
This paper is included in the Proceedings of the
2017 USENIX Annual Technical Conference (USENIX ATC ’17).

July 12–14, 2017 • Santa Clara, CA, USA

ISBN 978-1-931971-38-6

Open access to the Proceedings of the
2017 USENIX Annual Technical Conference

is sponsored by USENIX.

Ending the Anomaly: Achieving Low Latency
and Airtime Fairness in WiFi

Toke Høiland-Jørgensen, Karlstad University; Michał Kazior, Tieto Poland;
Dave Täht, TekLibre; Per Hurtig and Anna Brunstrom, Karlstad University

https://www.usenix.org/conference/atc17/technical-sessions/presentation/hoilan-jorgesen

Ending the Anomaly: Achieving Low Latency and Airtime Fairness in WiFi

Toke Høiland-Jørgensen

Karlstad University

Michał Kazior

Tieto Poland

Dave Täht

TekLibre

Per Hurtig

Karlstad University

Anna Brunstrom

Karlstad University

Abstract

With more devices connected, delays and jitter at theWiFi

hop become more prevalent, and correct functioning dur-

ing network congestion becomes more important. How-

ever, two important performance issues prevent modern

WiFi from reaching its potential: increased latency under

load caused by excessive queueing (i.e. bufferbloat) and

the 802.11 performance anomaly.

To remedy these issues, we present a novel two-part

solution. We design a new queueing scheme that elim-

inates bufferbloat in the wireless setting. Leveraging

this queueing scheme, we then design an airtime fairness

scheduler that operates at the access point and doesn’t re-

quire any changes to clients.

We evaluate our solution using both a theoretical model

and experiments in a testbed environment, formulating

a suitable analytical model in the process. We show that

our solution achieves an order of magnitude reduction in

latency under load, large improvements in multi-station

throughput, and nearly perfect airtime fairness for both

TCP and downstream UDP traffic. Further experiments

with application traffic confirm that the solution provides

significant performance gains for real-world traffic.We

develop a production quality implementation of our solu-

tion in the Linux kernel, the platform powering most ac-

cess points outside of the managed enterprise setting. The

implementation has been accepted into the mainline ker-

nel distribution, making it available for deployment on

billions of devices running Linux today.

1 Introduction

As more mobile devices connect to the internet, and in-

ternet connections increase in capacity, WiFi is increas-

ingly the bottleneck for users of the internet. This means

that congestion at the WiFi hop becomes more common,

which in turn increases the potential for bufferbloat at the

WiFi link, severely degrading performance [10].

The 802.11 performance anomaly [9] also negatively

affects the performance of WiFi bottleneck links. This is

a well-known property of WiFi networks: if devices on

the network operate at different rates, the MAC protocol

will ensure throughput fairness between them, meaning

that all stations will effectively transmit at the lowest rate.

The anomaly was first described in 2003, and several

mitigation strategies have been proposed in the literature

(e.g., [13, 26]), so one would expect the problem to be

solved. However, none of the proposed solutions have

seen widespread real-world deployment.

Recognising that the solutions to these two problems

are complementary, we design a novel queue management

scheme that innovates upon previous solutions to the buf-

ferbloat problem by adapting it to support the 802.11 suite

of WiFi protocols. With this queueing structure in place,

eliminating the performance anomaly becomes possible

by scheduling the queues appropriately. We develop a

deficit-based airtime fairness scheduler to achieve this.

We implement our solution in the WiFi stack of the

Linux kernel. Linux is perhaps the most widespread

platform for commercial off-the-shelf routers and access

points outside the managed enterprise, and hundreds of

millions of users connect to the internet through a Linux-

based gateway or access point on a daily basis. Thus,

while our solution is generally applicable to any platform

that needs to support WiFi, using Linux as our example

platform makes it possible to validate that our solution is

of production quality, and in addition gives valuable in-

sights into the practical difficulties of implementing these

concepts in a real system.

The rest of this paper describes our solution in detail,

and is structured as follows: Section 2 describes the buf-

ferbloat problem in the context of WiFi and the WiFi per-

formance anomaly, and shows the potential performance

improvement from resolving them. Section 3 describes

our proposed solution in detail and Section 4 presents our

experimental evaluation. Finally, Section 5 summarises

related work and Section 6 concludes.

USENIX Association 2017 USENIX Annual Technical Conference 139

2 Background

In this section we describe the two performance issues

we are trying to solve – Bufferbloat in the WiFi stack and

the 802.11 performance anomaly. We explain why these

matter, and show the potential benefits from solving them.

2.1 Bufferbloat in the context of WiFi

Previous work on eliminating bufferbloat has shown that

the default buffer sizing in many devices causes large

delays and degrades performance. It also shows that this

can be rectified by introducingmodern queuemanagement

to the bottleneck link [10, 15, 29]. However, this does

not work as well for WiFi; prior work has shown that

neither decreasing buffer sizes [23] nor applying queue

management algorithms to the WiFi interface [10] can

provide the same reduction in latency under load as for

wired links.

10
00

 *

Q
di

sc
 la

ye
r

M
A

C
la

ye
r

at
h9

k
dr

iv
er

*Can be replaced with an
arbitrary configuration

Per HW queue
(x4)

2
ag

gr

FIFO

FIFO*

buf_q retry_q

TID

12
3

Prio

buf_q retry_q

TID

RR

Assign TID

Retries

To hardware

12
3

Prio

Figure 1: The queueing structure of the Linux WiFi stack.

The reason for the limited effect of prior solutions is

queueing in the lower layers of the wireless network stack.

For Linux, this is clearly seen in the queueing structure,

depicted in Figure 1. The upper queue discipline (”qdisc”)

layer, which is where the advanced queue management

schemes can be installed, sits above both the mac80211

subsystem (which implements the base 802.11 protocol)

and the driver. As the diagram shows, there is signific-

ant unmanaged queueing in these lower layers, limiting

the efficacy of the queue management schemes and lead-

ing to increased delay. Such a design is typical for an

environment where low-level protocol details impose a

certain queueing structure (as opposed to a wired Ether-

net network, where the protocol-specific processing per-

formed by the driver does not necessitate queueing). In

WiFi this queueing is needed to build aggregates (and to

a lesser extent to keep the hardware busy within the time

constrains imposed by the protocol), but a similar situ-

ation can be seen in, e.g., mobile broadband devices, DSL

modem drivers, and even in some VPN protocols, where

the encryption processing can require a separate layer of

queueing.

101 102 103

Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e p

ro
ba

bi
lit

y

With our solution Without our solution

Figure 2: Latency of an ICMP ping flow with simultaneous

TCP download traffic, before and after our modifica-

tions.

To solve this, an integrated queueing scheme is needed,

that applies modern queue management to the protocol-

specific queueing structures. In Section 3 we describe our

design of such a solution for the WiFi domain. Figure 2

showcases the gain from applying our solution. The figure

shows a latency measurement (ICMP ping) performed

simultaneously with a simple TCP download to each of

the stations on the network. The dashed line shows the

state of the Linux kernel before we applied our solution,

with several hundred milliseconds of added latency. The

solid line shows the effects of applying the solution we

propose in this paper – a latency reduction of an order of

magnitude.

2.2 Airtime fairness

The 802.11 performance anomaly was first described

for the 802.11b standard in [9], which showed that in a

wireless network with differing rates, each station would

achieve the same effective throughput even when their

rates were different. Later work has shown both ana-

lytically and experimentally that time-based fairness im-

proves the aggregate performance of the network [26], and

140 2017 USENIX Annual Technical Conference USENIX Association

that the traditional notion of proportional fairness [18]

translates to airtime fairness when applied to a WiFi net-

work [12].

This latter point is an important part of why airtime

fairness is desirable – proportional fairness strikes a bal-

ance between network efficiency and allowing all users a

minimal level of service. Since a wireless network oper-

ates over a shared medium (the airwaves), access to this

medium is the scarce resource that needs to be regulated.

Achieving airtime fairness also has the desirable property

that it makes a station’s performance dependent on the

number of active stations in the network, and not on the

performance of each of those other stations.

The addition of packet aggregation toWiFi (introduced

in 802.11n and also present in 802.11ac) adds some com-

plexity to the picture. To quantify the expected gains of

airtime fairness in the context of these newer revisions

of 802.11, the following section develops an analytical

model to predict throughput and airtime usage.

2.2.1 An analytical model for 802.11 with aggregation

The models in [9] and [26] give analytical expressions

for expected throughput and airtime share for 802.11b

(the latter also under the assumption of airtime fairness).

Later work [16] updates this by developing analytical ex-

pressions for packet sizes and transmission times for a

single station using 802.11n. However, this work does not

provide expressions for predicting throughput and airtime

usage. In this section we expand on the work of [16] to

provide such an expression. While we focus on 802.11n

here, the 802.11ac standard is backwards-compatible with

802.11n as far as the aggregation format is concerned, so

these calculations apply to the newer standard as well.

For the following exposition, we assume a set of active

stations, I . Each station, i, transmits aggregates of a

fixed size of Li bytes. In practice, the aggregates are

composed of data packets, plus overhead and padding.

The 802.11n standard permits two types of aggregation

(known as A-MPDU and A-MSDU), which differ in how

they combine packets into MAC-layer aggregates. For

A-MPDU aggregation (which is the most common in use

in 802.11n devices), the size of an aggregate consisting

of ni packets of size li is given by:

Li = ni(li + Ldelim + Lmac + LFCS + Lpad) (1)

where Ldelim, Lmac, LFCS , Lpad are, respectively,

the frame delimiter, MAC header, frame check sequence

and frame padding. However, these details are not strictly

necessary for our exposition, so we leave them out in the

following and instead refer to [16] for a nice overview of

the details of aggregate composition.

A station transmits data over the air at a particular

Aggr

size

T (i) Rates (Mbps)

PHY Base R(i) Exp

Baseline (FIFO queue)1

6892 10% 144.4 97.3 9.7 7.1
7833 11% 144.4 101.1 11.4 6.3
2914 79% 7.2 6.5 5.1 5.3

Total 26.4 18.7

Airtime Fairness

28434 33% 144.4 126.7 42.2 38.8
28557 33% 144.4 126.8 42.3 35.6
2914 33% 7.2 6.5 2.2 2.0

Total 86.8 76.4

Table 1: Calculated airtime, calculated rate and measured rate

for the three stations (two fast and one slow) in our ex-

perimental setup. The aggregation size is the measured

mean aggregation size (in bytes) from our experiments

and the measured rates (Exp column) are mean UDP

throughput values.

data rate ri (measured in bits per second). So the time to

transmit the data portion of an aggregate is simply:

Tdata(i) =
8Li

ri
(2)

From this we can compute the expected effective sta-

tion rate, assuming no errors or collisions, and no other

active stations:

R0(i) =
Li

Tdata(i) + Toh
(3)

where Toh is the per-transmission overhead, which

consists of the frame header, the inter-frame spacing, the

average block acknowledgement time, and the average

back-off time before transmission. We again leave out the

details and point interested readers to [2, 16].

Turning to airtime fairness, we borrow two insights

from the analysis in [26]:

1. The rate achieved by station i is simply given by

the baseline rate it can achieve when no other stations

are present (i.e., R0(i)) multiplied by the share of airtime

available to the station.

2. When airtime fairness is enforced, the airtime is di-

vided equally among the stations (by assumption). When

it is not, the airtime share of station i is the ratio between
the time that station spends on a single transmission (i.e.,

Tdata(i)) and the total time all stations spend doing one

1The aggregation size and throughput values vary quite a bit for this

test, because of the randomness of the FIFO queue emptying and

filling. We use the median value over all repetitions of the per-test

mean throughput and aggregation size; see the online appendix for

graphs with error bars.

USENIX Association 2017 USENIX Annual Technical Conference 141

transmission each.

With these points in mind, we express the expected

airtime share T (i) and rate R(i) as:

T (i) =

{
1
|I| with fairness

Tdata(i)∑
j∈I Tdata(j)

otherwise
(4)

R(i) = T (i)R0(i) (5)

Using the above, we can calculate the expected airtime

share and effective rate for each station in our experi-

mental setup. The assumption of no contention holds

because all data is transmitted from the access point. As

the queueing structure affects the achievable aggregation

level (and thus the predictions of the model), we use the

measured average aggregation levels in our experiments

as input to the model.

The model predictions, along with the actual measured

throughput in our experiments, are shown in Table 1. The

values will be discussed in more detail in Section 4, so

for now we will just remark that this clearly shows the

potential of eliminating the performance anomaly: An

increase in total throughput by up to a factor of five.

3 Our solution

We focus on the access point scenario in formulating our

solution, since a solution that only requires modifying the

access point makes deployment easier as there are fewer

devices to upgrade. However,WiFi client devices can also

benefit from the proposed queueing structure. And while

we have focused on 802.11n here, the principles apply

equally to both earlier (802.11abg) and newer (802.11ac)

standards. The rest of this section describes the two parts

of our solution, and outlines the current implementation

status in Linux.

3.1 A bloat-free queueing structure for 802.11

An operating system networking stack has many layers of

intermediate queueing between different subsystems, each

of which can add latency. For specialised systems, it is

possible to remove those queues entirely, which achieves

significant latency reductions [1]. While such a radical

restructuring of the operating system is not always pos-

sible, the general principle of collapsing multiple layers

of queues can be applied to the problem of reducing buf-

ferbloat in WiFi.

As mentioned in Section 2.1, an integrated queueing

structure is needed to deal with protocol-specific con-

straints while still eliminating bufferbloat. What we pro-

pose here is such an integrated structure that is specifically

suited to the 802.11 MAC. The components we use to

build this structure already exists in various forms; the

novelty of our solution lies in their integration, and some

algorithmic innovations to make the implementation feas-

ible, even on small devices.

There are three main constraints we must take into ac-

count when designing our queueing scheme. First, we

must be able to handle aggregation; the 802.11e stand-

ard specifies that packets can be assigned different Traffic

Identifiers (TIDs) (typically based on their DiffServ mark-

ings [25]), and the 802.11n standard specifies that aggreg-

ation be performed on a per-TID basis. Second, we must

have enough data processed and ready to go when the hard-

ware wins a transmit opportunity; there is not enough

time to do a lot of processing at that time. Third, we

must be able to handle packets that are re-injected from

the hardware after a failed transmission; these must be re-

transmitted ahead of other queued packets, as transmission

can otherwise stall due to a full Block Acknowledgement

Window.

The need to support aggregation, in particular, has in-

fluenced our proposed design. A generic packet queueing

mechanism, such as that in the Linux qdisc layer (see Sec-

tion 2.1), does not have the protocol-specific knowledge

to support the splitting of packets into separate queues,

as is required for aggregation. And introducing an API

to communicate this knowledge to the qdisc layer would

impose a large complexity cost on this layer, to the detri-

ment of network interfaces that do not have the protocol-

specific requirements. So rather than modifying the gen-

eric queueing layer, we bypass it completely, and instead

incorporate the smart queue management directly into the

802.11 protocol-specific subsystem. The main drawback

of doing this is, of course, a loss of flexibility. With this

design, there is no longer a way to turn off the smart queue

management completely; and it does add some overhead

to the packet processing. However, as we will see in the

evaluation section, the benefits by far outweigh the costs.

We build our smart queue management solution on

the FQ-CoDel queue management scheme, which has

been shown to be a best-in-class bufferbloat mitigation

technique [10, 15, 29]. The original FQ-Codel algorithm

is a hybrid fairness queueing and AQM algorithm [11].

It functions as a Deficit Round-Robin (DRR) scheduler

[24] between flows, hashing packets into queues based

on their transport protocol flows, and applying the CoDel

AQM separately to each queue, in order to keep the latency

experienced by each flow under control. FQ-CoDel also

adds an optimisation for sparse flows to the basic DRR

algorithm. This optimisation allows flows that use less

than their fair share of traffic to gain scheduling priority,

reducing the time their packets spend in the queue. For a

full explanation of FQ-CoDel, see [11].

FQ-CoDel allocates a number of sub-queues that are

used for per-flow scheduling, and so simply assigning a

full instance of FQ-CoDel to each TID is impractical. In-

142 2017 USENIX Annual Technical Conference USENIX Association

Algorithm 1 802.11 queue management algorithm - enqueue.

1: function enqueue(pkt, tid)

2: if queue_limit_reached() then . Global limit

3: drop_queue← find_longest_queue()

4: drop(drop_queue.head_pkt)

5: queue← hash(pkt)

6: if queue.tid 6= NULL and queue.tid 6= tid then

7: queue← tid.overflow_queue . Hash collision

8: queue.tid← tid

9: timestamp(pkt) . Used by CoDel at dequeue

10: append(pkt, queue)

11: if queue is not active then

12: list_add(queue, tid.new_queues)

stead, we innovate on the FQ-CoDel design by having

it operate on a fixed total number of queues, and group

queues based on which TID they are associated with. So

when a packet is hashed and assigned to a queue, that

queue is in turn assigned to the TID the packet is destined

for. In case that queue is already active and assigned to

another TID (which means that a hash collision has oc-

curred), the packet is instead queued to a TID-specific

overflow queue.2 A global queue size limit is kept, and

when this is exceeded, packets are dropped from the glob-

ally longest queue, which prevents a single flow from

locking out other flows on overload. The full enqueue

logic is shown in Algorithm 1.

The lists of active queues are kept in a per-TID struc-

ture, and when a TID needs to dequeue a packet, the

FQ-CoDel scheduler is applied to the TID-specific lists

of active queues. This is shown in Algorithm 2.

The obvious way to handle the two other constraints

mentioned above (keeping the hardware busy, and hand-

ling retries), is, respectively, to add a small queue of pre-

processed aggregates, and to add a separate priority queue

for packets that need to be retried. And indeed, this is how

the ath9k driver already handled these issues, so we simply

keep this. The resulting queueing structure is depicted in

Figure 3.

3.2 Airtime fairness scheduling

Given the above queueing structure, achieving airtime

fairness becomes a matter of measuring the airtime used

by each station, and appropriately scheduling the order

in which stations are served. For each packet sent or re-

ceived, the packet duration can either be extracted directly

from a hardware register, or it can be calculated from

the packet length and the rate at which it was sent (in-

cluding any retries). Each packet’s duration is subtracted

2A hash collision can of course also mean that two flows assigned to

the same TID end up in the same queue. In this case, no special

handling is needed, and the two flows will simply share a queue

like in any other hash-based fairness queueing scheme.

Qdisc layer (bypassed)

M
A

C
la

ye
r

at
h9

k
dr

iv
er

HW queue
(x4)

2
ag

gr

FIFO

RR

Assign TID

Retries

To hardware

retry_q

TID

Prio

Split flows

81
92

(G
lo

ba
l l

im
it

)

retry_q

TID

FQ-
CoDel

Prio

Split flows

81
92

(G
lo

ba
l l

im
it

)

FQ-
CoDel

Figure 3: Our 802.11-specific queueing structure, as it looks

when applied to the Linux WiFi stack.

from a per-station airtime deficit which is used by a de-

ficit scheduler, modelled after FQ-CoDel, to decide the

destination station ahead of each transmission. The de-

cision to keep the deficit per station instead of per TID

follows from the fact that the goal of airtime fairness is

to even out differences in the physical signal conditions,

which is a per-station property. However, because the

four 802.11 QoS precedence markings (VO, VI, BE and

BK) are commonly scheduled independently down to the

hardware level, we actually keep four deficits per station,

corresponding to the four precedence levels, to simplify

the scheduler implementation.

The resulting airtime fairness scheduler is shown in

Algorithm 3. It is similar to the the FQ-CoDel dequeue

algorithm, with stations taking the place of flows, and

the deficit being accounted in microseconds instead of

bytes. The two main differences are (1) that the scheduler

function loops until the hardware queue becomes full (at

two queued aggregates), rather than just dequeueing a

single packet; and (2) that when a station is chosen to be

scheduled, it gets to build a full aggregate rather than a

single packet.

Compared to the closest previously proposed solu-

USENIX Association 2017 USENIX Annual Technical Conference 143

Algorithm 2 802.11 queue management algorithm - dequeue.

1: function dequeue(tid)

2: if tid.new_queues is non-empty then

3: queue← list_first(tid.new_queues)

4: else if tid.old_queues is non-empty then

5: queue← list_first(tid.old_queues)

6: else

7: return NULL

8: if queue.deficit ≤ 0 then
9: queue.deficit← queue.deficit+ quantum

10: list_move(queue, tid.old_queues)

11: restart

12: pkt← codel_dequeue(queue)

13: if pkt is NULL then . queue empty

14: if queue ∈ tid.new_queues then

15: list_move(queue, tid.old_queues)

16: else

17: list_del(queue)

18: queue.tid← NULL

19: restart

20: queue.deficit← queue.deficit − pkt.length

21: return pkt

tion [6], our scheme has several advantages:

1. We lower implementation complexity by leveraging

existing information on per-aggregate transmission rates

and time, and by using a per-station deficit instead of token

buckets, which means that no token bucket accounting

needs to be performed at TX and RX completion time.

2. [6] measures time from an aggregate is submitted

to the hardware until it is sent, which risks including time

spent waiting for other stations to transmit. We increase

accuracy by measuring the actual time spent transmitting,

and by also accounting the airtime from received frames

to each station’s deficit.

3. We improve on the basic scheduler design by adding

an optimisation for sparse stations, analogous to FQ-

CoDel’s sparse flow optimisation. This improves latency

for stations that only transmit occasionally, by giving them

temporary priority for one round of scheduling. We apply

the same protection against gaming this mechanism that

FQ-CoDel does to its sparse flow mechanism [11].

3.3 Implementation

We have implemented our proposed queueing scheme in

the Linux kernel, modifying the mac80211 subsystem to

include the queueing structure itself, and modifying the

ath9k and ath10k drivers for QualcommAtheros 802.11n

and 802.11ac chipsets to use the new queueing structure.

The airtime fairness scheduler implementation is limited

to the ath9k driver, as the ath10k driver lacks the required

scheduling hooks.

Our modifications have been accepted into the main-

line Linux kernel, different parts going into kernel releases

Algorithm 3Airtime fairness scheduler. The schedule function

is called on packet arrival and on transmission completion.

1: function schedule

2: while hardware queue is not full do

3: if new_stations is non-empty then

4: station← list_first(new_stations)

5: else if old_stations is non-empty then

6: station← list_first(old_stations)

7: else

8: return

9: deficit← station.deficit[pkt.qoslvl]

10: if deficit ≤ 0 then
11: station.deficit[pkt.qoslvl]← deficit+quantum

12: list_move(station, old_stations)

13: restart

14: if station’s queue is empty then

15: if station ∈ new_stations then

16: list_move(station, old_stations)

17: else

18: list_del(station)

19: restart

20: build_aggregate(station)

4.8 through 4.11, and is included in the LEDE open source

router firmware from release 17.01. The implementation

is available online, as well as details about our test envir-

onment and the full evaluation dataset.3

4 Evaluation

We evaluate ourmodifications in a testbed setup consisting

of five PCs: Three wireless clients, an access point, and a

server located one Gigabit Ethernet hop from the access

point, which serves as source and sink for the test flows.

All the wireless nodes are regular x86 PCs equipped with

PCI-Express QualcommAtherosAR9580 adapters (which

use the ath9k driver). Two of the test clients are placed in

close proximity to the access point (and are referred to as

fast nodes), while the last (referred to as the slow node)

is placed further away and configured to only support the

MCS0 rate, giving a maximum throughput to that station

of 7.2 Mbps at the PHY layer. A fourth virtual station

is added as an additional fast node to evaluate the sparse

station optimisation (see Section 4.1.4 below). All tests

are run in HT20 mode on an otherwise unused channel in

the 5Ghz band. We use 30 test repetitions of 30 seconds

each unless noted otherwise.

The wireless nodes run an unmodified Ubuntu 16.04

distribution. The access point has had its kernel replaced

with a version 4.6 kernel from kernel.org on top of which

we apply our modifications. We run all experiments with

four queue management schemes, as follows:

3See http://www.cs.kau.se/tohojo/airtime-fairness/ for

the online appendix that contains additional material, as well as the

full experimental dataset and links to the relevant Linux code.

144 2017 USENIX Annual Technical Conference USENIX Association

http://www.cs.kau.se/tohojo/airtime-fairness/

101 102 103

Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0
Cu

m
ul

at
iv

e p
ro

ba
bi

lit
y

Slow - FQ-MAC
Fast - FQ-MAC

Slow - FQ-CoDel
Fast - FQ-CoDel

Slow - FIFO
Fast - FIFO

Figure 4: Latency (ICMP ping) with simultaneous TCP down-

load traffic.

FIFO: The default 4.6 kernel from kernel.org modified

only to collect the airtime used by stations, running with

the default PFIFO queueing discipline installed on the

wireless interface.

FQ-CoDel: As above, but using the FQ-CoDel qdisc

on the wireless interface.

FQ-MAC: Kernel patched to include the FQ-CoDel

based intermediate queues in the MAC layer (patching

the mac80211 subsystem and the ath9k driver).

Airtime fair FQ: As FQ-MAC, but additionally in-

cluding our airtime fairness scheduler in the ath9k driver.

Our evaluation is split into two parts. First, we valid-

ate the effects of the modifications in simple scenarios

using synthetic benchmark traffic. Second, we evaluate

the effect of our modifications on two application traffic

scenarios, to verify that they provide a real-world benefit.

4.1 Validation of effects

In this section we present the evaluation of our modific-

ations in simple synthetic scenarios designed to validate

the correct functioning of the algorithms and to demon-

strate various aspects of their performance.

4.1.1 Latency reductions

Figure 4 is the full set of results for our ICMP latency

measurements with simultaneous TCP download traffic

(of which a subset was shown earlier in Figure 2). Here,

the FIFO case shows several hundred milliseconds of

latency when the link is saturated by a TCP download.

FQ-CoDel alleviates this somewhat, but the slow station

still sees latencies of more than 200 ms in the median, and

the fast stations around 35 ms. With the FQ-MAC queue

restructuring, this is reduced so that the slow station now

has the same median latency as the fast one does in the

FQ-CoDel case, while the fast stations get their latency

reduced by another 45%. The airtime scheduler doesn’t

Fa
st

 1
Fa

st
 2

Sl
ow

Fa
st

 1
Fa

st
 2

Sl
ow

Fa
st

 1
Fa

st
 2

Sl
ow

Fa
st

 1
Fa

st
 2

Sl
ow

0.0

0.2

0.4

0.6

0.8

1.0

Ai
rt

im
e s

ha
re

FIFO FQ-CoDel FQ-MAC Airtime fair FQ

Figure 5: Airtime usage for one-way UDP traffic. Each column

shows the relative airtime usage of one of the three

stations, with the four sections corresponding to the

four queue management schemes.

improve further upon this, other than to alter the shape of

the distribution slightly for the slow station (but retaining

the same median). For this reason, we have omitted it

from the figure to make it more readable.

For simultaneous upload and download the effect is

similar, except that in this case the airtime scheduler

slightly worsens the latency to the slow station, because

it is scheduled less often to compensate for its increased

airtime usage in the upstream direction. The graph of this

case can be found in the online appendix.

4.1.2 Airtime usage

Figure 5 shows the airtime usage of the three active sta-

tions for one-way UDP traffic going to the stations. There

is no reverse traffic and no contention between stations,

since only the access point is transmitting data. This is the

simplest case to reason about and measure, and it clearly

shows the performance anomaly is present in the current

Linux kernel (left half of the figure): The third station

(which transmits at the lowest rate) takes up around 80%

of the available airtime, while the two other stations share

the remaining 20%.

The differences between the first two columns and the

third column are due to changes in aggregation caused

by the change to the queueing structure. In the FIFO

and FQ-CoDel cases, there is a single FIFO queue with

no mechanism to ensure fair sharing of that queue space

between stations. So because the slow station has a lower

egress rate, it will build more queue until it takes up

the entire queueing space. This means that there are not

enough packets queued to build sufficiently large aggreg-

ates for the fast stations to use the airtime effectively.

The FQ-MAC queueing scheme drops packets from the

largest queue on overflow, which ensures that the avail-

able queueing space is shared between stations, which im-

proves aggregation for the fast stations and thus changes

USENIX Association 2017 USENIX Annual Technical Conference 145

UD
P

TC
P

dl
TC

P
bi

di
r

UD
P

TC
P

dl
TC

P
bi

di
r

UD
P

TC
P

dl
TC

P
bi

di
r

UD
P

TC
P

dl
TC

P
bi

di
r0.0

0.2

0.4

0.6

0.8

1.0

Fa
irn

es
s i

nd
ex

FIFO FQ-CoDel FQ-MAC Airtime fair FQ

Figure 6: Jain’s fairness index (computed over the airtime usage

of the three stations) for UDP traffic, TCP download,

and simultaneous TCP upload and download traffic.

the airtime shares. Referring back to Table 1, the values

correspond well to those predicted by the analytical model.

The fourth column shows the airtime fairness scheduler op-

erating correctly – each station receives exactly the same

amount of airtime in this simple one-way test.

Going beyond the simple UDP case, Figure 6 shows

Jain’s fairness index for the airtime of the four different

schemes for UDP (for comparison) and both unidirectional

(to the clients) and bidirectional (simultaneous up and

down) TCP traffic. The same general pattern is seen with

TCP as with UDP traffic: The performance anomaly is

clear for the FIFO case, but somewhat lessened for the FQ-

CoDel and FQ-MAC cases. The airtime fairness scheduler

achieves close to perfect sharing of airtime in the case of

uni-directional traffic, with a slight dip for bidirectional

traffic. The latter is because the scheduler only exerts

indirect control over the traffic sent from the clients, and

so cannot enforce perfect fairness as with the other traffic

types. However, because airtime is also accounted for

received packets, the scheduler can partially compensate,

which is why the difference between the unidirectional

and bidirectional cases is not larger than it is.

4.1.3 Effects on throughput

As was already shown in Table 1, fixing the performance

anomaly improves the efficiency of the network for uni-

directional UDP traffic. Figure 7 shows the throughput

for downstream TCP traffic. For this case, the fast stations

increase their throughput as fairness goes up, and the slow

station decreases its throughput. The total effect is a net

increase in throughput. The increase from the FIFO case

to FQ-CoDel and FQ-MAC is due to better aggregation

for the fast stations. This was observed for UDP as well in

the case of FQ-MAC, but for FQ-CoDel the slow station

would occupy all the queue space in the driver, preventing

the fast station from achieving full aggregation. With the

TCP feedback loop in place, this lock-out behaviour is

FI
FO

FQ
-C

oD
el

FQ
-M

AC
Ai

rt
im

e

FI
FO

FQ
-C

oD
el

FQ
-M

AC
Ai

rt
im

e

FI
FO

FQ
-C

oD
el

FQ
-M

AC
Ai

rt
im

e

FI
FO

FQ
-C

oD
el

FQ
-M

AC
Ai

rt
im

e0

10

20

30

40

M
bi

ts
/s

Station 1 Station 2 Station 3 Average

Figure 7: Throughput for TCP download traffic (to clients).

5 10 15 20 25 30
Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e p

ro
ba

bi
lit

y
Enabled (UDP)
Disabled (UDP)
Enabled (TCP)
Disabled (TCP)

Figure 8: The effects of the sparse station optimisation.

lessened, and so fast stations increase their throughput.

When traffic is flowing in both directions simultan-

eously, the pattern is similar, but with a slightly higher

variance. The graph for the bidirectional case can be found

in the online appendix.

4.1.4 The sparse station optimisation

To evaluate the impact of the sparse station optimisation,

we add a fourth station to our experiments which receives

only a ping flow, but no other traffic, while the other sta-

tions receive bulk traffic as above. Wemeasure the latency

to this extra station bothwith andwithout the sparse station

optimisation. The results of this are shown in Figure 8.

For both UDP and TCP download traffic, the optimisa-

tion achieves a small, but consistent, improvement: The

round-trip latency to the fourth station is reduced by 10

to 15% (in the median) when the optimisation is in place.

4.1.5 Scaling to more stations

While the evaluations presented in the previous sections

have shown that our modifications work as planned, and

that they provide a substantial benefit in a variety of scen-

arios, one question is left unanswered – does the solution

scale to more stations? To answer this, we arranged for

146 2017 USENIX Annual Technical Conference USENIX Association

FQ
-C

oD
el

FQ
-M

AC

Ai
rt

im
e0.0

0.2

0.4

0.6

0.8

1.0
Fa

irn
es

s i
nd

ex

(a) Airtime usage fairness
FQ
-C
oD
el

FQ
-M
AC

Ai
rt
im
e0

5

10

15

M
bi
ts
/s

(b) Aggregate throughput

Figure 9: Aggregate results for the 30 stations TCP test.

an independent third party to repeat a subset of our tests

in their testbed, which features an access point and 30 cli-

ents. The nodes are all embedded wireless devices from a

commercial vendor that bases its products on the Open-

Wrt/LEDE open-source router platform, running a LEDE

firmware development snapshot from November 2016.

In this setup, one of the 30 clients is artificially limited

to only transmit at the lowest possible rate (1 Mbps, i.e.

disabling HT mode), while the others are configured to

select their rate in the usual way, on a HT20 channel in the

2.4 Ghz band. One of the 29 “fast” clients only receives

ping traffic, leaving 28 stations to contend with the slow

1 Mbps station for airtime and bandwidth.

In this environment, our downstream TCP experiment

presented above was repeated, with the difference that

each test was run for five minutes, but with only five

repetitions, and without the FIFO test case. A subset

of these results are shown in figures 9 and 10. From this

experiment, we make several observations:

1. When the slow station is at this very low rate, it

manages to grab around two thirds of the available airtime,

even with 28 other stations to compete with. However, our

airtime fairness scheduler manages to achieve completely

fair sharing of airtime between all 29 stations. This is

reflected in the fairness index as seen in Figure 9a.

2. As seen in Figure 9b, total throughput goes from a

mean of 3.3Mbps for the FQ-CoDel case to 17.7Mbps

with the airtime scheduler. That is, the relative throughput

gain with airtime fairness is 5.4x in this scenario.

3. As can be expected, with the airtime fairness sched-

uler, the latency to the fast stations is improved with the

increased throughput (Figure 10, green lines). However,

the latency to the slow station increases by an order of

magnitude in the median, as it is throttled to stay within

its fair share of the airtime (Figure 10, dashed orange line).

Overall, the average latency to all stations is improved by

a factor of two (not shown on the figure).

4. With 30 stations, we see the sparse station optimisa-

0 250 500 750 1000 1250 1500 1750 2000
Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e p

ro
ba

bi
lit

y

Slow - FQ-CoDel
Fast - FQ-CoDel
Slow - FQ-MAC
Fast - FQ-MAC
Slow - Airtime
Fast - Airtime

Figure 10: Latency for the 30 stations TCP test.

tion being even more effective; in this scenario it reduces

latency to the sparse station by a factor of two (not shown

in the figures; see the online appendix).

Finally, we verify the in-kernel airtime measurement

against a tool developed by the same third party that meas-

ures airtime from captures taken with a monitor device.

We find that the two types of measurements agree to within

1.5%, on average.

4.2 Effects on real-world application performance

In the previous section we evaluated our solution in a

number of scenarios that verify its correct functioning

and quantify its benefits. In this section we expand on

that validation by examining how our modifications affect

performance of two important real-world applications –

VoIP and web browsing.

4.2.1 VoIP

VoIP is an important latency-sensitive application which

it is desirable to have working well over WiFi, since that

gives mobile handsets the flexibility of switching between

WiFi and cellular data as signal conditions change. To

evaluate our modifications in the context of VoIP traffic,

we measure VoIP performance when mixed with bulk

traffic. As in Section 4.1.4 we include a virtual station as

another fast station, and so these scenarios have three fast

stations. Due to space constraints, we only include the

case where the slow station receives both VoIP traffic and

bulk traffic, while the fast stations receive bulk traffic. The

other cases show similar relative performance between

the different queue management schemes.

The QoS markings specified in the 802.11e standard

can be used to improve the performance of VoIP traffic,

and so we include this aspect in our evaluation. 802.11e

specifies four different QoS levels, of which voice (VO)

has the highest priority. Packets transmitted with this QoS

marking gets both queueing priority and a shorter conten-

tion window, but cannot be aggregated. This difference

USENIX Association 2017 USENIX Annual Technical Conference 147

5 ms 50 ms

QoS MOS Thrp MOS Thrp

FIFO
VO 4.17 27.5 4.13 21.6

BE 1.00 28.3 1.00 22.0

FQ-CoDel
VO 4.17 25.5 4.08 15.2

BE 1.24 23.6 1.21 15.1

FQ-MAC
VO 4.41 39.1 4.38 28.5

BE 4.39 43.8 4.37 34.0

Airtime
VO 4.41 56.3 4.38 49.8

BE 4.39 57.0 4.37 49.7

Table 2: MOS values and total throughput when using different

QoS markings for VoIP traffic. Data for 5 ms and 50

ms baseline one-way delay.

can dramatically reduce the latency of the traffic, at a cost

in throughput because of the lack of aggregation. We re-

peat the voice experiments in two variants – one where

the VoIP packets are sent as best effort (BE) traffic, and

one where they are put into the high-priority VO queue.

We also repeat the tests with a baseline one-way delay of

both 5 ms and 50 ms.

To serve as a metric of voice quality, we calculate an

estimate of the Mean Opinion Score (MOS) of the VoIP

flow according to the E-model specified in the ITU-T

G.107 recommendation [27]. This model can predict the

MOS from a range of parameters, including the network

conditions. We fix all audio and codec related parameters

to their default values and calculate the MOS estimate

based on the measured delay, jitter and packet loss. The

model gives MOS values in the range from 1− 4.5.
Table 2 shows the results. This shows that throughput

follows the trends shown in previous tests, as expected.

Also as expected, the FIFO and FQ-CoDel cases have low

MOS values when the voice traffic is marked as BE, and

higher values when using the VO queue. However, both

the FQ-MAC and airtime fairness schemes achieve better

MOS values with best-effort traffic than the unmodified

kernel does with VO-marked traffic. In the FQ-MAC and

airtime cases, using the VO queue still gives a slightly

better MOS score than using the BE queue does; but the

difference is less than half a percent. This is an important

improvement, because it means that with our modifica-

tions, applications can rely on excellent real-time perform-

ance even when unable to control DiffServ markings, as

well as when the markings are removed in transit.

4.2.2 Web

Another important real-world application is web traffic.

To investigate the impact of our modifications on this,

we measure page load time (PLT) with emulated web

FI
FO

FQ
-C

oD
el

FQ
-M

AC

Ai
rt

im
e

FI
FO

FQ
-C

oD
el

FQ
-M

AC

Ai
rt

im
e

1 0 0

1 0 1

M
ea

n
do

w
nl

oa
d

tim
e (

s)

Small page Large page

Figure 11: HTTP page fetch times for a fast station (while the

slow station runs a bulk transfer). Note the log scale

- the fetch time for the large page is 35 seconds for

the FIFO case.

traffic. Our test client mimics the common web browser

behaviour of fetching multiple requests in parallel over

four different TCP connections. We simply measure the

total time to fetch a web site and all its attached resources

(including the initial DNS lookup) for two different pages

– a small page (56 KB data in three requests) and a large

page (3 MB data in 110 requests). We run the experiments

in two scenarios. One where a fast station fetches the

web sites while the slow station runs a simultaneous bulk

transfer, to emulate the impact of a slow station on the

browsing performance of other users on the network. And

another scenario where the slow station fetches the web

sites while the fast stations run simultaneous bulk transfers,

to emulate the browsing performance of a slow station on

a busy network.

The results for the fast station are seen in Figure 11.

Fetch times decrease from the FIFO case as the slowest

to the airtime fair FQ case as the fastest. In particular,

there is a an order-of-magnitude improvement when go-

ing from FIFO to FQ-CoDel, which we attribute to the

corresponding significant reduction in latency seen earlier.

When the slow station is fetching the web page, adding

airtime fairness increases page load time by 5−10%. This

is as expected since in this case the slow station is being

throttled. The graph for this can be found in the online

appendix.

4.3 Summary

Our evaluation shows that our modifications achieve their

design goal. We eliminate bufferbloat and the 802.11 per-

formance anomaly, and achieve close to perfect airtime

fairness even when station rates vary; and our solution

scales successfully as more clients are added. We im-

prove total throughput by up to a factor of five and reduce

latency under load by up to an order of magnitude. We

also achieve close to perfect airtime fairness in a scenario

148 2017 USENIX Annual Technical Conference USENIX Association

where traffic is mixed between upstream and downstream

flows from the different stations. Finally, the optimisation

that prioritises sparse stations achieves a consistent im-

provement in latency to stations that only receive a small

amount of traffic.

In addition, we show that our modifications give signi-

ficant performance increases for two important real-world

applications – VoIP and web traffic. In the case of VoIP,

we manage to achieve better performance with best effort

traffic than was achievable with traffic marked as Voice

according to the 802.11e QoS standard. For web traffic

we achieve significant reductions in page load times.

Finally, even though our evaluation scenario only fea-

tures a limited number of stations, we have sought to rep-

resent a challenging scenario, by having high congestion

rates and a large difference between the station rates. As

such, we believe that it serves well as a validation of the

effects. In addition, the feedback we have received from

users of the code indicates that our solution works well in

a variety of deployments.

5 Related work

There have been several previous studies on bufferbloat

and its mitigations (e.g. [15, 29]), but only a few that

deal with the problem in a WiFi-specific context. [10]

and [15] both feature a WiFi component in a larger evalu-

ation of bufferbloat mitigation techniques and show that

while these techniques can help on a WiFi link, the lower-

level queueing in the WiFi stack prevents a full solution

of the problem in this space. [23] draws similar conclu-

sions while looking at buffer sizing (but only mentions

AQM-based solutions briefly). Finally, [4] touches upon

congestion at the WiFi hop and uses different queueing

schemes to address it, but in the context of a centralised

solution that also seek to control fairness in the whole net-

work. None of these works actually provide a solution for

bufferbloat at the WiFi link itself, as we present here.

Several different schemes to achieve fairness based on

modifying the contention behaviour of nodes are presen-

ted in [8, 12, 13, 19, 22, 30]. [12] and [19] both propose

schemes that use either the 802.11e TXOP feature to al-

locate equal-length to all stations, or scaling of the con-

tention window by the inverse of the transmission rate

to achieve fairness. [13] develops an analytical model to

predict the values to use for a similar scaling behaviour,

which is also verified in simulation. [22] presents a modi-

fied contention behaviour that can lower the number of

collisions experienced, but they do not verify the effect

of their schemes on airtime fairness. [8] proposes a modi-

fication to the DCF based on sensing the idle time of the

channel scaling CWmin with the rate to achieve fairness.

Finally, [30] proposes a scheme for airtime fairness that

runs several virtual DCF instances per node, scaling the

number of instances with the rate and channel properties.

Achieving fairness by varying the transmission size

is addressed in [5, 16, 20]. The former two predate the

aggregation features of 802.11n and so [5] proposes to

scale the packet size downwards by varying the MTU

with the transmission rate. [20] goes the other way and

proposes a scheme where a station will burst packets to

match the total transmission length of the previous station

that was heard on the network. Finally, [16] uses the

two-level aggregation feature of 802.11n and proposes a

scheme to dynamically select the optimal aggregation size

so all transmissions take up the same amount of time.

Turning to schedulers, [7] and [6] both propose sched-

ulers which work at the access point to achieve airtime

fairness, the former estimating the packet transmission

time from channel characteristics, and the latter measuring

it after transmission has occurred. [21] proposes a solu-

tion for wireless mesh networks, which leverages routing

metrics to schedule links in a way that ensures fairness.

Finally, [17] proposes a scheme to scale the queue space

at the access point based on the BDP of the flows going

through the access point. Our solution is closest to [6],

but we improve upon it by increasing accuracy and redu-

cing implementation difficulty, while adding an important

latency-reducing optimisation for sparse stations, as was

described in Section 3.2.

A few proposals fall outside the categories above. [14]

proposes a TCP congestion control algorithm that uses

information about the wireless conditions to cap the TCP

window size of clients to achieve fairness. Finally, there

are schemes that sidestep the fairness problems of the

802.11 MAC and instead replace it entirely with TDMA

scheduling. [3] proposes a scheme for TDMA scheduling

in a mesh network that ensures fair bandwidth allocation

to all connecting clients, and [28] implements a TDMA

transmission scheme for infrastructure WiFi networks.

6 Conclusion

We have developed a novel two-part solution to two large

performance problems affecting WiFi – bufferbloat and

the 802.11 performance anomaly. The solution consists

of a new integrated queueing scheme tailored specifically

to eliminate bufferbloat in WiFi, which reduces latency

under load by an order of magnitude. Leveraging the

queueing structure, we have developed a deficit-based

airtime fairness scheduler that works at the access point

with no client modifications, and achieves close to perfect

fairness in all the evaluated scenarios, increasing total

throughput by up to a factor of 5.

Our solution reduces implementation complexity and

increases accuracy compared to previous work, and has

been accepted into the mainline Linux kernel, making it

deployable on billions of Linux-based devices.

USENIX Association 2017 USENIX Annual Technical Conference 149

7 Acknowledgements

We would like to thank Sven Eckelmann and Simon Wun-

derlich for their work on independently verifying our im-

plementation. Their work was funded by Open Mesh Inc,

who also supplied their test hardware. We would also like

to thank Felix Fietkau, Tim Shepard, Eric Dumazet, Jo-

hannes Berg, and the numerous other contributors to the

Make-Wifi-Fast and LEDE projects for their insights, re-

view and contributions to many different iterations of the

implementation.

Portions of this work were funded by Google Fiber

and by the Comcast Innovation Fund, and parts of the

infrastructure was sponsored by Lupin Lodge.

8 References

[1] Adam Belay et al. ‘IX: A Protected Dataplane

Operating System for High Throughput and Low

Latency’. In: OSDI. 11th USENIX Symposium on

Operating Systems Design and Implementation.

Oct. 2014, pp. 49–65.

[2] Teuku Yuliar Arif and Riri Fitri Sari. ‘Throughput

Estimates for A-MPDU and Block ACK Schemes

Using HT-PHY Layer’. In: Journal of Computers

9.3 (Mar. 2014). doi: 10.4304/jcp.9.3.678-
687.

[3] Naouel Ben Salem and Jean-Pierre Hubaux. ‘A

fair scheduling for wireless mesh networks’. In:

WiMesh. 2005.

[4] KanCai et al. ‘Wireless Unfairness:AlleviateMAC

Congestion First!’ In: Proceedings of the Second

ACM International Workshop on Wireless Network

Testbeds, Experimental Evaluation and Charac-

terization. WinTECH ’07. New York, NY, USA:

ACM, 2007, pp. 43–50. doi: 10.1145/1287767.
1287777.

[5] Joseph Dunn et al. ‘A practical cross-layer mechan-

ism for fairness in 802.11 networks’. In:Broadband

Networks, 2004. BroadNets 2004. Proceedings.

First International Conference on. IEEE, 2004,

pp. 355–364.

[6] Rosario G. Garroppo et al. ‘Providing air-time us-

age fairness in IEEE 802.11 networks with the de-

ficit transmission time (DTT) scheduler’. In: Wire-

less Networks 13.4 (Aug. 2007), pp. 481–495. doi:

10.1007/s11276-006-9201-7.

[7] K. Gomez et al. ‘On efficient airtime-based fair

link scheduling in IEEE 802.11-based wireless net-

works’. In: 2011 IEEE 22nd International Sym-

posium on Personal, Indoor and Mobile Radio

Communications. Sept. 2011, pp. 930–934. doi:

10.1109/PIMRC.2011.6140105.

[8] Martin Heusse et al. ‘Idle Sense: An Optimal Ac-

cess Method for High Throughput and Fairness in

Rate Diverse Wireless LANs’. In: Proceedings of

the 2005 Conference on Applications, Technolo-

gies, Architectures, and Protocols for Computer

Communications. SIGCOMM ’05. New York, NY,

USA: ACM, 2005, pp. 121–132. doi: 10.1145/
1080091.1080107.

[9] Martin Heusse et al. ‘Performance anomaly of

802.11 b’. In: INFOCOM 2003. Twenty-Second

Annual Joint Conference of the IEEE Computer

and Communications. IEEE Societies. Vol. 2. IEEE,

2003, pp. 836–843.

[10] Toke Høiland-Jørgensen, Per Hurtig, and Anna

Brunstrom. ‘The Good, the Bad and the WiFi:

Modern AQMs in a residential setting’. In: Com-

puter Networks 89 (Oct. 2015), pp. 90–106. doi:

10.1016/j.comnet.2015.07.014.

[11] T. Høiland-Jørgensen et al. FlowQueue-Codel. In-

ternet Draft (informational). Mar. 2016.

[12] Li Bin Jiang and Soung Chang Liew. ‘Proportional

fairness in wireless LANs and ad hoc networks’.

In:Wireless Communications and Networking Con-

ference, 2005 IEEE. Vol. 3. IEEE, 2005, pp. 1551–

1556.

[13] T. Joshi et al. ‘Airtime Fairness for IEEE 802.11

Multirate Networks’. In: IEEE Transactions on

Mobile Computing 7.4 (Apr. 2008), pp. 513–527.

doi: 10.1109/TMC.2007.70740.

[14] K. Kashibuchi, A. Jamalipour, and N. Kato. ‘Chan-

nel Occupancy Time Based TCP Rate Control for

Improving Fairness in IEEE 802.11DCF’. In: IEEE

Transactions on Vehicular Technology 59.6 (July

2010), pp. 2974–2985. doi: 10.1109/TVT.2010.
2048931.

[15] Naeem Khademi, David Ros, and Michael Welzl.

‘The New AQM Kids on the Block: Much Ado

About Nothing?’ In: Technical Report, Oslo Uni-

versity (2013).

[16] Minho Kim, Eun-Chan Park, and Chong-Ho Choi.

‘Adaptive Two-Level Frame Aggregation for Fair-

ness and Efficiency in IEEE 802.11n Wireless

LANs’. In: Mobile Information Systems 2015

(2015), pp. 1–14. doi: 10.1155/2015/548109.

[17] Dzmitry Kliazovich et al. ‘Queue Management

Mechanism for 802.11 Base Stations’. In: IEEE

Communications Letters 15.7 (July 2011), pp. 728–

730. doi: 10 . 1109 / LCOMM . 2011 . 051911 .
110642.

150 2017 USENIX Annual Technical Conference USENIX Association

https://doi.org/10.4304/jcp.9.3.678-687
https://doi.org/10.4304/jcp.9.3.678-687
https://doi.org/10.1145/1287767.1287777
https://doi.org/10.1145/1287767.1287777
https://doi.org/10.1007/s11276-006-9201-7
https://doi.org/10.1109/PIMRC.2011.6140105
https://doi.org/10.1145/1080091.1080107
https://doi.org/10.1145/1080091.1080107
https://doi.org/10.1016/j.comnet.2015.07.014
https://doi.org/10.1109/TMC.2007.70740
https://doi.org/10.1109/TVT.2010.2048931
https://doi.org/10.1109/TVT.2010.2048931
https://doi.org/10.1155/2015/548109
https://doi.org/10.1109/LCOMM.2011.051911.110642
https://doi.org/10.1109/LCOMM.2011.051911.110642

[18] M. Laddomada et al. ‘On the throughput per-

formance of multirate IEEE 802.11 networks with

variable-loaded stations: analysis, modeling, and

a novel proportional fairness criterion’. In: IEEE

Transactions on Wireless Communications 9.5

(May 2010), pp. 1594–1607. doi: 10.1109/TWC.
2010.05.081191.

[19] Pochiang Lin, Wu-I. Chou, and Tsungnan Lin.

‘Achieving airtime fairness of delay-sensitive

applications in multirate IEEE 802.11 wireless

LANs’. In: Communications Magazine, IEEE 49.9

(2011), pp. 169–175.

[20] Tahiry Razafindralambo et al. ‘Dynamic packet ag-

gregation to solve performance anomaly in 802.11

wireless networks’. In: Proceedings of the 9th ACM

international symposium onModeling analysis and

simulation of wireless and mobile systems. ACM,

2006, pp. 247–254.

[21] R. Riggio, D. Miorandi, and I. Chlamtac. ‘Airtime

Deficit Round Robin (ADRR) packet scheduling

algorithm’. In: 2008 5th IEEE International Con-

ference on Mobile Ad Hoc and Sensor Systems.

Sept. 2008, pp. 647–652. doi: 10.1109/MAHSS.
2008.4660101.

[22] Luis Sanabria-Russo et al. ‘Future evolution of

CSMA protocols for the IEEE 802.11 standard’. In:

Communications Workshops (ICC), 2013 IEEE In-

ternational Conference on. IEEE, 2013, pp. 1274–

1279.

[23] A. Showail, K. Jamshaid, and B. Shihada. ‘Buf-

fer sizing in wireless networks: challenges, solu-

tions, and opportunities’. In: IEEE Communica-

tions Magazine 54.4 (Apr. 2016), pp. 130–137. doi:

10.1109/MCOM.2016.7452277.

[24] M. Shreedhar and G. Varghese. ‘Efficient fair

queuing using deficit round-robin’. In: IEEE/ACM

Transactions on Networking 4.3 (June 1996),

pp. 375–385. doi: 10.1109/90.502236.

[25] T. Szigeti and F. Baker. DiffServ to IEEE 802.11

Mapping. Internet Draft (standards track). Nov.

2016.

[26] Godfrey Tan and John V. Guttag. ‘Time-based

Fairness Improves Performance in Multi-Rate

WLANs.’ In: USENIX Annual Technical Confer-

ence, General Track. 2004, pp. 269–282.

[27] The E-model: a computational model for use in

transmission planning. Tech. rep. G.107. ITU-T,

June 2015.

[28] Wim Torfs and Chris Blondia. ‘TDMA on com-

mercial of-the-shelf hardware: Fact and fiction re-

vealed’. In:AEU-International Journal of Electron-

ics and Communications 69.5 (2015), pp. 800–813.

[29] Greg White. Active Queue Management Al-

gorithms for DOCSIS 3.0: A Simulation Study of

CoDel, SFQ-CoDel and PIE in DOCSIS 3.0 Net-

works. Tech. rep. Cable Television Laboratories,

Inc., 2013.

[30] M. A. Yazici and N. Akar. ‘Running Multiple In-

stances of the Distributed Coordination Function

for Air-Time Fairness in Multi-Rate WLANs’. In:

IEEE Transactions onCommunications 61.12 (Dec.

2013), pp. 5067–5076. doi: 10 . 1109 / TCOMM .
2013.111113.130120.

USENIX Association 2017 USENIX Annual Technical Conference 151

https://doi.org/10.1109/TWC.2010.05.081191
https://doi.org/10.1109/TWC.2010.05.081191
https://doi.org/10.1109/MAHSS.2008.4660101
https://doi.org/10.1109/MAHSS.2008.4660101
https://doi.org/10.1109/MCOM.2016.7452277
https://doi.org/10.1109/90.502236
https://doi.org/10.1109/TCOMM.2013.111113.130120
https://doi.org/10.1109/TCOMM.2013.111113.130120

