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Abstract
In this paper, we comprehensively investigate the file
fragmentation problem on mobile flash storage. From
our evaluation study with real Android smartphones, we
observed two interesting points on file fragmentation on
flash storage. First, defragmentation on mobile flash
storage is essential for high I/O performance on Android
smartphones because file fragmentation, which is a re-
curring problem (even after defragmentation), can signif-
icantly degrade I/O performance. Second, file fragmen-
tation affects flash storage quite differently than HDDs.
When files are fragmented on flash storage, the logi-
cal fragmentation and the physical fragmentation are de-
coupled and a performance degradation mostly comes
from logical fragmentation. Motivated by our obser-
vations, we propose a novel defragger, janus defragger
(janusd), which supports two defraggers, janusdL for a
logical defragger and janusdP for a physical defragger.
JanusdL, which takes advantage of flash storage’s inter-
nal logical to physical mapping table, supports logical
defragmentation without data copies. JanusdL is very
effective for most fragmented files while not sacrificing
the flash lifetime. JanusdP, which is useful for physi-
cally fragmented files but requires data copies, is invoked
only when absolutely necessary. By adaptively selecting
janusdL and janusdP, janusd achieves the effect of full
file defragmentation without reducing the flash lifetime.
Our experimental results show that janusd can achieve at
least the same level of I/O performance improvement as
e4defrag without affecting the flash lifetime, thus mak-
ing janusd an attractive defragmentation solution for mo-
bile flash storage.

1 Introduction
When a file system becomes highly fragmented, it has
to allocate multiple split storage areas, i.e., extents [1],
for a single file more frequently. In an HDD-based file
system, accessing such a highly-fragmented file degrades
the performance significantly due to the increased time-
consuming seek operations. In order to mitigate the per-
formance impact caused by file fragmentation, many file
systems recommends the periodical execution of the de-
fragmentation utility (e.g., every week) [2-6].

Unlike for HDD-based file systems, defragmentation
is generally not recommended for flash-based file sys-
tems [7-13]. Since flash storage does not require seek

Step 1: examine the need and effect of 

file defragmentation. (See Section 2.)

Step 2: extract the design requirements of 

a defragger for flash storage. (See Section 3.)

Step 3: design and implement a defragger

that meets the requirements. (See Section 4.)

Fig. 1: A summary of the key steps in our investigation.
operations, it is believed that the effect of defragmenta-
tion on the file system performance is rather negligible
for flash storage. Furthermore, since a large number of
files need to be copied during defragmentation, frequent
defragmentation can affect the limited lifetime. How-
ever, this negative view toward flash defragmentation has
been widely accepted without a proper validation study.
The main goal of this paper, therefore, is to investigate
the file fragmentation problem on mobile flash storage in
a systematic and comprehensive fashion. Fig. 1 summa-
rizes the key steps of our investigation study.

Since previous studies (e.g., [22]) have shown that files
can be severely fragmented on mobile flash storage, in
our study, we start with two key questions related to the
effect of file defragmentation (step 1 in Fig. 1): 1) when
fragmented files are defragmented, how much I/O per-
formance is improved? and 2) how long does the effect
of file defragmentation last? Unlike a common miscon-
ception on flash defragmentation, our evaluation study
showed that I/O performance of flash storage can be sig-
nificantly improved by defragmentation. For example,
when fragmented files were defragmented, the average
app launching time, which is an important user-perceived
performance metric on smartphones, can be improved by
up to 52% over the fragmented files.

Although fragmented files can degrade the I/O perfor-
mance, if the effect of file defragmentation can last for
long time (e.g., several months), a conventional defrag-
mentation tool will be sufficient. However, our evalua-
tion study indicated that file fragmentation may recur in
a short cycle, around a week, even after full file defrag-
mentation on smartphones. One main cause of recurring
file fragmentation was frequent automatic app updates
on smartphones. Since many popular apps tend to be up-
dated very frequently (e.g., every 10 days [28]), the effect
of file defragmentation quickly disappears.

When file defragmentation is repeatedly required, a
conventional defragger such as e4defrag may not be an
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appropriate solution for flash storage because it requires
a large amount of data copies during defragmentation,
thus seriously affecting the flash lifetime. For example,
if we invoke e4defrag every week as suggested from our
evaluation study, it might reduce the flash lifetime by
more than 10%. Therefore, in order to maintain high I/O
performance in a sustainable fashion, we need a differ-
ent approach to the defragmentation problem for mobile
flash storage, so that the impact of file defragmentation
on the flash lifetime is less adverse.

The key insight behind janus defragger (janusd)
comes from our investigation on the characteristics of
file fragmentation in flash storage (step 2 in Fig. 1). Our
study showed that file fragmentation affects flash storage
quite differently from HDDs. In HDDs, when a (logi-
cal) file is highly fragmented, its physical layout is frag-
mented similarly with many isolated physical fragments.
That means, logical fragmentation at the file system and
physical fragmentation at the storage medium level are
highly correlated. On the other hand, in flash storage,
there is no physical counterpart at the storage medium
level which is strongly correlated with logical fragmenta-
tion at the file system. For example, unlike HDDs where
a degree of logical fragmentation directly affects the I/O
performance at the storage medium level, the I/O per-
formance at the storage medium level in flash storage
is largely decided by an average degree of the I/O par-
allelism during I/O operations [16-21]. As will be ex-
plained in Section 3, since the average degree of the I/O
parallelism for accessing a file is not correlated with the
degree of logical fragmentation of the file, file fragmen-
tation in flash storage occurs in a decoupled fashion be-
tween the logical space and the physical space. (In this
paper, we call that a file foo is physically fragmented
when the degree of the I/O parallelism in accessing foo
is limited.)

In order to understand the impact of decoupled frag-
mentation on I/O performance, we evaluated the perfor-
mance impact of file fragmentation on the entire mobile
I/O stack layers. As expected, because of a high degree
of the I/O parallelism at the storage medium level, only a
small number of (unlucky) files were stored in a severely
skewed fashion, limiting their I/O parallelism levels sig-
nificantly. That is, regardless of how files were logically
fragmented, their I/O performance at the storage medium
level did not change much. On the other hand, logi-
cally fragmented files significantly increased processing
times in the block I/O layer and the device driver because
of a large increase in the number of block I/O requests.
Therefore, the minimum requirement for a flash defrag-
ger would be to defragment the logical space effectively.
Furthermore, since flash files are fragmented in a decou-
pled fashion, an ideal flash defragger needs to support
an independent physical defragger as well. The physical

defragger is necessary because a logical defragger cannot
even identify physically fragmented files.

Motivated by the above requirements on a defragger
for mobile flash storage, we propose a novel decou-
pled defragger, janusd, which consists of two defraggers,
janusdL for a logical defragger and janusdP for a phys-
ical defragger (step 3 in Fig. 1). JanusdL, which takes
advantage of flash storage’s internal logical to physical
mapping table, supports logical defragmentation with-
out reducing the flash lifetime by avoiding explicit data
copies. JanusdP, which independently operates from
janusdL, works like a conventional defragger with data
copies. Since the I/O performance of flash storage is
dominated by logical file fragmentation, janusdL works
very well for most fragmented files without affecting the
flash lifetime. On a rare occasion when a file is physi-
cally fragmented, janusdP is invoked to restore the de-
graded file performance.

In order to validate the effectiveness of the proposed
janusd technique, we have implemented janusd on an
emulated mobile flash storage, simeMMC and simUFS.
(SimeMMC and simUFS, which are based on an extended
Samsung 843T SSD which supports host-level FTLs,
are configured to effectively simulate the bandwidth of
eMMC and UFS devices [14, 15], respectively.) Our
experimental results show that janusd significantly im-
proves the I/O performance of mobile flash storage. For
example, janusd can reduce the app launching time by
up to 53%, achieving an equivalent I/O performance im-
provement as e4defrag. However, janusd requires a less
than 1% of data copies over e4defrag, thus making it
an attractive defragmentation solution for flash storage.
Furthermore, janusdL alone achieves about 97% of the
janusd’s performance level for most files.

The remainder of this paper is organized as follows. In
Section 2, we report our key findings through our evalu-
ation study of real-world file fragmentation on Android
smartphones. Section 3 describes decoupled fragmen-
tation in flash storage and explains needs for both log-
ical and physical defraggers. A detailed description of
janusd is given in Section 4. Experimental results follow
in Section 5, and related work is summarized in Section
6. Finally, Section 7 concludes with future work.

2 File Fragmentation: User Study
In this section, we empirically investigate how file I/O
performance is affected by file fragmentation on flash
storage using 14 smartphones in use. In particular, we
examine how quickly file fragmentation occurs again af-
ter defragmentation and how much I/O performance is
affected by different defragmentation intervals.

2.1 Evaluation Study Setup
For our study, we collected 14 used Android smart-
phones. In order to avoid possible bias, we have se-
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Table 1: File system utilizations of 14 smartphones.
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Fig. 2: Cumulative distributions of DoF values.

lected these smartphones from five different manufac-
turers with at least six month’s real use. 14 users,
like most other smartphone users, heavily used popu-
lar Android applications such as Chrome, Messenger,

Gmail, Facebook, Twitter and Game. Table 1 di-
vides 14 smartphones1 into 5 categories based on the file
system utilization. (In the rest of this section, we report
the evaluation results on five representative smartphones,
S5, S3, N5, N6 and S6, which were chosen from each
utilization category.) We inspected file fragmentation on
the data partition only because the data partitions oc-
cupied most of the total storage space available and most
I/O operations occur in the data partition.

For our study, we used the degree DoF(x) of fragmen-
tation of a file x, which is defined as the ratio of the
number of extents allocated to the file x to the ideal (i.e.,
smallest) number of extents needed for the file x. For ex-
ample, if an 1-GB file foo in Ext4 were allocated to 24
extents, DoF(foo) would be 3 (i.e., 24/8), because foo

would have required at least 8 extents even when foo

was contiguously allocated. (A single extent can cover
up to 128 MB in Ext4.) The large DoF value means that
the file is highly fragmented.

2.2 Degree of File Fragmentation Analysis
We first examined DoF values of files in the data parti-
tion of the five smartphones using e4defrag, and Fig. 2
shows cumulative distributions of DoF values on the five
smartphones. As reported in other investigations such as
[22], our inspected smartphones exhibited similar char-
acteristics on file fragmentation. Fragmented files ac-
counted for between 14% and 33% of all files. In par-
ticular, on N5, 717 files among its 2,704 files were frag-
mented. Furthermore, 476 files were fragmented with
their DoF values larger than 2. When the file system
space was highly utilized, the number of fragmented files
tends to be large. For example, on S6, having the highest
file system utilization, 33% of its files were fragmented.

114 phones include Nexus 5 (N5), 6 (N6), Galaxy S3 (S3), S5 (S5),
S6 (S6), Note 2 (T2), Note 3 (T3), Note 4 (T4), Note 5 (T5), Xperia Z1
(Z1), Z3 (Z3), Optimus G Pro (GP), G5 (G5) and Vega Iron 2 (I2).
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Fig. 3: The average DoF value of application files.

2.3 File Fragmentation Recurrence
Since our target smartphones have never been defrag-
mented before, the results shown in Fig. 2 are interest-
ing but somewhat expected. A more critical question for
our study was to find out how soon file fragmentation re-
curs after full file defragmentation. If the recurrence in-
terval of file fragmentation were quite large (say, several
months), an existing defragmentation would be sufficient
for mobile flash storage as well.

In order to understand file fragmentation recurrence
(as well as others), after defragmenting all the files using
e4defrag, we collected a daily snapshot of each smart-
phone for the subsequent two-week interval using a cus-
tom data collection app. Our snapshot data include DoF
values of files and app launching times, Fig. 3(a) shows
the changes in the average DoF values of the files associ-
ated with six popular applications, Chrome, Messenger,
Gmail, Facebook, Twitter and Game, on N6. As
shown in Fig. 3(a), file fragmentation recurred quickly
after the full file system defragmentation. For most ap-
plications on N6, file fragmentation occurs again in a
week since the full defragmentation. Fig. 3(b) shows the
changes in the average DoF values of the files associated
with Twitter on the five smartphones with different file
system utilizations. The recurrence interval of file frag-
mentation was proportional to the file system utilization.
For example, on the seventh day after the full file system
defragmentation, the average DoF value of the Twitter
files reached 1.86 and 3.04 for 70% and 90% of file sys-
tem utilization, respectively. Even though only the DoF
values of Twitter files are presented here, we had simi-
lar observations on the files of the other applications [42].

Our observation strongly suggests that file fragmen-
tation is a recurring problem in smartphones, especially
when the file system utilization is high2. In the following
subsections, we shall show that file fragmentation nega-
tively impact on user experience, but regular file defrag-
mentation is harmful to flash storage lifetime. The pro-
posed janusd technique is novel in that these two con-
flicting phenomena are resolved in a satisfactory fashion.

2One of the reasons for a short recurrence interval is frequent app
updates which automatically invoked in background when a smart-
phone is connected to a Wi-Fi environment. Since popular apps such
as Twitter are reported to be updated, on average, every 7 days [29],
when the file system utilization is high, newly installed apps are very
likely to experience severe file fragmentation.
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Fig. 4: Changes in app launching times.
2.4 Impact on User Experience
File fragmentation can negatively impact on the smart-
phone user experience due to degraded I/O performance.
For example, the launching of an application involves
reading a set of files, including executables, libraries,
and data files. This procedure creates a user-perceived
latency because the user has to wait until all the required
files have been loaded from flash storage. We define the
launching time of an application to be the time interval
between the time when the application icon is touched
and the time when all graphical user interface compo-
nents are displayed for the next user interaction.

Fig. 4(a) shows the launching time of the six popular
applications on N6 and Fig. 4(b) depicts the launching
time of Twitter on five smartphones with different file
system utilizations. The launching time noticeably de-
graded as the day count increased, especially with the
high file system utilization. For example, compared to
the launching time right after the full file system defrag-
mentation, the launching time of Twitter on the sev-
enth day was already 1.6 times longer when the file sys-
tem utilization was 70%, and the launching time was am-
plified to two times longer when the file system utiliza-
tion was 90%. This result indicates that the recurring file
fragmentation can highly impact the quality of user ex-
perience in a short period of time.

2.5 Impact on Flash Memory Lifetime
Because file fragmentation is a recurring problem, reg-
ular file defragmentation might be necessary to main-
tain satisfiable user experience. In fact, weekly file de-
fragmentation is recommended by many defragmenta-
tion tools [25, 26]. However, conventional file defrag-
mentation is based on data copies, which increases the
wear in flash memory. We performed full file system
defragmentation with different frequencies, including a
daily basis and a weekly basis, under the emulated appli-
cation update behaviors. Fig. 5 shows the total write traf-
fic contributed by file defragmentation measured by the
built-in Linux block I/O tracing tool blktrace. Surpris-
ingly, the amount of data copies during file defragmen-
tation was fairly large. For example, defragmenting files
on the third day involved 1.8 GB of data copies under
a 70% file system utilization, and this number increased
to 5.76 GB if the file system utilization was 90%. If file
defragmentation was performed in a weekly manner, the
amount of data copies reached up to 9.53 GB.
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Fig. 5: The amount of data copies by file defragmenta-
tion with different defragmentation periods.

The extra data copies negatively impacts on flash
memory lifetime. This problem is further exaggerated
by the deteriorated flash endurance due to the introduc-
tion of multilevel cells. Specifically, the program-erase
cycle (PE cycle) limit of TLC NAND is as low as 300
PE cycles. The data partition of the S6 is 25 GB, and
weekly file defragmentation costs every flash block (9.53
GB/week × 4 weeks)/25 GB≈1.5 extra PE cycles per
month. In the typical smartphone life cycle of two years,
weekly file defragmentation introduces 36 extra PE cy-
cles to every block, and thus the flash lifetime is degraded
by more than 10%. This significant lifetime reduction
highly discourages the use of conventional copy-based
file defragmentation tools on flash storage.

3 File Fragmentation: Under The Hood
In order to develop a flash-aware file defragmentation
tool which does not have a negative effect on the flash
lifetime, we performed a detailed characterization study
of file fragmentation on flash storage.

3.1 Decoupled Fragmentation on Flash
Since flash storage works quite differently from HDDs at
the storage medium level, before our study, we redefined
the concept of physical fragmentation for flash storage.

Since flash storage is composed of a group of parallel
I/O units (e.g., multiple flash memory channels/planes)
and each I/O unit can support random access, a conven-
tional definition of physical data sequentiality on hard
drives does not make much sense to flash storage. In
order to better reflect the effect of file fragmentation on
I/O performance in flash storage, we associate two met-
rics, DoFL(x) and DoFP(x), for a file x, where DoFL(x)
and DoFP(x) represent the degrees of logical fragmen-
tation and physical fragmentation, respectively. For the
logical DoF value, DoFL(x), of a file x, we use DoF(x)
as defined in Section 2.1. Since the I/O performance at
the flash device level is largely determined by a degree
of the I/O parallelism while accessing the file x, not the
number of split extents as in HDDs, we define the phys-
ical DoF value, DoFP(x), of a file x as (1 - DoP(x)).
DoP(x), which indicates the effective degree of the I/O
parallelism for accessing the file x, is computed as the
ratio of the average degree of the I/O parallelism for ac-
cessing the file x sequentially to the maximum degree
of the I/O parallelism supported by a flash storage sys-
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Fig. 6: A snapshot distribution of files classified based
on their DoFL values and DoFP values.

tem. When a flash storage system can support up to M
I/O operations at the same time, if, on average, n oper-
ations were supported in parallel while accessing foo,
DoP(foo) is n/M. Therefore, DoFP(x) becomes 0 when
the file x was accessed under the maximum I/O paral-
lelism. As the effective degree of the I/O parallelism
drops, DoFP(x) approaches (1- 1/M).

In order to understand how logical fragmentation and
physical fragmentation interact with each other in flash
storage, we measured how DoFL and DoFP values
change from the Ext4 file system after aging Ext4 with
simulated one-year and one-week workloads. Since we
need to collect DoFP values, we used a mobile flash stor-
age emulator (see Section 5).

Fig. 6 shows the distributions of DoFL and DoFP val-
ues after aging Ext4 with simulated one-year and one-
week workloads, respectively. The results indicate that
logical and physical fragmentation are highly decoupled.
For example, the files in Region A suffered from high de-
grees of logical fragmentation but their degrees of phys-
ical fragmentation were quite low. On the other hand,
surprisingly, there were still a few files in Region B that
were barely fragmented at the logical space but suffered
from high degrees of physical fragmentation.

Decoupled logical and physical fragmentation is
mainly attributed to the high degree of the I/O paral-
lelism available in flash storage as well as the extra indi-
rection layer in flash storage for logical to physical map-
ping. Logical fragmentation and physical fragmentation
impose different impacts on I/O performance. Specifi-
cally, logical fragmentation amplifies the overhead in the
system software I/O stack due to the increased I/O fre-
quency, while physical fragmentation degrades the I/O
parallelism in flash storage. Defragmentation only at the
logical or physical level may not produce the optimal I/O
performance. For example, even though a file has been
defragmented at the file system level, it dost not guar-
antee that the file is accessed through the maximum I/O
parallelism inside of flash storage.

Conventional defragmentation tools cannot perform
physical defragmentation for flash storage because the
host does not have direct access to flash channels. In
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Fig. 7: I/O throughput under varying DoFL and DoFP.

addition, these tools are not aware of the existing indi-
rection layer inside of flash storage, which is useful to
modify the logical layout of files without physical data
copies. We believe that the firmware of flash storage
must be adequately involved during the defragmentation
process. As shown in Fig. 6, the majority of file fragmen-
tation is affiliated with logical fragmentation. While it is
possible to perform copyless defragmentation for logi-
cally fragmented files (the files in Region A), data copies
are still necessary to re-distribute data among flash chan-
nels for physical defragmentation. Fortunately, as shown
in Fig. 6(a) and 6(b), the files with DoFP ≥ 0.5 contribute
to no more than 20% of all files. In other words, physical
defragmentation will be performed only for absolutely
needed cases to prevent the extra data copies which will
reduce the flash memory lifetime.

3.2 Need for Logical Defragmentation
To measure the significance of logical and physical frag-
mentation in terms of performance impact, we measured
the throughput of reading a file foo under different val-
ues of DoFL(foo) and DoFP(foo). In order to con-
trol DoFL values in our study, we made a simple utility
which repeatedly splits a given file foo until DoFL(foo)
reaches the target DoFL number. The performance mea-
surement was conducted on the mobile flash storage
emulator so that the degree of physical fragmentation
DoFP(foo) can also be carefully controlled. Based on
the majority of the distribution in Fig. 6, the DoFL value
was between 1 and 8, while the DoFP value was between
0 and 0.25. Fig. 7(a) shows that, when there was no phys-
ical fragmentation (DoFP = 0), a high degree of logical
fragmentation (DoFL = 8) significantly degraded the I/O
throughput by 75% compared to the case without any
logical fragmentation (DoFL = 1). On the other hand,
increasing DoFP(foo) from 0 to 0.25 only slightly de-
graded the throughput, no more than 20% for each DoFL

value. This observation suggests that logical fragmen-
tation should be managed in a more aggressive manner
than physical fragmentation.

In order to understand how logical fragmentation af-
fects the overhead in the system software I/O stack, we
built a fully integrated storage I/O profiler, IOPro, for
quantitative evaluations. IOPro can profile the complete
Android I/O stack from the application level to the de-
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Fig. 8: Execution time changes under varying DoFL.
vice driver level. The key feature of IOPro is that all
I/O activities can be seamlessly linked together via their
corresponding file information throughout the entire An-
droid I/O stack. Using this tool, we can easily measure
times spent in different I/O stack layers. For each mea-
surement run, IOPro measured execution times spent in
the Ext4 file system, the page cache, the block layer, the
device driver and the mobile flash storage , respectively,
on each of our inspected smartphones. For brevity’s sake,
we only include the measurement data for N6 and S6 in
this section, which represent smartphones with eMMC
devices and with UFS devices, respectively.

In order to evaluate the effect of logical fragmentation,
we measured I/O execution times while varying DoFL

from 1 (no fragmentation) to 8 (heavy fragmentation).
For all the measurements, we ran a simple synthetic I/O
workload which reads a 512-KB file. The 512-KB file
was pre-split into multiple fragments by our fragmen-
tation utility so that the target DoFL can be satisfied.
Figs. 8(a) and 8(b) show how different I/O stack layers
were affected under varying DoFL values on N6 and S6,
respectively. The times spent for the block layer, the de-
vice driver, and the flash storage device have increased
as with the increasing DoFL values. On the other hand,
the times spent in the file system and page cache layers
are barely affected. (In the block layer and the device
driver, the increased number of block I/O requests in ac-
cessing the fragmented file directly affected the overhead
of the I/O scheduler, handshaking and interrupt handling
[36-41].) In mobile flash storage, although the same I/O
layers were affected as in HDDs by the increased num-
ber of block I/O requests, the relative impact on these I/O
layers were quite different from that in HDDs. As shown
in Figs. 8, the block layer is dominantly affected by the
number of block I/O requests over the flash storage de-
vice. In HDDs, the impact on the HDD device would
have been very dominant, making the impact on the rest
of I/O layers negligible.

3.3 Need for Physical Defragmentation
As previously shown in Fig. 6, most of the files have
small DoFP values (≤ 0.25). This is because, with the
rich I/O parallelism inside of flash storage, it is very
unlikely that a file suffers from extremely low I/O par-
allelism. For example, suppose that data are allocated
among eight channels of equal availability, the proba-
bility that a 64-KB file composed of eight 8-KB flash

File System DoFL

Physical Defragmentation

NAND Flash

Flash Storage

JanusdFTLL2P Mapping Table

Logical
Defragmentation

Defragmentation
Command

DoFP

JanusdL JanusdPUser-level

 , 






File-to-Storage Mapping

Fig. 9: An overall architecture of janusd.

pages is entirely allocated to one single channel would
be 0.00004%. This probability further reduces if the file
size is larger than 64 KB. On the other hand, the probabil-
ity that the 64-KB file is allocated to 6 or more channels
would around 80%.

Although it is a rare case that a file has a very high
DoFP value, the overall performance may still be ad-
versely affected if a physically fragmented file is fre-
quently accessed. Fig. 7(b) shows that, a high degree
of physical fragmentation (i.e., ≥ 0.5) severely degraded
the I/O throughput even when the degree of logical frag-
mentation was low. For example, even if a file was not
fragmented at all in the logical space (DoFL=1), if the
file had a DoFP value of 0.5, the I/O throughput be-
came only 48% of that with DoFP=0. Because logical
and physical fragmentation is decoupled on flash stor-
age, in such a rare case of high physical fragmentation,
it is not sufficient to perform logical defragmentation
only, and physical defragmentation is necessary to re-
distribute data among channels at a cost of flash lifetime.

4 Design and Implementation of Janusd
Our analysis in Sections 2 and 3 strongly indicates that
file system fragmentation causes serious performance
degradation even in flash storage, badly affecting the
quality of user experiences in mobile systems. More-
over, unlike in HDDs, logical and physical fragmentation
in flash storage must be handled in different manners.

Janusd is designed to effectively cope with the prob-
lems arising from logical and physical fragmentation at a
low cost. Fig. 9 shows an organization of janusd with
two defraggers, janusdL and janusdP, which are im-
plemented as a user-level tool like e4defrag. Once the
janusdL or janusdP is run by end users, it collects in-
formation of files to decide whether or not to trigger
logical or physical defragmentation. To perform log-
ical/physical fragmentation, special supports from the
flash storage side are required. Those supportive func-
tions are implemented as a firmware module, called
janusdFTL, which is an extension of the existing FTL
algorithm. Janusd is designed with a minimal change to
the existing system. Thus, it is unnecessary to change
the underlying file system and OS kernel, except for the
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addition of a device driver for communication between
the user-level tool and janusdFTL.

JanusdL is responsible for resolving logical fragmen-
tation of files. JanusdL selects a list of fragmented files
based on DoFL of files (see 1 in Fig. 9). Instead of
physically moving files’ data to another location, it sends
a defragmentation command to janusdFTL ( 2 ) so that
the logical-to-physical mapping table inside of flash stor-
age ( 3 ) will be updated. This design enables us to re-
solve logical fragmentation without any physical data
copies (see Section 4.1). JanusdP does not change log-
ical layouts of files. Instead, it is in charge of resolving
physical fragmentation for better exploitation of multiple
channels in flash storage by re-distributing data among
channels. JanusdP notifies janusdFTL of a list of fre-
quently accessed files ( 4 ), and janusdFTL calculates
the DoFP values of the files ( 5 ) based on the physi-
cal data allocation inside of flash storage. Because data
copies have negative impact on flash memory lifetime
(see Section 4.2), among the frequently accessed files,
janusdFTL performs physical defragmentation only on
the files with high DoFP values ( 6 ).

For the janusdL/P and janusdFTL to communicate
with each other, new custom interfaces must be added.
Table 2 summarizes a set of new custom interfaces,
which can be implemented using user-defined command
facilities of SATA and NVMe. Detailed descriptions of
janusdL/P will be given in the following subsections.

4.1 JanusdL: Logical Defragmentation
Because janusdL inherits most of the features and algo-
rithms from e4dfrag, the implementation of janusdL is
done with slight modifications of e4dfrag.

Logical Defragmentation: When janusdL is invoked,
it first searches for fragmented files using file-to-storage
mapping. JanusdL calls the FIBMAP command of the
Linux VFS to obtain a list of logical block addresses
(LBAs) where the data of a given file is stored, and then
it calculates the values of DoFL of the file accordingly.
With a list of files for logical defragmentation, the fol-
lowing process repeats for each of the files: JanusdL first
looks for free and continuous LBAs as the destination
where the file fragments can be moved to. These destina-
tion LBAs are obtained using the existing free-space allo-
cation feature in e4dfrag. With the LBAs of the file frag-
ments (source LBAs) and the destination LBAs, janusdL
sends a defrag command, shown in Table 2, contain-

Table 2: Custom interfaces for janusd.
Command Description

defrag(list src LBA, Change src LBA in logical-to-physical
list dst LBA) mapping table to dst LBA.

flush() Flush buffered defrag log to flash from DRAM.
check() Check whether commit completion flag

is saved at defrag log or not.
discard() Delete the uncommitted log entries in defrag log.
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Fig. 10: An example of defragmentation in janusd.

ing pairs of source-destination LBAs to janusdFTL in
flash storage. Upon receiving defrag command, janus-
dFTL updates its logical-to-physical (L2P) mapping ta-
ble so that the destination LBAs will refer to the physical
pages referred to by the source LBAs. After completion
of the command, janusdL revises the pointers in the in-
ode of the defragmented file so that host applications can
access the file through continuous LBAs.

Fig. 10 illustrates an example of how janusdL per-
forms logical defragmentation. We assume that a target
file F for defragmentation is fragmented into four extents
f0, f1, f2, and f3, and they are stored in LBAs 11, 13,
15, and 17 (source LBAs), respectively. JanusdL sends
a defrag command to map the extents to new LBAs 19
to 22 (destination LBAs). JanusdFTL first locates a list
of physical pages that are mapped to the source LBAs.
In this example, the file extents f0, f1, f2, and f3 at the
source LBAs 11, 13, 15, and 17 are mapped to physical
pages p0, p1, p2, and p3, respectively. JanusdFTL then
updates the mapping entries of the destination LBAs 19
to 22 so that they refer to the physical pages p0 to p3, re-
spectively. Finally, the L2P mapping entries of the source
LBAs are unset, and janusdFTL sends an acknowledg-
ment to the host to finish the defrag command. After
this, janusdL revises the inode of the file to access the
new extent f0 through the new LBAs 19 to 22.

Power Failure Recovery: JanusdL may introduce in-
consistency between L2P and P2L mapping information
in the event of unexpected power failures. When new
data is being written to a page, the FTL stores a corre-
sponding LBA in an OOB area of that page for reverse
P2L mapping. Even after a power failure occurs and an
L2P mapping table (in DRAM) is lost, the FTL is able to
recover a complete L2P mapping table by scanning all of
the OOB areas in NAND flash. Unfortunately, when an
L2P mapping table gets updated by janusd, correspond-
ing LBAs in OOB areas cannot be updated in sync with
the changes of L2P mapping because of NAND flash’s
erase-before-write constraint. In Fig. 10, for example,
the LBA referring to the page p0 was changed from 11
to 19, but the page p0 still stores the old LBA (i.e., 11)
in its OOB area. Suppose that the L2P mapping table is
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Fig. 11: A power failure recovery of janusdL.

lost due to a power failure. The FTL will rebuild the L2P
mapping table by scanning OOB areas. Based on the old
P2L information in OOB areas, the page p0 is referred
to by LBA 11. However, at the file-system level, the new
extent f0 is at LBAs 19 to 22 because the inode of the file
has been changed. As a result, when applications attempt
to access f0, the file-system sends wrong LBAs (e.g., 19)
and the FTL returns invalid data or reports an error.
JanusdL addresses the inconsistency problem by log-

ging all of the history of remapped LBAs in a special log,
called a defrag log. A defrag log is an ordered collection
of entries, each of which is a pair of a source LBA and
a destination LBA plus a length. This information can
easily be extracted from defrag commands. For exam-
ple, a defrag log entry for f0 is (11, 19, 1), where 11 is a
source LBA, 19 is a destination LBA, and 1 is a length.
Fig. 11 shows an example of how the mapping table is
reconstructed after an unexpected power failure. When
a flash storage device is rebooted, the FTL scans OOB
areas of all pages and builds the L2P mapping table as
usual. Then, it checks the defrag log to see if any L2P
entries have been remapped for defragmentation and up-
dates the mapping table accordingly.

To prevent frequent writes to flash, janusdFTL keeps
defrag log entries in DRAM temporally and flushes them
to flash at proper timings. This buffering, however, po-
tentially causes another inconsistency problem – if a
power failure occurs before the buffer is flushed to flash,
the inconsistency between L2P and P2L mapping occurs.
This problem can be solved by using a commit protocol
combined with fsck. Fig. 12 illustrates how the commit
protocol guarantees atomicity of defragmentation. Once
all target files are moved and defragmentation is ready to
finish, janusdL explicitly (1) flushes the buffered defrag
log to flash by transmitting flush command in Table 2,
(2) writes all file-system’s metadata to a journaling area,
and (3) appends a commit completion flag to the end of
the defrag log. On system rebooting, fsck modified for
janusdL first checks if the latest commit completion flag
was written successfully by sending check command in
Table 2. If not, the system was improperly shut down
due to a system failure. Using discard command in
Table 2, the modified fsck asks janusdFTL to discard
uncommitted log entries in the defrag log and to rebuild

Fig. 12: A synchronization of file-system’s metadata and
defrag-log commits.

an L2P mapping table only with committed ones. In the
file system level, at the same time, the modified fsck

rollbacks all the changes made to files by janusdL and
reverts the files to their last consistent states.

Defrag Log Management: The FTL conducts inter-
nal page movements for garbage collection and wear lev-
eling. If these page movements involve a page whose
LBA is previously remapped, the defrag log must be up-
dated. When a page is moved by garbage collection or
wear leveling, janusdFTL writes the page according to
its most recent P2L mapping information. The update of
L2P mapping is required when a page is overwritten with
new data as well. For both cases, since the P2L page
mapping has been rewritten to flash, the corresponding
old log entry should be removed.

Fig. 13 illustrates how janusdFTL manages the defrag
log during garbage collection. Suppose that the flash
block where valid pages p0, p1, p2 and p3 are stored is
selected as a victim so that those pages are moved to four
free pages p4, p5, p6 and p7, respectively. Accordingly,
the L2P mapping table is updated to refer to new page lo-
cations. While moving valid pages, janusdFTL updates
P2L mapping in OOBs if they are previously remapped
by the defrag remapper. For example, 11 in p0 is changed
to 19 in p4. After this, the entries of the moved pages are
deleted from the defrag log. For example, entries (11,
19, 1), . . . , (17, 22, 1) are now unnecessary. However,
because of the overwrite restriction, janusdFTL has to
append log entries to the defrag log, (11, Ø, 1), . . . , (17,
Ø, 1), to mark the old entries of LBAs 11 to 17 deleted.
By this design, the defrag log may have multiple entries
for the same LPAs, for example, (11, 19, 1) and (11, Ø,
1). To ignore old entries when the defrag log is scanned,
janusdFTL writes a unique version number together.

As astute readers may notice, the defrag log would
grow very large over time. To prevent this, janusdFTL
sets a limit on the defrag log size. Once the size limit
is reached, janusdFTL performs compaction – it selects
flash blocks containing part of the defrag log, filters out
obsolete entries, and writes only valid entries to the de-
frag log. (11, 19, 1) and (11, Ø, 1) are examples of ob-
solete entries – since L2P is equivalent to P2L, there is
no need to keep them in the defrag log. The maximum
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Fig. 13: Updating defrag log during garbage collection.

size of the defrag log is currently set to 10 MB, which is
large enough to hold several millions of entries. Thanks
to its huge size, almost all of the log entries become obso-
lete before being selected for compaction, and thus com-
paction involves few entry copy operations.

4.2 JanusdP: Physical Defragmentation
Different from janusdL, janusdP involves data copies for
physical defragmentation. To minimize the negative im-
pact of data copies on flash lifetime, janusdP performs
physical defragmentation only on selected files that meet
the following criteria: 1) they must be frequently ac-
cessed and 2) they must have high dragees of physical
fragmentation (i.e., high DoFP values).

To measure read frequencies of files, we implement
a daemon program that keeps track of the total count
of read accesses of files using the inotify feature pro-
vided by the Linux kernel. The read counts of files are
stored in a separate file, and the janusdP utility reads the
file to determine a list of 50 most frequently read files.
JanusdP and janusdL use the same command to commu-
nicate with janusdFTL. To notify janusdFTL of physical
defragmentation on a file, janusdP stores all the LBAs
associated with the file as the source LBAs of a defrag
command, but fills all the destination LBAs of the com-
mand with a null value -1. In this way, janusdFTL can
easily distinguish a command for logical defragmenta-
tion from a command for physical defragmentation.

After janusdFTL receives a command for physical de-
fragmentation, it first calculates the DoFP value for the
source LBAs stored in the defrag command. Recall that
the DoFP value associated with a set of LBAs is 0 if
the LBAs can be accessed through the maximum I/O
parallelism inside of flash storage. We employ 0.5 as
an empirical threshold of DoFP for janusdFTL to con-
duct physical defragmentation on the source LBAs. If
the DoFP of the LBAs is higher than or equal to 0.5,
janusdFTL re-distributes the data (mapped to the source
LBAs) among channels for the best I/O parallelism of fu-
ture accesses. If the DoFP of the LBAs is lower than 0.5,
janusdFTL does nothing because the benefit of physical
defragmentation would be marginal.

Fig. 14: An overview of our evaluation platform.
5 Experimental Results
In order to objectively understand the performance impli-
cation of janusd, we implement a comprehensive evalua-
tion platform in the Linux operating system that supports
three useful features, including (1) file-system snap-
shot/replication, (2) trace collection/replay, along with
(3) mobile storage emulation. This evaluation platform
makes it possible for us to conduct a set of the evalua-
tions in an easy and convenient manner without modify-
ing various smartphone platforms.

Fig. 14 illustrates our evaluation platform. The snap-
shot/replication tool allows us to take a storage snapshot
of a smartphone and to replicate the same one in local
flash storage for experiments. The trace collection/replay
tool helps us to collect system-call events (e.g., read()
and write()) from various applications running on real-
world smartphones, and it replays them on the local stor-
age. Those features enable us to repeat exactly the same
I/O workloads on the same storage setup while varying
defragmentation policies.

It is impossible to modify mobile storage devices like
eMMC and UFS. Thus, we build two emulated mo-
bile flash devices, called simeMMC and simUFS, using
a customizable SSD device based on Samsung’s 843T
SSD [27]. 843T SSD supports extended SATA inter-
faces that allow a host system to directly control chan-
nels using NAND-specific I/O primitives (e.g., a page
read/write and block erasure). Based on those interfaces,
we implement a complete page-level FTL in a block
layer of the Linux kernel (ver. 3.10). eMMC and UFS
have similar channel architectures as conventional SSDs,
except that they have smaller numbers of channels due
to limited power budgets. We emulate I/O throughputs
of eMMC and UFS by limiting the number of available
channels of the 843T SSD to 4 and 8 for simeMMC and
simUFS, respectively. To simulate a smaller I/O queue
depth of mobile storage, we also intentionally increase
end-to-end I/O latencies between the host and the flash
device. As a result, both simeMMC and simUFS can ac-
curately simulate I/O performance of eMMC and UFS
devices over various request sizes.

As mentioned in Section 4, we implement janusdL/P
as a user-level tool using e4defrag. The number of code
lines newly added to e4defrag is about 400. janusdFTL
is implemented as an extended module of the page-level
FTL in the block layer. The custom interfaces between
janusdL/janusdP and janusdFTL listed in Table 2 are im-
plemented using the ioctl facility of the Linux.
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5.1 Usage Scenario of Smartphone
We collect I/O activities of six popular applications run-
ning on N6. Table 3 summarizes the usage scenarios of
each application. Each scenario starts with launching an
application and runs specific tasks described in Table 3
for 10 minutes. The file system utilization is about 83%.

In order to perform evaluations under realistic environ-
ments, we create a six-month usage scenario of a smart-
phone. Based on a statistical study reporting that average
daily time spent with a smartphone is 220 minutes [30],
we simulate a daily usage scenario of a smartphone by
repeating the six scenarios for 220 minutes. In a simi-
lar way, we finally create a six-month usage scenario by
repeating the daily usage scenario 180 times. The appli-
cations are updated every 10 days based on the analysis
of the update cycle of Android applications [28].

5.2 I/O Performance Analysis
While executing the six-month usage scenario, we
compare the effect of six different defragmentation
policies on performance: baseline, janusd, janusdL,
e4defrag 1w, e4defrag 2w and e4defrag 4w. (Note that
e4defrag nw indicates when we invoke e4defrag with ev-
ery n weeks.) For a fair comparison, before the execution
of the scenario with a specific policy, the file system is
initialized with the snapshot/replication tool mentioned
in Section 5.1. Baseline does not perform file defrag-
mentation. For janusd and janusdL, we execute janusd
and janusdL every week. In the case of e4defrag, we
invoke e4defrag with three different cycles, 1 week, 2
weeks and 4 weeks.

Fig. 15 shows that janusd achieves a consistent I/O
throughput similar to or slightly better than e4defrag 1w
((a) Chrome 58 MB/s and (b) Game 66 MB/s). An inter-
esting observation here is that the I/O throughput drops
sharply even after one week without defragmentation.
This indicates that frequent invocations of defragmenta-
tion are desirable to maintain high and consistent perfor-
mance. In particular, janusd works better than janusdL
and e4defrag 1w, offering the performance very close
to the clean file system. Compared with janusdL and
e4defrag 1w that perform only logical defragmentation,
janusd conducts physical defragmentation that physi-
cally distributes fragmented pieces of files across differ-
ent channels, improving I/O parallelism of file access.
Fig. 16 shows I/O throughputs of the rest of the applica-

Table 3: A summary of benchmark scenarios.
Scenario DoFL Scenario Description

Chrome 1.34 Launching app → Viewing webpages

Messenger 1.99 Launching app → Viewing chat records

Gmail 2.18 Launching app → Viewing emails

Facebook 2.55 Launching app → Viewing online news

Twitter 2.75 Launching app → Viewing online news

Game 3.02 Launching Lineage 2 → Playing game
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Fig. 15: Changes of I/O throughput over 6 months.

tions not shown in Fig. 15. On average, janusd improves
the I/O throughput by 57% and 76% over baseline for
simeMMC and simUFS, respectively. As expected, as the
larger the values of DoFL, the higher the I/O throughputs
improved by janusd.

In order to analyze the impact of janusd on the qual-
ity of user experiences, we measure app launching times
of the usage scenarios. We replay system call traces
that are issued while an app is being launched, and then
measure the reductions of I/O elapsed times spent by
flash storage. Fig. 17 shows that janusd reduces the app
launching times by up to 29% and 36% for simeMMC and
simUFS over baseline, respectively. Our results confirm
that janusd is effective in improving the quality of user
experiences in smartphones.

Finally, Figs. 16 and 17 show that the performance im-
provement by janusd is more significant in a faster stor-
age device like simUFS than a slower one, simeMMC. As
observed in Section 3.2, the heavy fragmentation of files
increases the number of small I/O requests to flash stor-
age, which results in the increase of I/O stack overheads.
SimUFS is more badly affected by the increased software
I/O overheads – because of a fast storage access time, the
handling of I/O requests at the software I/O stack level
accounts for a larger proportion of the total I/O elapsed
time. Janusd translates a large number of small I/Os
to a fewer large ones, alleviating a performance penalty
caused by I/O stack overheads. As a result, simUFS gets
more benefits over simeMMC from the reduction of I/O
stack overheads.
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Fig. 16: The impact of janusd on the I/O throughput.
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Fig. 17: The impact of janusd on the app launching time.

5.3 Lifetime Analysis
JanusdP has to physically move data. By performing
physical defragmentation only on files that are physically
fragmented and heavily read, janusdP minimizes its neg-
ative effect on flash lifetime. Table 4 shows that phys-
ical defragmentation by janusdP involves only a small
amount of data copies, 364 MB, which is negligible com-
pared to e4defrag 4w that copies data of 217 GB. Even
though a smaller number of files are defragmented, its
impact on performance is more significant than e4defrag
as illustrated in Fig. 16. This is because janusdP opti-
mally relocates files in multiple channels by taking into
account the physical layout of flash storage.

Finally, we measure the amount of extra data move-
ments needed for the maintenance of a defrag log in
NAND flash. As mentioned in Section 4.2, we limit the
size of a defrag log to 10 MB, and if its size exceeds the
limit, janusd triggers compaction to reduce the log size.
Since janusdL does not make data copies, the amount of
data copies of janusdL in Table 4 indicates the amount
data coped during the defrag log compaction. 219-MB
data copies by janusdL is negligible over e4defrag 1w
that involves 156-GB data copies for defragmentation.

6 Related Work
File Defragmentation: Recent interests in file defrag-
mentation on flash storage were largely motivated by
high-performance I/O support in flash storage. As flash
storage gets faster, SW I/O stack overheads are emerg-
ing as a new I/O performance bottleneck, and flash frag-
mentation is reevaluated as a potential I/O bottleneck for
flash storage. For example, Ji et al. showed that file frag-
mentation negatively affected the performance of mo-
bile applications through an empirical study using sev-
eral used smartphones [22]. In particular, they confirmed
that redundant I/Os caused by fragmented files account
for a nontrivial fraction of the total I/O time, degrading
the overall I/O performance. More recently, Park et al.
presented that file defragmentation on a log-structured
file system reduced the frequency of I/O requests to a
flash storage system, thereby improving the overall read

Table 4: Impact of janusd on the amount of data copies.
e4defrag 1w e4defrag 2w e4defrag 4w janusdL janusdP

156 GB 182 GB 217 GB 0.219 GB 0.364 GB

performance [35]. While existing studies just discov-
ered fragmentation problems [22-24] or presented a file-
system-specific solution [35], our work, which is based
on a detailed characterization study of flash file fragmen-
tation, proposes a general scheme that can solve the frag-
mentation problem in flash storage, regardless of appli-
cation types or system platforms.

Remapping Optimization in Flash: There are sev-
eral studies proposed to improve flash storage perfor-
mance by enhancing the remapping function of the FTL
[31-34]. For example, Choi et al. presented a remapping
technique that avoided double writing in journaling file
systems [31]. Kang et al. proposed a transactional FTL
for SQLite databases, which remapped a logical address
from a physical location to a new physical location [32].

Our work is similar to the aforementioned studies in
that it leverages an FTL’s remapping function to offer
better I/O performance. The above studies, however, did
not take into account of the fragmentation problem in
flash storage, and thus their remapping schemes could
not effectively deal with fragmented files. Consequently,
those studies are not applicable to resolve fragmentation.

7 Conclusions
We have presented a complete treatment for file fragmen-
tation on mobile flash storage. From a systematic eval-
uation study, we showed that 1) file fragmentation is a
recurring problem with a short recurrence interval and 2)
the impact of file defragmentation on I/O performance
is significant. By exploiting the decoupled fragmenta-
tion characteristics of flash storage, we proposed a novel
flash-aware decoupled defragger, janusd, with two sepa-
rate defraggers, janusdL and janusdP. JanusdL supports
logical defragmentation without data copies by remap-
ping the LBAs of the logically fragmented files with
the FTL’s mapping table. By saving a complete history
of remapped LBA pairs in the defrag log, janusdL can
safely recover from sudden power failures. On the other
hand, janusdP, which is rarely invoked, improves the de-
gree of the I/O parallelism of files which are severely
limited in their available I/O parallelism. Our evaluation
results showed that janusd can improve the I/O through-
put by 57% and 76% on average in the Ext4 file systems
on simeMMC and simUFS, respectively.

Our work can be extended in several directions. For
example, janusdL can be easily extended to support dif-
ferent types of spatial locality of a file system such as
free-space defragmentation. It would be also possible
to support defrag-on-write that triggers logical defrag-
mentation right after calling write() because the over-
head of janusdL is negligible (i.e., < 1 ms) over the
cost of write() itself. Defrag-on-writes would realize a
fragmentation-free file system, guaranteeing no perfor-
mance degradation from fragmented files.
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