
This paper is included in the Proceedings of the
2017 USENIX Annual Technical Conference (USENIX ATC ’17).

July 12–14, 2017 • Santa Clara, CA, USA

ISBN 978-1-931971-38-6

Open access to the Proceedings of the
2017 USENIX Annual Technical Conference

is sponsored by USENIX.

Fast and Precise Retrieval of Forward and Back
Porting Information for Linux Device Drivers

Julia Lawall, Derek Palinski, Lukas Gnirke, and Gilles Muller,
Sorbonne Universités/UPMC/Inria/LIP6

https://www.usenix.org/conference/atc17/technical-sessions/presentation/lawall

Fast and Precise Retrieval of Forward and Back Porting Information for
Linux Device Drivers

Julia Lawall, Derek Palinski, Lukas Gnirke, Gilles Muller
Sorbonne Universités/UPMC/Inria/LIP6

Abstract

Porting Linux device drivers to target more recent and
older Linux kernel versions to compensate for the ever-
changing kernel interface is a continual problem for
Linux device driver developers. Acquiring information
about interface changes is a necessary, but tedious and
error prone, part of this task. In this paper, we propose
two tools, Prequel and gcc-reduce, to help the developer
collect the needed information. Prequel provides lan-
guage support for querying git commit histories, while
gcc-reduce translates error messages produced by com-
piling a driver with a target kernel into appropriate Pre-
quel queries. We have used our approach in porting 33
device driver files over up to 3 years of Linux kernel his-
tory, amounting to hundreds of thousands of commits.
In these experiments, for 3/4 of the porting issues, our
approach highlighted commits that enabled solving the
porting task. For many porting issues, our approach re-
trieves relevant commits in 30 seconds or less.

1 Introduction

The Linux kernel evolves rapidly, with around 70,000
non-merge commits accepted per year since 2013. Com-
mits may fix bugs and add new functionalities, but may
also change the interfaces between the kernel core and
services that run at the kernel level. For example, be-
tween Linux 3.8 (February 2013) and Linux 4.9 (De-
cember 2016), 2,439 of the 19,473 functions exported to
kernel modules were dropped and 10,056 new exported
functions were introduced. This rate of interface changes
allows the Linux kernel to rapidly address new needs and
resolve performance and security bugs.

While the fast rate of change of Linux kernel inter-
faces has benefits, it poses challenges for developers of
services, such as device drivers, that rely on the kernel
interface. Such a developer has to target a particular ver-
sion of the Linux kernel, but any version chosen will be

quickly out of date. Furthermore, potential users of the
device may rely on earlier kernel versions, due to e.g.,
local customizations or stability requirements. The tight
dependence of device drivers on fast-changing kernel in-
terfaces means that there is a continual need for forward
porting driver code to the interfaces supported by more
recent kernel versions, and back porting driver code to
the interfaces supported by older kernel versions. This
requires a lot of effort for device manufacturers who want
to support the needs of a range of clients and for device
users who rely on specific kernels.

A major challenge in forward or back porting a de-
vice driver is to find out where changes are needed and
what changes should be performed. Many drivers inter-
act with the kernel interface in similar ways, and thus
change examples are likely to be available in the code
history. Still, finding these examples effectively requires
knowing what to look for. One approach is to compile
the driver with the target kernel and take the resulting
error and warning messages as a starting point for iden-
tifying porting issues. These messages, however, may be
redundant, if one error causes the compiler to misinter-
pret other code, and may be too concise to sufficiently
characterize a porting problem. Even when it is possi-
ble to pinpoint the porting issues, an even greater chal-
lenge is to find relevant examples among the hundreds
of commits per day to the Linux kernel. Git,1 used for
change management in the Linux kernel, supports search
for a single regular expression within individual changed
lines, via the commands git log -G and git log -S.
But particular terms may appear within changed lines for
many reasons, not all of which relate to porting issues,
and thus git often returns many irrelevant commits.

The difficulty of obtaining relevant information on
how to port a driver thus calls for tool support. In this pa-
per, we propose an approach to ease driver porting based
on two tools: Prequel and gcc-reduce. Prequel searches

1https://git-scm.com/

USENIX Association 2017 USENIX Annual Technical Conference 15

in a git commit history for commits matching a query.
Queries can include constraints on both changed and un-
changed lines, allowing Prequel to obtain more precise
results than git. Prequel furthermore ranks the result-
ing commits according to the degree of success of the
match, rather than chronologically as done by git, giv-
ing the driver maintainer easy access to the most relevant
results. Gcc-reduce complements Prequel by creating a
bridge from the compiler. Given a set of compiler errors
and warnings, gcc-reduce reduces them to those that are
relevant to porting, and collects complementary informa-
tion from the source code. Gcc-reduce then generates
Prequel queries based on the collected information. Al-
though the possibility remains to write Prequel queries
by hand, gcc-reduce is able to generate most queries rel-
evant to driver porting automatically. Overall, our ap-
proach permits the developer to save time and effort, by
obtaining change examples that are relevant to the port-
ing problem.

The contributions of this paper are as follows:

• Via a case study, we identify two key challenges in
driver porting: determining 1) where changes are
needed and 2) what changes should be performed.

• We propose the tools Prequel and gcc-reduce that
automatically collect information to address these
challenges.

• We evaluate Prequel and gcc-reduce by porting 33
device driver files introduced into the Linux ker-
nel in 2013 or 2015 to or from Linux 4.6, released
in May 2016. Our approach provides information
from the git commit history that enables us to carry
out the port for 3/4 of the issues encountered.

• We show that our approach is suitable for use on a
standard laptop, with many patch queries complet-
ing in 30 seconds or less.

• We compare our approach to the use of git to query
the commit history and the use of Google to find
relevant change suggestions. For queries such as
field type changes, we find that git returns many ir-
relevant commits. For only 33% of the issues does
Google return possibly relevant results among the
top 6 entries in the query summary page. In con-
trast, for our ported 33 driver files, the top ranked
commit returned by our approach is helpful for 86%
of the porting issues.

2 Motivating Example

To understand the challenges in obtaining adequate infor-
mation on how to carry out a driver port, we consider the
lms501kf03 TFT LCD panel driver, introduced into the

Linux kernel in February 2013 in the commit 1be9ca2,
and first released in Linux 3.9. The driver consists of a
single .c file, drivers/video/backlight/lms501kf03.c. We
forward port this code over 16 Linux kernel releases, to
Linux 4.6, released in May 2016.

The experiment. Compiling the original driver with
the Linux 4.6 kernel2 produces the errors and warnings
shown in Figure 1. There are two errors (lines 1 and 8),
about the suspend and resume fields being unknown,
and six warnings. The warnings appear to be triggered
by the same cause as the errors, and thus we focus on the
latter. Specifically, we need to find examples of how to
remove suspend and resume fields, and then see what
we can infer from those examples for porting our driver.

Focusing on suspend, we can try the following git
command, considering commits between the kernel ver-
sion originally targeted by the driver and the version that
is the target of the port:
git log -p -G "\<suspend\>" --diff-filter=M 1be9ca2..v4.6

-p prints the changed lines, -G "\<suspend\>" re-
stricts the results to commits that contain the word
suspend on a changed line, and --diff-filter=M re-
stricts the results to commits that perform modifications,
as opposed to adding or removing files.

Despite the relative sophistication of this git com-
mand, many of the results are completely irrelevant.
For example, the first result, commit ba41e1b, removes
a reference to a suspend field and adds another such
reference on the same structure. Such a commit does
not help fix a reference to a field that no longer exists.
Rather, we need commits in which suspend appears on
removed lines, but not added ones, which is not express-
ible with git log -G. Subsequent commits give similar
results. Indeed, these commits are modifying suspend

fields in structures having types different from the one,
spi driver, used in our driver.

Ideally, we could extend the git log -G to include
the name of the structure type, but this type name is not
likely to be on the same line as the field reference. Never-
theless, we can use the search command of the git viewer
to find occurrences of spi driver in the context lines of
the emitted patch code. This process might not succeed,
because the type name can be arbitrarily distant from the
changed lines. In our case, though, it is successful, but
the user has to analyze and scroll over 7 occurrences of
spi driver within 569 commits before reaching a rele-
vant commit 9d9f780, from January 2015.

Figure 2 shows extracts of the commit 9d9f780. This
commit removes initializations of the suspend and
resume fields, on lines 37-38, but also does many other

2make drivers/video/backlight/lms501kf03.o, with gcc
(Ubuntu 4.8.4-2ubuntu1 14.04.3) 4.8.4.

16 2017 USENIX Annual Technical Conference USENIX Association

1 drivers/video/backlight/lms501kf03.c:433:2: error: unknown field ‘suspend’ specified in initializer
2 .suspend = lms501kf03_suspend,
3 ^
4 drivers/video/backlight/lms501kf03.c:433:2: warning: missing braces around initializer [-Wmissing-braces]
5 drivers/video/backlight/lms501kf03.c:433:2: warning: (near initialization for ‘lms501kf03_driver.driver’) [-Wmissing-braces]
6 drivers/video/backlight/lms501kf03.c:433:2: warning: initialization from incompatible pointer type [enabled by default]
7 drivers/video/backlight/lms501kf03.c:433:2: warning: (near initialization for ‘lms501kf03_driver.driver.name’) [enabled by

default]
8 drivers/video/backlight/lms501kf03.c:434:2: error: unknown field ‘resume’ specified in initializer
9 .resume = lms501kf03_resume,

10 ^
11 drivers/video/backlight/lms501kf03.c:434:2: warning: excess elements in struct initializer [enabled by default]
12 drivers/video/backlight/lms501kf03.c:434:2: warning: (near initialization for ‘lms501kf03_driver’) [enabled by default]

Figure 1: Messages resulting from compiling the original Linux lms501kf03 TFT LCD panel driver with Linux 4.6

things. We thus next have to determine whether these
other changes are relevant to our driver and whether
other examples are needed. We focus on the changes
in the definitions of the functions as3935 suspend and
as3935 resume that are stored in the suspend and
resume fields, respectively. The parameter lists of these
functions are modified to change the type of the first pa-
rameter, and, in the case of the suspend function, to drop
the second parameter. In the body of each function, a
call to spi get drvdata on the original first parameter
is replaced by a call to dev get drvdata on the new
first parameter (lines 10-11 and 16-17). No change is
made to compensate for dropping the second parameter
of the suspend function, as it is unused.

We next compare the observed set of changes to the
code found in the TFT LCD panel driver that we want
to port. Figure 3 shows the relevant code fragments.
Some code fragments are analogous to the ones modi-
fied in commit 9d9f780. For example, our driver also
initializes spi driver suspend and resume fields to
locally defined functions, lms501kf03 suspend and
lms501kf03 resume, respectively. These functions
have the same list of parameters as found in commit
9d9f780, and the function stored in the suspend field
again has the property that the second parameter is not
used. The associated changes found in the sample com-
mit can thus be applied directly.

The set of changes illustrated in commit 9d9f780 are,
however, insufficient for determining how to update the
function bodies. While the suspend and resume functions
affected by commit 9d9f780 use their first parameter
only in calls to spi get drvdata, the suspend and re-
sume functions in our driver call dev get drvdata and
dev dbg on values derived from this parameter. Thus,
we need more examples. Searching further through the
commits, we find commit 01f9326 from March 2013
that is similar to the commit shown in Figure 2 but con-
tains the following change in the functions stored in the
suspend and resume fields:
- struct snd_card *card = dev_get_drvdata(&spi->dev);
+ struct snd_card *card = dev_get_drvdata(dev);

1 diff --git a/drivers/iio/proximity/as3935.c ...
2 index 466aa43..bc0d68e 100644
3 --- a/drivers/iio/proximity/as3935.c
4 +++ b/drivers/iio/proximity/as3935.c
5 @@ -273,9 +273,9 @@ static void calibrate_as3935(...)
6 #ifdef CONFIG_PM_SLEEP
7 -static int as3935_suspend(struct spi_device *spi,

pm_message_t msg)
8 +static int as3935_suspend(struct device *dev)
9 {

10 - struct iio_dev *indio_dev = spi_get_drvdata(spi);
11 + struct iio_dev *indio_dev = dev_get_drvdata(dev);
12 @@ -293,9 +293,9 @@ err_suspend:
13 -static int as3935_resume(struct spi_device *spi)
14 +static int as3935_resume(struct device *dev)
15 {
16 - struct iio_dev *indio_dev = spi_get_drvdata(spi);
17 + struct iio_dev *indio_dev = dev_get_drvdata(dev);
18 @@ -311,9 +311,12 @@ err_resume:
19 +
20 +static SIMPLE_DEV_PM_OPS(as3935_pm_ops, as3935_suspend,

as3935_resume);
21 +#define AS3935_PM_OPS (&as3935_pm_ops)
22 +
23 #else
24 -#define as3935_suspend NULL
25 -#define as3935_resume NULL
26 +#define AS3935_PM_OPS NULL
27 #endif
28 @@ -441,12 +444,11 @@ static struct spi_driver as3935_driver
29 .driver = {
30 .name = "as3935",
31 .owner = THIS_MODULE,
32 + .pm = AS3935_PM_OPS,
33 },
34 .probe = as3935_probe,
35 .remove = as3935_remove,
36 .id_table = as3935_id,
37 - .suspend = as3935_suspend,
38 - .resume = as3935_resume,
39 };

Figure 2: Example update on suspend and resume. Some
context lines are omitted for readability.

Commit eba3bfb from April 2013 illustrates the case of
a dev dbg call:

- dev_dbg(&spi->dev, "lcd->power = %d\n", lcd->power);
+ dev_dbg(dev, "lcd->power = %d\n", lcd->power);

All these changes, from these different commits, provide
a model for the porting of the TFT LCD panel driver.

USENIX Association 2017 USENIX Annual Technical Conference 17

1 #if defined(CONFIG_PM)
2 static int lms501kf03_suspend(struct spi_device *spi,

pm_message_t mesg)
3 {
4 struct lms501kf03 *lcd = dev_get_drvdata(&spi->dev);
5 dev_dbg(&spi->dev, "lcd->power = %d\n", lcd->power);
6 return lms501kf03_power(lcd, FB_BLANK_POWERDOWN);
7 }
8 static int lms501kf03_resume(struct spi_device *spi)
9 {

10 struct lms501kf03 *lcd = dev_get_drvdata(&spi->dev);
11 lcd->power = FB_BLANK_POWERDOWN;
12 return lms501kf03_power(lcd, FB_BLANK_UNBLANK);
13 }
14 #else
15 #define lms501kf03_suspend NULL
16 #define lms501kf03_resume NULL
17 #endif
18

19 static struct spi_driver lms501kf03_driver = {
20 .driver = {
21 .name = "lms501kf03",
22 .owner = THIS_MODULE,
23 },
24 .probe = lms501kf03_probe,
25 .remove = lms501kf03_remove,
26 .shutdown = lms501kf03_shutdown,
27 .suspend = lms501kf03_suspend,
28 .resume = lms501kf03_resume,
29 };

Figure 3: lms501kf03 TFT LCD panel driver extract

Assessment. Our example illustrates clearly that com-
piler error messages are helpful, but there can be a sig-
nificant difference between the set of the errors raised by
the compiler and the set of changes required. In Figure 1,
we see that the compiler may report errors and warnings
that are actually side-effects of other issues, and do not
help to identify the set of changes required. Furthermore,
many changes, such as the changes in the definitions of
lms501kf03 suspend and lms501kf03 resume, are
required but were not reported by the compiler, and thus
adequate examples of changes on similar drivers are nec-
essary to determine what changes are needed and how to
carry them out. Then, finding even one commit that il-
lustrates a specific problem is a major challenge. As no
one commit may illustrate all of the issues relevant to a
particular driver, repeating this process to find multiple
commits may be necessary.

3 Prequel

The core of our approach is the process of searching for
commits that illustrate how to perform a particular kind
of change. Such a search must be able to take into ac-
count properties of both changed lines and the context in
which the changed lines occur. For example, we would
like to retrieve only commits that remove initializations
of suspend and resume fields that are in spi driver

structures. To retrieve such commits, we propose a patch
query language, PQL, that permits describing properties

1 @bad depends on after@
2 identifier i;
3 expression e;
4 @@
5 struct spi_driver i = {
6 .suspend
7 = e,
8 };

9 @rem depends on !bad@
10 identifier i;
11 expression e;
12 @@
13 struct spi_driver i = {
14 - .suspend
15 = e,
16 };

Figure 4: Patch query detecting removals of the suspend
field from the initialization of a spi driver structure

of both changed lines and their context and a tool Pre-
quel that applies PQL queries to a git commit history.
We first briefly present the syntax and semantics of PQL.
More details are available in a technical report [5]. We
then describe optimizations that allow using Prequel on
a standard laptop.

3.1 PQL syntax and semantics
To describe changes and their context in systems code,
we take inspiration from the program transformation tool
Coccinelle [2, 8]. Coccinelle and its Semantic Patch Lan-
guage (SmPL) offer a transformation language based on
the familiar patch syntax. Coccinelle is widely used in
Linux kernel development, and its notation is familiar to
kernel developers. Our key insight is that a specification
of which lines to add and remove can also be viewed as
a description of the lines that have been added and re-
moved, after the transformation has been performed. We
thus propose a SmPL-like notation for PQL, providing a
description, which we refer to as a patch query, of the
effect of a previous transformation process. Prequel then
applies a patch query to a series of commits.

Figure 4 shows a patch query that detects commits
that remove an initialization of a suspend field in a
spi driver structure. The patch query consists of two
rules, the rule bad on lines 1-8 followed by the rule rem
on lines 9-16. We first focus on the latter. A patch query
rule consists of a fragment of code that combines con-
crete terms, such as the type name spi driver, with
metavariables, declared at the top of the rule. rem uses
metavariables for the name of the driver structure, i (line
13), which is declared to match any identifier (line 10),
and the initial value of the suspend field e (line 15),
which is declared to match any expression (line 11).
Within the code fragment, - and + indicate tokens that
must be removed or added by a matching commit, re-
spectively. rem indicates that the token suspend must
be removed (line 14).

The output of gcc indicates that we want to find com-
mits that remove the suspend field, but does not indicate
what other changes may be needed. For example, one
way to remove a field is to rename it, in which case the
initial value expression e may remain unchanged, while

18 2017 USENIX Annual Technical Conference USENIX Association

another possibility is to remove both the field name and
the initial value expression entirely. Prequel is designed
based on the hypothesis that a user searches for a change
to complete his understanding of that change, and thus
Prequel provides approximate matching. Specifically, to-
kens that are annotated with - or + must be removed or
added, respectively, but other tokens may be removed
or added as well. To distinguish between more or less
precise matches, Prequel returns the matching commits,
ranked by the percentage of changed lines or hunks that
contain an exact match of the specification.

The rule rem also does not guard against the possibil-
ity that the suspend field is simply moved around in the
spi driver structure, i.e., removed but added back, or
that one instance of a suspend field is removed but oth-
ers remain. As gcc reports that suspend is unknown, we
need to find example commits that remove the suspend
field from the spi driver completely. The rule bad

(lines 1-8) extends the patch query to ensure this prop-
erty. This rule matches a commit for which the state of
the code after the commit, as indicated by depends on

after on line 1, contains an initialization of a suspend
field. Such commits are ones that we do not want to see.
The rule rem then depends on the failure of the rule bad.
Prequel returns only commits that match rules on which
no other rules depend, and thus the only results are those
that completely remove the suspend field (rule rem).

3.2 Optimizations

We want to support driver porting on a standard laptop,
as would be most easily accessible to a kernel developer.
The matching performed by Prequel, however, may be
very expensive. Because a patch query may describe
not only changed code, but also context code that occurs
elsewhere in the same file, e.g., the type spi driver in
our case, Prequel matches a patch query against complete
files as they exist before and after a commit, and not just
against the changed lines. Matching a query against all
the files affected by hundreds of thousands of commits,
as are found in several years of history of the Linux ker-
nel, however, would be very time consuming. In practice,
due to the diversity of the Linux kernel, for any given set
of keywords, only a small percentage of the commits are
likely to be relevant. Thus, performing such thorough
matching is often unnecessary.

To reduce the set of commits considered in detail, Pre-
quel first analyzes a patch query to identify keywords that
must be present in or near the changes made by any com-
mit that the patch query can match. For example, in the
patch query of Figure 4, Prequel would select suspend
as a keyword that must be present in the lines removed
by a commit to allow a match. Prequel then searches for
these keywords in the patch associated with each commit

and ignores commits where they are not found, exploit-
ing the fact that a patch is typically much smaller than
the affected source files. Alternatively, for better perfor-
mance, the user can prepare indices in advance, using
the GNU utility ID Utils.3 These indices map tokens to
1) the commits for which they occur on removed lines
2) the commits for which they occur on added lines, and
3) the commits for which they occur on changed lines
or within 3 lines of context code (the default when using
the diff command). Prequel uses the first two indices
to identify commits that contain tokens annotated in the
patch query with - or +, respectively, while it uses the
third index to identify commits that contain unannotated
tokens. Using an index is a choice left up to the user, be-
cause it trades flexibility in the range of considered com-
mits for performance. Currently, the Prequel distribution
includes indices for Linux versions 3.0 through 4.6, the
range considered in our evaluation.

Limiting the set of commits considered based on key-
words found in patches is only effective when the rel-
evant keywords are found within or near the changed
lines. Some relevant keywords, however, may appear
far from any change. For example, in our case, if the
suspend field was not dropped, but rather had its type
changed, then the patch could be on the definition of the
function stored in the suspend field, which could be far
from any mention of suspend. When important key-
words are expected to be far from changed lines, Prequel
collects all of the files that contain the keywords in a ref-
erence version of the Linux kernel chosen by the user,
e.g., the source or target version of the port, and then
considers only the commits that affect these files. It is
also possible to provide an index mapping tokens to the
reference version files in which they occur, to further im-
prove performance.

The above strategies may incur false negatives: a key-
word may appear as required in the code before or af-
ter the commit, but not close enough to changed lines,
or a keyword may not appear anywhere in the reference
version. To select commits, Prequel first tries keywords
annotated with - or +, which must be within the changed
lines, and only relies on unannotated keywords if consid-
eration of the annotated keywords does not sufficiently
reduce the number of commits to analyze in detail.

4 Gcc-reduce

Extracting the relevant information from compiler errors
and from the source code to create Prequel patch queries
is tedious and error prone. Our tool gcc-reduce provides
a front end to Prequel for driver porting that automates
this task. Because the kinds of error messages that the

3https://www.gnu.org/software/idutils/

USENIX Association 2017 USENIX Annual Technical Conference 19

compiler generates are limited, gcc-reduce can also au-
tomate the construction of patch queries, in most cases.

Gcc-reduce collects information required for the
search for change examples from the errors and warn-
ings4 produced by compiling the driver with the target
version and from the driver source code. Gcc-reduce ex-
pects the use of gcc for compilation; LLVM is known
to give better error messages, but the support for com-
piling the kernel with LLVM is incomplete, and appears
to be not well maintained.5 Gcc-reduce then 1) reduces
the resulting compiler errors to those that indicate port-
ing issues, and 2) generates PQL patch queries from the
information collected from the compiler error messages,
as described below.

4.1 Error message reduction

As illustrated in Figure 1, gcc often gives multiple er-
ror messages that actually derive from the same problem.
Three issues arise: 1) a problem recurs, 2) dataflow re-
lationships imply that a problem in one part of the code
makes another part of the code invalid, 3) the same as
the second case, but triggered by structural relationships
rather than dataflow.

To characterize the compiler errors, we have created
a number of error categories, such as “unknown field
error”, illustrated by lines 1-3 of Figure 1. First, to de-
tect recurring errors, for each error, gcc-reduce selects
the corresponding error category and collects keywords
that uniquely identify the problem. The keywords can
come from the error message itself or from the source
code. For example, for the error on lines 1-3 of Figure 1,
the keywords are suspend, obtained from the error mes-
sage and representing the affected field, and the name of
the type of the enclosing structure, spi driver, which
is obtained from the source code. gcc-reduce discards
subsequent errors of the same error category with the
same keywords.

Second, analogous to the notion of gen and kill
sets in dataflow analysis [1], gcc-reduce collects for
each error an input set, containing keywords that, if
they have been associated with a previous error, im-
ply that the current error is redundant, and an im-
pact set, containing keywords that, if they are asso-
ciated with a future error, imply that the future er-
ror is redundant. In our example, the input set is
{struct spi driver.suspend,struct spi driver}; if
some other error has been reported related to the
suspend field of a spi driver structure, then re-
solving that error is likely to also resolve the one

4Subsequently, we refer to compiler errors and warnings collec-
tively as errors.

5http://llvm.linuxfoundation.org/index.php/Main Page; The section
“Current patch statistics” is dated 2015-01-28.

in our example, and the error in our example is not
needed. Furthermore, if the entire spi driver struc-
ture has been found to be invalid, then there is no need
for an error about one of its fields. The impact set
then is {struct spi driver.suspend}, indicating that
a problem has been found with the suspend field of a
spi driver structure, and thus no other messages, of
any kind, that derive from use of this field, i.e., that con-
tain this field in their input set, are needed.

Finally, various kinds of problems can trigger errors
that relate to the code structure. An example is the er-
ror about missing braces in line 4 of Figure 1. Our hy-
pothesis is that the driver to port compiles correctly with
its original Linux version, and thus such structural errors
should be side effects of other errors. For certain kinds
of messages, all other errors of certain kinds found in the
same block or function are discarded.

In our example, gcc-reduce retains only the error on
lines 1-3 and the one on lines 8-10 for further processing.

4.2 Patch query generation

After reducing the error messages, gcc-reduce creates a
patch query for each of the remaining errors. The various
kinds of errors are limited, as are the kinds of information
found in their keywords. Accordingly, the patch queries
can be generated by instantiating a small set of templates.
17 templates, incorporating PQL best practices, are avail-
able in our current prototype. Templates are typically
parameterized by type names, e.g., spi driver in our
example, and global function and field names, i.e., terms
that are common to the kernel rather than specific to the
driver. gcc-reduce also generates a makefile and a doc-
ument that the maintainer can use to track the changes
required. A few error types are not supported by our cur-
rent set of templates. In these cases, the driver maintainer
can study the provided templates and produce a patch
query by analogy.

5 Evaluation

The goals for our evaluation are to assess the degree to
which our approach satisfies the following properties:

• Our approach is efficient enough for interactive use
on a standard laptop.

• gcc-reduce eliminates redundant compiler error
messages, but keeps the errors needed to motivate
a complete forward or back port of a driver.

• The commits selected by Prequel help solve forward
and back porting problems.

20 2017 USENIX Annual Technical Conference USENIX Association

• Our approach gives more relevant results than exist-
ing approaches, such as commit history search us-
ing git or Internet search using Google.

Our evaluation focuses on drivers introduced in 2013
and 2015 and targets Linux 4.6, released on May 15,
2016, to illustrate the behavior of our approach over a
longer and shorter time period. From January 1, 2013
to May 15, 2016 there were 219,879 commits to the
Linux kernel and from January 1, 2015 to May 15, 2016
there were 85,812 commits to the Linux kernel. We first
present our dataset and then address the above properties.

5.1 Dataset

We consider an introduced driver to be a collection of
C and header files that are added into the kernel in the
drivers directory in a single commit, accompanied by
changes in a Makefile and other files related to the build
infrastructure. We ignore drivers/staging code, as
such drivers are considered to be immature and thus may
contain idiosyncratic coding strategies for which exam-
ple changes may not be available. We check also that the
driver compiles without errors or warnings at the point
where it is committed and that all of the files added or
modified by the commit exist in our target version, Linux
4.6. Finally, for our forward porting experiments, for
each selected commit, we overwrite the corresponding C
and header files in a clean Linux 4.6 and force the com-
pilation of each C file. We include in our data set drivers
for which this compilation produces at least one warn-
ing or error. Likewise, for our back porting experiments,
we take the Linux 4.6 versions of the driver files intro-
duced in 2013 or 2015 and copy them back to the kernel
version just following the commit in which the files were
introduced, keeping for further analysis the files in which
compilation with the older version produces errors.

Table 1 shows the number of drivers and driver .c files
that raise porting issues. Table 2 shows the distribution
of these drivers over the various driver types. The differ-
ence in the number of drivers and driver files considered
in the forward and back porting cases is due to the latency
of interface deprecation in the Linux kernel. An outdated
and a modern interface may coexist in a newer or older
kernel, in which case forward porting or back porting,
respectively, is not necessary. Our approach only aims
to produce a driver that is compatible with the target ker-
nel version, and does not aim to ensure that the resulting
driver uses the most recent interfaces, if the interfaces
from the source kernel version remain available.

We use the complete set of drivers in our dataset for the
evaluations that are fully automatic. For our porting ex-
periments, we use only a subset, due to time constraints.

Table 1: Drivers and driver files that raise porting issues
forward port back port

drivers driver files drivers driver files
2013 108 135 130 149
2015 97 119 114 125

Table 2: Distribution of considered driver files (f = for-
ward ports, b = back ports)

20
13

f
20

13
b

20
15

f
20

15
b

20
13

f
20

13
b

20
15

f
20

15
b

20
13

f
20

13
b

20
15

f
20

15
b

20
13

f
20

13
b

20
15

f
20

15
b

acpi 0 0 1 0 fmc 1 1 0 0 mailbox 0 0 0 2 powercap 1 0 0 0
ata 1 1 0 1 gpio 5 5 5 7 md 3 2 2 2 pwm 1 1 0 0
base 0 0 0 1 gpu 6 1 6 8 media 6 6 5 2 regulator 5 4 0 0
block 5 3 0 0 hid 0 0 1 1 mfd 2 4 0 4 reset 0 0 0 4
char 3 4 0 1 hwmon 0 3 1 1 misc 1 1 0 0 rtc 2 10 0 0
clk 6 6 10 15 hwtracing 0 0 2 3 mmc 1 2 2 2 scsi 3 2 3 1
clocksrc. 3 4 2 3 i2c 2 4 0 1 mtd 0 0 5 3 soc 0 0 2 1
cpufreq 1 1 0 0 iio 22 32 2 2 net 14 8 18 14 spi 3 1 0 0
crypto 0 0 1 2 infiniband 6 0 0 0 nfc 2 3 4 5 thermal 5 6 6 6
devfreq 0 0 1 1 input 3 5 1 1 phy 4 2 2 2 usb 1 2 1 1
dma 0 1 0 3 irqchip 0 0 1 1 pinctrl 2 1 3 6 video 1 4 0 0
edac 0 1 0 0 leds 0 1 3 2 platform 4 3 2 2 virtio 0 0 0 1
extcon 0 0 3 2 lightnvm 0 0 3 3 power 6 8 8 4 watchdog 0 2 2 5

5.2 Methodology

For a chosen driver, we apply our approach to collect
relevant commits. From these commits, we manually in-
fer the required changes and update the original driver
accordingly. We consider an experiment to be a suc-
cess if the changes we have made in the driver are also
found in the target version of the driver and the resulting
driver compiles in the target version. We do not aspire to
produce code identical to the target version, because the
driver may also undergo changes that are specific to its
behavior, which go beyond the porting task.

We prepare indices for Prequel covering all commits
that modify at least one file between Linux 3.0, re-
leased in July 2011, and Linux 4.6, amounting to 306,242
commits. The largest index is the third (Section 3.2),
at 160MB. Using indices starting with 2011 is overkill
when porting drivers from 2013 at the earliest. We envi-
sion, however, that developers will generate new indices
only occasionally, and thus may have available a larger
index than the minimal one needed for a given task. We
also prepare an index of our reference version (see Sec-
tion 3.2), Linux 4.6. This index is used when a keyword
is needed to reduce the set of commits to which a Pre-
quel query should be applied, but there is no keyword
in a patch query that is expected to occur in or near a
changed line.

5.3 Performance

Figure 5 shows the execution times of the most time-
consuming parts of Prequel: commit selection and ap-
plication of the patch query to the selected commits. Ex-
periments are carried out on a single core of an Intel i5-

USENIX Association 2017 USENIX Annual Technical Conference 21

0 100 200 300 400 500

101

102

103

issue

se
co

nd
s

Total
Commit selection

Figure 5: Execution time of Prequel on 2013 forward
port issues (Total = patch query application time + com-
mit selection time)

6200U 2.30GHz CPU. The machine has 12G memory.
The Linux kernel and all temporary files are placed in an
in-memory file system to avoid disk access costs. Each
point in the graph represents a single porting issue. Is-
sues are ordered from shortest execution time to largest.
At each x-axis coordinate, the height of the blue (lower)
point represents the commit selection time, and the dif-
ference between the red (upper) point and the blue point
represents the patch query application time.

For 73% of the issues, the total of commit selection
time and patch query application time is 30 seconds or
less. Beyond that point, the commit selection time is oc-
casionally high, up to 111 seconds, typically when the
reference version is used as a last resort to reduce the
number of possible commits. The average commit se-
lection time is under 7 seconds. Patch query application
time rises with the number of files in the selected com-
mits and the file size. The maximum patch query time
per commit is under 14 seconds. Further performance
improvements require finding low cost ways of discard-
ing more commits, before applying the patch query.

The overall running time of the approach for a par-
ticular driver depends on the number of issues involved.
This is managed by gcc-reduce. Figure 6 shows in the
red (top) line the number of errors and warnings indi-
cated by gcc for all of the considered porting problems
(2013 and 2015 drivers, forward and backward porting)
and in the blue (bottom) line the number resulting from
the reduction process. Each point represents a driver, and
the drivers are ordered from the smallest to the largest
number of gcc messages. 36% of the ports involve only
one issue. 76% involve fewer than 5. For a driver with 4
issues, each taking 30 seconds or less, we thus obtain a
typical patch query time of 2 minutes or less.

Finally, Table 3 shows the distribution of error types,
for driver subdirectories with more than 30 errors in at
least one porting experiment, as well as the average com-
mit selection and patch query application time (Avg PQ)
for each error type, as observed on the 2013 forward port-
ing experiments (Figure 5).

0 100 200 300 400 500
100

101

102

103

porting instance

er
ro

rs
&

w
ar

ns Original
Reduced

Figure 6: Reduction in the number of errors and warn-
ings achieved by gcc-reduce

Table 3: Distribution of error types

U
nk

no
w

n

U
nk

no
w

n
fu

nc
tio

n

U
nk

no
w

n
va

ri
ab

le

U
nk

no
w

n
ty

pe

U
nk

no
w

n
fie

ld

A
rg

er
ro

r

E
xp

re
ss

io
n

ty
pe

ch
an

ge

Fi
el

d
ty

pe
ch

an
ge

char 1 22 43 4 8 4 0 0
clk 104 47 65 2 12 3 0 5
gpio 1 36 15 1 30 3 4 0
gpu 1 18 7 20 16 19 0 8
iio 13 64 31 24 35 21 3 25
infiniband 1 2 4 11 17 2 0 3
lightnvm 2 7 7 1 26 10 0 2
misc 10 16 6 1 2 4 0 0
net 6 55 49 20 55 15 1 21
platform 2 20 17 31 11 4 0 0
power 6 12 3 16 60 24 0 0
Avg PQ (sec) N/A 25 7 9 57 197 14 267

5.4 Precision

We have used our approach in the porting of 33 driver
files: 13 from their original versions in 2013 to Linux
4.6, 10 from Linux 4.6 back to their commit of introduc-
tion in 2013, and 10 from their original versions in 2015
to Linux 4.6. Gcc-reduce reduced the compiler errors
and warnings associated with these drivers to 107.

For 80 of the identified issues, we were able to repli-
cate the change as found in the Linux kernel code. For
24 issues, we encountered some kind of failure. In 6
cases, gcc-reduce misclassified an issue. For example,
for two issues related to forward porting the 2013 Xen
TPM frontend driver, introduced in commit e268395,
gcc-reduce expects a change in the field in the case of an
incompatible field initialization, while the actual issue is
a change in declaration of the initial value. Gcc-reduce
could create patch queries that consider more possibili-
ties at the cost of a higher patch query time. In the same
driver, there is also the only instance of a failure of Pre-
quel: the issue is related to a macro whose uses Prequel
is unable to parse, implying that no results are returned.

In 5 cases, there is more than one change to a partic-
ular code fragment between the original version of the
code and the target of the porting task. For example, the
changes to the Sharp GP2AP020A00F Proximity/ALS
sensor driver between its original version in 2013 (com-
mit bf29fbe) and Linux 4.6, in part involve first append-

22 2017 USENIX Annual Technical Conference USENIX Association

ing new to a set of structure fields, to allow old and new
versions of the fields to co-exist, and then removing the
new in a later commit, once all relevant drivers have

been updated. Prequel only finds the commit that adds
the new suffix, thus giving only a partial view of the re-
quired changes. In the remaining failure cases, the com-
mits available are not sufficient to decide how to trans-
form a particular piece of code. For example, back port-
ing the Nuvoton NAU7802 ADC driver from its Linux
4.6 version to the Linux kernel as of commit 8b20be8
involves removing calls to reinit completion. Many
examples are available, but they involve different trans-
formations, and indeed the commit log message indicates
that many of them are bug fixes. Using a bug fix as a
model for backporting would amount to introducing a
bug. Thus, it is not clear from the examples which strat-
egy is appropriate for the given driver.

Overall, we were able to address 3/4 of the issues suc-
cessfully, without having any specific prior knowledge of
the drivers concerned. Furthermore, doing so typically
required looking at very few commits. For 86% of the
successfully addressed issues, it was sufficient to look at
only the first reported commit. We consulted at most 7
commits for a single issue.

We have also found back porting to be harder than for-
ward porting. We have already noted the case where
many examples are bug fixes. Furthermore, over time,
the Linux kernel developers also tend to replace local,
special-purpose coding strategies by generic APIs, when
some operations or data are common to multiple drivers.
We have often found it easier to introduce generic code
from specific implementations, as required for forward
porting, but harder to replace API calls by specialized
local definitions or data structure representations where
the design strategy may be specific to each developer.

5.5 Comparison with git

Git is at the foundation of many Linux kernel developers’
development practices. We thus compare the information
obtained by Prequel with the information that can be ob-
tained using git log -G or git log -S.6 We consider
only the driver files for which we have carried out the full
forward porting process (Section 5.4) and only the issues
that we resolved successfully. In each case, we collect
the commits that reference a keyword that is expected to
be changed by the port; for example if the issue is an
unknown suspend field, then we expect suspend to ap-
pear in the changed lines. We consider a range starting
with the commit that we found most helpful and ending

6git log -G finds patterns in changed lines, while git log -S

additionally requires that the number of instances of those patterns
changes. We choose an appropriate command given the error type.

20 25 30 35 40
100

102

104

issue

co
m

m
its

20 25 30 35 40
101

103

105

issue

lin
es

Figure 7: Commits (top) and commit lines (bottom) ob-
tained with git log -G or git log -S

with Linux 4.6, to see how many commits git provides to
the user before reaching the helpful one.

Each git command took around 90 seconds. Figure 7
shows the number of commits returned (top) and the
number of lines in these commits (bottom), including
both log messages and code changes. Issues are ordered
by increasing number of commits, in both cases. For half
of the issues (1-20 on the x-axis) there are no results,
and thus these points are omitted. No results is typical
of issues such as an unknown function; once the func-
tion has been removed, no more commits will mention
it. Git thus succeeds in immediately returning a com-
mit relevant to the porting problem. Other kinds of is-
sues such as a change in the number of arguments of a
function or the type of a structure field, however, do not
cause the keyword to disappear, and thus it can occur in
later, irrelevant commits. Furthermore, as noted in Sec-
tion 2, some names, typically those of structure fields, are
reused across the kernel, and thus commits are found af-
fecting unrelated instances. For example, the rightmost
point in each graph of Figure 7 derives from a search
for dev, which is very common both as a field name for
many types of structures and as the name of a local vari-
able. Prequel on the other hand has access to type infor-
mation and other relevant context information, and can
select commits more precisely. In many cases, Prequel is
even more efficient than git, due to the use of indexing.

Finally, 8 issues concern the incorrect type of the ini-
tial value of a structure field. In these cases, the change
is typically in the definition if the initial value, which
is often driver-specific, and there is no keyword whose
changes git can be used to search for.

USENIX Association 2017 USENIX Annual Technical Conference 23

5.6 Comparison with search engines

Our approach to driver porting relies on searching
through the commit history for information on how to re-
solve compiler errors resulting from out of date code. In
many other software development contexts, developers
and users turn to search engines such as Google for hints
on how to address error messages. To assess the poten-
tial benefits of using an existing general-purpose search
engine to address Linux driver porting issues, we have
done a small experiment using Google.

Setup. It is impossible to anticipate every Google
query that a developer might make. We take the straight-
forward solution of using the compiler error message it-
self (see Figure 1) as a query. In this, we drop the posi-
tion information (file, etc.), which is likely too restrictive,
unless someone has already ported the same driver.

Some error descriptions, however, are generic, such
as the message “initialization from incompatible pointer
type”, found in the middle of Figure 1, that does not con-
tain any information specific to the error context. As il-
lustrated in Figure 1, gcc error messages either contain a
code snippet, or implicitly inherit the code snippet of a
previous message. Thus, we additionally consider con-
catenating the error description and the code snippet to
form another possible query, providing more information
but incurring the risk of overspecification to the targeted
driver. We consider only the subset of error messages
generated by our error message reduction process (Sec-
tion 4.1), as the user could manually filter out the impor-
tant messages, as done by our tool.

In order to assess the information provided by Google
on a large scale, we use the curl library [3] to script re-
quests. We then parse each resulting search result sum-
mary page to extract the entries, consisting of a title, the
link as shown to the user, and the description, found on
the first page of results. These tests involve our complete
dataset (Section 5.1).

To assess the results, we use the measure query recall
rate at N, meaning the percentage of cases for which the
top N Google results contain at least one result that is
relevant to the porting problem. A result is considered
relevant if it contains all of the keywords identified by
gcc-reduce for the issue. As shown in Figure 8, based on
this criterion, the first result appears to be relevant only
12% of the time in the no code case, where we include
only the error message. The rate of at least one relevant
result rises to only 33% in the no code case if one con-
siders the top 6 results. Even a 33% success rate is not
very useful in practice, and even if the information on the
summary page suggests success, there is no guarantee
that the information on the linked page will actually turn
out to be useful. In contrast, for the ports we have carried

1 2 3 4 5 6 7 8 9 10

0.1
0.2
0.3
0.4
0.5

N (Results)

Q
ue

ry
R

ec
al

lR
at

e
at

N
(O

ut
of

A
ll

Q
ue

ri
es

)

No code
Code

Figure 8: Rate of existence of a relevant result in the top
N returns returned by Google

out, in 86% of the cases, we resolved an issue by looking
only at Prequel’s top ranked commit. Furthermore, there
is contradictory feedback about whether it is desirable
to include the code snippet; when looking at the top 1-
3 results, doing so slightly increases the rate of success,
but when considering a larger set of results, including
the code snippet is a disadvantage. So the driver main-
tainer may have to launch several queries to see which is
the best one. Overall, general-purpose search engines do
not appear to be a promising tool for finding information
about Linux kernel interface changes.

6 Limitations

Our approach is based on several hypotheses. First, we
assume that the driver to port works correctly with re-
spect to the Linux kernel version for which it has been
developed. Thus, the goal of porting is to preserve its
behavior. Second, we make a similar assumption about
the commits we encounter; their changes preserve cor-
rectness. Third, only one change is required per issue to
reach code compatible with the target version. Fourth,
all relevant issues are highlighted by gcc.

We have encountered violations of the last three hy-
potheses in practice. A violation of the second hypoth-
esis is illustrated by the reinit completion case in
Section 5.4; commits may fix bugs rather than preserve
correctness. Several other failures among our 33 ported
driver files arose from a violation of the third hypoth-
esis: the complete change was broken up into several
steps, and Prequel only returned commits reflecting one
step in the series, thus not giving enough information to
achieve compatability with the target version. A solution
could be to iterate our approach. Finally, our motivat-
ing example in Section 2 violates the fourth hypothesis.
In addition to the changes in the suspend and resume

fields, the configuration variable CONFIG PM is renamed
to CONFIG PM SLEEP. Although the commit shown in
Figure 2 does contain the new configuration variable, the
driver maintainer has to be self-motivated to look at it;

24 2017 USENIX Annual Technical Conference USENIX Association

gcc does not raise warnings about configuration variables
that no longer exist. Tools, such as Undertaker [11], that
check for configurability errors could be used in place of
gcc within our approach to address this issue.

Our approach provides guidance on how to evolve
a driver in concert with other similar drivers, but does
not directly address the case where a new kernel feature
could better support a unique feature of the device. Our
hypothesis, however, is that new features are added to the
kernel to support drivers that are already in the kernel,
and that the developer adding such a specialized kernel
feature will update some of the relevant drivers, if only
to validate that the new feature works as expected. The
commit logs and change examples identified by Prequel
should then still provide guidance on how to apply a new
kernel feature in another specialized situation.

7 Related work

The traditional strategy for back porting device drivers
involves inserting #ifdefs in the driver code to imple-
ment different behaviors for different kernel versions.
The Linux kernel backports project, initiated in 2007, in-
troduced the use of a compatibility library that abstracts
over the variations in different kernels. Rodriguez and
Lawall [9] explored the use of Coccinelle to automate
the changes needed in a driver to target this compati-
bility library, and this approach is now actively used by
the Linux kernel backports project. These approaches
require the developer to manually identify the changes
needed for each kernel version, either to modify the
driver code directly or to create the compatibility library.

Thung et al. [12] also target automating the backport-
ing of Linux device drivers. Their approach identifies the
commit between the source and target versions at which
the driver ceases to successfully compile, and then infers
transformation rules from the set of changes performed
by that commit. While their approach goes further than
ours, by inferring transformation rules, it is limited to the
information available in the commit that breaks compila-
tion, it has only been evaluated on pairs of successive
Linux kernel releases, and it is further limited to drivers
in which the compiler signals only one error line. These
constraints are not satisfied by many porting issues. For
example, for our motivating example in Section 2, there
are multiple compiler errors, it was necessary to consult
multiple commits, and the commit that breaks compi-
lation does not contain any relevant change examples.
Our approach does, however, also assume that only one
change is needed for each issue to get from the source
version to the target version.

Several recent approaches automate the identification
of API evolutions based on analysis of changes in call-
graph dependencies [7, 14]. These approaches are well-

suited for porting issues that involve only the names of
called functions, but not the other types of changes (field
type change, etc.) that we have encountered.

Martinez et al. [6] propose a patch query language
with the goal of collecting statistics on the frequency of
various kinds of code changes to guide automated soft-
ware repair [13]. Their approach builds on the infor-
mation about occurrences of a fixed set of change types
collected by ChangeDistiller [4]. Change types refer to
various syntactic categories, such as removal of an if

statement, but do not contain information about concrete
terms such as function names or structure fields, as we
require to limit the results to the commits relevant to a
given porting problem. The approach furthermore fo-
cuses solely on changes, and thus does not allow queries
on context code, as we have also found essential. Stevens
et al. [10] propose a query language for changes identi-
fied by ChangeDistiller, relying on a logic-programming-
based notation. They use their approach for studying in-
stances of refactorings, rather than porting problems.

8 Conclusion

Porting device drivers is an ever-present problem in the
context of the Linux kernel. A major challenge in the
porting process is to obtain adequate information as to
how the port should be carried out. Indeed, the Linux
kernel interface is huge, and many relevant details about
an interface change are only known to the specific main-
tainer who has carried it out.

In this paper we have proposed an approach to ex-
tract information from compiler output and a git com-
mit history about where changes are needed and how to
carry those changes out. On 33 driver files, exhibiting
107 porting issues, our approach enabled us to address
3/4 of the issues, with no specific knowledge about the
drivers concerned. Our approach is also reasonably effi-
cient, producing complete results for a driver in at most
a few minutes for many cases.

Future work will involve improving performance and
addressing the identified limitations, such as the require-
ment of only one change per issue between the source
and target versions. Inferring changes automatically
from examples would then be the next major step.

Acknowledgments. We thank the anonymous reviewers
and our shepherd Daniel Williams for their feedback on
the paper. This work is supported in part by OSADL and
by ANR ITrans.

Availability. Our tools and the 33 driver file experiments
are available at http://prequel-pql.gforge.inria.fr/

USENIX Association 2017 USENIX Annual Technical Conference 25

References
[1] APPEL, A. W. Modern Compiler Implementation in ML. Cam-

bridge University Press, 1998.
[2] BRUNEL, J., DOLIGEZ, D., HANSEN, R. R., LAWALL, J. L.,

AND MULLER, G. A foundation for flow-based program match-
ing: using temporal logic and model checking. In POPL (2009),
pp. 114–126.

[3] Curl. https://curl.haxx.se/.
[4] FLURI, B., AND GALL, H. C. Classifying change types for qual-

ifying change couplings. In 14th IEEE International Conference
on Program Comprehension (2006), pp. 35–45.

[5] LAWALL, J., LAMBERT, Q., AND MULLER, G. Prequel: A
patch-like query language for commit history search. Research
Report RR-8918, Inria Paris, June 2016.

[6] MARTINEZ, M., DUCHIEN, L., AND MONPERRUS, M. Auto-
matically extracting instances of code change patterns with AST
analysis. In ICSM (2013), pp. 388–391.

[7] MENG, S., WANG, X., ZHANG, L., AND MEI, H. A history-
based matching approach to identification of framework evolu-
tion. In ICSE (2012), pp. 353–363.

[8] PADIOLEAU, Y., LAWALL, J. L., HANSEN, R. R., AND
MULLER, G. Documenting and automating collateral evolutions
in Linux device drivers. In EuroSys (2008), pp. 247–260.

[9] RODRIGUEZ, L. R., AND LAWALL, J. Increasing automation
in the backporting of Linux drivers using Coccinelle. In 11th
European Dependable Computing Conference - Dependability in
Practice (EDCC) (2015), pp. 132–143.

[10] STEVENS, R., AND ROOVER, C. D. Extracting executable trans-
formations from distilled code changes. In Software Analysis,
Evolution, and Reengineering (SANER) (2017), pp. 171–181.

[11] TARTLER, R., LOHMANN, D., SINCERO, J., AND SCHRÖDER-
PREIKSCHAT, W. Feature consistency in compile-time-
configurable system software: facing the Linux 10,000 feature
problem. In EuroSys (2011), pp. 47–60.

[12] THUNG, F., BACH, L. D. X., LO, D., AND LAWALL, J. Recom-
mending code changes for automatic backporting of Linux device
drivers. In ICSME (2016), pp. 222–232.

[13] WEIMER, W., NGUYEN, T., LE GOUES, C., AND FORREST,
S. Automatically finding patches using genetic programming. In
ICSE (2009), pp. 364–374.

[14] WU, W., GUÉHÉNEUC, Y.-G., ANTONIOL, G., AND KIM, M.
AURA: a hybrid approach to identify framework evolution. In
ICSE-Volume 1 (2010), pp. 325–334.

26 2017 USENIX Annual Technical Conference USENIX Association

