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Abstract

We present a new technique, H3, for reproducing
Heisenbugs in production runs on commercial hardware.
H3 integrates the hardware control flow tracing capa-
bility provided in recent Intel processors with symbolic
constraint analysis. Compared to a state-of-the-art so-
lution, CLAP, this integration allows H3 to reproduce
failures with much lower runtime overhead and much
more compact trace. Moreover, it allows us to develop
a highly effective core-based constraint reduction tech-
nique that significantly reduces the complexity of the
generated symbolic constraints. H3 has been imple-
mented for C/C++ and evaluated on both popular bench-
marks and real-world applications. It reproduces real-
world Heisenbugs with overhead ranging between 1.4%-
23.4%, up to 8X more efficient than CLAP, and incurs
only 4.9% runtime overhead on PARSEC benchmarks.

1 Introduction

The ability to reproduce software bugs is crucial for de-
bugging, yet due to the often non-deterministic mem-
ory races among threads, it is notoriously difficult to
reproduce concurrency bugs, i.e., the so-called Heisen-
bugs [15]. Researchers have investigated significant ef-
forts in record & replay (RnR) systems aiming to elimi-
nate the non-determinism. However, it remains challeng-
ing to deploy an RnR system for production runs. Most
existing solutions either are too slow due to the high run-
time overhead incurred by tracing the shared memory
dependencies, introduce the observer effect that makes
the Heisenbugs disappear [17, 20, 31], or require special
hardware that does not exist [16, 25, 26, 28, 33].

CLAP [18] introduces the idea of recording only
thread-local information (i.e., thread-local control flow
paths) and then using offline constraint solving to recon-
struct the shared memory dependencies. It is a promising
solution for reproducing Heisenbugs because it does not

record any cross-thread communication (data or synchro-
nization); hence it requires no synchronizations during
recording, which not only reduces the runtime overhead
but also minimizes the observer effect.

To enable a production-run RnR solution, however,
CLAP is still unsatisfactory due to two important chal-
lenges. First, although CLAP is much faster than con-
ventional solutions, the runtime overhead incurred by
CLAP using software path-recording is as large as 3X,
which is unacceptable for most production environments.
Second, the constraints generated by CLAP can be too
complex to solve. In the worst case, the complexity of
the constraints is exponential in the trace size. Despite
that SMT solvers (e.g., Z3 [14]) are becoming increas-
ingly powerful, in practice, the constraints can become
too large to solve in a reasonable time.

In this paper, we present H3, a new RnR system to
reproduce Heisenbugs by extending CLAP with com-
mercial hardware features. Our key observation is that
both of the aforementioned challenges can be effectively
addressed by hardware-supported control-flow tracing.
As also indicated in the CLAP paper [18], for path
recording, hardware techniques [30] can achieve as low
as 0.6% overhead. In reality, recent Intel processors
(starting from the 5th generation) have provided a new
feature called Processor Tracing (PT) to trace the pro-
gram control flow with very small (less than 5%) run-
time overhead [2]. PT uses highly-compacted packets
(i.e., only one bit for each conditional branch) to cap-
ture branch outcomes, often producing a compact trace
requiring < 1 bit per retired assembly instruction. More-
over, hardware-supported tracing allows us to perform
a significant reduction of the constraints generated by
CLAP, because memory accesses executed on each core
are ordered internally. We develop a core-based con-
straint reduction technique that reduces the complexity
of the constraints from exponential in the trace size to
only exponential in the number of cores.

As illustrated in Figure 1, H3 consists of two phases.
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Figure 1: H3 Overview.

First, users run the target program on a COTS (commer-
cial off-the-shelf) hardware with PT enabled. Once a
failure occurs, the PT trace together with the thread con-
text switch log are sent to the developer for reproducing
the bug. From the PT trace and the binary image of the
target program, H3 generates the instructions executed
on each core. Second, H3 infers the instructions exe-
cuted by each thread based on the thread context switch
log and generates a symbolic trace for each thread. It
then constructs symbolic constraints with the core-based
constraint reduction, and computes a global failure re-
producing schedule with an SMT solver.

Despite a clear design, realizing H3 faces two main
additional technical challenges: 1) How to transform the
low-level hardware trace to a high-level (source or IR)
trace? 2) How to capture the data values (PT does not
trace data values)? To solve the first challenge, we trans-
form the hardware trace into a sequence of IR-level tu-
ples, to identify what basic blocks are executed by each
thread. This is done by matching the low-level assembly
instructions in the per-thread local execution with that in
the IR (i.e., LLVM bitcode). For the second challenge,
we symbolically execute the IR along the sequence of
basic blocks for each thread. The unknown data values
(including all the unknown read values and addresses)
are encoded as symbolic variables, and are computed via
constraint solving.

We implemented H3 for C/C++ programs based on
PT, and evaluated it with a collection of popular perfor-
mance benchmarks and real-world applications contain-
ing known Heisenbugs. Our experimental results show
that H3 incurs only 1.4% to 23.4% runtime overhead
for all the applications and only 4.9% for the PARSEC
benchmarks on average, as much as 8X more efficient
than CLAP. Moreover, H3 reduces the size of the con-
straints in CLAP by 28% to 99%, improving the speed
of constraint solving by 2X-250X in most cases, and en-
abling H3 to reproduce more bugs than CLAP within a
limited time budget.

This paper makes the following contributions:

• To our best knowledge, H3 is the first technique that
integrates hardware control flow tracing with offline
symbolic analysis for reproducing production-run

Heisenbugs on commercial hardware.

• We develop a new core-based constraint reduction
technique that significantly reduces the complexity
of generated symbolic constraints from exponential
in the trace size to exponential in the core counts.

• We implement and evaluate H3 on both popular
benchmarks and real applications. Experiments
show that H3 can reproduce real Heisenbugs in pro-
duction runs with very small overhead.

2 Background

In this section, we first review the CLAP technique and
elaborate its limitations. We then show how hardware
control-flow tracing addresses these limitations.

2.1 CLAP
CLAP can not only reproduce Heisenbugs under sequen-
tial consistency (SC), but also a wide range of weak con-
sistency memory models, including TSO (total store or-
der) and PSO (partial store order) [9]. It has two key
components: I) collecting per-thread control flow infor-
mation via software path-recording (using an extended
Ball-Larus path-recording algorithm [11]), and II) as-
sembling a global schedule by solving symbolic con-
straints constructed over the thread local paths. To as-
semble a global schedule, CLAP has three steps:

1. Along the local path of each thread, it collects all the
critical accesses (read, write or synchronization) to
shared variables.

2. It introduces a fresh symbolic value for each read
access, and collects the path constraints following
the control flow for each thread via symbolic execu-
tion; it introduces an order variable for each critical
access, and generates additional constraints accord-
ing to synchronization, memory-consistency model,
and potential inter-thread memory dependencies.

3. It uses an SMT solver to solve the constraints, to
which the solutions correspond to global sched-
ules that can reproduce the error. In other
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words, the SMT solver computes what inter-thread
memory dependencies would satisfy the memory-
consistency model and enable the recorded local ex-
ecution path.

CLAP contains several components to model a failing
execution as constraints (e.g., failure, path, synchroniza-
tion, read-write, and memory model). We next use an
example in Figure 2 to illustrate these constraints. Sec-
tion 3.3 presents the constraint model in detail.

The program in Figure 2 contains a real Heisenbug
that only manifests under the PSO memory model, which
caused a $12 million financial loss in the real-world [7].
The root cause of the bug is that the write to z (line 5) can
be reordered with the writes to x and y (lines 3-4) under
PSO. The dashed arrow in the figure shows that the satis-
faction of the if condition at line 7 depends on the write
to z at line 5, which always happens after lines 3 and 4
under SC. However, under PSO, the write to z is allowed
to happen before the write to y at line 4. As a result,
when the if condition is satisfied, the value of x+ 1 and
y may be unequal and hence triggering the error. The
error can be triggered by the following PSO schedule:
1-2-3Rx -3Wx -4Ry -5-7-8Rx -8Ry (the subscripts are used to
distinguish different operations from the same line).

The CLAP constraints for reproducing the buggy PSO
schedule are shown in Figure 3. We use the order vari-
able Oi denotes the order of the corresponding access at
line i. The symbolic variable Ri

v denotes the value re-
turned by the read access to the variable v at line i, and
W i

v the value written to v by the write at line i. To dis-
tinguish different operations at the same line, we add the
type of the operation to the order variable. For example,
ORx

3 and OWx
3 represent the orders of the read and write to

x at line 3, respectively.
To manifest the error, CLAP enforces the assertion

to be violated while satisfying the path constraints, i.e.,
true≡ (R7

z = 1∧R8
x +1 6=R8

y). A major part of the CLAP
constraints is the read-write constraints, which are used
to capture the potential inter-thread memory dependen-
cies. Because the order of the memory accesses from
different threads is unknown, the read-write constraints
must encode a schedule for every potential read-write
match, in which the read returns the value written by the
write. For example, the read of z at line 7, R7

z , may be
matched with either the initial value 0, or the value writ-
ten by line 2 or 5. If the former, the read R7

z should hap-
pen before all the writes to z; if the latter, R7

z should be
matched with the corresponding write. For example, if
R7

z returns the value by the write at line 2, the constraint
R7

z =W 2
z ∧O2 < O7∧(O5 < O2∨O7 < O5) is generated.

CLAP Limitations

1. Exponential complexity of read-write constraints.
The read-write constraints generated by CLAP are very

Figure 2: A real PSO bug in an electron microscope soft-
ware [7], which caused a $12 million loss of equipment.

Read-Write	Constraints	
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Memory	Order	Constraints	
SC	 PSO	
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28

)0 < )+			)/ < )6	
)123 < )143				)523 < )543

)$ < )723 < )7
28

Path	Constraints	 Failure	Constraints	
"#$ = 1	 ":7 + 1! = "=7	

Figure 3: The CLAP constraints for reproducing the
PSO error in Figure 2. To save space, we show the read-
write constraints for z only. Those for x and y are similar.

complicated in practice because there may exist many
writes that a read can be matched with. In the worst
case, the complexity of the read-write constraints (i.e.,
the space of scheduling choices) is exponential in the
number of writes (which typically accounts for a large
percentage of the events in the trace). This is a bottleneck
in CLAP especially for programs with intensive inter-
thread memory dependencies, because the SMT solver
may fail to solve the constraints. We will present a de-
tailed complexity analysis in Section 3.4.
2. Slowdown of software path-recording. CLAP uses

a highly optimized algorithm (i.e., Ball-Larus [11]) to
track the control flow information for each thread. Al-
though it greatly reduces the runtime overhead incurred
by many other RnR solutions, it still incurs 10%-3X per-
formance slowdown on popular benchmarks [18]. For
instance, for the example in Figure 2, when the code is
executed in a loop for 10 million times, CLAP incurs
2.3X program slowdown.
3. Difficulty of code instrumentation. It is difficult

to apply software path-recording in production runs be-
cause it requires code instrumentation. Real-world pro-
grams often rely on external libraries, proprietary code,
and/or are composed from layers of frameworks and ex-
tended by third-party plugins. Tracing the whole pro-
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Figure 4: Components of Intel Processor Tracing (PT).

gram control flow by code instrumentation is difficult or
impossible. For example, if a failure is caused by a bug
in the uninstrumented external code, the constraints gen-
erated by CLAP may be incomplete and hence fail to
reproduce the bug.

2.2 Hardware Control-Flow Tracing
Tracing control flow at the hardware level opens a door to
apply CLAP in production runs by addressing the afore-
mentioned limitations in three ways. First, hardware-
supported control flow tracing is significantly more ef-
ficient than software-level path-recording. Compared to
the 10%-3X overhead by software path-recording, PT
achieves as low as 5% runtime overhead [2]. Second,
hardware can track the full control flow of the code ex-
ecuted on each core. PT can not only trace the applica-
tion code, but also the whole operating system kernel [2].
Third, tracing the control flow on each core enables a
significant reduction of the complexity of the read-write
constraints, because reads and writes from the same core
are ordered already.

Next, we first review the basics of PT and then show its
performance improvement over software path-recording
on PARSEC 3.0 benchmarks [5].

Intel PT. As depicted in Figure 4, PT consists of two
main components: tracing and decoding. For tracing,
it only records the instructions that are related to the
change of the program control flow and omits everything
that can be deduced from the code (e.g., unconditional
direct jumps). For each conditional branch executed, PT
generates a single bit (1/0) to indicate whether a condi-
tional branch is taken or not taken. As such, PT tracks
the control flow information, such as loops, conditional
branches and function calls of the program, with minimal
perturbation, and outputs a highly compact trace.

For decoding, PT provides a decoding library [1] to
reconstruct the control flow from the recorded raw trace.
It first synchronizes the packet streams with the synchro-
nization packets generated during tracing, and then iter-
ates over the instructions from the binary image to iden-
tify what instructions have been executed. Only when the

Table 1: Runtime and space overhead of PT on PARSEC.

Program
Native PT

time (s) time (s) OH(%) trace
bodytrack 0.557 0.573 2.9% 94M

x264 1.086 1.145 5.4% 88M
vips 1.431 1.642 14.7% 98M

blackscholes 1.51 1.56 9.9% 289M
ferret 1.699 1.769 4.1% 145M

swaptions 2.81 2.98 6.0% 897M
raytrace 3.818 4.036 5.7% 102M
facesim 5.048 5.145 1.9% 110M

fluidanimate 14.8 15.1 1.4% 1240M
freqmine 15.9 17.1 7.5% 2468M

Avg. 4.866 5.105 4.9% 553M

decoder cannot decide the next instruction (e.g., when it
encounters a branch), the raw trace is queried to guide
the decoding process.

PT is configurable via a set of model-specific registers
by the kernel driver. It provides a privilege-level filter-
ing function for developers to decide what code to trace
(i.e. kernel vs. user-space) and a CR3 filtering function
to trace only a single application or process. PT on Intel
Skylake processors also supports filtering by the instruc-
tion pointer (IP) addresses. This feature allows PT to se-
lectively trace code that is only within a certain IP range,
which can further reduce the tracing perturbation.

PT Performance. Table 1 reports the runtime and
space overhead of PT on the PARSEC 3.0 benchmarks.
We report the execution time of the programs without
and with PT tracing (and the trace size), marked as native
and PT respectively. Among the 10 benchmarks, PT in-
curs 1.4% to 14.7% runtime overhead (4.9% on average)
and 88MB to 2.4GB space overhead (0.5GB on average).

3 H3

In this section, we present the technical details of H3.
As we have described in Figure 1, H3 integrates hard-
ware control-flow tracing with offline symbolic con-
straint analysis to reproduce Heisenbugs. Although the
overall flow is easy to understand, there are three techni-
cal challenges in the integration:

1. Absence of the thread information. There is
no thread information from the PT traces. It is
unknown which instruction is executed by which
thread, and hence difficult to construct the inter-
thread synchronization and memory dependency
constraints.

2. Gap between low-level hardware traces and
high-level symbolic traces. The decoded execu-

406    2017 USENIX Annual Technical Conference USENIX Association



tion from PT is in the low-level assembly form.
However, to construct constraints and to reproduce
bugs, we need a high-level symbolic trace contain-
ing shared variable accesses and branch conditions.

3. No data values for memory accesses. PT only
traces control flow information but does not record
any data values of memory accesses. To reconstruct
the shared memory dependencies, we need a way to
match reads with writes without using values.

We present our solutions to these challenges in the
next three subsections. We also present a constraint re-
duction algorithm in Section 3.4 enabled by the partial
order of writes per-core, which significantly reduces the
complexity of the generated constraints.

3.1 Thread Local Execution Generation
We leverage the context-switch software events (gener-
ated by the Linux Perf tool) to distinguish instructions
from different threads. Each context-switch event con-
tains three attributes: TID, CPUID, and TIME (i.e., the
timestamp of the event). Because PT also generates
frequent synchronization packets (including the times-
tamp information) into the packet stream, we can use
the timestamp information to synchronize the context
switch events with the PT packets from the same core
(i.e., CPUID). Because the timestamp clocks local to
each core is precise, the inferred thread identity based
on the timestamp information is also precise. Hence,
we locate the context switch points in the PT packets on
each core by comparing the timestamps, and determine
the thread identity of each instruction as the TID attribute
of the leading context-switch event.

3.2 Symbolic Trace Generation
In CLAP, the symbolic trace of each thread is generated
by symbolic execution along the recorded path profile of
each thread. The path profile for each thread is decoded
(from the Ball-Larus path encoding [11]) as a sequence
of basic block transitions at the LLVM IR level in the
form of (Tid, BasicBlockId). In H3, we also rely on these
high-level per-thread path profiles to collect the symbolic
traces, and we extract the path profiles from the low-level
PT trace as follows. We first instrument all basic blocks
of the target program and assign each a unique identi-
fier. Then we compare the generated assembly code from
the instrumented program with the decoded instructions
from the PT trace to identify which basic blocks are exe-
cuted by each thread.

Algorithm 1 shows the process of generating the path
profiles for each thread. The algorithm takes as input:
(1) the executed instructions and their corresponding line

Algorithm 1 Path profiles generation

Input: L:< line, insn > //execute instructions and #line
Input: B: <line, block id> //basic blocks of the paths
Output: Q: <tid, block id>//path profile of each thread

1: for each tid do //traverse each thread
2: //get the instructions of each thread
3: `= {S⊆ L|∀insn ∈ S.insn,Tid(insn) = tid}
4: for each item ∈ ` do
5: if item.line ∈ B.line then
6: block id = B.get(item.line)
7: Q.add(tid,block id)
8: return Q

number; and (2) the basic blocks of the control-flow of
the program with the BlockId and the line number of
the first instruction of this block. The algorithm first
gets the executed instructions by each thread (line 3) and
then matches the line number of the executed instruc-
tions with that contained in each basic block (line 4-7).
To identify the path profile of a thread, the algorithm iter-
ates over the instructions of each thread to check whether
the instruction is the first one of the block by comparing
the line number (line 5). If so, we add this block into the
path profile as (Tid, BasicBlockId).

3.3 Matching Reads and Writes
To reconstruct the shared memory dependencies without
data values, similar to CLAP, we construct a system of
symbolic constraints over the per-thread symbolic traces.
The basic idea is to introduce an order variable for each
read/write denoting the unknown scheduling order, and
a symbolic variable for each read/address denoting the
unknown read value and address. We symbolically exe-
cute the program following the recorded per-thread con-
trol flow, and constructs constraints over the order and
symbolic variables to determine the inter-thread orders
and values of reads/addresses.

More specifically, we construct a system of SMT
constraints formula, denoted by Φg, over the symbolic
traces. The computed orders/values from solving Φg
then correspond to one or more concrete global sched-
ules that can reproduce the Heisenbugs. We note that
the computed schedules may be different from that in the
failure execution, but any one of them is sufficient to re-
produce the Heisenbugs.

Φg can be decomposed into five parts:

Φg = Φpath∧Φbug∧Φsync∧Φmo∧Φrw

where Φpath denotes the path conditions by each thread;
Φbug the condition for the bug manifestation; Φsync the
interactions between inter-thread synchronizations; Φrw
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the potential inter-thread memory dependencies; and
Φmo the memory model constraints. The formula con-
tains two types of variables: (1) V - the symbolic value
variables denoting the values returned by reads; and (2)
O - the order variables the order of each operation in the
final global schedule.

Path Constraints (Φpath). The path constraints are
constructed by a conjunction of all the path conditions
of each thread, with each path condition corresponds to
a branch decision by that path. The path conditions are
collected by recording the decision of each branch via
symbolic execution.
Bug Constraints (Φbug). The bug constraints enforce
the conditions for a bug to happen. A bug can be a
crash segfault, an assert violation, a buffer overflow, or
any program state-based property. To construct the bug
constraints, an expression over the symbol values for sat-
isfying the bug conditions is generated. For example, the
violation of an assertion exp can be modeled as !exp.
Synchronization Constraints (Φsync). The synchro-
nization constraints consist of two parts: partial order
constraints and locking constraints. The partial order
constraints model the order between different threads
caused by synchronizations fork/join/signal/wait. For
example, The begin event of a thread t should happen
after the fork event that starts t. A join event for a thread
t should happen after the last event of t. The locking con-
straints ensures that events guarded by the same lock are
mutually exclusive. It is constructed over the ordering
of the lock and unlock events. More specifically, for each
lock, all the lock/unlock pairs of events are extracted, and
the following constraints for each two pairs (l1, u1) and
(l2, u2) are constructed: Ou1 < Ol2 ∨Ou2 < Ol1 .
Memory Order Constraints (Φmo). The memory or-
der constraints enforce orders specified by the underly-
ing memory models. H3 currently supports three mem-
ory models: SC, TSO and PSO. For SC, all the events
by a single thread should happen in the program order.
TSO allows a read to complete before an earlier write to
a different memory location, but maintains a total order
over writes and operations accessing the same memory
location. PSO is similar to TSO, except that it allows
re-ordering writes on different memory locations.
Read-Write Constraints (Φrw). Φrw matches reads
and writes by encoding constraints to enforce the read
to return the value written by the write. Consider a read r
on a variable v and r is matched to a write w on the same
variable; we must construct the following constraints:
the order variables of all the other writes that r can be
matched to are either less than Ow or greater than Or.

As discussed in Section 2.1, Φrw can be complicated
because there may exist many potential matches between
reads and writes. The size of Φrw is cubic in the trace

Figure 5: Core-based constraint reduction.

size and its complexity is exponential in the trace size.
Nevertheless, in next subsection, we show that both the
size and complexity of Φrw can be greatly reduced in H3.

3.4 Core-based Constraints Reduction

Besides the low runtime overhead, another key innova-
tion enabled by PT is that the order of executed events
on each core (either by the same thread or by different
threads) is determined, which can reduce the complex-
ity of Φrw from exponential in the number of writes to
exponential in the core counts.

The key observation of this reduction is that the exe-
cuted memory accesses on each core decoded from PT
trace are already ordered, following the program order.
Once the order of a certain write in the global schedule is
determined, all the writes that happen before or after this
write, on the same core, should occur before or after this
write in the schedule correspondingly. This eliminates
a large number of otherwise necessary read-write con-
straints for capturing the potential inter-thread memory
dependencies.

Consider an example in Figure 5, which has four cores
with each executing four different writes. Suppose there
is a read R that can be potentially matched with all of
these writes, because each of them writes a different
value to the same shared variable read by R. Without
the partial order information of each core, we must in-
clude all writes and their orderings into the constraints.
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For instance, if R reads the value from the write W7 on
Core 2, then R must happen after W7 (i.e., OR > OW7 ),
and all the other writes must either happen before W7 or
after R. Taking W5 as an example; it must either hap-
pen before W7 or after the read R, resulting in the con-
straint (OR < OW5 ∨OW5 < OW7). In general, if there
are N writes in the trace, the constraints can generate 2N

different ordering choices for these writes. As typically
most accesses in the trace are reads and writes, this expo-
nential search space can be a bottleneck for the technique
to scale.

However, with the per-core partial order information,
the execution order of the writes on each core is already
determined. To prevent other writes from happening be-
tween the considered write and read, we only need to
take the read-write as a whole and insert it to those sorted
writes. Algorithm 2 presents our constraints reduction
algorithm. Following this algorithm, to make R read

Algorithm 2 Core-based constraints reduction

Input: a matched read-write < R,W >
Output: Φrw to make R read from W

1: Initial: Φrw = /0
2: case 1: writes executed on the same core as W
3: Φrw = Φrw ∧ (OW < OR < OW ′) //W ′ happens

right after W on the same core
4: case 2: writes executed on other cores
5: //for any two writes Wi and Wi+1 on the same core
6: Φrw = Φrw ∧ (OR < OWi ∨ (OWi < OW ∧OR <

OWi+1))∨OW > OWi+1
7: return Φrw

from W7, for all the other writes on Core 2, we only re-
quire OW7 < OR < OW8 . Moreover, for the writes on the
other cores, our new constraints encode fewer ordering
choices. For example, for the four writes (W1-W4) on
Core 1, the constraints are written as OR < OW1 ∨(OW1 <
OW7 ∧OR < OW2)∨ (OW2 < OW7 ∧OR < OW3)∨ (OW3 <
OW7 ∧OR < OW4)∨OW4 < OW7). There are only 5 order-
ing choices (compared to 16 in CLAP).

We note that the core-based constraints apply to SC
and TSO, but may not apply to those weak memory mod-
els that allow re-ordering of writes on the same core. The
reason is that if writes are re-ordered, the partial order
witnessed on each core may not reflect the actual buggy
execution order.

Theorem 1 below states the soundness guarantee of the
core-based reduction:

Theorem 1 If a concurrent program runs on an SC or
TSO platform with C cores and there are N writes exe-
cuted, the number of the ordering choices of the read-

write constraints is reduced from 2N to (
N
C
+1)C.

Proof. Consider that a read R returns the value of
a write W . When not knowing the partial order of the
writes on each core, each write either happens before W
or after R. Consequently, there are 2N ordering choices
in total. If the partial order of the writes on each core

is known and each core contains mi =
N
C

writes, the or-
dering on each core has only mi +1 choices. Therefore,
the total number of choices is reduced to ΠC

i=1(mi +1),
which equals to (N

C +1)C.

4 Implementation

We have implemented H3 for Pthreads-based C/C++
programs based on a number of tools, including
CLAP [18], the Linux Perf Tools [3], the PT decoding
library [1], and the Z3 SMT solver [14]. We use Perf
to control Intel PT to collect the packet streams and the
context switch events. We first insert the context switch
events to the packet streams by comparing the times-
tamp information, and then use the PT decoding library
to decode the packets information. As in CLAP, we use
KLEE [12] as the symbolic execution engine to gener-
ate the symbolic traces for each thread, and construct an
SMT constraint formula. We modified CLAP to imple-
ment the core-based constraint reduction algorithm, and
we use Z3 to solve the constraints.

Shared Variable Identification. We first run a static
thread sharing analysis based on the Locksmith [29]
race detector and then manually mark each shared
variable x as symbolic by klee make symbolic(&x,

sizeof(x), "x"), like CLAP. One way to automate
this step is to conservatively consider all variables in the
program as potentially shared and marked them as sym-
bolic. However, this would produce a large amount of
unnecessary constraints. For external function calls that
are not supported by KLEE, we also mark the input and
return variables of the external function calls as sym-
bolic.

Constraint Reduction. For the core-based constraint
reduction, we first extract the writes on the same core
from the PT trace and store these writes in a map (core
Id: w1[line],w2[line]...). When constructing the read-
write constraints, this map is used to determine which
write belongs to which core by comparing the associ-
ated line number information. Because all writes on the
same core occur in the order that they are executed, we
construct a happens-before constraint over these writes.
When matching a read r to a corresponding write w, we
first constrain r to happen after w and happen before the
write that occurs right after w on the same core, and we
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Table 2: Benchmarks.

Program LOC #Threads #SV
#insns #branches #branches Ratio Symb.

(executed) (total) (app) app/total time
racey 192 4 3 1,229,632 78,117 77,994 99.8% 107s
pfscan 1026 3 13 1,287 237 43 18.1% 2.5s

aget-0.4.1 942 4 30 3,748 313 5 1.6% 117s
pbzip2-0.9.4 1942 5 18 1,844,445 272,453 5 0.0018% 8.7s

bbuf 371 5 11 1,235 257 3 1.2% 5.5s
sbuf 151 2 5 64,993 11,170 290 2.6% 1.6s

httpd-2.2.9 643K 10 22 366,665 63,653 12,916 20.3% 712s
httpd-2.0.48 643K 10 22 366,379 63,809 13,074 20.5% 698s
httpd-2.0.46 643K 10 22 366,271 63,794 12,874 20.2% 643s

then only need to disjunct the order constraints between
w and those writes from a different core.

5 Evaluation

Our evaluation of H3 focuses on answering two sets of
questions:

• How is the runtime performance of H3? How much
runtime improvement is achieved by H3 compared
to CLAP?

• How effective is H3 for reproducing real-world
Heisenbugs? How effective is the core-based con-
straint reduction technique?

5.1 Methodology

We evaluated H3 with a variety of multithreaded C/C++
programs collected from previous studies [18, 35, 6], in-
cluding nine popular real-world applications containing
known Heisenbugs. Table 2 summarizes these bench-
marks. pfscan is a parallel file scanner containing a
known bug; aget-0.4.1 is a parallel ftp/http download-
ing tool containing a deadlock; pbzip2-0.9.4 is a multi-
threaded implementation of bzip with a known order vi-
olation; bbuf is shared bounded buffer and sbuf is a C++
implementation of the JDK1.4 StringBuffer class; httpd-
2.2.9, httpd-2.0.48, httpd-2.0.46 are from the Apache
HTTP Server each containing a known concurrency bug;
We also included racey [6], a special benchmark with
intensive races that are designed for evaluating RnR sys-
tems. We use Apache Bench (ab) to test httpd, which
is set to handle 100 requests with a maximum of 10 re-
quests running concurrently.

We compared the runtime performance of H3 and
CLAP by measuring the time and space overhead caused
by PT tracing and software path-recording. We ran each
benchmark five times and calculated the average. All

experiments were performed on a 4 core 3.5GHz In-
tel i7 6700HQ Skylake CPU with 16 GB RAM running
Ubuntu 14.04.

We evaluated the effectiveness of H3 for reproducing
bugs by checking if H3 can generate a failure reproduc-
ing schedule and by measuring the time taken by offline
constraint solving. We set one hour timeout for Z3 to
solve the constraints.

For most benchmarks, the failures are difficult to man-
ifest because the erroneous schedule for triggering the
Heisenbugs is rare. Similar to CLAP, we inserted timing
delays (sleep functions) at key places in each benchmark
and executed it repeatedly until the failure is produced.
We also added the corresponding assertion to denote the
bug manifestation.

Benchmark Characteristics. Table 2 reports the ex-
ecution characteristics of the benchmarks. Columns 3
and 4 report the number of threads and shared variables,
respectively, contained in the execution. We also pro-
filed the total number of the executed instructions and
branches in the assembly code, and the branches from
the LLVM IR code, as reported in Columns 5-7. Col-
umn 8 reports the ratio of the number of the branches in
the instrumented application code versus the total num-
ber of branches (in both the application code and all the
external libraries). For most benchmarks (except racey),
the ratio is smaller than or around 20%. Column 9 re-
ports the time for constructing the symbolic trace for the
corresponding recorded execution of the benchmark.

5.2 Runtime Performance

Table 3 reports the performance comparison between H3
and CLAP. Column 2 reports the native execution time
of the benchmarks. Columns 3-4 report the execution
time with H3 and CLAP and their runtime overhead.
Column 5 reports the speedup of H3 over CLAP. Col-
umn 6 reports the percentage of branch instructions in
the execution. This number is proportional to the runtime
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Table 3: Performance comparison between H3 and CLAP.

Program
Native Time (s) Branch Space overhead
time (s) CLAP (Overhead) H3 (Overhead) Speedup insts% CLAP H3

racey 0.268 0.768(186.6%) 0.288(7.5%) 65.2% 6.4% 96M 2.68M
pfscan 0.094 0.104(11.0%) 0.116(23.4%) -11.5% 18.4% 3.2K 30K

aget-0.4.1 0.139 0.156 (12.1%) 0.152(9.4%) 2.6% 17.9% 11K 41K
pbzip2-0.9.4 0.102 0.134(31.4%) 0.112(9.8%) 16.4% 14.8% 5.2K 677K

bbuf 0.232 0.696(200%) 0.264(13.8%) 62.1% 20.1% 3.9K 2.7M
sbuf 0.216 0.299(38.5%) 0.256(18.5%) 14.4% 17.2% 6.6K 4.5M

httpd-2.2.9 0.53 0.71(34.0%) 0.57(7.5%) 19.7% 17.4% 7.8M 10.43M
httpd-2.0.48 0.45 0.59(32.1%) 0.51(13.3%) 13.6% 17.4% 8.1M 11.79M
httpd-2.0.46 0.42 0.57(36.2%) 0.50(19.0%) 12.3% 17.4% 7.2M 10.62M

avg. 0.272 0.447(64.3%) 0.307(12.9%) 31.3% 16.3% 13.2M 4.8M
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Figure 6: H3 performance analysis.

overhead of PT. Columns 7-8 report the space overhead
of H3 and CLAP, respectively.

Overall, the runtime overhead of H3 on these bench-
marks ranges between 7.5%-23.4% and 12.9% on av-
erage. Compared to CLAP (11.0%-2X overhead), H3
achieves as much as 8X performance improvement and
reduces its overhead significantly by 2.6%-65.2% and
31.3% on average. The only exception is pfscan. How-
ever, this is just because pfscan contains significantly
more external calls compared to the other benchmarks;
while H3 records all external library calls, the imple-
mentation of CLAP does not (which sacrifices the cor-
rectness). In addition, the short execution time of pfscan
can suffer from noise.

For space overhead, H3 produces 30KB-2.4GB traces
on these benchmarks, whereas CLAP produces 2KB-
2.1GB. Some numbers of CLAP are smaller than that
of H3, because external library calls are not traced by
CLAP.

H3 performance analysis. We note that the perfor-
mance of H3 is dominated by PT for tracking the control
flow events. The additional cost for H3 to track con-
text switching events is almost negligible as compared
to tracing the control flow. We have also evaluated the
runtime performance of H3 on the PARSEC 3.0 bench-
marks and found that H3 incurs only 1.4% to 14.7% run-
time overhead (4.9% on average) and 0.5GB trace size,
the same as that reported in Table 1 for PT.

We further conducted a performance study of H3 on

PARSEC with respect to three impacting factors: the
trace size, the number and percentage of branch instruc-
tions, as shown in Figure 6. Figure 6(a) shows the rela-
tion between the size of the recorded trace and the ex-
ecution time of H3. Figure 6(b) shows the relation be-
tween the number of executed branches and the size of
the recorded trace. Figure 6(c) shows that relation be-
tween the percentage of executed branch instructions and
the runtime overhead of H3. The results indicate that
the performance of H3 is proportional to the percentage
of executed branch instructions in the execution. Recall
Column 8 in Table 2 that the number of branches in the
application code often accounts for a small percentage of
the total number of branches. Hence, in practice, the per-
formance of H3 can be further improved by tracing only
the application code and omitting external library calls.

5.3 Effectiveness of Bug Reproduction
Table 4 reports the results of Heisenbug reproduction.
We successfully evaluated five benchmarks1 with a total
number of seven Heisenbugs. racey1, racey2 and racey3
correspond to the racey benchmark with 500, 1000, and
1500 loop iterations.

Column 2 reports the number of unknown variables
in the constraint formula, corresponding to the number
of read/write/synchronization operations in the symbolic
trace. Columns 3-6 report the results of CLAP, includ-
ing the total size of the generated constraints (in terms
of the number of constraint clauses), the size of read-
write constraints, the constraint solving time by Z3 and
whether Z3 returns a solution before timeout in one hour.
Columns 7-10 report the corresponding results of H3.

Overall, H3 is more efficient and effective than CLAP
in reproducing Heisenbugs. The key difference between
H3 and CLAP is that with the core-based constraint re-
duction, H3 generates a much simpler and smaller con-

1We excluded aget and the httpd benchmarks because the KLEE
symbolic execution failed on them.
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Table 4: Results of Heisenbug reproduction. (-) means the solver runs timeout in one hour.

Program #Var
CLAP #constraints

solve time success?
H3 #constraints

solve time success?
#Total #RW #Total #RW(Reduction)

bbuf 79 14264 13902 98s Y 10344 9982(28.2%) 52s Y
sbuf 102 438 302 1s Y 344 208(31.1%) 1s Y

pfscan 25 199 60 1s Y 179 40(33.3%) 1s Y
pbzip2 113 5890 1270 2s Y 5460 840(33.9%) 1s Y
racey1 15040 540602 540388 - N 50602 50388(90.7%) 267s Y
racey2 30108 41612000 41607900 - N 201202 200788(99.5%) - N
racey3 67850 1.3×108 1.3×108 - N 451802 451188(99.7%) - N

straint formula than CLAP. H3 reduces the size of the
CLAP constraints by 28%-99%, and is able to reproduce
more bugs than CLAP. Both H3 and CLAP reproduce
the bugs in the four benchmarks bbuf, sbuf, pfscan and
pbzip2. H3 additionally reproduces the bug in racey1,
while CLAP fails because the solver could not solve the
constraints in time. In addition, for bbuf, although both
H3 and CLAP can reproduce the bug, H3 is much faster
(52s vs 98s) than CLAP. H3 fails on racey2 and racey3
because the constraints in these two cases are still too
complex to solve.

6 Limitations and Future Work

Our experimental results show that H3 achieves a signif-
icant performance improvement over CLAP by integrat-
ing hardware control-flow tracing with constraint analy-
sis. Nevertheless, we observe several factors that can be
leveraged to further improve the performance of H3.

Large PT Trace Data. On our current platform, the
size of the PT trace buffer per core is limited to 4MB.
For tracing long running programs, the buffer can get full
quickly (e.g., 0.01s for the PARSEC benchmarks). Cur-
rently, Perf actively monitors the trace buffer and flushes
it to disk once the buffer is full. To avoid overwriting
the buffered data, Perf also needs to disable PT when the
buffer is full, and wakes it up when the data is copied
out. This is a main bottleneck that limits the runtime per-
formance of H3 because the program execution has to
be suspended when PT is off, otherwise the control flow
data may be lost when the buffer data is being copied
out. We also experienced data loss with Perf when using
PT to track long traces. This happens because the speed
of copying data out is not fast enough, causing certain
buffered data overwritten by the new data. We expect
that a larger trace buffer or double buffering in the future
generations of PT will help alleviate this problem.

Data Values. Another limitation of PT is that it only
tracks the control flow of the program but not any data
values or memory addresses. This is the main reason
why symbolic execution is needed in H3 to construct

symbolic traces. Although symbolic execution engines
such as KLEE are becoming increasing powerful, scaling
symbolic execution to long running programs remains a
challenging problem. In addition, limited by KLEE, H3
currently can only reproduce concurrency failures that
occur in the application code, but not external function
calls (though it traces the control flow in all external li-
braries).

For future work, we plan to use hardware watchpoints
(as also used in Gist [19]) to capture the value and ad-
dress of variables along with the PT control flow trac-
ing. With the value information, we can then skip the
symbolic execution part but construct the constraints by
matching the values of reads and writes directly. More-
over, this will further reduce the complexity of the gen-
erated constraints.

Constraint Solving for Long Traces. Although our
constraint reduction is effective, the complexity of the
generated constraints is still exponential in the number
of cores. For long traces, the constraint size can still be
large and solving them remains challenging. For exam-
ple, H3 failed on racey2 and racey3 due to the solver
timeout. For this problem, we plan to improve H3 in
two ways. First, we can perform periodic checkpoints
(e.g., using the snapshot mode of Perf) to save the cur-
rent state of the program, such that when a failure oc-
curs, H3 needs only to generate the constraints from the
last checkpoint to the failure. Second, we can reduce the
amount of the trace by not tracing the control flow in the
external libraries (e.g., using the IP filtering featured sup-
ported by Skylake processors). As shown in our exper-
imental results, the branches from the application code
account for only a small percentage (7-20%) of the to-
tal trace, most of which are from the external libraries.
Skipping tracing the external libraries will greatly reduce
both the trace size and the runtime overhead.

Non-deterministic Program Inputs. Similar to
CLAP, currently H3 does not record the program input
but assumes that all program inputs are fixed. If the pro-
gram input is non-deterministic or certain program inputs
are missed, H3 may fail to reproduce the bug. This prob-
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lem can be addressed by tracking the program input and
enforcing the same input value during the symbolic trace
construction and the bug reproduction. Mozilla RR [4]
is a promising solution to track non-deterministic inputs
in real-world systems, by tracing only system call results
and signals with ptrace. We expect that by integrating
H3 with RR, H3 will be able to reproduce failures re-
sulted from both non-deterministic schedules and inputs.

7 Related Work
Researchers have proposed many different RnR systems,
both at the software level [8, 13, 17, 18, 21, 22, 23, 27,
32, 34, 38] and hardware-level [16, 25, 26, 28, 33]. Most
RnR systems are either order-based [13, 17, 23, 34, 38]
that rely on faithfully recording the shared memory de-
pendencies at runtime, or search-based [8, 18, 21, 22, 32]
that record only partial information at runtime and rely
on powerful search engines such as SMT solvers to re-
construct the memory dependencies.

A central goal of RnR systems is to reduce the run-
time overhead such that they can be used in production
runs. Hardware techniques [16, 25, 26, 28, 33] are often
much more efficient than software-level implementation,
but most previous RnR systems rely on special hardware
that is not available. Intel PT is an exciting hardware
feature that opens a door for RnR systems to be applied
broadly in COTS platforms.

Gist [19] introduces a bug diagnosis technique that
also leverages PT to identify root causes of a failure with
low overhead. Different from H3, Gist assumes the fail-
ure can be reproduced in the first place, but it may fail
to do so. In addition, Gist relies on statistical analysis
to identify failure causes, but it has no guarantee, i.e., it
may miss real causes or report false positives. Compared
to Gist, H3 solves a different problem: reproducing fail-
ures before they can be diagnosed, and H3 is sound: it
guarantees to reproduce the failure as long as the con-
straints can be solved by the solver.

Arulraj et al. [10] use hardware performance counters
for failure diagnosis. This technique leverages the hard-
ware to sample predicates from a large number of suc-
cessful and failing runs and then use the sampled predi-
cates to diagnose the failure via statistical analysis.

ReCBuLC [36] uses hardware clocks that are available
on modern processors to help reproducing Heisenbugs.
The recorded timestamps local to each thread together
with a statistical analysis for calculating the time differ-
ences among local clocks across different cores, are used
to determine the global schedule of shared-resource ac-
cesses. One limitation of this approach is that the statis-
tical analysis may fail to infer a correct global schedule.

The idea of using offline constraint analysis to in-
fer global failure schedules was pioneered by Lee et

al. [21, 22]. The technique uses load-based checkpoints
to search for a global schedule without recording any
shared memory dependencies. However, compared to
PT, the load-based checkpoints are not supported by the
commodity architecture.

Similar to CLAP, both ODR [8] and Symbiosis [24]
rely on symbolic constraint solving to figure out sched-
ules that can satisfy certain conditions. ODR uses con-
straints to reproduce failures, and Symbiosis uses con-
straints for reducing the schedule complexity.

PRES [27] proposes a probabilistic replay technique
that uses an intelligent feedback-based replayer to repro-
duce failures with lightweight recording. PRES may fail
to reproduce the bug in the first attempt due to a recorded
incomplete schedule. However, it can learn from the pre-
vious failing replays to rectify the schedule. Typically af-
ter a few attempts, PRES is able to find a correct schedule
to reproduce the bug.

Both CoreDump [32] and ESD [37] rely on only the
program coredumps to diagnose failures. CoreDump
uses a technique called execution indexing to compare
the differences between coredumps from failing and nor-
mal runs to identify the failing point. ESD uses static
analysis and symbolic execution to synthesize both pro-
gram inputs and schedule to reproduce failures. Using
coredumps is promising for diagnosing real-world fail-
ures since coredumps are often available after the pro-
gram crash. However, since there is no program control
flow information, the technique may be difficult to repro-
duce failures that require complex paths and schedules to
manifest.

8 Conclusion
We have presented H3, a novel technique that reproduces
Heisenbugs by integrating hardware control flow tracing
and symbolic constraint solving. With the efficient con-
trol flow tracing supported by PT, H3 enables for the first
time the ability to efficiently reproduce Heisenbugs in
production runs on commercial hardware. We have also
presented an effective core-based constraint reduction
technique that significantly reduces the size of the sym-
bolic constraints and hence scales H3 to larger programs
compared to the state-of-the-art solutions. Our evalua-
tion on both popular benchmarks and real-world appli-
cations shows that H3 can effectively reproduce Heisen-
bugs in production runs with very small overhead, 4.9%
on average on PARSEC.
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