code (R3); and impose an acceptable per-
formance overhead (R4). To achieve these requirements,
Glamdring operates in four phases (see Fig. 2):
(1) Code annotation: Glamdring must know which ap-
plication data is sensitive (R1). The developer provides
information about the sources (inputs) and sinks (outputs)
of security-sensitive data by annotating variables whose
values must be protected in terms of confidentiality and
integrity (§3.1).
(2) Code analysis: Based on the annotated source code,
Glamdring identifies a subset of code that is security-
sensitive (R2). It uses automatic static program analy-
sis (R3) to find control and data dependencies on security-
sensitive data. Glamdring thus obtains the minimal set of
statements that either handle confidential data or affects
its integrity (R1/R2) (§3.2).
(3) Code partitioning: Next Glamdring creates a parti-
tion specification (PS) that defines which parts of the code
must be protected by the enclave. The PS enumerates the
functions, memory allocations and global variables that
are security-sensitive based on the program analysis. This
defines the enclave boundary interface of the partitioned
application, which includes ecalls, ocalls, and direct ac-
cesses to untrusted memory (§3.3).
(4) Code generation: Finally, Glamdring uses a source-
to-source compiler that, based on the PS, partitions the
code into a secure enclave library and untrusted code.
The enclave boundary interface is hardened with runtime

288 2017 USENIX Annual Technical Conference USENIX Association

checks that enforce invariants on the program state (§4).

3.1 Code annotation phase
The security-sensitive data that must be protected is
application-dependent. To identify it, a developer must
therefore annotate the source code. Glamdring relies on
the fact that security-sensitive data is protected when it
is exchanged between a trusted client and the application.
For example, if data is received via the network, Glam-
dring requires the client to encrypt and sign the data. Both
the client and the enclave code use symmetric AES-GCM
encryption [22]; the key is established upon enclave cre-
ation.

When encrypted security-sensitive data reaches the ap-
plication through a source, such as an I/O channel, or
leaves the application through a sink, a developer must
annotate the corresponding variable using a compiler
pragma. The annotation sensitive-source identifies a
variable at a given source code location where security-
sensitive data enters the application; analogously, the an-
notation sensitive-sink indicates a variable at which
security-sensitive data leaves the application.

For example, for Memcached we assume that the
security-sensitive data is the type of command submitted
by the client (get/set) and its associated key/value data.
This data is encrypted and signed by the trusted client
when sent to the application. Using Glamdring, Mem-
cached then requires two annotations:

1 #pragma glamdring sensitive-source(command)
2 static void process_command(conn *c, char *command) {
3 token_t tokens[MAX_TOK];
4 size_t ntokens;
5 ...
6 ntokens = tokenize_command(command,tokens,MAX_TOK);
7 ...
8 process_update_command(c,tokens,ntokens,comm,false);
9 ...

10 }
11

12 #pragma glamdring sensitive-sink(buf)
13 static int add_iov(conn *c, void *buf, int len) {
14 ...
15 m = &c->msglist[c->msgused - 1];
16 m->msg_iov[m->msg_iovlen].iov_base = (void *)buf;
17 ...
18 }

An obvious location for the sensitive-source annota-
tion might be the socket read() call from which a client
request is received. However, this would be unnecessar-
ily conservative because it would denote all network data
as security-sensitive (and thus encrypted). Instead, the
annotation in line 1 marks the content of the parame-
ter command, which holds the request command and data,
as security-sensitive. The sensitive-sink annotation in
line 12 specifies that the output buffer for the client re-
sponse also contains security-sensitive data.

3.2 Code analysis phase
Next the code analysis phase identifies all security-
sensitive statements in the program that have dependen-

cies on the set of all annotated statements SA. This com-
bines (a) for confidentiality, the set of all statements that
are influenced by the ones in SA; and (b) for integrity, the
set of all statements that influence the ones in SA.

Glamdring uses static program analysis to identify all
security-sensitive statements. Static analysis is workload-
independent and hence makes conservative decisions
about dependencies. To ensure that an attacker cannot
violate the invariants that static analysis infers from the
untrusted code, Glamdring adds runtime checks during
code generation (see §4).

Glamdring’s analysis uses a program dependence
graph (PDG) [23], referred to as P, in which vertices
represent statements, and edges are both data and con-
trol dependencies between statements. PDGs are effec-
tive representations for program slicing [40, 56]. Using
P, Glamdring finds the set of all security-sensitive state-
ments as follows:
(1) Static dataflow analysis for confidentiality. Given
SA and P, Glamdring uses graph-reachability to find a
subgraph Pc of P that contains all statements with a tran-
sitive control/data dependence on statements in SA (i.e.
vertices reachable from statements in SA via edges in P).

For statements in SA that are annotated as a
sensitive-sink, Glamdring encrypts/signs the data be-
fore the statement inside the enclave, making it unneces-
sary to perform dataflow analysis from these statements.
(2) Static backward slicing for integrity. Given SA and
P, Glamdring uses static backward slicing to find a sub-
graph Pi with all statements in P on which statements in
SA have a control/data dependence (i.e. all vertices from
which statements in SA are reachable via P).

For these statements in SA that are annotated as
sensitive-source, Glamdring employs client-side en-
cryption of the data, making it unnecessary to perform
backwards slicing from these statements.

Finally, the set of all security-sensitive statements Ss is
obtained by combining Pc and Pi.

3.3 Code partitioning phase
Although Ss enumerates security-sensitive statements,
Glamdring partitions the application at the granularity
of functions rather than statements. This makes the en-
clave boundary coincide with the application’s function
interface, easing automatic code generation (§4) and min-
imising the required code changes (R3).

Glamdring produces a partition specification (PS)
from Ss with the set of security-sensitive functions, mem-
ory allocations and global variables to protect:

(i) functions: the PS includes all functions whose defi-
nitions contain at least one statement in Ss;

(ii) memory allocations: the PS must identify allo-
cated memory for security-sensitive data. Statements in
Ss with calls to malloc (or similar) are enumerated in the

USENIX Association 2017 USENIX Annual Technical Conference 289

PS, and these allocations are placed inside the enclave;
(iii) global variables: the PS lists all global variables

accessed in statements in Ss, and these are allocated in-
side the enclave. Special accessor ecalls (with checks) are
provided to the untrusted code to access these globals if
needed. The PS specifies if the global was part of Pc or
Pi or both, which determines what type of access (read,
write or none) the outside code has.

Enclave boundary relocation (EBR). Glamdring’s code
analysis phase produces a lower bound on the code that
must be inside the enclave to guarantee security. In prac-
tice, however, a partitioning may prove costly in terms of
performance if program execution must frequently cross
the enclave boundary interface. Glamdring improves per-
formance by moving additional functions into the enclave
in order to reduce the number of enclave crossings. Us-
ing a representative workload and the output of the gcov

runtime profiling tool [28], Glamdring assigns a cost to
each enclave boundary function according to the num-
ber of invocations. Up to a configurable threshold, Glam-
dring adds functions to the enclave. Adding extra func-
tions to the enclave cannot violate the security guarantees
of Glamdring, but it does increase the TCB size.

3.4 Discussion
The security guarantees of Glamdring rely on (a) the
soundness of the static analysis; (b) the modeling of ex-
ternal library calls whose source code is unavailable; and
(c) the correctness of annotations.

Static analysis. To be tractable, static analysis infers in-
variants on program state based on the source code. These
invariants must also hold at runtime, even when the un-
trusted code is under control of an attacker. As we de-
scribe in §4.2, Glamdring ensures this by adding runtime
invariant checks to the enclave boundary.

Static pointer analysis is undecidable for C pro-
grams [64] and thus fundamentally imprecise [33, 38].
The existence of false positives, however, does not com-
promise soundness: the partitioning phase may assign
more functions to the enclave than necessary, but never
excludes security-sensitive functions from the enclave.

Modelling external library calls. Static analyses must
model the behaviour of all invoked functions, including
those in external libraries with unavailable definitions. A
conservative model makes all output parameters depen-
dent on all input parameters and hence upholds the secu-
rity guarantees; more precise models can consider actual
function behaviour to specify dependencies [5, 36].

Annotations. Most static analysis tools for security rely
on developer annotations of sources/sinks of security-
sensitive data [35, 76]. While these are application-
specific, in many cases they are easy to identify, e.g. when
they are well-known library functions for I/O channels.

4 Code Generation and Hardening
The code generation phase produces a source-level par-
titioning of the application based on the partition speci-
fication (PS) (§4.1). In addition, it hardens the enclave
boundary against malicious input, ensuring that the en-
clave upholds the confidentiality and integrity guarantees
for sensitive data (§4.2). The result is a set of enclave and
outside source files, along with an enclave specification,
which can be compiled using the Intel SGX SDK.

4.1 Code transformation
The code transformation must (a) handle calls into and
out of the enclave; and (b) change the allocation, scope
and lifetime of variables and functions in the generated
enclave and non-enclave versions of the code.

Glamdring provides a code generator that relies on the
LLVM/Clang compiler toolchain [14, 49] to rewrite the
preprocessed C source code. It uses the Clang libraries
to parse source code into an abstract syntax tree (AST),
and traverses the AST to analyse and modify the source
code. In addition to the enclave and outside source files,
it produces an interface specification in the enclave def-
inition language (EDL) required by the Intel SDK [43].
The code generation proceeds in three steps:
(i) Moving function definitions into the enclave. For
each source file, the code generator creates an enclave
and an outside version, which contain a copy of the orig-
inal preprocessed input file. From the enclave version, it
removes all functions not listed in the PS; from the out-
side version, it removes all listed enclave functions.
(ii) Generating ecalls and ocalls. Based on the set of
enclave functions, the code generator identifies the ecalls
and ocalls that are part of the enclave boundary interface.
It traverses the direct call expressions in each function:
(a) if the caller is an untrusted function and the callee is
an enclave function, the callee is made an ecall; (b) if the
caller is an enclave function and the callee is an untrusted
function, the callee is made an ocall.1

Adding stubs for encryption/decryption. As mentioned
in §3.1, the security-sensitive data received from (and re-
turned to) clients is encrypted (and integrity-protected)
using a shared AES-GCM key. The code generator adds
code to (a) decrypt security-sensitive data entering the
enclave at locations annotated as sensitive-source, and
(b) encrypt the security-sensitive data leaving the enclave
at locations annotated as sensitive-sink. The applica-
tion client must be modified to handle the corresponding
encryption/decryption operations.
Handling C library functions. Calls to C library functions
are handled separately. A subset is supported by the In-
tel SDK inside the enclave and is handled in a polymor-

1Pointers passed outside the enclave are only deep-copied if data in
enclave-allocated memory needs to be declassified—the programmer
needs to implement this manually.

290 2017 USENIX Annual Technical Conference USENIX Association

phic manner: the enclave and untrusted code call their
respective versions.2 For unsupported library functions,
e.g. those making system calls, the code generator cre-
ates ocalls to the corresponding library function linked to
the outside code. These ocalls violate the enclave bound-
ary identified through static analysis and hence will be
hardened with runtime checks (see §4.2).
Handling function pointers as interface arguments. Func-
tion pointer arguments to ecalls and ocalls are special
cases because the target function may not exist at the
point of invocation of the function pointer. For example,
if an ecall passes a function pointer targeting a function
on the outside, the program will fail when the enclave at-
tempts to call that function pointer directly. Glamdring
employs a static function pinter analysis [89] to iden-
tify the possible target functions of function pointer ar-
guments passed to ecalls and ocalls. The code generator
then creates ecalls or ocalls for the target functions and
uses a trampoline to jump to the correct one, as shown in
the jump to func function:

/* Initialised to func_A and func_B outside */
int (*addrof_func_A)(int); int (*addrof_func_B)(int);

int jump_to_func(int (*fptr)(int), int x) {
if (fptr==addrof_func_A) return ocall_func_A(x);
else if (fptr==addrof_func_B) return ocall_func_B(x);

}

int ecall_enclave_func(int (*fptr)(int),int y) {
return jump_to_func(fptr, y);

}

(iii) Handling memory allocation. The code generator
also uses the PS to decide which memory allocations
must be placed inside the enclave. For the memory allo-
cations listed in the PS, nothing needs to be done because
a malloc call inside the enclave allocates memory inside;
for other memory allocations, a function must allocate
memory outside, and the malloc is replaced by an ocall
to the outside. This arises when placing non-sensitive
code into the enclave when (i) partitioning at the function
instead of statement level; and (ii) moving functions into
the enclave using EBR (see §3.3).

4.2 Code hardening
Next we analyse the attack surface of the enclave bound-
ary interface and describe the protection techniques of the
code generation phase against attacks (R1).
Interface attacks. The security of the enclave code de-
pends on the inputs that it receives from the enclave in-
terface. An attacker may manipulate the parameters to
ecalls, the results of ocalls, and accesses to globals.
Secure by construction: The enclave code is, by construc-
tion, immune to input manipulation attacks. As long as

2Linked calls to the few stateful C library functions (e.g. strtok)
typically do not span multiple functions, making it unlikely that such
calls get partitioned into different regions.

Glamdring’s static analysis is sound, it transitively iden-
tifies all code that can affect the confidentiality and in-
tegrity of security-sensitive data annotated by the devel-
oper, placing it inside the enclave (see §3.2).

However, static analysis infers invariants about the pos-
sible values of program variables at different program
points, permitting it to prune unfeasible program paths
from analysis. The soundness of the static analysis there-
fore depends on these invariants holding at runtime. Any
invariant that relates to untrusted code or data may be
compromised by an attacker. The following code snippet
gives an example of a debug option that is deactivated in
the source code:

/* Outside code*/
int dump_flag = 0; // Can be modified by attacker.

/* Enclave code */
int ecall_enclave_func(int dump_flag) {
char* dump_data = malloc(...);
if(dump_flag == 1)
memcpy(dump_data, sensitive_data);

else
memcpy(dump_data, declassify(sensitive_data));

write_to_untrusted(dump_data);
}

Static analysis infers that the value of dump flag can-
not be 1, making it impossible to take the branch that
does not include the declassify() call. Since the value
of dump flag does not affect the control flow leading to
sensitive data release, Glamdring would allocate it out-
side the enclave. An attacker could set dump flag to any
value at runtime, including 1, to cause data disclosure.
Runtime invariant checks. To prevent such attacks, Glam-
dring enforces the invariants assumed by the static anal-
ysis at runtime. It does this by extracting invariants from
the analysis phase and adding them as runtime checks in
the code generation phase. Glamdring applies checks on
global variables and parameters passed into and out of
ecalls and ocalls. In the above example, Glamdring adds
a check assert(dump flag == 0).

Checks are also applied to pointers. The static analysis
infers the subset of malloc calls that may allocate mem-
ory pointed to by each pointer. Glamdring distinguishes
between two cases: (a) the analysis infers that a pointer
may only point to untrusted memory. A runtime check
upholds this and any other invariants on pointer aliasing;
or (b) the pointer may point to enclave memory. Here,
Glamdring’s invariant checks prevent pointer-swapping
attacks (i.e. a trusted pointer being replaced by another
trusted pointer): Glamdring instruments the malloc calls
inferred for that pointer inside the enclave, storing the ad-
dresses and sizes of allocated memory. When a trusted
pointer is passed to the enclave via an ecall, it is checked
to ensure that it points to a memory region allocated by
one of the statically inferred malloc calls for that pointer.
This upholds the results of the static pointer analysis at
runtime with enclave checks.

USENIX Association 2017 USENIX Annual Technical Conference 291

For checks on global variables allocated outside, be-
fore each use, Glamdring copies the value inside and ap-
plies the check to the local copy.
Enclave call ordering attacks. By construction, Glam-
dring prevents an attacker from subverting the security
guarantees by changing the order in which ecalls are in-
voked. The transitivity of static analysis ensures that all
functions that have a data/control flow dependence rela-
tionship (in either direction) with security-sensitive data
are placed inside the enclave. Therefore, any change in
the ordering of ecalls cannot affect the security guaran-
tees as long as the statically-inferred enclave boundary is
enforced. The EBR operation does change this boundary,
but only by placing extra functions inside, and therefore
cannot violate the security guarantees.
Iago attacks. For applications that use C library func-
tions unavailable in Intel SGX SDK, Glamdring adds
ocalls (see §4.1). The arguments to such ocalls may ex-
pose security-sensitive data or their results may cause in-
tegrity violations, leading to Iago attacks [12]. For these
functions, Glamdring enforces statically inferred invari-
ants on the return values at runtime. Further protection
could be done similar to I/O shields in SCONE [2].
Replay attacks. An attacker may tamper with the pro-
gram state assumed by the enclave by replaying previ-
ously issued ecalls. Glamdring guarantees the freshness
of encrypted sensitive data that is passed to ecalls. The
client affixes a freshness counter to security-sensitive data
as part of its encryption (see §3.3). The enclave stores the
latest freshness counter for each data item, and validates
freshness at ecalls. After an enclave restart, the freshness
counters must be restored to their latest values [77].
Enclave code vulnerabilities. Enclave code may con-
tain vulnerabilities that can be exploited by an attacker.
By reducing the amount of code executed in the en-
clave, Glamdring makes it more feasible to apply exist-
ing techniques to discover and rectify bugs such as buffer-
overflows [37,48], data races [45] and memory leaks [47].

5 Evaluation
We evaluate Glamdring by applying it to the Memcached
key/value store [24], the LibreSSL library [7] and the Dig-
ital Bitbox bitcoin wallet [70]. §5.1 describes the security
objectives, the source code annotations and the resulting
partitioning and its interface. The TCB (LOC) identified
by Glamdring varies between 22% and 40%, and the size
of the interface between 41–171 ecalls and 51–615 ocalls
for the three applications. §5.2 presents performance re-
sults on SGX hardware: the partitioned applications exe-
cute with 0.3×–0.8× of the native performance.
Glamdring implementation. Glamdring uses the Frama-
C Aluminium [25] static analysis framework, with the
“Impact Analysis” [26] and “Slicing” [27] plug-ins and
CodeSurfer 3.0.0 [34]. The Glamdring code generator

uses LLVM/Clang 3.9 and has approx. 5,000 LOC.
Memcached [24] is a distributed key/value store. It sup-
ports several operations: set(k,v), get(k), delete(k),
and increment/decrement(k,i). We apply Glamdring to
Memcached 1.4.25 that includes libevent 1.4.14 [62], an
asynchronous event library. Memcached has 31,100 LOC
and 655 functions.
LibreSSL [7] is a fork of the OpenSSL cryptographic
library [18], with the goal to provide a simpler and
more secure implementation. We apply Glamdring to Li-
breSSL 2.4.2 to secure its functionality when serving as
a certificate authority (CA). LibreSSL has 176,600 LOC
and 5,508 functions, which are divided into three libraries,
libcrypto, libssl and apps/openssl. We compile Li-
breSSL without inline assembly because our static analy-
sis does not support it.
Digital Bitbox [70] is a bitcoin wallet designed for high-
security USB microcontrollers. It supports: (i) hierarchi-
cal deterministic key generation; (ii) transaction signing;
and (iii) encrypted communication. We apply Glamdring
to Digital Bitbox 2.0.0 with Secp256k1 1.0.0, a crypto-
graphic library, and Yajl 2.1.0, a JSON library. Digital
Bitbox has 23,300 LOC and 873 functions.

5.1 Security evaluation
We evaluate the security of the partitioned application in
terms of the TCB size and the exposed enclave interface.
5.1.1 Memcached
Security objectives. We want to protect the integrity and
confidentiality of all key/value pairs in an untrusted Mem-
cached deployment, preventing an attacker from reading
or modifying the stored key/value data. For this, we use
the source code annotations described in §3.1.
Security-sensitive code. Tab. 1 shows that Glamdring
places 40% of LOC, 42% of functions and 68% of global
variables of Memcached inside the enclave. EBR moves
a single additional function into the enclave, reducing the
ocall crossings by an order of magnitude for get and set

operations. We conclude that a large portion of the Mem-
cached codebase (without libevent) is security-sensitive,
as 87% of its functions and 85% of its global variables
are assigned to the enclave.
Partitioned architecture. Glamdring places the follow-
ing Memcached functionality inside the enclave: (i) bina-
ry/ASCII protocol handling functions; (ii) slab and cache
memory management functions that manipulate the data
structures responsible for the internal storage of key/value
pairs; and (iii) the hash functions over key/value pairs.
The functionality placed outside includes: (i) thread ini-
tialization and registration functions; (ii) libevent func-
tions for socket polling and network I/O; and (iii) signal
handlers and string utility functions.
Enclave interface. The enclave interface (see Tab. 1) has
41 ecalls and 146 ocalls. Out of these, 82 ocalls are to C

292 2017 USENIX Annual Technical Conference USENIX Association

Application LOC Functions Global
variables

Security-
sensitive LOC

Security-sensitive
functions

Security-sensitive
global variables

Ecalls Ocalls C lib.
ocalls

App.
ocalls

Ecall crossings per
application request

Ocall crossings per
application request

get set get set

Memcached 31,100 655 119 12,474 (40%) 273 (42%) 81 (68%) 41 146 82 64 1 1 2 2
Memcached w/o EBR 31,100 655 119 272 (42%) 81 (68%) 41 147 82 65 1 1 18 34

Memcached v1.4.25 13,800 247 84 215 (87%) 72 (85%)
libevent v1.4.14 17,300 408 35 57 (14%) 9 (26%)

sign sign

LibreSSL 176,600 5,508 1,034 38,291 (22%) 918 (17%) 163 (16%) 171 613 23 312 6,617 110
LibreSSL w/o EBR 176,600 5,508 1,034 916 (17%) 163 (16%) 171 615 23 314 16,545 8,235

libcrypto v2.4.2 124,800 4,550 833 654 (14%) 91 (11%)
libssl v2.4.2 24,300 628 42 83 (13%) 7 (17%)
apps v2.4.2 27,500 330 159 179 (54%) 65 (41%)

seed sign random seed sign random

Digital Bitbox 23,300 873 105 8,743 (38%) 365 (42%) 55 (52%) 114 51 20 31 23 4 7 4 0 0
Digital Bitbox w/o EBR 23,300 873 105 361 (42%) 55 (52%) 118 55 20 35 3,252 6,937 672 59 12 11

Digital Bitbox v2.0.0 7,900 382 81 195 (51%) 48 (60%)
Secp256k1 v1.0.0 12,900 112 9 52 (46%) 1 (11%)
Yajl v2.1.0 2,500 379 15 114 (30%) 6 (40%)

Table 1: TCB sizes, enclave interfaces and enclave crossings for Glamdring applications (Application requests are:
(i) get, set for Memcached; (ii) sign for LibreSSL; and (iii) seed, sign, random for Digital Bitbox.)

library functions unavailable inside the enclave; 64 ocalls
are to application functions.

To protect the security-sensitive data between the Mem-
cached client and the enclave interface, Glamdring en-
crypts the following parameters at the client for each
request: (i) the operation to perform; (ii) the key; and
(iii) the value. The keys, values and the request outcome
are encrypted in the client response.
5.1.2 LibreSSL
Security objectives. Our goal is to protect the confiden-
tiality of the private key of the root certificate of the Li-
breSSL CA. We annotate the private key as follows:

int ca_main(int argc, char** argv) {
...
#pragma glamdring sensitive-source(pkey)
pkey = load_key(bio, keyfile, keyform, 0, key, "...");
...

}

Security-sensitive code. Tab. 1 shows that Glamdring
places 22% of LOC, 17% of functions and 16% of global
variables inside the enclave. EBR moves 2 functions into
the enclave, thereby: (i) more than halving the number
of ecall crossings; and (ii) reducing the number of ocall
crossings by an order of magnitude for sign requests. The
majority of functions and global variables assigned to the
enclave originate from the libcrypto library, which con-
tains most of the certificate signing logic.
Partitioned architecture. Glamdring places only a sub-
set of LibreSSL into the enclave: (i) the entropy/random
number generator; (ii) the RSA and Big Numbers mod-
ule; and (iii) the X509 module, which stores the certifi-
cates. The functionality placed outside includes: (i) the
TLS/SSL modules for secure communication; (ii) digest
algorithms (MD5, SHA256); and (iii) cryptographic pro-
tocols unrelated to certificate signing (DSA, AES)
Enclave interface. LibreSSL exposes 171 ecalls and
613 ocalls (see Tab. 1). Out of those, only 23 ocalls pro-
vide access to C library functions; 49% of ocalls provide
access to global variables; and the remaining 278 ocalls
are used to execute outside LibreSSL functions.

Glamdring places the private key of the root certificate
and any variables that depend on it inside the enclave.
The communication between the client requesting a cer-
tificate signature and the enclave involves: (i) reading the
certificate to be signed; and (ii) outputting the signature.
We assume that the root certificate and its private key are
given to the enclave during initialisation [44]. Since the
signed certificate is not confidential, no explicit declassi-
fication is needed before writing it to disk via an ocall.
5.1.3 Digital Bitbox
Security objectives. We want to secure Digital Bitbox in
a remote deployment, such as an online bitcoin service.
An attacker must not (i) read/modify the private keys in
the wallet; and (ii) issue commands such as transactions.

We consider three API calls security-sensitive:
(i) seed() to create a new wallet; (ii) sign() to sign a
transaction and return the signature; and (iii) random()

to return a random number. We annotate these API calls
with security annotations. The listing below shows the
annotation added to protect the transaction signature re-
turned to the user for the seed() API call:

int wallet_sign(char *message, char *keypath) {
uint8_t sig[64];
...
ecc_sign_digest(node.private_key, data, sig)
...
#pragma glamdring sensitive-sink(sig)
return commander_fill_signature_array(sig, pub_key);

}

Security-sensitive code. Glamdring places 38% of LOC,
42% of functions and 52% of global variables inside the
enclave (see Tab. 1). EBR increases the TCB by 4 func-
tions, reducing the number of ecall and ocall crossings at
runtime by between 1 and 3 orders of magnitude, for the
seed, sign and random API calls. Only half of the Digital
Bitbox code itself is security-sensitive: 51% of functions
and 60% of global variables.
Partitioned architecture. The Digital Bitbox functional-
ity placed inside the enclave includes: (i) command pro-
cessing functions for specific API calls; (ii) code for gen-
erating seeds (using the SGX-provided hardware random

USENIX Association 2017 USENIX Annual Technical Conference 293

 0

 1

 2

 3

 4

 5

 0 100 200 300 400 500 600

L
a

te
n

c
y
 i
n

 m
s

Throughput in 1000 requests/s

native
Glamdring

SCONE w/o encryption
Graphene

(a) Read-only workload

 0

 1

 2

 3

 4

 5

 0 100 200 300 400 500 600

L
a

te
n

c
y
 i
n

 m
s

Throughput in 1000 requests/s

native
Glamdring

SCONE w/o encryption
Graphene

(b) Write-only workload

 0

 1

 2

 3

 4

 5

 0 100 200 300 400 500 600

L
a

te
n

c
y
 i
n

 m
s

Throughput in 1000 requests/s

native
Glamdring

SCONE w/o encryption
Graphene

(c) Read/write workload

Figure 3: Throughput versus latency for Memcached native, with SCONE and with Glamdring
Secure application approaches LOC Binary Size Throughput

Memcached with Glamdring 42,800 770 kB 160 kreq/s
Security-sensitive Memcached 12,450
Glamdring code generation & hardening 5,662
Intel SGX SDK 24,688

Memcached with SCONE 149,298 3.3 MB 270–330 kreq/s
Memcached 28,807
Musl lib. C 105,885
Stunnel (network encryption) 14,606

Memcached with Graphene 746,716 4.1 MB 65–95 kreq/s
Memcached 28,807
Graphene 693,221
Intel SGX SDK 24,688

Table 2: TCB sizes and performance for Memcached
for Glamdring, SCONE and Graphene

generator); and (iii) elliptic curve operations for transac-
tion signing. The functionality placed outside includes:
(i) wallet management functions for retrieving the pub-
lic key and address formats; (ii) the command interface
for handling API calls and constructing responses; and
(iii) elliptic curve and JSON parsing utility functions.
Enclave interface. Digital Bitbox exposes 114 ecalls and
55 ocalls (see Tab. 1). 36% of ocalls are to C library func-
tions unavailable inside the enclave; 64% are to applica-
tion functions outside the enclave.

To protect the security-sensitive data between the client
and the application, Glamdring encrypts: (i) the command
to execute (seed()/sign()); (ii) the user-provided entropy
for seed(); (iii) the transaction data for sign(); (iv) the
value of seed(); (v) the signature of sign() returned to the
client; and (vi) the generated random number. Performing
data protection at this granularity prevents an attacker
from issuing commands to Digital Bitbox, and permits
Glamdring to move the majority of the JSON parsing
functions outside the enclave, as only a subset of the API
request/response is security-sensitive.
5.1.4 Discussion
Our security evaluation has led to several insights:
First, Glamdring achieves small enclave sizes, protect-
ing security-sensitive functionality for real-world applica-
tions. Tab. 2 compares the TCB for Memcached of Glam-
dring with SCONE [2] and Graphene [55, 81], which
place the whole application inside the enclave. As can
be seen, Glamdring is one-third the size of SCONE, and
one order of magnitude smaller than Graphene in terms
of enclave LOC; around 6,000 LOC are added by Glam-
dring to the TCB through the code generator and enclave
interface hardening. In binary sizes, Glamdring is 4× and
5× smaller than SCONE and Graphene, respectively.

Second, EBR is effective at reducing the number of
ecall and ocall crossings at runtime, despite only moving
a few additional functions into the enclave. In the case
of Digital Bitbox, moving four functions into the enclave
reduces the number of enclave boundary crossings by up
to three orders of magnitude.

5.2 Performance evaluation
We evaluate the performance of the three partitioned ap-
plications in terms of throughput and latency.
Experimental set-up. All experiments are executed on
an SGX-supported 4-core Intel Xeon E3-1280 v5 at
3.70 GHz with 64 GB of RAM, running Ubuntu 14.04
LTS with Linux kernel 3.19 and the Intel SGX SDK 1.7.
We deactivate hyper-threading and compile the applica-
tions using GCC 4.8.4 with -O2 optimisations.
Application benchmarks. We evaluate Memcached with
the YCSB benchmark [15]. Clients run on separate ma-
chines connected via a Gigabit network link. We increase
the number of clients until the server is saturated. Mem-
cached is initialised with the YCSB default of 1000 keys
with 1 KB values. We then vary the percentage of get

(read) and set (write) operations.
For LibreSSL, we measure the throughput and latency

when signing certificates using SHA-256 and a 4096-bit
RSA key. For Digital Bitbox, we observe the performance
for the seed, sign, and random API calls using workloads
from the Digital Bitbox test suite: (i) tests sign seeds a
wallet and signs 64-byte transactions; (ii) tests aes cbc

seeds a wallet with user-provided entropy, sets passwords
and performs encryption/decryption with AES-256; and
(iii) tests random returns random numbers.
Results. We measure the throughput and latency for
Memcached: (i) partitioned by Glamdring; (ii) exe-
cuted by SCONE (without network encryption); (iii) by
Graphene; and (iv) natively, as the request rate is in-
creased. We consider three workloads: read-only, write-
only and 50%/50% read/write.

Fig. 3 shows that all three variants exhibit consistent
behaviour across the workloads. Glamdring shows a
throughput of 160k requests/s; SCONE (without encryp-
tion) achieves between 270k–330k requests/s; Graphene
between 65k–95k requests/s; and the native Memcached
achieves around 530k–600k requests/sec.

The reason for Glamdring’s lower throughput com-

294 2017 USENIX Annual Technical Conference USENIX Association

 1

 1.2

 1.4

 1.6

 1.8

 2

LibreSSL sign

tests_sign
tests_aes_cbc

tests_random

 1

 1.2

 1.4

 1.6

 1.8

 2

R
e
la

ti
v
e
 t
h
ro

u
g
h
p
u
t
o
v
e
rh

e
a
d

R
e
la

ti
v
e
 l
a
te

n
c
y

Throughput overhead
Latency overhead

Figure 4: Throughput and latency overhead for Digital
Bitbox and LibreSSL

pared to SCONE is that SCONE avoids all enclave tran-
sitions; it trades off TCB size for performance (see §2.3)
and requires user-level enclave threading to avoid tran-
sitions. Enclave transitions dominate the cost of pro-
cessing a request; by batching multiple get requests
together using multi-get, Glamdring achieves over
210k requests/sec. However, Glamdring has only a third
of the TCB of SCONE (see Tab. 2). The overhead of a li-
brary OS means that Memcached with Graphene exhibits
worse performance than Glamdring.

Fig. 4 shows the performance of LibreSSL and Digi-
tal Bitbox with Glamdring compared to their native ver-
sions. The throughput of certificate signing in LibreSSL
is 0.6× compared to native execution, decreasing from
63 to 36 signatures per second on each CPU core. The
performance of LibreSSL is limited by a single ecall
(bn sub part words), which is central to the RSA algo-
rithm and accounts for 95% of all enclave transitions. As
for Digital Bitbox, compared to native execution, the rel-
ative throughput is between 0.7× and 0.8×; the relative
latency is between 1.3× and 1.4×.
Effect of EBR. By comparing the performance of parti-
tioned applications before and after applying the EBR op-
timisation, we found that the latter increased the through-
put by 1.6× to 4.0× for the three applications, at the cost
of at most 4 additional functions in the enclave.

6 Related Work
Privilege separation. The attack surface of applications
can be reduced in many ways [11,31,35,51,66,85]. Priv-
Trans [11] performs a least-privilege partitioning of an
application into a privileged monitor and an unprivileged
slave component using static analysis, without consider-
ing the integrity of sensitive data. ProgramCutter [85] and
Wedge [8] rely on dynamic analysis to partition applica-
tions. SeCage [51] combines static and dynamic analysis
to partition applications, and the isolation is enforced us-
ing CPU virtualisation features. In contrast, Glamdring
does not need a trusted OS or hypervisor and respects the
constraints of trusted execution.

SOAAP [35] helps developers to reason about the
potential compartmentalisation of applications based on
source annotations and static analysis. Unlike Glamdring,
it does not support automated code partitioning. Rubinov

et al. [66] propose a partitioning framework for Android
applications. It refactors the source code and adds a set
of privileged instructions. However, it only supports type-
safe Java applications and requires users to re-implement
the security-sensitive functionality in C.
Protecting applications from an untrusted OS. A num-
ber of approaches have been proposed to deal with an un-
trusted OS that spans millions of LOC. NGSCB [57] and
Proxos [79] execute both an untrusted and a trusted OS us-
ing virtualisation, and security-sensitive applications are
managed only by the trusted OS. The TCB, however, still
includes a full OS. In more recent work, Overshadow [13],
SP3 [87], InkTag [39] and Virtual Ghost [20] protect ap-
plication memory from an untrusted OS by extending the
virtual machine monitor (VMM). Such approaches put
trust in the VMM, and cannot protect against attackers
with privileged access, such as system administrators.
Trusted hardware. Use of trusted hardware, such as se-
cure co-processors [50] and trusted platform modules
(TPM) [80], can protect against attackers with physical
access. A TPM can measure system integrity and provide
remote attestation to verify the software stack [29]. Since
the TPM measurement will include the OS and any sys-
tem libraries, the TCB likely comprises millions of LOC.

Flicker [53] reduces the integrity measurement to a
TCB of just 250 LOC, but lacks relevant system support
and suffers from slow TPM operations. TrustVisor [52] is
a special-purpose VMM that uses software-based µTPMs
for application integrity checking, but it focuses on small
pieces of application logic and requires a trusted hypervi-
sor. CloudVisor [88] provides integrity and confidential-
ity protection for virtual machines using nested virtuali-
sation, but this leads to VM-sized TCBs.

7 Conclusions
We described Glamdring, the first partitioning framework
that helps developers leverage SGX enclaves for C appli-
cations. Glamdring uses static program analysis to decide
which subset of the application code to protect, and offers
guarantees that the confidentiality and integrity of applica-
tion data cannot be compromised, even when an attacker
has complete control over the machine. Our experimen-
tal evaluation demonstrates that Glamdring is sufficiently
practical to handle real-world applications.

8 Acknowledgements
This work has received funding from the European
Union’s Horizon 2020 programme under grant agree-
ments 645011 (SERECA) and 690111 (SecureCloud),
and from the UK Engineering and Physical Sciences
Research Council (EPSRC) under the CloudSafetyNet
project (EP/K008129) and the EPSRC Centre for Doc-
toral Training in High Performance Embedded and Dis-
tributed Systems (HiPEDS) (EP/L016796/1).

USENIX Association 2017 USENIX Annual Technical Conference 295

References
[1] A R M B R U S T , M . , F O X , A . , G R I F F I T H , R . , J O S E P H ,

A . D . , K AT Z , R . , K O N W I N S K I , A . , L E E , G . , PAT T E R -
S O N , D . , R A B K I N , A . , S T O I C A , I . , A N D Z A H A R I A , M .
A View of Cloud Computing. Commun. ACM (2010).

[2] A R N A U T O V, S . , T R A C H , B . , G R E G O R , F. , K N A U T H ,
T. , M A R T I N , A . , P R I E B E , C . , L I N D , J . , M U T H U K U -
M A R A N , D . , O ’ K E E F F E , D . , S T I L LW E L L , M . L . ,
E T A L . SCONE: Secure Linux Containers with Intel SGX. In
OSDI (2016).

[3] Amazon Web Services. https://aws.amazon.com, 2016.

[4] Microsoft Azure. https://azure.microsoft.com, 2016.

[5] B A U D I N , P. , F I L L I Â T R E , J . - C . , M A R C H É , C . ,
M O N AT E , B . , M O Y, Y. , A N D P R E V O S T O , V. ACSL:
ANSI C Specification Language, 2008.

[6] B A U M A N N , A . , P E I N A D O , M . , A N D H U N T , G . Shield-
ing Applications from an Untrusted Cloud with Haven. In OSDI
(2014).

[7] B E C K , B . LibreSSL–An OpenSSL replacement. The first 30
days, and where we go from here. BSDCAN, 2014.

[8] B I T TA U , A . , M A R C H E N K O , P. , H A N D L E Y, M . , A N D
K A R P, B . Wedge: Splitting applications into reduced-privilege
compartments. In Proceedings of the 5th USENIX Symposium on
Networked Systems Design and Implementation (Berkeley, CA,
USA, 2008), NSDI’08, USENIX Association, pp. 309–322.

[9] B R E N N E R , S . , W U L F , C . , L O R E N Z , M . , W E I C H -
B R O D T , N . , G O LT Z S C H E , D . , F E T Z E R , C . , P I E T-
Z U C H , P. , A N D K A P I T Z A , R . SecureKeeper: Confidential
ZooKeeper using Intel SGX. In Middleware (2016).

[10] B R I C K E L L , E . , G R A U N K E , G . , N E V E , M . , A N D
S E I F E R T , J . - P. Software mitigations to hedge AES against
cache-based software side channel vulnerabilities. IACR
Cryptology ePrint Archive (2006).

[11] B R U M L E Y, D . , A N D S O N G , D . Privtrans: Automatically
Partitioning Programs for Privilege Separation. In USENIX Secu-
rity (2004).

[12] C H E C K O WAY, S . , A N D S H A C H A M , H . Iago Attacks: Why
the System Call API is a Bad Untrusted RPC Interface. In ASP-
LOS (2013).

[13] C H E N , X . , G A R F I N K E L , T. , L E W I S , E . C . , S U B R A H -
M A N YA M , P. , WA L D S P U R G E R , C . A . , B O N E H , D . ,
D W O S K I N , J . , A N D P O R T S , D . R . Overshadow: A
Virtualization-based Approach to Retrofitting Protection in Com-
modity Operating Systems. In ASPLOS (2008).

[14] clang: a C language family frontend for LLVM. http://clang.
llvm.org, 2016.

[15] C O O P E R , B . F. , S I L B E R S T E I N , A . , TA M , E . , R A -
M A K R I S H N A N , R . , A N D S E A R S , R . Benchmarking Cloud
Serving Systems with YCSB. In SoCC (2010).

[16] C O S TA N , V. , A N D D E VA D A S , S . Intel SGX Explained.
Tech. rep., Cryptology ePrint Archive, 2016.

[17] C O WA N , C . , B E AT T I E , S . , K R O A H - H A R T M A N , G . ,
P U , C . , WA G L E , P. , A N D G L I G O R , V. SubDomain: Parsi-
monious Server Security. In LISA (2000).

[18] C O X , M . , E N G E L S C H A L L , R . , H E N S O N , S . , L A U R I E ,
B . , E T A L . The OpenSSL Project. https://www.openssl.
org/, 2002.

[19] C R A N E , S . , H O M E S C U , A . , B R U N T H A L E R , S . ,
L A R S E N , P. , A N D F R A N Z , M . Thwarting Cache Side-
Channel Attacks Through Dynamic Software Diversity. In NDSS
(2015).

[20] C R I S W E L L , J . , D A U T E N H A H N , N . , A N D A D V E , V. Vir-
tual Ghost: Protecting Applications from Hostile Operating Sys-
tems. In ASPLOS (2014).

[21] D O U L I G E R I S , C . , A N D M I T R O K O T S A , A . DDoS At-
tacks and Defense Mechanisms: Classification and State-of-the-
art. Comput. Netw. (2004).

[22] D W O R K I N , M . Recommendation for Block Cipher Modes of
Operation: Galois/Counter Mode (GCM) and GMAC. Tech. rep.,
National Institute of Standards and Technology (NIST), 2007.

[23] F E R R A N T E , J . , O T T E N S T E I N , K . J . , A N D WA R R E N ,
J . D . The Program Dependence Graph and Its Use in Optimiza-
tion. Trans. Program. Lang. Syst. (1987).

[24] F I T Z PAT R I C K , B . Distributed Caching with Memcached.
Linux Journal (2004).

[25] Frama-C Software Analyzers. http://frama-c.com/what is.
html, 2016.

[26] Frama-C Impact analysis plug-in. http://frama-c.com/
impact.html, 2016.

[27] Frama-C Slicing plug-in. http://frama-c.com/slicing.html,
2016.

[28] F R E E S O F T WA R E F O U N D AT I O N , I N C . Gcov - Using
the GNU Compiler Collection (GCC). https://gcc.gnu.org/
onlinedocs/gcc/Gcov.html#Gcov, 2017.

[29] G A R F I N K E L , T. , P F A F F , B . , C H O W, J . , R O S E N B L U M ,
M . , A N D B O N E H , D . Terra: A Virtual Machine-based Plat-
form for Trusted Computing. In SOSP (2003).

[30] G E M A LT O N V. No One is Immune to Breaches
as 183 Million Accounts Compromised in Q3 2014.
https://safenet.gemalto.com/news/2014/q3-data-
breaches-compromise-183-million-customer-accounts,
2014.

[31] G E N E I ATA K I S , D . , P O R T O K A L I D I S , G . , K E M E R L I S ,
V. P. , A N D K E R O M Y T I S , A . D . Adaptive Defenses for
Commodity Software Through Virtual Application Partitioning.
In CCS (2012).

[32] G E N T RY, C . Fully Homomorphic Encryption Using Ideal Lat-
tices. In STOC (2009).

[33] G H A R AT , P. M . , K H E D K E R , U . P. , A N D M Y C R O F T , A .
Flow-and Context-Sensitive Points-To Analysis Using General-
ized Points-To Graphs. In SAS (2016).

[34] G R A M M AT E C H , I N C . CodeSurfer. https://www.
grammatech.com/products/codesurfer, 2016.

[35] G U D K A , K . , WAT S O N , R . N . , A N D E R S O N , J . , C H I S -
N A L L , D . , D AV I S , B . , L A U R I E , B . , M A R I N O S , I . ,
N E U M A N N , P. G . , A N D R I C H A R D S O N , A . Clean Ap-
plication Compartmentalization with SOAAP. In CCS (2015).

[36] G U T TA G , J . V. , A N D H O R N I N G , J . J . Larch: Languages
and Tools for Formal Specification. Springer Science & Business
Media, 2012.

[37] H A L L E R , I . , S L O W I N S K A , A . , N E U G S C H WA N D T N E R ,
M . , A N D B O S , H . Dowsing for Overflows: A Guided Fuzzer
to Find Buffer Boundary Violations. In USENIX Security (2013).

[38] H A R D E K O P F , B . , A N D L I N , C . Flow-sensitive Pointer Anal-
ysis for Millions of Lines of Code. In CGO (2011).

[39] H O F M A N N , O . S . , K I M , S . , D U N N , A . M . , L E E ,
M . Z . , A N D W I T C H E L , E . InkTag: Secure Applications on
an Untrusted Operating System. In ASPLOS (2013).

[40] H O R W I T Z , S . , R E P S , T. , A N D B I N K L E Y, D . Interproce-
dural Slicing Using Dependence Graphs. In PLDI (1988).

296 2017 USENIX Annual Technical Conference USENIX Association

https://aws.amazon.com
https://azure.microsoft.com
http://clang.llvm.org
http://clang.llvm.org
https://www.openssl.org/
https://www.openssl.org/
http://frama-c.com/what_is.html
http://frama-c.com/what_is.html
http://frama-c.com/impact.html
http://frama-c.com/impact.html
http://frama-c.com/slicing.html
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html#Gcov
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html#Gcov
https://safenet.gemalto.com/news/2014/q3-data-breaches-compromise-183-million-customer-accounts
https://safenet.gemalto.com/news/2014/q3-data-breaches-compromise-183-million-customer-accounts
https://www.grammatech.com/products/codesurfer
https://www.grammatech.com/products/codesurfer

[41] I D E N T I T Y T H E F T R E S O U R C E C E N T E R . 2016 Breach
List. http://www.idtheftcenter.org/images/breach/
ITRCBreachReport 2016.pdf, 2016.

[42] I N T E L C O R P. Software Guard Extensions Programming Ref-
erence, Ref. 329298-002US. https://software.intel.com/
sites/default/files/managed/48/88/329298-002.pdf,
2014.

[43] I N T E L C O R P. Intel Software Guard Extensions (Intel SGX)
SDK. https://software.intel.com/sgx-sdk, 2016.

[44] J O H N S O N , S I M O N E T A L . Intel® Software Guard Ex-
tensions: EPID Provisioning and Attestation Services. https:
//software.intel.com/en-us/blogs/2016/03/09/intel-
sgx-epid-provisioning-and-attestation-services,
2016.

[45] J U L A , H . , T R A L A M A Z Z A , D . , Z A M F I R , C . , A N D C A N -
D E A , G . Deadlock immunity: Enabling systems to defend
against deadlocks. In OSDI (2008).

[46] K E L B E R T , F. , A N D P R E T S C H N E R , A . A Fully Decentral-
ized Data Usage Control Enforcement Infrastructure. In ACNS
(2015).

[47] K U Z N E T S O V, V. , S Z E K E R E S , L . , PAY E R , M . , C A N -
D E A , G . , S E K A R , R . , A N D S O N G , D . Code-pointer in-
tegrity. In OSDI’14 (2014).

[48] L A R O C H E L L E , D . , A N D E VA N S , D . Statically Detecting
Likely Buffer Overflow Vulnerabilities. In USENIX Security
(2001).

[49] L AT T N E R , C . , A N D A D V E , V. LLVM: A Compilation
Framework for Lifelong Program Analysis & Transformation. In
CGO (2004).

[50] L I N D E M A N N , M . , P E R E Z , R . , S A I L E R , R . , VA N
D O O R N , L . , A N D S M I T H , S . Building the IBM 4758 Secure
Coprocessor. Computer (2001).

[51] L I U , Y. , Z H O U , T. , C H E N , K . , C H E N , H . , A N D X I A ,
Y. Thwarting Memory Disclosure with Efficient Hypervisor-
enforced Intra-domain Isolation. In CCS (2015).

[52] M C C U N E , J . M . , L I , Y. , Q U , N . , Z H O U , Z . , D AT TA ,
A . , G L I G O R , V. , A N D P E R R I G , A . TrustVisor: Efficient
TCB Reduction and Attestation. In S&P (2010).

[53] M C C U N E , J . M . , PA R N O , B . J . , P E R R I G , A . , R E I T E R ,
M . K . , A N D I S O Z A K I , H . Flicker: An Execution Infrastruc-
ture for TCB Minimization. In Eurosys (2008).

[54] M I S R A , S . C . , A N D B H AV S A R , V. C . Relationships
Between Selected Software Measures and Latent Bug-Density:
Guidelines for Improving Quality. Springer Berlin Heidelberg,
2003, p. 724732.

[55] O S C A R L A B. Graphene-SGX. https://github.com/
oscarlab/graphene, 2017.

[56] O T T E N S T E I N , K . J . , A N D O T T E N S T E I N , L . M . The pro-
gram dependence graph in a software development environment.
SIGPLAN Not. 19, 5 (Apr. 1984), 177–184.

[57] P E I N A D O , M . , C H E N , Y. , E N G L A N D , P. , A N D M A N -
F E R D E L L I , J . NGSCB: A Trusted Open System. In S&P
(2004).

[58] P I R E S , R . , PA S I N , M . , F E L B E R , P. , A N D F E T Z E R , C .
Secure Content-Based Routing Using Intel Software Guard Ex-
tensions. In Middleware (2016), ACM.

[59] P O N E M O N I N S T I T U T E . The Aftermath of a Mega Data
Breach: Consumer Sentiment, 2014.

[60] P O PA , R . A . , R E D F I E L D , C . M . S . , Z E L D O V I C H , N . ,
A N D B A L A K R I S H N A N , H . CryptDB: Protecting Confiden-
tiality with Encrypted Query Processing. In SOSP (2011).

[61] P O R T E R , D . E . , B O Y D - W I C K I Z E R , S . , H O W E L L , J . ,
O L I N S K Y, R . , A N D H U N T , G . Rethinking the Library OS
from the Top Down. In ASPLOS (2011).

[62] P R O V O S , N . , A N D M AT H E W S O N , N . libevent - An event
notification library. http://libevent.org/, 2003.

[63] P U T TA S WA M Y, K . P. N . , K R U E G E L , C . , A N D Z H A O ,
B . Y. Silverline: Toward Data Confidentiality in Storage-
intensive Cloud Applications. In SOCC (2011).

[64] R A M A L I N G A M , G . The Undecidability of Aliasing. TOPLAS
(1994).

[65] R E P S , T. , H O R W I T Z , S . , A N D S A G I V, M . Precise Inter-
procedural Dataflow Analysis via Graph Reachability. In POPL
(1995).

[66] R U B I N O V, K O N S TA N T I N A N D R O S C U L E T E , L U C I A
A N D M I T R A , T U L I K A A N D R O Y C H O U D H U RY, A B H I K.
Automated Partitioning of Android Applications for Trusted Exe-
cution Environments. In ICSE (2016).

[67] S A LT Z E R , J . H . , A N D S C H R O E D E R , M . D . The protec-
tion of information in computer systems. Proceedings of the IEEE
(1975).

[68] S C H U S T E R , F. , C O S TA , M . , F O U R N E T , C . , G K A N T-
S I D I S , C . , P E I N A D O , M . , M A I N A R - R U I Z , G . , A N D
R U S S I N O V I C H , M . VC3: Trustworthy Data Analytics in the
Cloud Using SGX. In S&P (2015).

[69] S H E N , V. Y. , Y U , T. - J . , T H E B A U T , S . M . , A N D
PA U L S E N , L . R . Identifying Error-Prone softwareAn Empiri-
cal Study. Trans. Softw. Eng. (1985).

[70] S H I F T D E V I C E S AG. Digital Bitbox. https://github.com/
digitalbitbox/mcu, 2016.

[71] S I N G A R AV E L U , L . , P U , C . , H Ä R T I G , H . , A N D H E L -
M U T H , C . Reducing TCB Complexity for Security-sensitive
Applications: Three Case Studies. In EuroSys (2006).

[72] S I N H A , R . , C O S TA , M . , L A L , A . , L O P E S , N . P. , R A J A -
M A N I , S . , S E S H I A , S . A . , A N D VA S WA N I , K . A Design
and Verification Methodology for Secure Isolated Regions. In
PLDI (2016).

[73] S I N H A , R . , R A J A M A N I , S . , S E S H I A , S . , A N D
VA S WA N I , K . Moat: Verifying Confidentiality of Enclave
Programs. In CCS (2015).

[74] S M I T H , S . F. , A N D T H O B E R , M . Refactoring Programs to
Secure Information Flows. In PLAS (2006).

[75] S O F T P E D I A . Hackers Modify Water Treatment Parameters
by Accident. http://news.softpedia.com/news/hackers-
modify-water-treatment-parameters-by-accident-
502043.shtml, 2016.

[76] S T E F A N , D . , YA N G , E . Z . , M A R C H E N K O , P. , R U S S O ,
A . , H E R M A N , D . , K A R P, B . , A N D M A Z I È R E S , D . Pro-
tecting Users by Confining JavaScript with COWL. In Proceed-
ings of the 11th USENIX Conference on Operating Systems De-
sign and Implementation (2014), OSDI’14, USENIX Association,
pp. 131–146.

[77] S T R A C K X , R . , A N D P I E S S E N S , F. Ariadne: A Minimal
Approach to State Continuity. In USENIX Security (2016).

[78] S Y N O P S Y S , I N C. Coverity Scan - Open Source Report
2014. http://go.coverity.com/rs/157-LQW-289/images/
2014-Coverity-Scan-Report.pdf, 2014.

[79] TA - M I N , R . , L I T T Y, L . , A N D L I E , D . Splitting Interfaces:
Making Trust Between Applications and Operating Systems Con-
figurable. In OSDI (2006).

[80] T R U S T E D C O M P U T I N G G R O U P. TPM Main Specifica-
tion v1.2, rev 116 . http://www.trustedcomputinggroup.org/
tpm-main-specification/, 2011.

USENIX Association 2017 USENIX Annual Technical Conference 297

http://www.idtheftcenter.org/images/breach/ITRCBreachReport_2016.pdf
http://www.idtheftcenter.org/images/breach/ITRCBreachReport_2016.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sgx-sdk
https://software.intel.com/en-us/blogs/2016/03/09/intel-sgx-epid-provisioning-and-attestation-services
https://software.intel.com/en-us/blogs/2016/03/09/intel-sgx-epid-provisioning-and-attestation-services
https://software.intel.com/en-us/blogs/2016/03/09/intel-sgx-epid-provisioning-and-attestation-services
https://github.com/oscarlab/graphene
https://github.com/oscarlab/graphene
http://libevent.org/
https://github.com/digitalbitbox/mcu
https://github.com/digitalbitbox/mcu
http://news.softpedia.com/news/hackers-modify-water-treatment-parameters-by-accident-502043.shtml
http://news.softpedia.com/news/hackers-modify-water-treatment-parameters-by-accident-502043.shtml
http://news.softpedia.com/news/hackers-modify-water-treatment-parameters-by-accident-502043.shtml
http://go.coverity.com/rs/157-LQW-289/images/2014-Coverity-Scan-Report.pdf
http://go.coverity.com/rs/157-LQW-289/images/2014-Coverity-Scan-Report.pdf
http://www.trustedcomputinggroup.org/tpm-main-specification/
http://www.trustedcomputinggroup.org/tpm-main-specification/

[81] T S A I , C . - C . , A R O R A , K . S . , B A N D I , N . , JA I N , B . ,
JA N N E N , W. , J O H N , J . , K A L O D N E R , H . A . , K U L K A -
R N I , V. , O L I V E I R A , D . , A N D P O R T E R , D . E . Cooper-
ation and security isolation of library oses for multi-process ap-
plications. In Proceedings of the Ninth European Conference on
Computer Systems (2014), ACM, p. 9.

[82] T U , S . , K A A S H O E K , M . F. , M A D D E N , S . , A N D Z E L -
D O V I C H , N . Processing Analytical Queries over Encrypted
Data. Proc. VLDB Endow. (2013).

[83] W E I C H B R O D T , N . , K U R M U S , A . , P I E T Z U C H , P. , A N D
K A P I T Z A , R . AsyncShock: Exploiting Synchronisation Bugs
in Intel SGX Enclaves. In ESORICS (2016).

[84] W E I S E R , M . Program Slicing. In ICSE (1981).

[85] W U , Y. , S U N , J . , L I U , Y. , A N D D O N G , J . S . Automat-
ically Partition Software into Least Privilege Components Using
Dynamic Data Dependency Analysis. In ASE (2013).

[86] X U , Y. , C U I , W. , A N D P E I N A D O , M . Controlled-Channel
Attacks: Deterministic Side Channels for Untrusted Operating
Systems. In S&P (2015).

[87] YA N G , J . , A N D S H I N , K . G . Using Hypervisor to Provide
Data Secrecy for User Applications on a Per-page Basis. In VEE
(2008).

[88] Z H A N G , F. , C H E N , J . , C H E N , H . , A N D Z A N G , B .
CloudVisor: Retrofitting Protection of Virtual Machines in Multi-
tenant Cloud with Nested Virtualization. In SOSP (2011).

[89] Z H A N G , W. , A N D Z H A N G , Y. Lightweight Function Pointer
Analysis. Springer International Publishing, 2015, p. 439453.

298 2017 USENIX Annual Technical Conference USENIX Association

	Introduction
	Background
	Threat model
	Trusted execution with Intel SGX
	Security with trusted execution

	Glamdring Design
	Code annotation phase
	Code analysis phase
	Code partitioning phase
	Discussion

	Code Generation and Hardening
	Code transformation
	Code hardening

	Evaluation
	Security evaluation
	Memcached
	LibreSSL
	Digital Bitbox
	Discussion

	Performance evaluation

	Related Work
	Conclusions
	Acknowledgements

