
This paper is included in the Proceedings of the
2017 USENIX Annual Technical Conference (USENIX ATC ’17).

July 12–14, 2017 • Santa Clara, CA, USA

ISBN 978-1-931971-38-6

Open access to the Proceedings of the
2017 USENIX Annual Technical Conference

is sponsored by USENIX.

High-Resolution Side Channels for Untrusted
Operating Systems

Marcus Hähnel, TU Dresden, Operating Systems Group;
Weidong Cui and Marcus Peinado, Microsoft Research

https://www.usenix.org/conference/atc17/technical-sessions/presentation/hahnel

High-Resolution Side Channels for Untrusted Operating Systems

Marcus Hähnel ∗, †

TU Dresden
mhaehnel@tudos.org

Weidong Cui
Microsoft Research

wdcui@microsoft.com

Marcus Peinado
Microsoft Research

marcuspe@microsoft.com

Abstract
Feature-rich mass-market operating systems have large
trusted computing bases (TCBs) and a long history of
vulnerabilities. Systems like Overshadow, InkTag or
Haven attempt to remove the operating system (OS) from
the TCB of applications while retaining its functionality.
However, the untrusted OS’s control of most physical
resources puts it in a much better position to launch side-
channel attacks than traditional unprivileged side-channel
attackers. Initial attacks focused on the page-fault chan-
nel, demonstrating significant information leakage for
three legacy applications.

We present two new side channels for an untrusted OS
which use timer interrupts and cache misses to achieve
higher temporal and spatial resolution than the page-fault
channel. We leverage the untrusted OS’s control over
hardware to reduce noise in the side channels to enable
successful attacks in just a single run of the target. We
demonstrate that our side channels enable attacks against
new SGX applications such as VC3 that were designed
not to trust the OS. We also show a new attack against
libjpeg that extracts images with two orders of magni-
tude more information than the page-fault channel attack.

1 Introduction
Traditionally, the operating system (OS) protects the

integrity and confidentiality of application data and is
considered part of the trusted computed base (TCB) of
an application. However, decades of experience have
shown that it is extremely hard to protect large, feature-
rich and widely deployed commodity operating systems.
The emergence of cloud hosting services has added the
new threat of adversarial cloud operators.

Recently, systems like Overshadow [14], InkTag [27]
and Haven [9] were proposed to change the protection
paradigm by excluding the OS from the TCB and directly
protecting applications. These systems use a trusted hy-
pervisor or hardware to provide applications with mem-
ory that is protected from the untrusted OS and with a
controlled mechanism for transferring control between
applications and the untrusted OS. Haven can also protect
applications from Iago attacks [13].

∗Work done in part during an internship at Microsoft Research.
†Supported in part by the German Research Foundation (DFG)

within the CRC 912 - HAEC.

However, Xu et al. [44] demonstrate that an adversarial
OS can launch deterministic side-channel attacks against
protected applications running on SGX. Their attacks can
steal documents and outlines of JPEG images from single
runs of three legacy applications protected by Haven and
InkTag. The attacks are more powerful than traditional
side-channel attacks by unprivileged attackers because
the untrusted OS retains control of most of the hardware.
They exploit the fact that some memory accesses of an
application depend on secret data. An adversarial OS
observes these accesses by making pages inaccessible in
the page table. Each resulting page fault interrupts the
application at the moment of the access and reveals the
page address to the OS, allowing the adversary to infer
secrets that influence the sequence of memory accesses.

Functions within a single code page (e.g., tight loop
in strlen) and data accesses within a single page (e.g.,
indexing into small arrays) cannot be observed, as the
granularity of the page-fault channel is limited by the
4 KB page size. This imposes a fundamental limit on
the temporal and spatial resolution of page-fault based
attacks.

In this paper, we present two new side channels that sig-
nificantly improve the temporal and spatial resolution of
attacks launched from an adversarial OS. We demonstrate
that new attacks can be launched against applications
that are immune to attacks based solely on the page-fault
channel. To improve temporal resolution, we use a high-
precision timer to approximate single stepping. We use
a cache side channel to improve the spatial resolution
from 4 KB to 64 byte cache lines. Our cache side channel
has much higher accuracy than the traditional cache side
channel controlled by an unprivileged attacker because
the OS controls the hardware. The OS can break into an
application right before and after the memory access of
interest and reduce cache pollution through its control
over scheduling.

To demonstrate the power of our new side channels,
we build new attacks against VC3 [39] and libjpeg [1].
VC3 is a secure MapReduce framework that protects the
confidentiality of distributed MapReduce computations
by running them inside SGX enclaves [29]. The unmodi-
fied legacy applications attacked in [44] had been written
under the assumption that the OS was trusted. However,

USENIX Association 2017 USENIX Annual Technical Conference 299

Unprotected memory

Monitor

Protected
application memory

Protected
application memory

Untrusted Operating System

Protected
Application

Protected
Application

Regular Application

Figure 1: System model: A monitor constrains the OS and
prevents it from accessing the protected applications’ memory.

VC3 is new code designed to have a small trusted comput-
ing base and to run in an SGX enclave on an adversarial
OS. Our attack on VC3 is a sequence of attacks that ex-
tract various pieces of information from different parts
of the VC3 code. None of the individual attacks could
have been performed using only the page-fault channel.
Our attack on VC3 recovers almost two thirds of the input
documents of the WordCount application. Compared to
the earlier attack against libjpeg [44], our new attack can
extract two orders of magnitude more information and
recover images with richer detail.

This paper makes the following contributions: We
demonstrate
• two new high-resolution side channels for an un-

trusted OS to attack protected applications;
• a significantly improved attack against libjpeg and

a new attack against VC3;
• the increased significance of side-channel attacks for

untrusted operating systems.

2 System Model
As outlined in Figure 1, the system consists of one or

more applications portected by a monitor that constrains
the untrusted OS.

The Monitor can be a hypervisor or a part of the CPU. It
imposes the following constraints on the OS:

1. It guarantees safe memory to a trusted application.
The OS cannot read or write such memory.

2. It controls transitions between an application and the
OS, ensuring that the OS can invoke protected code
only at well defined entry points. This also allows the
monitor to protect the application from leaking CPU
state during the transition. On unexpected transitions
(traps, interrupts), the monitor saves and scrubs CPU
registers.

3. The monitor takes anti side-channel provisions.
We assume the following list of anti side-channel mea-
sures. It is based on SGX [28], which, at this time, is the
only technology that takes serious measures against side
channels.
• The bottom twelve bits of page fault addresses

(which specify the offset within the page) are hidden
from the OS.

• Hardware debugging facilities (e.g., debug registers,
single stepping) are disabled.

• Hardware performance counters are disabled.

The Untrusted OS is considered adversarial—either as
a result of malware or because it is under the control
of an adversarial administrator. Within the constraints
imposed by the monitor, it can take any action to corrupt
the application or extract information from it. It has access
to all hardware on the system, except as prohibited by the
monitor. This includes all unprotected memory, page
tables and system devices such as timers.

Applications are protected by the monitor. We target
native applications that process secret information and
display memory access patterns that depend on the secret
information. We assume that at least some parts of the
application binaries are public, either because they belong
to unmodified legacy applications [9,14,27,44] or because
they are a part of a public application platform [39].

3 Background
We describe SGX [29], the page-fault channel [44], and

prime-and-probe cache side-channel attacks [36].

3.1 Intel SGX

Intel SGX [6, 26, 29, 34] is a CPU technology recently
introduced by Intel. SGX allows the construction of iso-
lated memory regions for applications (enclaves) that are
protected by the CPU from all other software running
on the system, including the OS. In terms of our system
model, SGX constitutes a monitor. Enclaves are restricted
to running in user mode, but are constructed by the un-
trusted OS using new privileged instructions. Remote
attestation ensures that the owner of the application can
detect tampering by the OS before revealing any secrets.

SGX leaves the hardware interface for the OS largely
unchanged, enabling compatibility with legacy operat-
ing systems, but also providing the OS with a large tool
chest for building side channels, such as the page-fault
channel [44].

However, SGX includes a number of anti side-channel
measures. SGX makes it impossible to use the following
CPU features against enclaves: Hardware breakpoint reg-
isters (DR0-DR3), single stepping (RFLAGS.TF), Last
Branch Record (LBR), Precise Event-Based Sampling
(PEBS), and hardware performance counters. Upon an ex-
ception or fault inside an enclave, SGX masks the twelve
least-significant bits of the faulting address. Thus, the un-
trusted OS only receives page-granular fault information.

3.2 The Page-Fault Channel

Xu et al. describe side-channel attacks based on page
faults [44].The attacks take advantage of input-dependent

300 2017 USENIX Annual Technical Conference USENIX Association

s i z e t s t r l e n (char∗ s t r) {
s i z e t l e n = 0 ;
wh i l e (∗ s t r++ != ’\0 ’) l e n++;
r e t u r n l e n ;

}
(a) strlen

char∗ agentNames [] = {”James R . C lappe r ” , ”John Doe” ,
/∗ 510 more e n t r i e s ∗/ } ;

char∗ getAgentName (i n t agentCode) {
r e t u r n agentNames [agentCode] ;

}
(b) Array Access

Figure 2: The secret-dependent memory access does not leak
information if the attacker can only observe at page granularity.

memory accesses to infer an application’s secret input.
For instance, if a global variable is incremented for each
user login, an adversary can count the number of accesses
to this variable to infer the number of logins. To detect
that the global variable is accessed, the adversary can
make the page where it resides inaccessible. Any access
to the page will trigger a page fault.

In the simplest case, the adversary can use the fault
address to decide if the application tried to access the
global variable of interest. However, since the offset in
the fault address is hidden, the adversary has to infer it.
Xu et al. propose using page fault sequences that can
uniquely identify a data access or control transfer.

Attacks based on page-fault sequences still face a fun-
damental limit: Page faults only work at page granularity.
The following two examples are immune to attacks via
the page-fault channel.
Temporal Limit: Figure 2a shows a simple strlen im-

plementation. Assume the binary code is on a single
code page and the string str is on a single data page.
The len variable is usually in a register for optimization
and thus not usable by an adversary. One instruction in
strlen reads a character of str from the data page. To
execute it, the attacker must make both code and data
page accessible. But after this, strlen execution will
not cause further page faults, preventing the adversary
from counting the number of iterations and inferring
the length of the string.

Spatial Limit: Assume table agentNames in Figure 2b is
on a single data page. Since the offset of the page-fault
address is hidden, an adversary cannot use an access to
the table to infer the value of the variable agentCode.

3.3 Prime-and-Probe Cache Side-Channel Attacks

Small, fast caches in CPUs are used to mitigate the per-
formance impact of memory accesses. Upon a memory
access, the CPU copies the memory contents into the
cache. Subsequent accesses to the same address can be
serviced from the cache at a much lower cost. This copy-
ing takes place at the granularity of 64 byte cache lines.

A memory location is mapped to a small group of cache

lines based on some of its address bits (bits 6-11 for the
Intel L1 data cache used in this paper). The Intel L1
cache uses groups of 8 cache lines (8-way set associative).
Upon a memory access not currently in the cache, one
line in the group must be evicted to make space for the
new contents.

Caches are typically shared by all code running on a
core or even the entire CPU package. An attacker may
make a sequence of memory accesses loading the contents
into the cache and filling it completely. A subsequent
memory access by another program will also cause data
to be loaded into the cache, evicting one of the attacker’s
cache lines.

The attacker can measure the time it takes to access the
memory locations he previously loaded into the cache to
detect such evictions. Increased access times indicate an
eviction, telling the attacker not only that an access took
place, but also revealing bits 6-11 of the address of the
access.

This procedure is known as prime and probe [36]. Fill-
ing the cache with the attacker’s content is called the
prime step. Measuring the memory access times is called
the probe step.

4 Design
This section describes our techniques for performing

synchronous, high-resolution side-channel attacks. Ab-
stractly, the attacker has two capabilities: break, to set
conditional breakpoints on the application and observe, to
inspect artifacts of its execution (e.g., memory accesses).
A technique may also provide both capabilities. Making
a page inaccessible [44] allows breaking (page fault) and
observing (page fault address).

We introduce two new techniques to overcome the lim-
itations of the page-fault channel (Section 3.2) and signif-
icantly broaden the class of application code subject to
side-channel attacks:

• A technique to single-step protected applications.
• A cache side channel to observe memory accesses at

cache-line granularity.
Both techniques work even if the attacker can observe
only a single application run. Thus, any protected appli-
cation is a potential target for the attack.

We use page-fault sequences to infer memory accesses
when possible, allowing us to deploy high-overhead at-
tacks only during the short times they are required.

4.1 Noise reduction

The techniques require a very low level of system noise.
We use the OS’s control over hardware to reduce noise by
disabling interference sources (turbo-boost, prefetching,
power management) and preventing preemption of the

USENIX Association 2017 USENIX Annual Technical Conference 301

victim application. These adjustments can also be made
by a compromised OS or a malicious admin.

Like page-fault based attacks [44], our attacks rely on
exceptions and interrupts to provide the break mechanism.
Handlers run on a victims’s core to gain access to the
private resources (e.g., caches) of the core for observation.

4.2 Single Stepping

In our system model (and under SGX), the monitor pre-
vents the OS from using the single stepping features of
the hardware. However, the OS can approximate such
functionality using hardware timers.

For this work, we use the x86 local APIC timer, due
to its high resolution and easy programmability. We use
the timer in single-shot mode at the highest available fre-
quency (divider=1). In this mode, the OS writes a target
value x into a register. The timer triggers an interrupt
x timer ticks after the register write. The timer tick fre-
quency is significantly lower than the TSC frequency. On
the Skylake system used in the evaluation, the former is
24 MHz, while the latter is 167 times higher. While this
means we can only trigger an interrupt every 167 CPU
cycles, we know at which TSC value the interrupt will
arrive, allowing us to wait an appropriate time should the
desired TSC value be too soon.

Assume we have interrupted the application and want
to single-step forward to the next instruction. This may
not be easy for all instructions. Here, we focus on instruc-
tions with memory operands, which is sufficient for our
attacks. The goal is to have the next interrupt arrive during
the execution of the next such instruction. If the interrupt
arrives during the right time window, the processor will
delay the interrupt until execution of the instruction is
complete. During regular execution, this time window is
extremely short. However, the attacker has an array of
tools that can make the instruction very slow and, thus, ex-
pand the time window to hundreds of cycles. We only rely
on a TLB flush, which causes instructions with memory
operands to incur a page-table walk. Additional options
include flushing the cache to force page-table walks to
incur the full memory latency, manipulating the memory
clock to increase memory latency or disabling the cache
completely to make all subsequent instructions slow.

The time between starting the timer (writing to the
timer register) and executing the victim’s next instruction
includes the interrupt return path (privilege level change)
and the re-entry path of the protected application (cross-
ing the trust boundary, restoring registers). While CPU
specific, this time can be measured using a protected appli-
cation on the attacker-controlled target system. Based on
this measurement, we determine the number of timer ticks
x. This estimate can only be sufficiently precise if jitter

is low, making the noise reduction techniques described
above vital.

This mechanism can be used to implement any
conditional breakpoint that depends only on attacker-
observable information. Single stepping and observing
the system after each step allow the attacker to perform a
detailed analysis of the system’s behavior. While possible
for the whole application, it is also quite slow, as each
instruction causes at least one interrupt. The overhead
can be reduced by using a cheaper breakpoint to narrow
down the region of interest (page fault, coarse-grained
timer interrupts) and switch to single-stepping there.

We synchronize our single steps with observations
about the memory accesses made by the application. For
example, the strlen code in Figure 2a accesses the string
exactly once per iteration. Observing an access to str af-
ter a single step informs us that the application must be at
(close to) the instruction following the access. We obtain
the number of loop iterations by counting the number of
str accesses. Memory accesses are observable by reading
the dirty and accessed bits in the page table entries.

4.3 Cache Side-Channel Attack

A cache side-channel allows observations at the gran-
ularity of 64 byte cache lines. It has the potential of
revealing information about accesses to small (sub-page
sized) arrays for which the page-fault channel is inef-
fective. We use a prime-and-probe attack against the
core-local, 32 KB large, 8-way set associative L1 cache.

The key challenge for cache side-channel attacks is
cache pollution caused by other accesses than the ones of
interest during prime and probe. An unprivileged attacker
has little control over when his code will execute. Probing
may observe the results of both the memory accesses
of interest and potentially many unrelated accesses, a
problem exacerbated by the small size of the L1 cache.

Traditional cache side-channel attacks mitigate the
problem by averaging over many prime-and-probe ob-
servations. This technique does not apply to applications
that usually execute over each unique input once. Instead,
we use our control over hardware to tackle the problem.

Our attack proceeds as follows. We break the applica-
tion shortly before the memory access we wish to observe,
prime the L1 cache, and resume the application. We break
again shortly after the access of interest, probe the L1
cache, log the result and resume the application.

Thanks to the OS’s control over hardware, we can use
page faults or single-stepping to break right before and af-
ter the memory access of interest, thus avoiding unrelated
memory accesses during prime and probe. To further re-
duce cache pollution, we prevent other applications from
running on the victim’s physical core.

302 2017 USENIX Annual Technical Conference USENIX Association

Even after applying these mitigation techniques, we
still cannot eliminate cache pollution completely for two
reasons. First, some code is executed between priming
and the resumption of the application and between the
interruption of the application and probing. Any memory
accesses by such code may result in spurious cache evic-
tions. Second, TLB flushes happen when transitioning
into and out of protected applications to protect appli-
cation memory. This leads to page-table walks when
executing subsequent instructions. This in turn causes
one memory access per page-table level.

However, we can predict and to some degree even con-
trol which cache addresses are being polluted and adjust
our evaluation accordingly. Given the 8-way set associa-
tivity of the L1 cache, a polluted cache address will also
not lose all information about the access we are trying to
observe. If the access of interest falls into a cache address
polluted by one extraneous access, we should observe L1
misses for two of the eight ways for that address. This
allows us to observe the access of interest even in the
presence of deterministic cache pollution.

We determine the set of cache lines that will be polluted
deterministically on every prime-probe observation. This
includes the memory accesses made by the page-table
walk for the (known) target page of the access of inter-
est and the (known) page of the page-fault handler, as
well as some known accesses made by the handler itself.
In our analysis, we subtract these L1 misses from our
observations. We call this step deterministic filtering.

When probing, we must measure access times very
precisely, as L2 hits take only a few cycles longer than
L1 hits. We disable interrupts to gain exclusive use of the
core for our measurement code.

5 Attacks
We now describe our attacks against VC3 and libjpeg.

5.1 VC3

VC3 [39] allows users to run MapReduce jobs [18] in the
cloud without exposing their code or data to the provider.
VC3 shields computations from the provider using SGX.
The provider and all his software (OS, hypervisor) are
assumed to be adversarial. Just as in regular MapRe-
duce, the user writes a map and a reduce function. The
functions are encrypted, packaged together with the VC3
framework and sent to the cloud to be run in SGX en-
claves. VC3 is designed to plug into an existing untrusted
MapReduce framework such as Hadoop [7]. A VC3 job
will begin with encrypted input splits that the untrusted
MapReduce framework feeds into mapper enclaves. In-
side a mapper enclave, the VC3 framework decrypts the
input and the user’s map function, and invokes it. The

HashMap
...

h(keya)

h(keyb)
...

Key1 Key2

Value1

Value2
...

...

Figure 3: Layout of the hash map used in the VC3 reducers

VC3 framework encrypts intermediate key-value pairs
produced by the map function and feeds them into the
untrusted MapReduce framework, which distributes them
to reducer enclaves.

VC3 provides tamper detection for the untrusted com-
munication channel (e.g., removal or duplication of inter-
mediate key-value pairs). Randomized encyption prevents
frequency analysis on intermediate key-value pairs. But
it also stops the untrusted MapReduce framework from
grouping them. Since grouping is required by the interme-
diate key-value rule [18, Sec. 2] VC3 has to implement it
inside the reducer enclaves.

The grouping implementation is hash-map based (Fig-
ure 3). Each hash key is mapped to an index in an array
of 8-byte pointers. Hash collisions are resolved through a
linked list of colliding keys for each array index. As the
array is 64-byte aligned, eight consecutive 8-byte pointers
fill up a cache line. Conversely, observation of a cache
line access identifies the corresponding eight array slots.
This grouping operation is the only part of VC3 whose
memory accesses depend on user data, because most map-
pers use user data to compute intermediate keys.

5.1.1 Attack Overview

Our attack targets MapReduce applications that have one
or more English documents as the input and words in
the documents as the intermediate keys. WordCount and
Inverted Index are such applications [18, Section 2]. Our
goal is to recover as much of the document as possible.

Following the VC3 model, we consider the user’s map
and reduce functions to be secret, but the VC3 framework
to be public, and thus only attack the latter. It would
negate the value proposition of VC3 if users were forced
to admit code into their TCB that they cannot inspect.

The high-level idea of our attack works as follows. We
use our single stepping and cache side channel techniques
to infer the length and the (approximate) hash array index
for each input word (i.e., intermediate key). We also track
words through the various stages of processing in MapRe-
duce to remember their positions in the input document.
Finally, we use an English language model that contains a
dictionary of words (unigrams) and word pairs (bigrams)
as well as their weights (measured by their popularity)

USENIX Association 2017 USENIX Annual Technical Conference 303

to recover the input document based on the length, hash
array index and position of each word.

5.1.2 Word Length

VC3 hashes all intermediate keys (i.e., input words) to
insert the key-value pairs into the hash map. The hash
function loops over the characters of the key until it finds
a null character. The length of the input word is obtained
by breaking on the hash function and observing the num-
ber of loop iterations it performs using the technique of
Section 4.2.

5.1.3 Cache Line Address

We use the cache side channel of Section 4.3 to observe
for each word the cache line of the hash array slot into
which it is inserted. We break right before the array
lookup by making the array pages inaccessible. Upon the
page fault, we log the page number, make the page acces-
sible, make the reducer’s stack inaccessible and prime the
cache. After resuming execution, VC3 accesses the array
and, immediately after that, page faults when trying to
access its stack. We probe and log the cache state, resolve
the page fault, make the array page inaccessible again and
resume execution.

5.1.4 Word Position

As input words move through the mappers and reducers,
we must keep track of their positions in the input docu-
ment. Our English language model relies on word order
and, more generally, the output of the attack appears much
more useful if it presents the words in the correct order.

If there is only a single mapper and a single reducer,
the problem is trivial because the words arrive at the re-
ducer (where we observe word lengths and hash slots)
in input order. However, multiple mappers and reduc-
ers will be sending and receiving intermediate key-value
pairs concurrently. Furthermore, VC3 mappers internally
determine the reducer for each word, buffer the word and
only send buffers containing many words to each of the
reducers.

The first problem (concurrency) is easily solved by
observing that the attacker controls the communication
channel between all mapper and reducer enclaves. In par-
ticular, the attacker can observe the order of all messages
sent from mappers to reducers. The second problem is
more complex. Using the page-fault channel to monitor
the mappers, we track for each input word the buffer into
which the mapper inserts it and its position in the buffer
(details omitted due to space constraints). This informa-
tion allows us to recover the original word positions when
a reducer finally processes the words from the buffer; i.e.,
when we extract the length and hash slot for each word

from the buffer.

5.1.5 Word Recovery

We can represent the information recovered so far as a
version of the input document in which each word has
been replaced by its length and its hash slot (covering 8
array indices). It remains to map this information back to
the original words.

As a first step, we group the words in our language
model by length and hash slot. The result is a candidate
list for each length, hash slot combination and, thus, for
each position in our input document. Next, we refine the
candidate list for each input word with the help of context:
the bigrams from our language model. For each candidate
word at a position, if there is no candidate word in the
subsequent position to construct a word pair (bigram)
that is contained in our language model, we eliminate
the candidate word. We repeat this pruning step on all
candidate words iteratively until no candidate words can
be removed. Finally, we sort all remaining candidate
words for each position based on their weights.

5.2 JPEG

JPEG is one of the most widely used image compression
standards. JPEG compression cuts the image into blocks
of 8 by 8 pixels and performs a discrete cosine transform
(DCT) on each block, followed by other compression
steps. JPEG decompression reverses these steps, perform-
ing an inverse DCT as one of the last steps. In our attack,
we target the libjpeg library [1], the most widely used
JPEG implementation. Specifically, we exploit the last
stage of the inverse DCT function which computes the
final values of the 8 by 8 output matrix by means of array
lookups. The array has 1024 single byte entries and lies
typically on a single page, which makes page-granular
observation useless. The final output values are the values
read from the array.

Our attack strategy is to observe the cache line accessed
in each of the array lookups. However, even at cache-line
granularity, we are unable to distinguish between the 64
adjacent array indices that fall into each cache line. For
example, if the array is 64 byte aligned, array slots 0 to
63 fall into the same cache line, and our observations do
not let us distinguish among them. If the array was filled
with random numbers, observing cache lines would be
unlikely to reveal useful information.

Fortunately, the array values are either constant or lin-
early increasing over large ranges. Thus, the average
over all array values that lie in the same cache line con-
tains useful information. For cache lines that cover array
regions where the values increase linearly, the avarage
contains the two most-significant bits of the 8-bit array

304 2017 USENIX Annual Technical Conference USENIX Association

values, as we are losing the 6 (= log2(64)) least signifi-
cant bits due to 64-bit cache-line resolution. For cache
lines that cover constant regions, the average contains the
same information as the individual array values.

Upon observing an array access at a particular cache
line, we use the average over all array values that are
covered by that cache line as our inferred output value. We
feed these recovered values directly into the last phases
of JPEG decompression to obtain the final image. We
recover the image dimensions and the color space using
the method described in [44].

6 Implementation
This section describes how we implemented the attacks

and the target applications. Our prototype was designed
for x86-64 PCs running Windows and using Intel SGX as
the monitor. The choice of Windows was not essential. A
dedicated attacker might choose to write a special attack
OS or even build special hardware that gives him easy
access to the required functionality. We used the shortcut
of adding attack functionality to an existing OS by means
of a kernel driver. We chose SGX as the monitor for
three reasons. (1) VC3 only runs on SGX. (2) SGX has a
detailed, public specification. (3) SGX includes defenses
against side-channels, making it a more interesting target.

6.1 Implementation on Windows

We used a Windows driver to implement the techniques
from Section 4 and the page fault channel in approxi-
mately 1,200 lines of C++ code and 250 lines of assembly
code. All binaries were compiled with the Microsoft
C/C++ compiler version 18.00.21005.1 with full opti-
mization (/Ox) and inlining (/Ob2).

The driver hooks the timer handler and the page fault
handler in the interrupt descriptor table (IDT). This causes
the processor to invoke our handlers, rather than the OS’s.
Our driver processes all events intended for it and for-
wards all others to the Windows handlers.

We pinned the target application to a single core and
set its scheduling priority to REALTIME in order to mini-
mize interference from other OS activity. The core still
receives interrupts and other system events which are a
source of residual noise. For ease of implementation, we
disabled hyper-threading, turbo-boost, pre-fetching and
power management in the BIOS. The same can be done
in code by the OS.

6.2 SGX

We used the SGX simulator that was used in the evaluation
of VC3 [39]. The simulator tries to faithfully implement
the essential functionality of SGX in software. For the
purposes of our attacks, only the SGX behavior on tran-
sitions into and out of enclaves is relevant. In particular,

0 8 16 24 32 40 48 56 63
0

5

10

15

AssociativitySet

W
or

d

0 2 4 6 8

Figure 4: Results of prime-probe observations for 20 distinct
words (rows). Darker fields indicate more evicted ways within
an 8-way associativity set. Vertical lines identify cache ad-
dresses evicted in every observation.

the simulator adds TLB flushes and delay cycles on all
transitions. We simulated the saving of the register state
by SGX by saving all the registers to a memory page and
putting them in a defined state. An equivalent alternative
would have been to use the OpenSGX simulator [31].1

6.3 Single Stepping

As Windows uses the local APIC timer as its system timer
we had to share it. We programed the timer, such that it
continues to trigger the relatively low-frequency periodic
interrupts Windows expects. When single stepping, we
set up the timer for single-shot mode with a divider of
one.

6.4 Cache Side-Channel Attacks

At initialization, we allocate a page-aligned 32 KB buffer
consisting of eight 4KB pages, which correspond to the
eight ways of the L1 data cache. Our prime procedure
loops over the buffer and performs one write operation
for each cache line, thus filling the entire L1 data cache.

Our probe procedure also iterates over the cache lines
covered by our buffer. For each cache line, it times the
corresponding memory read using rdtsc using serializing
and fence instructions to prevent reordering. Accesses
that take at most 10 cycles are considered L1 hits.

Our IDT hooks let us control all code executed when
transitioning into and out of the victim application. The
separation of the L1 cache into an instruction cache and
a data cache ensures that code execution by itself does
not pollute the L1 data cache. We carefully chose all
assembly instructions in our fault handler to control its
data memory accesses.

Figure 4 shows the results of 20 prime-probe observa-
tions. Each row shows a cache fingerprint for a different

1Intel has released an SGX SDK, which only allows enclaves to run
in debug mode. This mode disables most protections, thus providing
limited additional value over the existing simulator.

USENIX Association 2017 USENIX Annual Technical Conference 305

word. Thus, we would expect each row to only differ in
one gray dot for the accessed cache line. This does not
explain all observed differences between the rows. The
vertical lines (e.g., at index 32) stem from deterministic
cache pollution since they are evicted in every prime-
probe observation. We are uncertain as to the exact cause
of the noise patterns between rows 5 and 10.

While the pollution is not constant across observations,
there appears to be a relatively small number of pollu-
tion patterns. For example, lines 6, 7, 9 and 10 have
roughly the same pollution pattern. Our strategy was to
group our observations by their pollution patterns and
to remove cache misses that are common within each
group from each of the observations in the group. For
this, we computed for each group the average number of
observed misses for each cache line and subtracted these
averages from our observations, setting negative results
to zero. This noise filtering removed most of the pollu-
tion, significantly reducing the number of candidate cache
lines.

6.5 VC3

We used the original VC3 code [39], implemented Word-
Count [18, Sec. 2.1] in 100 lines of C, and used the VC3
packing tool to generate the binary that is loaded into the
enclaves. This tool encrypts the binary containing the
mapper and reducer functions and embeds it into a second
(plaintext) binary containing the trusted VC3 framework
which is later loaded into the enclaves. We used the VC3
preprocessing tool to convert the input document into
encrypted input splits for the mappers.

Rather than using Hadoop, we wrote a small program to
send inputs into the mappers and reducers and to receive
their outputs. This implementation shortcut is valid, since
Hadoop is considered untrusted and under attacker control
in the VC3 security model. For simplicity, our program
runs the mappers and reducers sequentially, storing the
intermediate key-value pairs of each mapper on disk.

6.6 JPEG

We built a self-contained application around libjpeg that
can be run inside an SGX enclave and that decodes an
image. We had to provide a small runtime library to
satisfy the external dependencies of libjpeg (memory
allocation, file I/O). We reused the memory allocator from
the VC3 runtime and provided just enough file I/O to read
the input JPEG file from enclave RAM.

We compiled the unmodified source code of libjpeg
version 9a, the runtime and the main function into a sin-
gle Windows PE binary without external dependencies.
We constructed an enclave consisting of this binary, an
encrypted JPEG file (loaded into enclave memory) and

cntr. increase 0 1 > 1
mean 64,393,418 204,040,806 1,231
CV 0.1 0.03 0.73

Figure 5: Single stepping experiment: interrupt count by ob-
served counter increase. The mean is taken over 20 repetitions.
CV is the coefficient of variation (mean divided by standard
deviation).

heap memory. Upon invocation of the enclave, the main

function decrypts the file in enclave memory, initializes
the runtime and calls libjpeg to decompress the image.

7 Evaluation
We ran the experiments on a Windows 10 system based

on an MSI Z170A motherboard with a 4.0 GHz quadcore
Intel i7-6700K Skylake CPU, 8 GB of RAM and a 128 GB
SanDisk X300 SSD. We disabled several unnecessary
devices (DVD drive, audio, dedicated graphics card).

7.1 Single Stepping

We ran the following microbenchmark to evaluate the
effectiveness of single stepping. We set up a victim ap-
plication that increments an in-memory counter in a tight
loop. The compiled loop code consists of three instruc-
tions: add [rdi],1 (increment the counter in memory),
dec rax (decrement the loop variable) and jne -9 (con-
ditional jump to the first instruction).

We shared the counter variable with the interrupt han-
dler in our driver and made it record its value at each
interrupt. This allowed us to observe the number of loop
iterations that the victim had executed between consec-
utive interrupts. The driver also recorded the address of
the interrupted instruction. Before returning, the interrupt
handler restarted the timer and flushed the TLB. This ex-
periment requires careful tuning. Space limitations force
us to omit many details.

We ran the experiment until 228 ≈ 268 million inter-
rupts had occurred. We repeated the experiment 20 times
for a total of more than 5 billion observations. The re-
sults are displayed in Fig. 5. About 24% of the interrupts
occurred before the next counter increment. They waste
cycles, but do not affect accuracy, as we can detect this
case in real attacks. More than 99.9993% of the remain-
ing interrupts break into the loop at consecutive iterations.
This level of accuracy is more than sufficient for our at-
tacks.

In most cases, the interrupt occurred directly after the
add [rdi],1 instruction. The delay due to the page-
table walk for the memory operand (caused by the TLB
flush) appears sufficient to absorb most of the timer jit-
ter. We repeated the experiment, but invalidated only the
application’s TLB mapping to the counter instead of the
entire TLB. This change did not have a significant im-

306 2017 USENIX Annual Technical Conference USENIX Association

0 1 2 3 4 5 6 > 6

0 %
20 %
40 %
60 %
80 %

5.
07

%

87
.3

6%

3.
52

%

0.
26

%

0.
42

%

1.
05

%

0.
29

%

2.
03

%

2.
85

% 71
.4

3%

18
.7

1%

3.
03

%

0.
19

%

0.
4%

1.
04

%

2.
35

%

Cacheline candidates

filtering
no filtering

Figure 6: Accuracy of the cache observations of random array
accesses with and without deterministic filtering.

0 1 2 3 4 5 6 > 6
0 %

20 %
40 %
60 %

9.
45

%

62
.8

5%

11
.9

9%

4.
24

%

2.
67

%

1.
65

%

1.
08

%

6.
07

%

Index of correct candidate
Figure 7: Position of the correct word in the ranked candidate
list. Zero means the correct word was not in the candidate list

pact on the results, providing further evidence that the
memory operand and its TLB mapping are the keys to the
experiment.

7.2 Cache Side Channel

We evaluated the effectiveness of the cache side channel
using a microbenchmark application that repeatedly ac-
cesses a 4 KB page-aligned array at random indices. We
executed the application in an enclave and ran our driver
to observe the cache lines of the array accesses.

Figure 6 shows the distribution of the number of cache
line candidates returned by the attack over 35,000 ac-
cesses with and without applying deterministic filtering
(Section 4.3). Both cases use noise filtering (Section 6.4).

With deterministic filtering, we obtained a unique cache
line candidate in 87% of the observations, where 99.4% of
these unique candidates identified the correct cache line.
This level of accuracy is considerable, given that each
observations is based on only a single memory access
by the victim. The number also reveals the noticable
presence of residual noise. As we will show next, this
noise degrades the results of our attacks only moderately.

7.3 VC3

We used 20 English books from Project Gutenberg [2]
and an English language model with 124,758 unigrams
and 912,125 bigrams to evaluate our attack on VC3.

Effectiveness We ran our WordCount application on VC3
inside an enclave for each of the 20 books. We used our
driver to perform the attack steps specified in Section 5.
The driver produced a log file containing its observations,
which we processed as described in Section 5.1.5.

THE WONDERFUL WIZARDOFOZ
The Cyclone
Dorothy lived in the midstof the greatKansas prairieswithUncleHenry
who was a farmer and Aunt Em who was the Their house was small for
the lumber to build it had to be carried by wagon many There were four
walls a floor and a roof which made one and this room contained a rusty
lookingcookstoveacupboardfor the dishesa table threeor four chairsand
theUncleHenryandAunt Emhad a bigbed in onecornerandDorothya
littlebed in another There was nogarret at all andno a smallholedug in
the ground called a cyclone cellar where the family could go in case one
of thosegreatwhirlwindsarosemighty enoughtocrushanybuilding in its

Figure 8: A Sample of the text recovered by the attack: white
background: 1st candidate; light-grey background: 2nd candi-
date; dark-grey background: 3rd candidate; black background:
4th or higher; solid black: word not in candidate list

We evaluated the accuracy of the resulting candidate
lists by looking up where each word from the input docu-
ment appeared in its candidate list. Figure 7 summarizes
the results for one book [8] totaling 35,718 words. It
shows the position of the correct word in each word’s
candidate list. For almost two thirds of the words (63%),
the first candidate in the list is exactly the word in the
document.

Figure 8 displays a sample of the recovered text. While
recovery is not perfect, most of the words have been re-
covered uniquely or nearly uniquely. Overall, the content
of the input text is revealed and comprehensible, in spite
of our crude lanugage model which lacks explicit gram-
mar rules. A better model is bound to help recover even
more of the input.

Performance The end-to-end attacks slow down the ap-
plications’ execution significantly. Following the ap-
proach of [44], our goal is to keep this slowdown at a level
that can plausibly be explained by network and scheduling
delays and various other cloud and internet glitches.

The runtime for our example book [8] incresases from
0.33 s to 123.5 s when deploying our attack, a 374x over-
head similar to the previous attack [44]. The delay can
be reduced by extracting only part of the document or by
running several mappers and reducers in parallel. Word-
length recovery (single stepping 560,128 times) and ob-
serving the hash slots (cache side channel) each take
slightly less than half of the overhead (57 s and 54.7 s
respectively), while 11.6 s are spent handling page faults.

7.4 JPEG

We used 20 images from Wikipedia [5] to evaluate the
attack on libjpeg. Our test set included some of the
images used in an earlier attack on libjpeg [44].

Effectiveness Figure 9 shows the result for an image from
the earlier attack. The image recovered by our attack
shows two expected artifact types. First, loss of detail
due to cache-line granular observations. Second, noise,

USENIX Association 2017 USENIX Annual Technical Conference 307

Figure 9: Example of a JPEG image recovered by the attack. top left: the original image; top right: recovered by the full attack;
bottom left: recovered through the page fault channel [44, Figure 11]; bottom right: recovered by our attack, sampling 1 to 64.

full 1:8 1:64 page fault
0
1
2
3

·103

3,
53

2

85
4

94 20
9.

7

ov
er

he
ad

[f
ac

to
r]

Figure 10: Overhead over baseline of various versions of the
attack on libjpeg on the image in Figure 9.

resulting from incorrect cacheline observations. Despite
these artifacts, the image recovered by our attack (Figure 9
top right) shows far more detail and looks much more like
the original (Figure 9 top left) than the image recovered
by the earlier attack (Figure 9 bottom left).2

Performance The attack incurs a substantial overhead
due to the large number of prime-probe observations (up
to three per pixel) and their relatively high cost. Our full
attack on the image in Figure 9 incurs a 3,532x overhead
(219 s vs. 62 ms), which is substantially higher than the
209.6x-354.9x for the page-fault channel [44, Fig.14].

However, the attacker can easily trade off overhead
against accuracy by performing prime-probe observations
only for a subset of the application’s array lookups. We
implemented this sampling strategy by allowing the at-

2Full resolution and additional images at tudos.org/˜mhaehnel/SGX/

tacker to specify how many values should be sampled in
each 8x8 block. We repeated the attack sampling eight
times per block and once per block, corresponding to
1:8 and 1:64 sampling ratios, and summarize the over-
heads in Figure 10. We show the median overhead for
ten measurements. The standard deviation was less than
5% of the mean in all cases. The page-fault value is the
209.6x value reported for the previous page-fault channel
attack [44, Fig.14].

The two bottom-row images in Figure 9 show clearly
that even the image recovered at a 1:64 sampling ratio
contains significantly more detail than the image recov-
ered in [44], despite our significantly smaller overhead.

The overheads for the other images in our test set are
similar to those of Figure 10, ranging from 2,595x to
3,532x for the full attack and 72x-94x for 1:64 sampling.
The attack delays range from less than 10 s to about 4 min
for the full attack, and 1.8 s-6 s for 1:64 sampling.

8 Mitigations
Cache side channels have been known for a long time,

and a variety of defenses has been designed against
them [15, 17, 19, 21, 32, 43, 47], working at the hardware,
hypervisor, OS or compiler level. One approach is to
partition caches so that the cache assigned to a sensitive

308 2017 USENIX Annual Technical Conference USENIX Association

application cannot be accessed by a malicious program
(e.g., [19, 32]). The other approach is to introduce noise
so that a malicious program cannot tell if a cache miss is
due to a real or random memory access (e.g., [21, 47]).

None of these defenses appears to be widely used
or deployed, possibly due to their cost. In addition,
traditional cache side channels have been targeting al-
most exclusively a small collection of cryptographic al-
gorithms. These have been protected by eliminating all
secret-dependent memory accesses from their implemen-
tations, thus obviating the need for more general defenses.
However, attacks such as those presented in this paper
demonstrate that a much broader class of code is poten-
tially subject to cache side-channel attacks when the oper-
ating system is the adversary, and general defenses like
those listed above may be required.

Shih et al. [41] propose a technique called T-SGX to
disable side channels based on page-faults and interrupts.
T-SGX is a compiler-based approach that automatically
wraps computations in Intel TSX transactions. Since
TSX [16] aborts transactions upon interrupts and excep-
tions, T-SGX can use the frequency of such aborts to
detect side-channel attacks. T-SGX appears effective, but
requires the application source code and incurs a notice-
able overhead.

9 Related Work
Untrusted OSs Using feature-rich commodity OSs while
removing them from applications’ TCB has attracted con-
siderable attention in research and industry. Hardware
such as the Trusted Platform Module [3], Intel Trusted
Execution Technology [22] or ARM TrustZone [4] as well
as software hypervisors have long formed the basis for
such systems. Some require applications to be specifically
written for the new environment [20], others have the am-
bitious goal of securing legacy applications [14, 27].

Recently, the goal of protecting user applications in
the cloud from the hosting provider’s privileged software
together with the introduction of Intel SGX have resulted
in renewed activity in this area [6, 9, 26, 29, 34, 39].

Xu et al. [44] recognized the OS to be significantly
more powerful than the traditional unprivileged attacker
assumed by most side channel attacks. Their page-fault
channel attack extracts complete text documents and out-
lines of JPEG images from a single run of the victim.

The channels presented in this paper offer much higher
spatial and temporal resolution than the page-fault chan-
nel. This is significant because it shows that the collec-
tion of vulnerable application code is far broader than
suggested by the page-fault channel.

Cache side channels Cache-based timing and trace-
driven attacks are closely related to our work [11, 36, 37].

They generally assume an attacker with low privilege such
as an unprivileged process [37], a virtual machine attack-
ing its neighbors [38] or an attacker measuring server
response time across the network [11]. Our attack is trace-
driven, as the attacker can observe the victim’s memory
accesses. Trace-driven attacks typically reveal more fine-
grained information than timing attacks. Most trace-based
attacks are based on one of two techniques: prime-and-
probe [36] and flush-and-reload [24].

The prime-and-probe technique has been used in syn-
chronous [36] and asynchronous attacks [30,33], targeting
the L1 cache [37] and well as the LLC [30, 33]. This line
of work typically assumes an unprivileged attacker who
has little control over code running between the prime
and the probe step. In contrast, control over scheduling
and the ability to break into the victim at will let our at-
tacker observe individual memory accesses at high time
resolution. Several recent papers study cache side chan-
nels for enclaves using techniques that are different from
ours and focusing primarily on crypto targets [12, 23, 40].
While preparing the camera-ready version of this paper,
we became aware of recent, unpublished work that uses
techniques similar to ours to attack crypto code [35].

Recently, the flush-and-reload method has enabled an
array of stronger attacks [10, 25, 42, 45, 46]. Flush-and-
reload can be used if the attacker and the victim share
memory such as read-only code pages. While applica-
ble in traditional cloud scenarios or with memory de-
duplication, our security model (and SGX) prevent such
sharing. Furthermore our attacks are not limited to shared
read-only code and data pages.

10 Conclusion
We have described two general techniques that can

be combined to build high-resolution side channels for
untrusted OSs, overcoming the main limitations of the
page-fault channel.

This work shows that a much wider range of application
code than suggested by the page-fault channel is subject
to side-channel attacks. We demonstrate this with attacks
against application code that cannot be attacked using
only the page-fault channel. Whereas previous attacks
have focused on unmodified legacy code, our main attack
successfully targets an application that was designed not
to trust the OS. This work highlights the increased impor-
tance of side-channels for privileged attacker scenarios.
It takes us closer to understanding the full scope of the
side-channel problem for untrusted OSs and highlights
the need for robust mitigations.

Acknowledgments
We would like to thank our shepherd Nadav Amit and

the anonymous reviewers for their valuable input.

USENIX Association 2017 USENIX Annual Technical Conference 309

References
[1] libjpeg. http://libjpeg.sourceforge.net/.

[2] Project Gutenberg. http://www.gutenberg.

org/.

[3] Trusted Platform Module (TPM). http://www.

trustedcomputinggroup.org/.

[4] TrustZone. http://www.arm.com/products/

processors / technologies / trustzone /

index.php.

[5] Wikipedia. http://www.wikipedia.org/.

[6] Ittai Anati, Shay Gueron, Simon Johnson, and Vin-
cent Scarlata. Innovative technology for cpu based
attestation and sealing. In Workshop on Hardware
and Architectural Support for Security and Privacy
(HASP 2013), June 2013.

[7] Apache Software Foundation. Hadoop. http://

wiki.apache.org/hadoop/, 2011.

[8] L Frank Baum. The wonderful wizard of Oz.

[9] Andrew Baumann, Marcus Peinado, and Galen
Hunt. Shielding Applications from an Untrusted
Cloud with Haven. In USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI),
2014.

[10] Naomi Benger, Joop van de Pol, Nigel Smart, and
Yuval Yarom. “Ooh aah. . . just a little bit”: A small
amount of side channel can go a long way. In Work-
shop on Cryptographic Hardware and Embedded
Systems (CHES), 2014.

[11] Daniel J. Bernstein. Cache-timing attacks on AES.
Available at: http://cr.yp.to/antiforgery/
cachetiming-20050414.pdf, 2005.

[12] Ferdinand Brasser, Urs Müller, Alexandra
Dmitrienko, Kari Kostiainen, Srdjan Capkun,
and Ahmad-Reza Sadeghi. Software grand
exposure: SGX cache attacks are practical.
https://arxiv.org/abs/1702.07521, Febru-
ary 2017.

[13] Stephen Checkoway and Hovav Shacham. Iago at-
tacks: Why the system call API is a bad untrusted
RPC interface. In International Conference on Ar-
chitectural Support for Programming Languages
and Operating Systems (ASPLOS), 2013.

[14] Xiaoxin Chen, Tal Garfinkel, E. Christopher Lewis,
Pratap Subrahmanyam, Carl A. Waldspurger, Dan
Boneh, Jeffrey Dwoskin, and Dan R. K. Ports.
Overshadow: A virtualization-based approach to
retrofitting protection in commodity operating sys-
tems. In International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), 2008.

[15] Bart Coppens, Ingrid Verbauwhede, Koen De Boss-
chere, and Bjorn De Sutter. Practical mitigations
for timing-based side-channel attacks on modern
x86 processors. In Proceedings of the 2009 IEEE
Symposium on Security and Privacy, pages 45–60,
2009.

[16] Intel Corporation. Intel 64 and ia-32 architectures
software developer’s manual.

[17] Stephen Crane, Andrei Homescu, Stefan Brunthaler,
Per Larsen, and Michael Franz. Thwarting cache
side-channel attacks through dynamic software di-
versity. In Proceedings of the 2015 Network and Dis-
tributed System Security Symposium (NDSS 2015),
2015.

[18] Jeffrey Dean and Sanjay Ghemawat. Mapreduce:
Simplified data processing on large clusters. In Pro-
ceedings of the 6th USENIX Symposium on Operat-
ing System Design and Implementation (OSDI’04),
December 2004.

[19] Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael
Abu-Ghazaleh, and Dmitry Ponomarev. Non-
monopolizable caches: Low-complexity mitigation
of cache side channel attacks. ACM Transactions
on Architecture and Code Optimization, 8(4):35:1–
35:21, January 2012.

[20] Paul England, Butler Lampson, John Manferdelli,
Marcus Peinado, and Bryan Willman. A trusted
open platform. Computer, 36(7):55–62, 2003.

[21] Adi Fuchs and Ruby B. Lee. Disruptive Prefetching:
Impact on Side-Channel Attacks and Cache Designs.
In Proceedings of the 8th ACM International Sys-
tems and Storage Conference, May 2015.

[22] Matthew Gillespie. Intel trusted execution technol-
ogy: A primer. https://software.intel.com/
en-us/articles/intel-trusted-execution-

technology-a-primer/.

[23] Johannes Götzfried, Moritz Eckert, Sebastian
Schinzel, and Tilo Müller. Cache atacks on SGX.

310 2017 USENIX Annual Technical Conference USENIX Association

http://libjpeg.sourceforge.net/
http://www.gutenberg.org/
http://www.gutenberg.org/
http://www.trustedcomputinggroup.org/
http://www.trustedcomputinggroup.org/
http://www.arm.com/products/processors/technologies/trustzone/index.php
http://www.arm.com/products/processors/technologies/trustzone/index.php
http://www.arm.com/products/processors/technologies/trustzone/index.php
http://www.wikipedia.org/
http://wiki.apache.org/hadoop/
http://wiki.apache.org/hadoop/
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://arxiv.org/abs/1702.07521
https://software.intel.com/en-us/articles/intel-trusted-execution-technology-a-primer/
https://software.intel.com/en-us/articles/intel-trusted-execution-technology-a-primer/
https://software.intel.com/en-us/articles/intel-trusted-execution-technology-a-primer/

In 2017 European Workshop on Systems Security
(EuroSec’17).

[24] David Gullasch, Endre Bangerter, and Stephan
Krenn. Cache Games – bringing access-based cache
attacks on AES to practice. In Proceedings of the
2011 IEEE Symposium on Security and Privacy,
pages 490 –505, May 2011.

[25] Berk Gülmezoglu, Mehmet Sinan Inci, Gorka Irazo-
qui, Thomas Eisenbarth, and Berk Sunar. A faster
and more realistic flush+reload attack on AES. In
Proceedings of Constructive Side-Channel Analysis
and Secure Design COSADE (2015), 2015.

[26] Matthew Hoekstra, Reshma Lal, Pradeep Pap-
pachan, Carlos Rozas, Vinay Phegade, and Juan
del Cuvillo. Using innovative instructions to cre-
ate trustworthy software solutions. In Workshop on
Hardware and Architectural Support for Security
and Privacy (HASP 2013), June 2013.

[27] Owen S. Hofmann, Alan M. Dunn, Sangman Kim,
Michael Z. Lee, and Emmett Witchel. InkTag: Se-
cure applications on an untrusted operating system.
In International Conference on Architectural Sup-
port for Programming Languages and Operating
Systems (ASPLOS), 2013.

[28] Intel Corp. Software Guard Extensions Program-
ming Reference, September 2013. Ref. #329298-
001 http://software.intel.com/sites/

default/files/329298-001.pdf.

[29] Intel Corp. Software Guard Extensions Program-
ming Reference, October 2014. Ref. #329298-
002US https://software.intel.com/sites/

default/files/managed/48/88/329298-002.

pdf.

[30] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar.
S$A: A shared cache attack that works across cores
and defies vm sandboxingand its application to AES.
In Proceedings of the 36th IEEE Symposium on
Security and Privacy, 2015.

[31] Prerit Jain, Soham Desai, Seongmin Kim, Ming-
Wei Shih, JaeHyuk Lee, Changho Choi, Youjung
Shin, Taesoo Kim, Brent B. Kang, and Dongsu Han.
Opensgx: An open platform for sgx research. In
Proceedings of the 2016 Network and Distributed
System Security Symposium (NDSS 2016), 2016.

[32] Taesoo Kim, Marcus Peinado, and Gloria Mainar-
Ruiz. STEALTHMEM: System-Level Protection

Against Cache-Based Side Channel Attacks in the
Cloud. In USENIX Security Symposium, 2012.

[33] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser,
and Ruby B. Lee. Last-level cache side-channel
attacks are practical. In Proceedings of the 36th
IEEE Symposium on Security and Privacy, 2015.

[34] Frank Mckeen, Ilya Alexandrovich, Alex Berenzon,
Carlos Rozas, Hisham Shafi, Vedvyas Shanbhogue,
and Uday Savagaonkar. Innovative instructions and
software model for isolated execution. In Workshop
on Hardware and Architectural Support for Security
and Privacy (HASP 2013), June 2013.

[35] Ahmad Moghimi, Gorka Irazoqui, and Thomas
Eisenbarth. Cachezoom: How SGX amplifies the
power of cache attacks. https://arxiv.org/

abs/1703.06986, March 2017.

[36] Dag Arne Osvik, Adi Shamir, and Eran Tromer.
Cache attacks and countermeasures: the case of aes.
In Topics in Cryptology–CT-RSA 2006, pages 1–20.
Springer, 2006.

[37] Colin Percival. Cache missing for fun and profit. In
BSDCan 2005, Ottawa, 2005.

[38] Thomas Ristenpart, Eran Tromer, Hovav Shacham,
and Stefan Savage. Hey, you, get off of my cloud:
exploring information leakage in third-party com-
pute clouds. In ACM Conference on Computer and
Communications Security (CCS), 2009.

[39] Felix Schuster, Manuel Costa, Cedric Fournet,
Christos Gkantsidis, Marcus Peinado, Gloria
Mainar-Ruiz, and Mark Russinovich. Vc3: Trust-
worthy data analytics in the cloud using sgx. In 36th
IEEE Symposium on Security and Privacy. IEEE In-
stitute of Electrical and Electronics Engineers, May
2015.

[40] Michael Schwarz, Samuel Weiser, Daniel Gruss,
Clémentine Maurice, and Stefan Mangard. Mal-
ware guard extension: Using SGX to conceal cache
attacks. In 14th Conference on Detection of In-
trusions and Malware & Vulnerability Assessment
(DIMVA’17), 2017.

[41] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and
Marcus Peinado. T-SGX: Eradicating Controlled-
Channel Attacks Against Enclave Programs. In
Proceedings of the 2017 Annual Network and Dis-
tributed System Security Symposium (NDSS), San
Diego, CA, February 2017.

USENIX Association 2017 USENIX Annual Technical Conference 311

http://software.intel.com/sites/default/files/329298-001.pdf
http://software.intel.com/sites/default/files/329298-001.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://arxiv.org/abs/1703.06986
https://arxiv.org/abs/1703.06986

[42] Joop van de Pol, Nigel Smart, and Yuval Yarom.
Just a little bit more. In CT-RSA, 2015.

[43] Zhenghong Wang and Ruby B. Lee. New cache de-
signs for thwarting software cache-based side chan-
nel attacks. In Proceedings of the 34th Annual In-
ternational Symposium on Computer Architecture,
ISCA ’07, pages 494–505, 2007.

[44] Yuanzhong Xu, Weidong Cui, and Marcus Peinado.
Controlled-channel attacks: Deterministic side chan-
nels for untrusted operating systems. In Proceedings
of the 2015 IEEE Symposium on Security and Pri-
vacy, 2015.

[45] Yuval Yarom and Katrina Falkner.
FLUSH+RELOAD: A high resolution, low
noise, L3 cache side-channel attack. In USENIX
Security Symposium, 2014.

[46] Yinqian Zhang, Ari Juels, Michael Reiter, and
Thomas Ristenpart. Cross-tenant side-channel at-
tacks in PaaS clouds. In ACM Conference on Com-
puter and Communications Security (CCS), 2014.

[47] Yinqian Zhang and Michael K Reiter. Düppel:
Retrofitting commodity operating systems to mit-
igate cache side channels in the cloud. In ACM
Conference on Computer and Communications Se-
curity (CCS), 2013.

312 2017 USENIX Annual Technical Conference USENIX Association

	Introduction
	System Model
	Background
	Intel SGX
	The Page-Fault Channel
	Prime-and-Probe Cache Side-Channel Attacks

	Design
	Noise reduction
	Single Stepping
	Cache Side-Channel Attack

	Attacks
	VC3
	Attack Overview
	Word Length
	Cache Line Address
	Word Position
	Word Recovery

	JPEG

	Implementation
	Implementation on Windows
	SGX
	Single Stepping
	Cache Side-Channel Attacks
	VC3
	JPEG

	Evaluation
	Single Stepping
	Cache Side Channel
	VC3
	JPEG

	Mitigations
	Related Work
	Conclusion

