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Abstract

With the high throughput offered by solid-state drives
(SSDs), multi-SSD volumes have become an attractive
storage solution for big data applications. Unfortu-
nately, the IO stack in current operating systems im-
poses a number of volume-level limitations, such as per-
volume based IO processing in the block layer, single
flush thread per volume for buffer cache management,
locks for parallel IOs on a file, all of which lower the
performance that could otherwise be achieved on multi-
SSD volumes. To address this problem, we propose a
new design of per-drive IO processing that separates two
key functionalities of IO batching and IO serving in the
IO stack. Specifically, we design and develop Falcon1

that consists of two major components: Falcon IO Man-
agement Layer that batches the incoming IOs at the vol-
ume level, and Falcon Block Layer that parallelizes IO
serving on the SSD level in a new block layer. Com-
pared to the current practice, Falcon significantly speeds
up direct random file read and write on an 8-SSD vol-
ume by 1.77× and 1.59× respectively, and also shows
strong scalability across different numbers of drives and
various storage controllers. In addition, Falcon improves
the performance of a variety of applications by 1.69×.

1 Introduction

The demand of high-performance storage systems is
propelled by big data applications that need high IO
throughput for processing massive data volumes. Flash-
based solid-state drives (SSDs) provide an attractive op-
tion compared to hard disk drives for such applications,
due to their high random and sequential performance.
As a common practice, multiple SSDs are increasingly
deployed to support a wide variety of applications such
as graph analytics [23, 50, 20, 51, 31, 26], machine-
learning [21, 30], and key-value stores [11, 25]. In this
work, we especially use a number of graph analytics sys-
tems as motivating examples to illustrate the drawbacks
of existing approaches.

1This system is named after the Millennium Falcon in the Star Wars,
“the fastest ship in the galaxy”.
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Figure 1: Falcon aims to achieve both ease of programing and
high IO performance.

To take advantage of high performance of SSDs,
throughput-sensitive applications either utilize an
application-managed or kernel-managed IO approach as
illustrated in Figure 1. In the first case of application-
managed IO, prior projects such as SAFS [49],
FlashGraph [50], and Graphene [23] require the appli-
cation developer to explicitly distribute the data among
multiple files, each hosted in independent SSDs. In
this case, there is no abstraction of a volume, and one
application IO thread is dedicated to each SSD. Clearly,
such a framework is very complex as applications need
to be aware of data partitioning, and determine which
application IO thread should perform the IO at any
particular instance.

On the other hand, for kernel-managed IO, applica-
tions can enjoy the benefits of both volumes and batched
IO interfaces provided by the operating system, e.g.,
Linux AIO (asynchronous IO), Solaris KAIO and Win-
dows Overlapped IO. Such interface allows the appli-
cations to submit multiple IOs within a single system
call, which provides a clear advantage of ease of pro-
gramming. However, because IO functionality is lim-
ited to just one application IO thread, the combination of
kernel-managed IO and a volume, be it created by Linux
(e.g., md, lvm), FreeBSD (e.g., geom) or hardware RAID,
would fail to saturate the aggregate bandwidth of multi-
ple SSDs.

To mitigate this problem, the applications can spawn a
number of dedicated application IO threads to serve the
requests in parallel. Several existing projects adapt this
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each SSD. There is no volume; (b) Applications relies on the
kernel to manage the data on the volume; (c) Falcon main-
tains the abstraction of volumes and utilizes specialized kernel
threads, called Falcon threads, to parallelize per-drive process-
ing for high throughput.

approach, including GridGraph [51] and G-Store [20].
Unfortunately, managing multiple application IO threads
using a thread pool is again complicated. And in many
cases, this approach does not achieve the expected goal
due to the limitations in IO subsystems [28]. For exam-
ple, many file systems (e.g., ext4 [10]) apply a per-file
inode lock, which prevents scalable random read or write
from a single file, irrespective of how many application
IO threads are employed. So is the case for buffered write
where a single kernel thread per volume is responsible
for flushing the dirty buffer cache to the volume, limiting
the write throughput that could potentially be achieved.

In this work, we strive to achieve the combined ben-
efits of both approaches, that is, delivering high perfor-
mance IO on a multi-SSD volume while providing ease
of programming to the application developers. To this
end, we design and develop Falcon whose workflow, as
shown in Figure 2, presents a new design of per-drive IO
processing on multi-SSD volumes. The key insight is the
separation of the two functionalities of IO batching and
IO serving in the IO stack. The former batches and clas-
sifies the incoming IOs at the volume level, and is per-
formed in Falcon IO Management Layer (FML). Mean-
while, the latter serves the IOs in parallel to the SSDs,
and is performed in Falcon Block Layer (FBL) using a
specialized kernel thread, called Falcon thread.

In particular, FBL provides two new techniques: (1)
per-drive IO sort and neighbor merge, which limits the
scope of sort operations to each SSD and merge to neigh-
boring requests. In contrast, the Linux IO merge algo-
rithm unnecessarily traverses every IO request for all the
member SSDs. And (2) dynamic tag allocation, which
assigns request tags, a limited hardware resource, at run-
time. This helps to reduce the unpredictable blocking in
the IO stack, and provide a better mechanism to control
the number of active IOs in the pipeline, which is appli-
cable across different storage technologies and vendors.

As a result, Falcon allows a dedicated application IO
thread to saturate the multi-SSD volume. Thus devel-
opers can concentrate more on algorithmic optimiza-
tions, without worrying about the complexity of manag-
ing multiple application IO threads and SSDs. In con-
trast, Linux follows per-volume approach of mixing IO
batching and IO serving tasks in the block layer, where
the sequential IO processing and round-robin dispatch
lead to many inefficiencies on multi-SSD volumes, and
limit the parallelism that could otherwise be achieved.

We have evaluated Falcon with a number of micro-
benchmarks, real applications, and server traces. Fal-
con shows strong scalability across different numbers
of SSDs, and several different storage controllers. On
an 8-SSD volume, Falcon significantly speeds up direct
random read and write throughput on an ext4 file by
1.77× and 1.59× respectively, buffered random write
by 1.59×, and shows consistent performance for vari-
ous stripe size configurations. In addition, Falcon speeds
up graph processing, utility applications, filebench and
trace replay by 1.69×. Lastly, it is important to note
that with the new block layer, Falcon is able to saturate
a non-volatile-memory-express (NVMe) SSD, delivering
1.13× speedup over the native Linux.

The remainder of the paper is organized as follows.
Section 2 presents background on volume management
and its interaction with the block layer, as well as how
an IO request traverses through various layers. Section 3
quantifies the challenges arising due to per-volume phi-
losophy of Linux IO stack, and presents an overview of
Falcon architecture. Section 4 and 5 present the design
and implementation of Falcon components. We evaluate
the performance of our techniques in Section 6, discuss
related works in Section 7, and conclude in Section 8.

2 Background

In this work, while we mostly use Linux to describe the
background on the volume management and the block
layer; it is worth noting that this IO workflow is generic
in nature and many operating systems implement a sim-
ilar mechanism. Nevertheless, our design and imple-
mentation have been influenced by Linux-specific tech-
niques.

In particular, we compare to the Blk-mq [1] block
layer which has shown better scaling than the single-
queue block layer. Also, most of our discussions pertain
to single application IO thread using batched IO inter-
faces such as Linux AIO. Many kernel daemons such as
pdflush and kjournald submit IO internally in a way sim-
ilar to batched IO interface. Specifically, pdflush daemon
manages the page cache, and has only one dedicated ker-
nel thread per volume to write the dirty pages to storage.
There is no pdflush thread to manage the read, and it hap-
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Figure 3: Left: Linux IO stack and the interaction between the
volume manager and the block layer. Right: the block layer
instance and the detailed IO flow. IO processing happens se-
quentially, while dispatch happens in a round-robin fashion.

pens directly in the context of the IO issuing thread. Fig-
ure 3 shows the inner working of a multi-SSD volume.
Volume Management and Block Layer. An instance
of the block layer is associated to a block device, which
is associated to a single drive such as an SSD. The vol-
ume management layer is used to map several physical
block devices into a single virtual block device (e.g., md
or lvm). In this layer, IO requests are represented as an
object of block IO (bio for short) structure. The job of
the volume manager instance is to break the incoming
bio object into multiple (smaller) bio objects destined for
member drives, depending on the IO size and the stripe
size of the volume, as discussed next. The original IO is
completed only when all the split IOs to different drives
are completed.
IO Flow and States. Figure 3 also shows the flow of
an IO request from submission to completion within the
block layer. For simplicity, we group the process to
four phases: plug, unplug, dispatch, and completion.
IO batching, merge, and tag allocation are performed in
the plug phase. IO batching provides an opportunity to
merge incoming IOs to take advantage of higher sequen-
tial throughput. Also, SSDs provide higher throughput
for batched IOs due to parallelism at the hardware level,
where more than one IO can be fetched in parallel. Next,
sort and classify operations are performed in the unplug
phase, IO requests are dispatched to SSDs in the dispatch
phase, and IO completion is performed in the the com-
pletion phase where various resources are freed.

In each phase, the IO request advances across vari-
ous states as different tasks are performed on it. As we
will show later, one may use the states to track the IO,
and find out the time spent by an IO request in different
phases for performance profiling.

As soon as an IO request enters the kernel, it is con-
verted to a struct bio object and assumes the ¶start state.
In the case of a multi-SSD volume, the volume manager
splits the bio object into multiple smaller objects and
moves them to the ·split state. For example, for a multi-
SSD volume of 4KB stripes, an incoming IO request of
64KB would be divided into 16 bio objects, each contain-
ing 4KB IO destined to a specific SSD. Next, a number of
block layer instances (one per SSD) handle the incoming
IOs as if it were an IO to this particular SSD. For exam-
ple, in Figure 3, bio1 proceeds to the block layer instance
of SSD1, bio2 to SSD2, and so forth.

These split bio objects enter their block layer instances
in a sequential fashion, and the plug phase begins. The
operation starts with the bio object being checked against
existing IO entries of the per-core plug-list for merge
candidates. As illustrated in Figure 4(a), the plug-list is a
private queue to each IO thread, and is used for batching
and merging the incoming IO requests. In other words,
the plug-list is shared among multiple block layer in-
stances, and used by all member SSDs of the multi-SSD
volume. In this case, a thread does sequential processing
of all previously split bio objects, and presents several
drawbacks, as we will discuss shortly.

If the bio object is merged, then it moves to the
¸merge state, and the processing of the next object starts.
Otherwise, a request tag will be requested. If a tag is
available then the bio object is put inside a unique struct
request container indexed by the allocated tag, which in
turn is queued to the plug-list. This state is called the
¹ready state as IO requests are dispatched in this form
to the physical drivers later. However, if a request tag
were not available, the IO moves to the ºwait state, and
the thread blocks waiting for a free tag.

When the number of IO requests in the plug-list
reaches a threshold, an unplug event happens, and the
unplug phase starts. In this phase, all the IOs present in
the plug-list of this thread are sorted based on the des-
tination drive and block address information. Next, the
sorted IOs move to the per-core, per-drive software queue
of the member drives, and acquire the »insert state.

In the dispatch phase, the IO requests are dispatched
in a round-robin fashion from the software queues to the
drives in the same thread context, and moves the IOs to
the ¼dispatch state. If some IOs can not be dispatched,
they will be kept in the per-drive dispatch-queue (not
shown in the Figure 3) for later processing. Lastly in
the completion phase, when a drive completes an IO, it
raises an IRQ event. The IRQ handler will free the re-
sources and move the IO request to the ½complete state,
where any waiting thread is woken up.
Request Tag. The request tag is a limited, vendor and
technology specific hardware resource [9]. The avail-
able tags are either per storage controller or per-drive.
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Figure 4: (a) IO issuing thread batches the IOs destined to dif-
ferent member drive to same plug-list. The merge, tag alloca-
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major cause of inefficiency. (b) Falcon’s idea of per-drive phi-
losophy is to postpone the IO serving tasks of the block layer to
the drive-specific software-queue. Completion phase is omitted
for simplicity.

For example, the Intel SCU technology has 250 avail-
able tags [39], but they are shared among four ports of
the controller. That is, every connected SSDs will com-
pete for the same tag space. Similarly, the LSI 9300-8i
SAS HBA adapter has 10,140 tags, and is shared by all
the connected drives. On the other hand, the Intel AHCI
SATA controller has only 32 tags per SATA port, which
is not shared. In this case, the tag count matches with
the drive’s internal queue size. For the Samsung 950
pro 512GB NVMe SSD that we use in this work, the tag
counts are 1024 per hardware-queue. This specific drive
has 8 hardware queues [38], while SATA SSDs have only
one hardware queue.

3 Falcon Architecture

In this section, we first describe the insufficiencies of
current per-volume processing of Linux IO stack, and
present the overall architecture of Falcon.

3.1 Challenges of Per-Volume Processing
Current multi-SSD volumes follow the per-volume pro-
cessing, that is, IO serving is tied to the plug-list, and
is forced to be performed in a sequential manner within
a volume. In other words, as shown in Figure 4(a), the
plug-list mixes IO requests that actually belong to vari-
ous member drives within a multi-SSD volume. More-
over, the block layer mingles two unrelated tasks: batch-
ing, and merge/tag allocation in its plug phase, and sort
and classify in the unplug phase.

To illustrate the problems, we run a revised FIO
benchmark [12] on various configurations of multi-SSD
volumes. The detailed setup will be presented in Section
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6. In particular, we measure two metrics: the stack la-
tency is the time between the start and insert states, while
the device latency is the time between the dispatch and
completion states. We use the former to gauge the soft-
ware performance, and the latter for device performance.
Insufficiency #1: Lack of Parallelism. As several IO
serving tasks are forced to be performed in a single plug-
list, the opportunities in parallelizing those tasks are lim-
ited. Under the Linux architecture shown in Figure 4(a),
merge, tag allocation, and sort tasks lack parallelism,
while dispatch happens in a round-robin way.

Figure 5 quantifies this impact on the stack latency of
SSDs within a volume. Out of 8 SSDs, the slowest drive
(sdh) spends at least 55% more time on IO processing
(i.e., the stack latency) as compared to the fastest drive
(sda). Interestingly, the latency increases in the same or-
der of the drives. This is due to the round-robin dispatch
where the first drive always gets the highest priority to
dispatch followed by the second drive onwards. As a
result of this procedure, later drives have to wait even
though the requests are ready to be dispatched.
Insufficiency #2: Inefficient Merge and Sort. The cur-
rent merge algorithm traverses the plug-list of the thread
to find the merge candidate for a bio object. It searches
all IO requests including those that belong to different
drives. But clearly, they should not be considered as can-
didates at all. Also, in the unplug phase, sorting happens
on the same thread-specific plug-list, which again means
wasteful processing on irrelevant requests.
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Figure 6: Distribution of the stack latency and device latency,
showing absolute and percentage distribution. For 8-SSD vol-
ume, stack latency is more than the device latency.

Making matters worse, the IO count in the plug-list is
significantly higher for a multi-SSD volume. The plug
phase ends only when the merge task finds more than
16 IOs (the per-drive threshold) in the plug-list destined
to the same drive. Assuming an uniform distribution of
the IOs among all the drives, the total number of the IOs
in the plug-list would need to reach 128 for an 8-SSD
volume to end the plug phase, as opposed to 16 for 1-
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SSD. As a result, the average processing time spent by an
IO thread for the 8-SSD volume is significantly higher,
over 3.5× more than 1-SSD (Figure 6(a)), and forces the
IO thread to spend 60% time inside the IO stack, pointing
to the IO stack as the bottleneck (Figure 6(b)).
Insufficiency #3: Unpredictable Blocking. In between
the merge and sort tasks, the tag allocation is forced to
be performed in a sequential manner as well. So, when
a tag allocation fails for any drive member, the executing
thread blocks the whole IO stack waiting for a free tag
from that drive. Thus the active IO count present in the
Linux IO stack is controlled by the tag count because the
blocked IO thread wakes up only when the tag becomes
available, i.e. only when an existing IO completes. This
blocking is unpredictable, as the tag count varies and can
either be storage controller or drive specific.

3.2 Per-Drive Processing in Falcon

Falcon proposes a new approach of the per-drive philos-
ophy, which separates the two operations of IO batching
and IO serving by regrouping the tasks by their function-
alities in new phases, as shown in Figure 4(b). Specifi-
cally, only IO batching and classify tasks are performed
in the plug-list. And merge, tag allocation, and dispatch
tasks move to a new process phase and are performed in
per-drive software queues, and can easily be parallelized.
This reduces the amount of work being done in the plug-
list, and hence removes the major bottlenecks.

Figure 7 presents the major components of Falcon. In
particular, the new batching and classification phases are
performed in the Falcon IO Management Layer (FML
for short), while the sort phase along with the process
and completion phases are performed in the Falcon Block
Layer (FBL). Moreover, the FML also spawns Falcon
threads for parallel IO serving across FBL instances.

Block Layer Linux Linux Falcon
Features 1-SSD Multi-SSD Volume
Parallel processing NA 7 3

Per-drive sort 3 7 3

Neighbor merge 7 7 3

Dynamic tag management 7 7 3

Table 1: Falcon’s per-drive processing

We summarize the differences between Falcon and
Linux IO stack in Table 1. For example, the Linux Blk-
mq architecture allows per-drive sort for 1-SSD system,
but it fails to provide the same functionality to multi-SSD
volumes. In contrast, the separation of functionalities al-
lows the Falcon to keep the per-drive philosophy intact
in its FBL block layer, as the IO serving operations are
performed in the per-drive software queue. In addition,
dynamic tag allocation in FBL removes the tag allocation
from the plug phase and moves it to just before dispatch.
This provides a more uniform and predictable criterion
to control the outstanding IOs in the IO stack pipeline.

4 Falcon IO Management Layer

Falcon IO Management Layer (FML) is the new abstrac-
tion between the volume manager and the block layer. It
performs IO batching, and creates a Falcon thread for
each FBL instance to parallelize per-drive processing.
Figure 8 presents the IO flow in the management layer.

4.1 IO Batching
IO batching is performed in two phases: batching and
classification. FML starts its batching phase as soon as
a new (split) bio arrives, and pushes the object into the
plug-list of the thread. Next, the volume manager sends
the next bio object of the original IO request. If there are
no more objects, the volume manager processes the next
request from the batched IO interface. This bio object is
again enqueued to the same plug-list by the FML layer.

As this process progresses, an unplug event will occur.
At this point, the current batching phase stops, and the
classification phase begins, thereby, all the bio entries in
the plug-list are classified based on destination drives.

Batching and classification tasks are performed using
bio objects in Falcon, as opposed to request containers
in Linux, hence we add prev and next pointers to the bio
structure, so that the bio objects can be chained in the
doubly linked-list plug-list.

Additionally, at the end of the classification phase, all
the IOs have to be enqueued to the per-core per-drive
software queue. However, software queues are protected
by spin locks, and acquiring them becomes mandatory
each time an IO need to be enqueued. To this end, we
collect the requests in temporary per-drive queues during
the classify operation. At the end, all bio objects from the
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temporary queues move to respective software queues,
thus acquiring the spin lock only once.

4.2 Enabling Parallel Processing
At the end of the classification phase, all the IOs reside
in the per-drive software queue, and hence the FBL in-
stances can perform IO serving tasks in parallel, which is
not possible in Linux. To this end, FML spawns one ker-
nel thread per participating FBL instance for this group
of batched IOs. We call each thread a Falcon thread, and
is responsible for IO serving tasks.

In our implementation, the Falcon threads are spawned
using Linux’s kblockd workqueue object. However, the
CPU affinity of a kworker is decided by the thread that
requests a kworker. Should all the Falcon threads share
the same core as the IO issuing thread, it would defeat the
purpose of parallel IO serving. To address this problem,
we modify the workqueue API invocations so that we can
use the CPU affinity of each Falcon thread to pin them to
different cores. Ideally it should be NUMA-aware, that
is, on a core of the socket that hosts the corresponding
storage controller adapter. We manage this information
inside hardware context object of each drive.

The completion phase is also executed in the same
core to which the Falcon thread is pinned. As the CPU
core information is now available, the IRQ handler can
send an inter-processor interrupt (IPI) to this core to per-
form the completion phase, or execute directly if the IRQ
is received on the same core as that of the Falcon thread.

The job of completion phase is three-fold: freeing up
bio objects, request tag and other resources; waking up
any thread that is waiting for IO completion; and request-
ing a Falcon thread to resume processing if the inter-
nal queue of the drive becomes full at the last dispatch.
In performing those tasks, a completion thread accesses
those data structures that are set by the Falcon thread.
Hence by running the completion on the same core, Fal-
con avoids the cache migration of those objects, making
completion a cache friendly phase.
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Figure 9: Drive and stack latency comparison of 8-SSD vol-
ume. Falcon is able to make the stack latency uniform as well
as smaller than the device latency.

4.3 Unplug Criteria

One implication of separating the merge task from the
batching task is removal of the unplug criteria from the
plug phase. The unplug event is raised when the number
of requests evaluated for merging goes beyond a thresh-
old in the plug phase. As we have mentioned earlier, the
criteria varies depending on the IO distribution to each
drive, and the maximum value of the threshold is 128
for 8-SSD volume in a uniform distribution. To achieve
more predictable unplug events, Falcon utilizes two new
thresholds (low watermark and high watermark). Sim-
ply put, we maintain the IO requests in the plug-list and
finish the batching phase when the count reaches beyond
a threshold.

Increasing the watermark by too much would increase
the stack latency, and as a result the device would remain
idle because more IO requests are still being processed.
On the other hand, lowering the watermark may poten-
tially reduce the benefit of batching. An equilibrium is
desired so that the drives are kept busy as long as there
are sufficient number of IO requests. Given a typical in-
ternal queue size of 32 for an SSD, we choose the product
of device count and this queue size as the high watermark
value, e.g., 256 for an 8-SSD volume.

Figure 9 plots the stack latency for Falcon using the
high watermark. Since the ordering of IO state has
changed, here we measure the new stack latency as the
time between the start to ready phase. One can see that
Falcon is able to achieve similar stack latency for dif-
ferent drives, compared to a large variance in Linux.
Specifically, Falcon achieves around 320 microseconds,
smaller than 404.7 microseconds device latency from the
SSDs. As such, the stack and drive latency are nicely
balanced.

It should be noted that the device latency is a function
of the queue depth, i.e. a busy SSD will have higher de-
vice latency than one that is lightly loaded. In Linux’s
case, the device is operating at lower queue depth, as the
application IO thread is not able to dispatch enough re-
quests. In contrast, thanks to parallelism, Falcon threads
in Falcon are able to dispatch more IOs to SSDs, and
keep them busy all the time. As a result, the stack la-
tency is smaller than the device latency. So, even with
higher stack latency than Linux, Falcon is able to get
higher throughput as we will show in Section 6.
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Figure 10: IO latency study of various multi-SSD volume

Latency. Falcon uses the low watermark to facilitate
latency-sensitive applications, where only fewer IOs are
submitted. The idea is to avoid an extra context switch
when the IO demand is low. Here we take current value
of 16 requests per drive as the basis, and set the low wa-
termark as the product of this value and the drive count,
e.g., 128 IOs for 8-SSD volume. It should be noted that
if fewer IOs are submitted in a batched IO interface or
just one IO using POSIX IO interface, the batching phase
does not wait for more incoming IOs, and an unplug
event occurs at the end of the submission. For 1-SSD
system, Falcon always performs synchronous IO serv-
ing. Note that it is also possible to let the users choose
both high and low watermarks depending on their need.

For such applications, IO serving will happen in the
context of the IO issuing thread as the plug-list would
not cross the low watermark. Figure 10 shows that Fal-
con improves the IO latency (from the application per-
spective) by nominal 3% for various multi-SSD volumes
(RAID0, 4KB stripe size) when just one IO of size 4KB
(POSIX IO) is active in the whole IO pipeline.

5 Falcon Block Layer

Falcon Block Layer (FBL) is the new block layer that
performs the IO serving tasks. FBL instances receive
unsorted bio objects in their per-core, per-drive software
queues. Compared to the existing approach where most
of the operations happen in the per-thread plug-list, our
approach enables per-drive processing, which can be di-
vided into three phases (sort, process, and completion) as
shown in Figure 11.

5.1 Per-Drive Sort and Neighbor Merge
Mechanism. The software queue is a per-core queue, so
a single drive has many associated software queues, one
for each CPU core. Hence the sort phase first aggregates
the bio objects from all of the software queues of the
drive in a private queue (a doubly linked-list), and then
performs sorting on it. This results in all neighboring IOs
being adjacent to each other in the private queue, thus
only a neighbor merge is required in the process phase,
which happens as follows.

A Falcon thread removes the first bio object from the
private queue, allocates a tag, and puts it inside a request
container object indexed by the tag. Then, the merge task
checks the next bio entry in the private queue to see if it

0

0

Dispatch IO to driver

dispatch

ready

Process  
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Sort software-queue

Allocate tag

Neighbor merge

Sort  
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merge

IRQ event completion

Complete IO
complete

bio
(from FML layer)

To SCSI layer and Drivers

Completion 
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Figure 11: Falcon Block Layer IO flow, and states

can merge with the current container. If it succeeds, the
next entry in the queue will be tried for merge. Other-
wise, the container object will be dispatched. The pro-
cess goes on till either all entries are dispatched or the
internal queue of the drive becomes full.

The internal queue of an SSD may become full due to
its limited size. In this case, all the requests need to be
preserved to be dispatched later. The last request con-
tainer is kept in the dispatch-queue. We introduce a new
per-drive queue, called bio-queue. Its role is similar to
dispatch-queue, but keeps the remaining bio entries of
the private queue. Later, when triggered, IOs are first
dispatched from the dispatch-queue followed by the bio-
queue. The separation of IOs in different queues are re-
quired as the IOs are in different states. The order main-
tains the prior behavior of request dispatch.

The sort task requires multiple pass over IOs in the
private queue which collects bio objects from software
queues. It is possible that the sort task might dominate
the overall processing in the IO stack. We leave the in-
vestigation of a new data-structure for queues as future
work.
Advantages. The new merge technique is very simple
and presents several benefits. First, sorting runs effi-
ciently with less CPU usage due to smaller per-drive sort
space. Second, the merge algorithm needs to evaluate its
neighbor requests only as they are already sorted, which
reduces the CPU utilization further. Third, since merge
happens on the private queue containing IOs from soft-
ware queues of the different cores, one can automatically
achieve merging across multiple IO issuing threads.

It is worth noting that efficient sort and neighbor
merge are generic improvements to Linux IO stack. For
example, single application IO thread is not able to satu-
rate an NVMe SSD (Samsung 950 pro 512GB NVMe) in
Linux [18]. However, as shown in Figure 12, Falcon can
saturate it (1375 MB/s) for random read workload using
FIO benchmark. In this case, Falcon does synchronous
IO serving by default.

Linux Blk-mq layer treats NVMe SSDs differently
from SATA SSDs. Only two incoming IOs are consid-
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Figure 12: Impact on NVMe SSD for random read

ered for merging for NVMe SSDs, and if that fails, the
older IO is dispatched and the most recent is kept in the
plug-list. In contrast, Falcon does not differentiate be-
tween NVMe and SATA SSDs. In this case, per-drive
sort and neighbor merge makes the batching efficient,
without any sacrifice on latency.

5.2 Tag Management
Problems. Controlling the active IO count in the IO
pipeline based on a vendor and technology specific tag
count often leads to unpredictable results for random
IOs in multi-SSD volumes. Random IOs are inherently
skewed towards some drives within any small time du-
ration. This leads to unfairness in the tag allocation for
member drives, resulting in compromised performance
for Intel C602 AHCI SATA III connected volume as
shown in Figure 13(a).

The reason is that after allocating 32 tags for a SATA
SSD, the IO thread would block for an additional tag for
the SSD, even if other SSDs might have available tags. In
a skewed IO distribution case, 2-SSD SATA volume can
only maintain less than 40 active IOs in the IO pipeline
against the available tag of 64 as shown in Figure 13(b),
resulting in the throughput drop. When there are suffi-
cient number of tags such as LSI HBA which has over
10,000 tags, the volume does scale on multiple SSDs on
both Linux and Falcon.
Dynamic Tag Allocation. To provide a predictable be-
havior, a uniform count of active IOs must be maintained
in the IO pipeline, regardless of the storage technology
or vendor. Therefore, Falcon performs the tag alloca-
tion dynamically, i.e. only if a dispatch is required in the
process phase, as shown in Figure 11. The main ben-
efit is improved queue utilization because more IOs are
allowed to reside in the IO pipeline without acquiring a
tag. This offsets the skewness of random IO distribution.

Figure 13(a) compares the throughput scaling of Linux
and Falcon for a 2-SSD volume connected using Intel
C602 AHCI SATA III. The throughput improvement is
due to improved tag utilization of both the member drives
as shown in Figure 13(b). The drop in tag usage between
5–19 seconds is due to highly skewed workload distribu-
tion (random read in FIO benchmark), where only one
drive’s internal queue is fully utilized. However, Falcon
can still get close to 2× IO performance improvement
over 1-SSD volume. The technique results in 52% and
23% improvement in random read and write respectively,
saturating the volume completely.

(a) IO Throughput Scaling
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Figure 13: Impact of dynamic tag allocation on 2-SSD SATA
volume connected using the Intel C602 controller

Back Pressure. Tag allocation serves as a back pressure
point in the Linux IO stack. That is, if the number of
in-flight IOs were to increase beyond the available tags,
the IO issuing thread would go to sleep and stop submit-
ting new IOs. Moving the tag allocation from the plug
phase also removes the back pressure point in Falcon,
and hence the IO issuing thread could potentially keep
submitting as many requests as it can, and consume a lot
of system resources such as memory.

To address this problem, Falcon proposes a per-drive
limit. When the number of IOs increases beyond a high-
pressure point, the thread stops IO submission in FML
and sleeps. The thread will become active again when
the number of requests drops below a low-pressure point
in the whole IO stack, thus controlling the in-flight IO
count in the whole IO pipeline. The number of requests
in the bio-queue is used to determine the pressure point.
For a multi-drive volume, the pressure point is equal to
the product of per-drive pressure point and drive count.

The pressure point is a different threshold than the wa-
termark. The former is about when to block IO process-
ing thread, while the latter is used to decide when to do
synchronous or parallel dispatch.

6 Experiments
The machine used for the experiments has dual-socket
of Intel Xeon CPU E5-2620 2GHz with six cores each,
thus total 24 threads due to hyper-threading, and 32GB
DRAM. We use eight Samsung EVO 850 500GB SSDs
connected using LSI SAS9300-8i HBA which supports
SATA III SSDs. The system also has a Samsung 950
pro 512GB NVMe SSD with PCI 3.0 interface, two Intel
AHCI SATA III ports, four SATA II ports, and four SCU
ports which supports SATA II SSDs. We use four Intel
520 120GB SSDs for testing SCU ports.

We run the tests on Linux kernel version 4.4.0 with
the Blk-mq block layer [1] (which performs better than
the single-queue block layer). The blk-mq architecture
has been completely integrated with SCSI layer and other
drivers (called scsi-mq) in this kernel. Currently, blk-mq
does not have any configurable IO scheduling policy.

We have implemented a prototype of Falcon in about
600 lines of C code with the aforementioned Linux ker-
nel. We use the md software as the volume manager with

48    2017 USENIX Annual Technical Conference USENIX Association



default stripe size of 4KB in a RAID-0 configuration. By
default we use raw volumes, and also evaluate ext4 and
XFS file system in a number of cases.

6.1 Microbenchmarks
We use a modified FIO in these tests. FIO [12] provides
a number of IO engines such as AIO and synchronous
POSIX IO and outputs a number of parameters including
throughput, IOPS, and latency. However, FIO spends a
lot of time in userspace (more than 35%), thus can not
submit IOs as fast as a single application thread can oth-
erwise. To address this problem, we modify FIO to in-
stead simply replay the traces as fast as possible.
Ext4 File Throughput. The per-inode lock on ext4 File
System does not allow Linux to saturate the 8-SSD vol-
ume even using multiple application IO threads. How-
ever, Falcon can saturate the volume using just one ap-
plication IO thread, as shown in Figure 14. The im-
provement is due to parallelism at block layer tasks
(sort, merge, tag allocation and dispatch). Overall, Fal-
con achieves 1.77× and 1.59× random read and write
throughput compared to Linux on an ext4 file in 8-SSD
volume.

(a) Single file read throughput (b) Single file write throughput
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Figure 14: Random IO on an Ext4 file in 8-SSD volume

Buffered Write Throughput. Figure 15 shows im-
provement in buffered write throughput when 8 appli-
cation IO threads are doing random write on multi-SSD
volumes. Again, Linux is not able to achieve beyond
800 MB/s throughput on 8-SSD system because Linux
buffer cache management allows only one pdflush thread
to write the dirty buffer to the volume. In contrast, Fal-
con achieves 1.38× and 1.59× improvement compared
to Linux in raw 4-SSD and 8-SSD volumes.
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Figure 15: Buffered random write throughput scaling

Varying SSD Count. Figure 16 shows that Falcon deliv-
ers performance improvement by 1.92×, 3.65× 6.02×
for random read, and 1.86×, 3.34× and 6.29× for ran-
dom write in 2-SSD, 4-SSD and 8-SSD volumes over
one SSD respectively. This clearly indicates that Falcon
is scalable when more SSDs are added to the volume.
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Figure 16: IO Scalability by varying the number of SSDs

For the 8-SSD volume (LSI HBA), Falcon achieves
1.83×, 1.66×, 3.42× and 2.73× speedup for random
read, random write, sequential read and sequential write,
respectively. When using the SCU controller for 4-
SSD volume, Falcon can also achieve 1.25×, 1.08×,
1.59× and 1.85× respectively, again saturating the vol-
ume completely.
Varying Stripe Size. Figure 17 shows the random and
sequential IO throughput on an 8-SSD volume for a va-
riety of stripe size configurations. Random IO (4KB IO
size) is highly susceptible to stripe size configuration as a
better IO distribution to all the member drives will maxi-
mize the IO, while a skewed distribution would not. Fig-
ure 17 shows that 4KB stripe size is the best, while 32KB
stripe is the worst for the random IO pattern generated
by the FIO. In the best case, Falcon provides 1.83× and
1.66× random read and write throughput respectively.

(a) Random read (b) Random write

(c) Sequential read (d) Sequential write
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Figure 17: Throughput for various stripe sizes in 8-SSD volume

Sequential IO (64KB IO size) generates uniform IO
load to each member drive of the volume. For 4KB
stripes, Falcon provides 3.42× and 2.73× sequential
read and write throughput respectively compared to
Linux. Falcon saturates the 8-SSD volume irrespective
of stripe size, while Linux can saturate the volume only
when the IO size is smaller than or equal to the stripe
size. This is because the Linux block layer is written
with the assumption of a single drive. In other words, the
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Linux block layer assumes that split has been performed
for the IOs larger than 1 MB (maximum IO size in the
block layer), and wrongly determines that further merg-
ing would no longer be needed on split IOs. In contrast,
FBL enables the merge in case of IO split, and enjoys the
performance benefit from the full sequential IOs.
Advantage and Scalability. There are two important
observations when running Falcon on an 8-SSD volume.
First, Falcon saturates the sequential read/write com-
pletely (Figure 16). Second, for random read and write
tests, Falcon achieves 97.6% and 98.9% throughput of
an ideal system, where one application IO thread is ded-
icated to submit batched IOs to each SSD independently,
so that IO skewness is not the concern.
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Figure 18: Random read comparsion of Linux and Falcon with
an ideal system on an 8-SSD volume.

To understand the maximum random throughput
achievable by an application IO thread, we run the same
experiment in a null block device. The device is a stan-
dard Linux driver without any backup storage, and ac-
knowledges the IOs as soon as received. Falcon can pro-
vide up to 3.7GB per second random read, which would
be roughly equivalent to the aggregate throughput of 16
SSDs. However, it should be noted that null block device
avoids many operations which otherwise were needed for
a real volume. We expect that spawning more than one
application IO thread will saturate 16 or more SSDs.

6.2 Application Performance

All the tests in this section are performed in XFS File
System. For Linux, XFS tends to outperform ext4 for
parallel reads as it does not acquire an inode lock. Since
Falcon always deploys a single application IO thread, the
choice of file system would not matter.
Utility Applications. We choose copy and tar to show
the effectiveness of Falcon. Copy represents parallel data
copying between the volume and a 24GB RAM disk.
Specifically, CopyTo copies the 24GB file from the RAM
disk to the volume. CopyFrom does the reverse. On the
other hand, Tar and Untar use pbzip2, a parallel imple-
mentation of bzip2. As shown in Figure 19(a), Falcon
speeds up CopyFrom, CopyTo, Tar and Untar by 1.63×,
2.81×, 1.29× and 1.09× respectively. The benefits are
lower for Tar and Untar as they are more CPU intensive.
Filebench. We also run Fileserver (2:1 read/write ra-
tio), Webserver (mostly read with random appends) and
Webproxy (read only) personality in Filebench suite of

(a) Utility Applications (b) Filebench Applications
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Figure 19: Application performance on 8-SSD volume

benchmarks. Figure 19(b) shows that Falcon performs
1.39×, 1.60× and 2× better than Linux when the bench-
marks ran on around 64GB of data.
Graph Processing. We choose G-Store [20], a semi-
external graph processing system as a representative use-
case for high throughput application to demonstrate the
effect of Falcon. In particular, we evaluate four dif-
ferent graph algorithms including breadth-first search
(BFS) [7, 14], kCore [33, 29], connected component
(CC) [35] and page rank (PR) [2] algorithms. BFS and
kCore generate very high random IOs on graph data,
while CC and PR require mostly sequential IOs. The ex-
periments are on a undirected kronecker graph of scale
28 and edge factor 16 [14].
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Figure 20: Graph Processing Performance

Figure 20 shows that Falcon significantly speeds up
the graph processing by 4.12× and 1.78× compared to
using one and eight IO threads in Linux. In particular,
Falcon achieves more than 5× speedup for BFS and k-
Core compared to using one IO thread in Linux, and 2×
improvement over 8 IO threads. In the case of CC and
PageRank, Falcon also provides 2 to 3× improvement
over using a single IO thread.

6.3 Server IO Traces
We run application traces collected at University of Mas-
sachusetts Amherst [41] and Florida International Uni-
versity [19]. Table 2 provides the information on these
traces. UM-Financial1 and UM-Financial2 represent
the OLTP type applications, while UM-Websearch1 and
UM-Websearch2 are websearch traces. On the other
hand, FIU-Home, FIU-Mail, FIU-Webuser and FIU-
Web-vm represent the traces from home directory, mail,
web user, and webmail proxy and online course manage-
ment system. The traces contain the lower-level IOs, i.e.,
at the logical block address. Almost all the write opera-
tions are caused by kjournald or pdflush daemons which
run in the kernel space. These daemons behave more like
a batched Linux AIO interface.

We replay the traces by submitting IOs as fast as
the system allows. Figure 21 shows Falcon can extract
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Trace Name Read (%) IO size range Size (GB)
UM-Financial1 23.16 512B - 16715KB 17.22
UM-Financial2 82.34 512B - 256.5KB 8.44
UM-Websearch1 99.98 512B - 1111KB 15.24
UM-Websearch2 99.98 8KB - 32KB 65.82
FIU-Home 1.00 512B - 512KB 34.58
FIU-Mail 8.58 4KB - 4KB 86.64
FIU-Webuser 10.33 4KB - 128KB 30.94
FIU-Web-vm 21.8 4KB - 4KB 54.52

Table 2: IO traces summary
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Figure 21: Trace replay throughput on 8-SSD volume

more throughput for all IO traces. Overall Falcon per-
forms 1.67× better over Linux. UM-Financial1, UM-
Financial2 has small throughput as they do many 512
byte random IOs. FIU-Home traces are almost write-
only and random IO. Others are mix of random and se-
quential IOs.

7 Related Work

Prior works [4, 5, 46, 37, 43, 45, 48, 17, 36, 47] mostly
aim to improve the IO stack for one drive by proposing
changes in the IO stack and/or hardware, leaving behind
a number of issues pertaining to multi-SSD volumes.
Different from these approaches, we focus on multi-SSD
volumes and aim to achieve both the IO scalability and
the ease of programming.

Application-managed IO approach [49, 50, 23] parti-
tions a file in different SSDs and proposes a userspace
abstraction to aggregate the file content. As a result, it in-
troduces a lot of complexity in the application, and lacks
support of POSIX file system [49]. Also, there are appli-
cation level restrictions, such as only integer number of
processing cores for each SSD (e.g., one compute thread
for each SSD in Graphene [23]).

Various works [40, 27, 22, 34] have identified the im-
portance of IO stack optimization, and have proposed
various changes including the block layer to accelerate
application performance. A nice description of the time
spent on different layers of the IO platform has been an-
alyzed in [13]. Problems with sub-page buffered write
is identified [3] and techniques have been proposed to
improve the performance. Wang et al. [44] propose fair-
ness and efficiency in tiered storage system. Our work
is in-tune with these efforts and especially identifies im-
provements in the IO stack for multi-SSD volumes.

Linux kernel developers have made many improve-

ment in various locking semantics [15, 16, 24], however,
locking in parallel IO from the same file still remains
an issue as observed by Min et al. [28] in a many-core
system. An enhanced storage layer has been proposed
in [8] that exports information to file systems to bridge
the information gap. Our system utilizes such informa-
tion within a new layer (FML) to improve the perfor-
mance in multi-SSD volumes.

Storage area network (SAN) solutions provide aggre-
gated SSDs as block device services, and scale in terms
of multiple clients. However, the local file system at
client side will still have all the constraints that we have
discussed. Chen et al. [6] have developed new batched
IO interface, and integrated it with NFS compound pro-
cedure using a userspace NFS client. In such cases, Fal-
con will become a natural choice of IO stack to provide a
better client-side IO stack to take advantage of the faster
SAN/NFS storage.

Big data applications such as WiscKey (a key-value
store) [25] deploy a complex mechanism of a thread pool
to serve IOs in one SSD. To scale to multiple SSDs, they
need to fine-tune the number of threads. Falcon will en-
able such applications to move towards just one thread,
and can saturate more SSDs if AIO interfaces are used,
thereby providing simplicity and scalability both.

Lastly, many graph applications [21, 32] bypass the
random IO problem in multi-SSD volumes by fetching
the whole data in each iteration. However, Vora et al. [42]
show that the performance of many graph algorithms can
be improved by doing selective random IO. We believe
that Falcon will become a platform of choice for many
IO-intensive applications including graph analytics.

8 Conclusion

In this work, we have identified that the separation of two
IO processing tasks, i.e., IO batching and IO serving in
the block layer, holds the key to improve the throughput
in multi-SSD volumes. To achieve this goal, Falcon pro-
poses a new IO stack to enforce per-drive processing that
improves the IO stack performance and parallelizes the
IO serving tasks. Compared to current practice, Falcon
significantly accelerates a variety of applications from
utility applications to graph processing, and also shows
strong scalability across different numbers of drives, and
various storage controllers.
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