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Abstract

In hypervisor-based virtualization environments, transla-
tion lookaside buffers (TLBs) misses may induce two-
dimensional page table walks, which may incur a long
access latency, and this issue becomes worse with ever
increasing memory capacity. To reduce the overhead
of TLB misses, large pages (e.g., 2M-pages) are widely
supported in modern hardware platforms to reduce the
number of page table entries. However, memory man-
agement with large pages can be inefficient in dedupli-
cation, leading to low utilization of memory, which is a
precious resource for a variety of applications.

To simultaneously enjoy benefits of high performance
by accessing memory with large pages (e.g., 2M-pages)
and high deduplication rate by managing memory with
base pages (e.g., 4K-pages), we propose Smart Memory
Deduplciation, or SmartMD in short, which is an adap-
tive and efficient management scheme for mixed-page
memory.  Specifically, we propose two lightweight
schemes to accurately monitor pages’ access frequency
and repetition rate, and present a dynamic and adap-
tive conversion scheme to selectively split or reconstruct
large pages. We implement a prototype system and con-
duct extensive experiments with various workloads. Ex-
periment results show that SmartMD can simultaneously
achieve high access performance similar to systems us-
ing large pages, and achieves a deduplication rate similar
to that applying aggressive deduplication scheme (i.e.,
KSM) at the same time on base pages.

1 Introduction

In modern computers, processors use page tables to
translate virtual addresses to physical addresses. To ac-
celerate the translation, TLB was introduced to cache
virtual-to-physical address mappings. While TLB is
critical to system’s performance, its misses carry high
penalty for accessing the page table in memory. In par-

ticular, in a system employing hypervisor-based virtual-
ization, the hypervisor and guests maintain separate page
tables, and TLB misses will lead to high-latency two-
dimensional page table walks. Previous works [13, 17]
show that this is often the primary contributor to the per-
formance difference between virtualized and bare-metal
systems. In fact, the overhead of TLB misses has become
one of the primary bottlenecks of memory access.

Moreover, while memory size becomes increasingly
larger, TLB’s capacity cannot grow at the same rate as
DRAM. To reduce TLB miss ratio, large pages are in-
troduced in many modern hardware platforms to reduce
the number of page table entries required to cover a large
memory space. For example, the X86 platform supports
2M-page and 1G-page, while the ARM platform sup-
ports 1M-page and 16M-page [9].

It is important to note that different VMs on the same
host machine often run similar operating systems (OSes)
or applications. It is highly likely that there exists a great
deal of redundant data among different VMs [14]. Thus,
we can save memory space by removing redundant data
and sharing only a single copy of the data among differ-
ent VMs (also known as memory deduplication). How-
ever, for memory systems with large pages (e.g., 2M-
pages), our experiments show that it is hard to find du-
plicate large pages even the memory contains a large
amount of redundant data. In other words, deduplication
in unit of the large page is ineffective and usually saves
only a small amount of memory space.

To enable more effective deduplication, current OSes
exploit an aggressive deduplication approach (ADA),
which aggressively splits large pages (e.g., 2M-pages)
to base pages (e.g., 4K-pages) and performs deduplica-
tion among base pages [22]. However, after the splitting,
the memory space covered by translation entries in the
TLB can be significantly reduced. Although ADA saves
more memory space, accessing the split large pages sig-
nificantly increases TLB miss ratio and degrades access
performance. Moreover, the reconstruction of split large

USENIX Association

2017 USENIX Annual Technical Conference 733



pages is not well supported in current OSes. In a sys-
tem that keeps running, there are increasingly more split
pages, leading to continuous degradation of memory ac-
cess performance.

In this paper, our objective is to maximize memory
saving with deduplication while keeping high memory
access performance on a server hosting multiple VMs. In
particular, we propose SmartMD, to maximize memory
saving while keeping high performance of memory ac-
cess. The main idea is to split cold large pages with high
repetition rate to save memory space, and at the same
time, to reconstruct split large pages when they become
hot to improve memory access performance. The key
challenges are how to efficiently monitor repetition rate
and access frequency of pages, and how to dynamically
conduct conversions between large pages and base pages
so as to achieve both high deduplication rate and high
memory access performance. The main contributions of
this work can be summarized as follows.

e We propose two lightweight schemes to monitor
pages on their access frequency and repetition rate.
In particular, we introduce counting bloom filters
and sampling into the monitor such that it can ac-
curately track pages’ status with very low overhead.
Additionally, we propose a labeling method to iden-
tify duplicate pages during the monitoring, which
can greatly accelerate the deduplication process.

e We propose an adaptive conversion scheme which
selectively splits large pages to base pages, and also
selectively reconstructs split large pages according
to the access frequency and repetition rate of these
pages and memory utilization. With this bidirec-
tional conversion, we can take both benefits of high
memory access performance with large pages and
high deduplication rate with base pages.

e We implement a reconstruction facility by selec-
tively gathering scattered subpages of a split large
page, and then carefully re-create descriptor and
page table entry of the split large page. As a result,
the memory access performance can be improved
by reconstructing split large pages which turn hot.

e We implement a prototype and conduct extensive
experiments to show the efficiency of SmartMD.
Results show that SmartMD can simultaneously
achieve high memory access performance similar to
that of large page-based systems, and high dedupli-
cation rate similar to that produced by aggressive
deduplication schemes, such as KSM.

The rest of the paper is organized as follows. We in-
troduce the background of memory virtualization, large
page management, and current aggressive deduplication

technology in Section 2. We motivate the design for im-
proving the aggressive deduplication policy in Section 3.
In Section 4, we discuss the design of various techniques
used in SmartMD. In Section 5, we describe the experi-
ment setup and present the evaluation results to show the
efficiency of SmartMD. Section 6 discusses the related
work and Section 7 concludes the paper.

2 Background

2.1 Memory Virtualization

To efficiently utilize limited memory space, a high-
performance server hosting virtual machines (VMs) usu-
ally dynamically allocates its memory pages to VMs on
demand. Because of the dynamic allocation, physical
addresses of the memory pages allocated to a VM are
often not contiguous. So in a hypervisor-based virtual-
ized system, a VM uses guest’s virtual addresses (GVA)
and guest’s physical addresses (GPA) for its memory ac-
cess. GPA are logical addresses on the host and they are
mapped to host physical addresses (HPA). To improve
the address translation performance from GPA to HPA,
extended page tables (named by Intel) or nested page ta-
bles (named by AMD) [12] have been introduced. With
the extended page tables !, a VM will carry out a two-
dimensional page walk to access its data with two steps.
First, a GVA is translated to its corresponding GPA using
guest’s page tables. Second, the GPA is further translated
to its corresponding HPA using extended page tables.

When using base pages (i.e., 4KB pages in X86-64
system), both the guest’s page table and extended page
table are composed of four levels. Accessing each level
of the guest’s page table will trigger the traversal of
the extended page table. In the worst case, a two-
dimensional page walk will require 24 memory refer-
ences [12, 23], which is apparently unacceptable. A
commonly practice to accelerate the address translation
is to cache frequently used global mapping from GVA to
HPA in the TLB [27].

However, when the memory becomes increasingly
large the page tables consistently grow, and as a result
the hit ratio of TLB reduces. To increase the hit ratio
of TLB and further speedup the address translation in a
system with a large amount of memory, large pages have
been widely adopted in today’s systems.

2.2 Advantage of Using Large Pages

A large page is composed of a fixed number of contigu-
ous base pages. For example, in a X86-64 system, OS

'In this paper we will use Intel’s extended page tables as an ex-
ample, though the design and conclusions derived from the evaluation
results are also applicable to the system using nested page tables.
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Benchmark | [1iost: Base | Host: Large | Host: Large splits a large page into base pages and then applies dedu-
Guest: Large | Guest: Base | Guest: Large plication on base pages [22], such as KSM in Linux.
SPEC;jbb 1.06 1.12 1.30
Graph500 1.26 1.34 1.68 Policy Benchmark Memory Saving | Performance
Liblinear 1.13 1.14 1.37 Large Page Graph500 0.37 GB(3.4%) 1
w/o ADA SPECjbb2005 0.40 GB(5.9%) 1
]?/SECHCI; ig; i(l)z i§(7) Liblinear 0.32 GB(2.0%) 1
1obenc : : : Sysbench 0.09 GB(0.8%) 1
Table 1: Benchmark performance with selective use of Biobench 0.20 GB(1.4%) 1
large pages. Details of the benchmark programs are de- Large Page Graph300 518 GB(47.9%) 0.695
arge pages. L prog . with ADA | Specjbb2005 | 1.83GB(26.9%) 0.922
scribed in Section 5. The performance is normalized Liblinear 3.79 GB (23.7%) 0.846
against the one for running the benchmark on the system Sysbench 2.83 GB(18.0%) 0.867
using base pages in both guest and host OSes. Biobench 1.88 GB(13.7%) 0910

uses one 2MB-page entry to cover a contiguous 2MB
region of memory for its address translation, instead of
using 512 4KB-page entries to cover it. In a virtual en-
vironment, large pages can be supported in both guest’s
page tables and extended page tables [12]. With large
pages, the page table becomes significantly smaller, and
much larger memory space can be covered by a TLB ta-
ble of the same size. In this way, using large pages helps
to increase TLB hit ratio for global mappings. In partic-
ular, it reduces maximum number of memory references
in a 2D page walk after a TLB miss from 24 to 15 [12].

To show improvement of memory access performance
with large pages, we run experiments with various
benchmarks in a KVM virtual machine. Detailed con-
figuration of the virtual machine is described in Section
5, and we present the experimental results in Table 1.
We can see that the performance can be significantly im-
proved for most of the benchmarks even if we use large
pages only in guest’s OS or in host’s OS. In particular,
if we use large pages in both OSes, the performance of
Graph500 is improved by 68% over the baseline system
in which only base page is used.

2.3 Impact of Using Large Pages on Mem-
ory Deduplication

Usually there is a great deal of duplicated data residing
in the memory of a virtualized machine [14]. Dedu-
plication among different VMs will lower the memory
demand and keep memory from being overcommitted.
However, even though there can be plenty of duplicate
data in the memory, there can be very few duplicate large
pages. While the deduplication removes duplicate data
at the granularity of page, it may not be effective with
the use of large pages. Our experiments show that ADA
can save 13.7% - 47.9% of used memory for the selected
benchmarks, but deduplication in unit of large page saves
only 0.8% - 5.9% of used memory (see Table 2). That
is, deduplication among different VMs in unit of large
page can save very little memory. Thus, major OSes sup-
port an aggressive deduplication approach (ADA), which

Table 2: Memory saving and performance of large-page-
based systems with/without running ADA (aggressive
deduplication approach), which splits all large pages.
When ADA is not used, deduplication is applied at the
large-page granularity. Memory saving is normalized
against the memory demand in the system without us-
ing any deduplication. The performance is normalized
against that for the system using large pages without ap-
plying ADA.

3 Motivations

3.1 Aggressive Deduplication

When a large page contains duplicate subpages, ADA
will split it into base pages and then perform dedupli-
cation on these base pages. Although ADA has the po-
tential to save significant amount of memory space, the
page tables become much larger, which will reduce the
hit ratio of TLB and increase memory access time. The
worst scenario of ADA is that it splits a large page that
has high access frequency and low repetition rate (or the
percentage of duplicate subpages belonging to the large
page). And it compromises memory access performance
and produces little memory saving.

We carry out experiments to show the statistics of
memory pages. Fig. 1 shows the distributions of large
pages with high access frequency or high repetition rate
of a VM running SPECjbb. From Fig. 1(a), we can see
that the SPECjbb benchmark constantly accesses some
large pages throughout its entire run time while other
large pages are rarely accessed. Fig. 1(b) shows that
majority of large pages with high repetition rate appears
only in few memory regions. Comparing Fig. 1(a) with
Fig. 1(b), we find that many large pages have high access
frequency but few duplicate subpages. In the meantime,
there exist large pages with many duplicate subpages and
low access frequency. In short, with ADA that selects
large pages for splitting without considering page access
frequency and repetition rate, the benefit of its limited
memory saving can be more than offset by the degraded
memory access performance for many applications.
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Figure 1: Memory usage of SPECjbb.

We experimentally compare memory saving and mem-
ory access performance in the system using large page
and ADA. The results are shown in Table 2. With ADA,
the system saves 13.7%-47.9% of memory space but
is slowed down by up to 30.5% due to increased TLB
misses after splitting large pages. Specifically, the per-
centage of large pages drops to 16% on average. On the
other hand, retaining large pages preserves high mem-
ory access performance, but it loses opportunities of re-
ducing memory usage. Thus, current memory manage-
ment scheme is inadequate for virtualized systems run-
ning memory-intensive applications.

To this end, we propose SmartMD, a selective dedupli-
cation scheme that assigns each large page a priority of
being split for potential deduplication according to its ac-
cess frequency and repetition rate. SmartMD splits large
pages with high repetition rate and low access frequency
and performs deduplication among their subpages to save
memory while maintaining high access performance.

3.2 Difficulties of Converting Base Pages to
Large Pages

Major OSes support splitting of large pages to produce
more deduplication opportunities. However, the recon-
struction of base pages back into large pages is not
well supported [22, 8]. In particular, only large pages
whose base pages are not shared with those in other large
pages can be reconstructed. Furthermore, the reconstruc-
tion may substantially compromise system performance.
Meanwhile, instead of releasing free pages back to the
host, a VM often keeps these pages for its incoming ap-
plications. Thus, the conversion of base pages to large
pages in current OSes may cause incremental degra-
dation of memory access performance. In this work,
we propose an approach to efficiently reconstruct large
pages to improve memory access performance.

+ Monitor
— ~ —
Pages’
| | Characteristics
V4
Large Selector Base
Pages - Pages

Candidate
Pages

Convertor

System memory

Figure 2: Ilustration of SmartMD’s Architecture.
3.3 The Challenges

Monitoring pages’ statuses. SmartMD needs to track
pages’ access frequency and repetition rate, which are
not directly disclosed by current OSes. Meanwhile,
monitoring these parameters will introduce additional
overheads. Thus, we need to design an efficient moni-
toring mechanism with low overhead.

Choosing right pages. Splitting large pages into base
pages and reconstructing base pages into large pages
may have big negative impacts on memory access per-
formance. SmartMD must carefully select right pages
to split and reconstruct for maximal efficacy and min-
imal side effect. Furthermore, applications’ demands
on memory and CPU may change dynamically, so
SmartMD needs to identify current performance bottle-
neck and resource constraint and to provide an adap-
tive conversion mechanism between large pages and base
pages to alleviate the situation.

Reconstructing large pages. SmartMD provides an ap-
proach to reconstruct base pages into large pages. How-
ever, implementation of the approach can be challeng-
ing, because splitting a large page not only changes its
descriptor and page table entries of its subpages, but also
breaks the contiguity of its subpages. Even worse, some
subpages might have been freed after splitting, which im-
poses great difficulty on the reconstruction process.

4 Design of SmartMD

In this section we will overview the design of SmartMD
followed with design details on each of its components.

4.1 Overview of SmartMD

As shown in Fig. 2, SmartMD is composed of three mod-
ules, Monitor, Selector, and Converter. In the Monitor,
we provide two lightweight schemes to track number of
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Figure 3: Design of the Monitor.

duplicate subpages, or the repetition rate for large pages.
This information will be used by the Selector to select
large pages for splitting or base pages for reconstruc-
tion. In particular, we propose an algorithm which dy-
namically performs the selection according to the current
memory utilization, data access frequency, and large-
page repetition rate. Finally, the Converter performs the
conversion between large pages and base pages.

4.2 The Monitor

The Monitor uses a thread to periodically scan pages to
measure memory utilization as well as page access fre-
quency and repetition rate. Fig. 3 illustrates the tech-
niques used in the Monitor and its workflow.

Monitoring memory utilization and page access fre-
quency. We note that the OS already provides a utility to
monitor and disclose the size of free memory space in a
system. However, it does not provide a utility to directly
monitor and disclose page access frequency. To address
this issue, SmartMD periodically scans access bit of each
page to gauge pages’ access frequency. It clears the ac-
cess bits of all pages at the beginning of a monitoring
period, and checks each of them after check_interval sec-
onds. If the access bit of a page is one, which is set due
to a reference to the page in the period, SmartMD will in-
crement its access frequency by one. Otherwise, the page
was not accessed in the last period and its access fre-
quency is decremented by one. If a large page has been
split, we check the frequencies of its subpages and see if
any of them is larger than zero. If yes, we increment fre-
quency of the the original large page by one. However,
we keep the frequency value always in the range from 0
to N, where N is a positive integer, and will not change
it beyond the range. We initialize a page’s frequency to
N /2 when the system starts.

Detecting repetition rate of pages. To measure the rep-

etition rate of a large page (or the percentage of dupli-
cate base pages in the large page), existing approaches
use comparison trees to identify duplicate pages [11].
However, they carry high CPU overhead. In contrast,
SmartMD uses a counting bloom filter for an approxi-
mate identification.

The counting bloom filter is a one-dimensional vec-
tor, and each of its entries is a 3-bit counter. As shown
in Fig. 4, when scanning a large page, SmartMD uses
the counting bloom filter to check whether its subpages
are duplicates or not. Specifically, when checking a sub-
page, SmartMD applies three hash functions on the sub-
page’s content to calculate the indexes of its correspond-
ing counters. For each subpage, SmartMD also records
its signature, which is produced by applying a hash func-
tion on its content and is used to represent the page. If a
page is checked for the first time (i.e., its recorded signa-
ture is not found), SmartMD will increase its correspond-
ing counters by one. Otherwise, if all of the counters are
greater than one, we consider this page as a duplicate
one. If a page is modified, SmartMD decrements each
of its current counters by one and increments each of its
new counters by one. In addition, if a page is released,
SmartMD also decrements each of its counters by one.

Pagel Page2

4 I

| Hash Functions |

\,
[lal2fol-Jali[-[5]-[2]]
Pagel Page2
(Duplicated) (Unduplicated)

Figure 4: Identification of duplicate pages by using a
counting bloom filter.

To make a trade-off between memory overhead and
identification accuracy, SmartMD sets the size of the
counting bloom filter, in terms of counters in it, as eight
times of the number of base pages in the system. With
this configuration, SmartMD can ensure that the false
positive of the bloom filter is less than 3.06% [1].

SmartMD adopts a sampling-based approach to fur-
ther accelerate the identification. Specifically, the Moni-
tor first samples some subpages in a large page and cal-
culates their hash values. It then checks whether these
sampled subpages have been modified during the previ-
ous monitoring time period by comparing their current
signatures with the ones on record. If a large page has
been modified or is scanned for the first time during the
sampling process, the Monitor will scan all the subpages
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to update their signatures and insert them into the count-
ing bloom filter. Meanwhile, SmartMD calculates the
repetition rate of the large page. Otherwise, the Moni-
tor calculates the repetition rate only among the sampled
subpages, instead of all subpages in the large page, so
as to reduce the overhead. For the subpages identified
by the Monitor as duplicates, SmartMD labels them as
a hint to the deduplication component to improve its ef-
ficiency. Specifically, when a large page is being split,
SmartMD uses KSM to deduplicate redundant pages.
KSM searches the labeled pages in the comparison trees
to speed up the deduplication process. SmartMD orga-
nizes each large page’s metadata about its access fre-
quency and repetition rate in a linked list.

Our sampling-based detecting algorithm can help
to substantially reduce the CPU overhead for most
workloads. Experiments show that the ratio of mis-
identification of duplicate pages is less than 5% by sam-
pling only 25% subpages in a large page. In particu-
lar, the counting bloom filter improves the efficiency of
SmartMD on three aspects. First, it helps SmartMD to
obtain approximate repetition rate of large pages with
a small overhead. By using the repetition rate, we can
avoid splitting large pages with low repetition rate. Sec-
ond, it labels identified duplicate pages to speed up the
deduplication process of SmartMD. Third, it reduces the
number of nodes in the deduplicaiton trees by only split-
ting large pages with high repetition rate.

4.3 The Selector

To improve memory access performance, the Selector
chooses candidate large pages for splitting based on two
metrics, namely access frequency and repetition rate.
Identifying cold and hot pages. Upon knowing pages’
access frequency from the Monitor module, the Selector
divides all pages into three categories, cold, warm, and
hot, with two thresholds, Thres.,;; and Thresy,. If a
large page’s frequency value is smaller than T hres .4,
it is designated as cold. If its frequency value is greater
than Thresy,, it is a hot page. All other pages are
designated as warm. We denote the gap between the two
thresholds (T hresp, — Threscorq) as lengthyam. Note
that the state of warm is a transition one between the
cold and hot states. We introduce it to avoid switching
between the hot and cold states too often.

Identifying duplicate pages. We set a repetition rate
threshold, T hresyepe:, for the Selector to select candidate
pages. In particular, the Selector only selects large pages
whose percentages of duplicate subpages are more than
Thresyepes for splitting, and we name these pages as
duplicate large pages or simply duplicate pages. 1t is
important to set Thres,.pe, properly so as to obtain a
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Figure 5: Process of reconstructing split large pages.

high deduplication rate with minimal number of split
large pages. In our experiments, we find that by setting
Thresyeper = 1 /8, SmartMD can deduplicate more than
95% of duplicate subpages and split 40% fewer pages
than traditional aggressive deduplication approach.

Selector Workflow. When scanning a large page, the
Selector first reads its access frequency. If this page has
been designated as cold, the Selector will further deter-
mine whether its repetition rate is greater than T hresepe;.
If yes, this page is ready for splitting. On the other hand,
when selecting split large pages for reconstruction, the
Selector chooses only hot pages as candidates.

4.4 The Converter

The converter is responsible for the conversion between
large pages and base pages, including the splitting of
large pages and the reconstruction of split pages. The
splitting process can be realized by calling a system API,
while OSes do not well support the reconstruction func-
tionality. We implement a utility in SmartMD to recon-
struct split large pages. Fig. 5 illustrates this process,
which consists of the following three steps.

(1) Gathering subpages. To reconstruct a split large
page, we need to ensure that all of its subpages cur-
rently reside in memory and are not deduplicated
with other pages. If some subpages have been dedu-
plicated, we generate a duplicate copy for each of
these subpages, and migrate all subpages to a con-
tiguous memory space before reconstructing.

(2) Writing page descriptor. Once all subpages of a
split large page have been gathered, we re-create
page descriptor of the large page from the page de-
scriptors of all subpages.

(3) Writing page table. We use a single page entry to
map the reconstructed large page, and invalidate old
entries about the original subpages.
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As the cost of gathering subpages for reconstruction
of large pages can be high, we propose two gathering
mechanisms to reduce the number of subpages that have
to be migrated. Specifically, if most of the subpages of
a large page still stay in their original physical mem-
ory locations, we conduct in-place gathering, in which
we migrate the subpages that have been relocated back
to their original memory locations after migrating pages
currently occupying the locations elsewhere. Otherwise,
if most subpages of a split large page have been relocated
from their original memory locations, we conduct out-of-
place gathering, in which a contiguous memory space of
the size of a large page is allocated and all of the large
page’s subpages are migrated into the space. Because of
existence of spatial locality in the memory access, it is
expected that for a particular workload either a high per-
centage of subpages of a split large page stay in the orig-
inal locations or a high percentage of them do not. Our
experiments show that for most benchmarks we tested,
the percentages are larger than 90%. By adaptively ap-
plying the gathering mechanisms, we can significantly
reduce gathering cost and the reconstruction overhead.

Adaptive page conversion. To reduce the cost of con-
version between large pages and base pages, we develop
an adaptive conversion scheme to improve performance
of SmartMD based on the ratio of allocated memory
size to total memory size, i.e., utilization of the memory
space. The idea is that if the system has sufficient free
memory space, we use only large pages for high memory
access performance. On the other hand, if memory uti-
lization becomes high and memory page swapping may
occur, we split large pages into base pages for a high
deduplication rate. Specifically, the adaptive page con-
version scheme uses four parameters to guide its con-
version decision, including two thresholds about mem-
ory utilization (men,,, and memy;q,) and two thresholds
about access frequency (T hresc,;q and T hresp,,;). In each
monitoring period, we first check the memory utilization,
and then tune the parameter T hres.,;; accordingly so as
to dynamically identify pages to be split. In particular,
if the memory utilization is less than mem;,,,, we decre-
ment Thres.,q by one to make more pages stay in the
warm or hot states and keep them from being split for
high memory access performance. If the memory uti-
lization is greater than mem,;qy, indicating that memory
is in high demand, we increase T hres ;4 by one to allow
more large pages to be considered as cold pages and be
eligible for being split so as to achieve higher dedupli-
cation rate. Similar to a page’s frequency value, we also
keep Thresc,q in the range from O to N, where N is a
positive integer, in the process.

5 Evaluation

To show its efficacy and efficiency, we implement a
SmartMD’s prototype on Linux 3.4 and conduct ex-
periments using QEMU to manage KVM. Our experi-
ments run on a server with two Intel Xeon E5-2650 v4
2.20GHz processors, 64GB RAM, and a 2TB WD hard
disk (WD20EFRX). Both the host and guest OSes are
Ubuntu 14.04. We boot up four VMs in parallel, each
of which is assigned one VCPU and 4GB RAM, and
all VMs are hosted on one physical CPU. In our exper-
iments, we focus only on 2MB and 4KB pages, which
are commonly used in most applications. We run the fol-
lowing benchmark programs in each VM. Their memory
demands without deduplication are listed in Table 3.

e Graph500 [2]. Graph500 generates and com-
presses large graphs. It also runs breadth-first
search on the graph. We run Graph500 in each guest
VM with the same scale (22) and edgefactor (16).
We generate graphs initialized differently to ensure
that graphs in different VMs are different. We use
average number of edges traversed in a VM per sec-
ond as the performance metric of the benchmark.

o SPECjbb [6]. SPECjbb is a benchmark for evaluat-
ing performance of server-side Java business appli-
cations. We run SPECjbb in each VM and use the
average bops (business operations per second) of all
VMs as its performance metric.

e Libliner [5]. Libliner is a suite of linear classifiers
for a data set with millions of instances and features.
We run SVM, one benchmark program in Liblinear,
on the urlcombined dataset. The performance met-
ric is average execution time of the program running
in different VMs.

e Sysbench [7]. Sysbench is a multi-threaded bench-
mark for database. We run sysbench on Mysql by
storing all data in the buffer pool of Mysql. We use
the average number of queries performed by a VM
per second as the performance metric.

e Biobench [10]. Biobench is a suite of bioinformat-
ics applications. We run Mummer, a program in
Biobench on the human-chromosomes dataset [4],
and measure its average execution time in different
VMs.

Graph- | SPECjbb- Lib- Sys- Bio-
500 2005 linear bench bench
2.7GB | 1.7GB 4.0GB | 2.93GB| 3.42GB

Table 3: Memory usage of each VM w/o deduplication.

We compare SmartMD with three other schemes on
both performance and memory usage. The first one is

USENIX Association

2017 USENIX Annual Technical Conference 739



KSM, which uses the aggressive deduplication approach
to split all large pages to achieve the best deduplication
rate. The second one is named no-splitting, which pre-
serves all large pages and performs deduplication in unit
of large page to achieve the best access performance.
The third one is Ingens [22], which is the state-of-the-art
scheme using mixed pages to make a trade-off between
access performance and memory saving. Default values
of the parameters used in the experiments are listed in Ta-
ble 4. We adopt the same rate at which for the schemes to
scan and identify duplicate pages for a fair comparison.

Parameter Value  Description
monitor_period — 6s scanning period of the monitor-
ing thread

check_interval 2.6s interv. of checking access bits

Thresyeper 1/8 thresh. of repetition rate

memyp;g 90% thresh. of high mem. utilization
memy,y, 80% thresh. of low mem. utilization
page_to_scan 1024  number of pages scanned by

dedup-thread in each scan
time to sleep after each scan of
the dedup-thread

sleep_millisecs ~ 20ms

Table 4: Default parameter setting.

Note that with the adaptive page conversion scheme
described in Section 4.4, large page will not be split for
deduplication if there is a sufficient amount of free mem-
ory. In the evaluation of SmartMD on its effectiveness
and efficiency (see Section 5.1~5.4), we use fixed non-
zero Threshqyy and Threshy,, instead of the adaptive
conversion scheme, to make sure that SmartMD comes
into effect even when the server has abundant free mem-
ory. Specifically, we set the range of a page’s access
frequency from O to 4. Meanwhile, instead of allowing
Thresh.yq to be decremented to O due to low memory
utilization, we fix it at 1 so that large pages eligible for
splitting may still be produced even if the system has
enough free memory. In addition, we set Threshy,; to
3. We set initial access frequency of each page to 2, ly-
ing between T hresh.,q and Threshy,,, to ensure that it
has a chance to be classified as either hot or cold page.

To evaluate effectiveness of the adaptive conver-
sion scheme, we run experiments with SmartMD in a
memory-constrained system (Section 5.5). In particu-
lar, we limit the host’s memory space by running an in-
memory file system (hugetlbfs [3]) to occupy a certain
amount of memory space on the host. Pages held by
hugetlbfs cannot be deduplicated or swapped out. In this
way, we can flexibly adjust size of the host’s memory
available for running benchmark programs.

5.1 Overhead of SmartMD

CPU overhead. We first run Graph500 to compare the
CPU overhead of SmartMD with the other two memory

Monitor thread | Dedup thread | Total

KSM 0 33.5% 33.5%
Ingens 5.3% 21.3% 26.6%
SmartMD 13.1% 11.9% 25.0%

Table 5: Average CPU utilization sampled in every sec-
ond.

deduplication schemes, KSM and Ingens. The results are
shown in Table 5. Both the monitoring thread and dedu-
plication thread use additional CPU cycles. KSM uses
aggressive deduplication without tracking status of the
pages. However, without knowing whether a large page
contains duplicate subpage(s), it has to scan all large
pages and in each large page determines whether each of
its subpages is a duplicate, leading to high CPU overhead
in its deduplication. As shown in Table 5, KSM spends
more CPU time than Ingens and SmartMD by 26% and
34%, respectively. SmartMD takes more CPU time on
monitoring each large’s access frequency and repetition
rate. In contrast, Ingens monitors only access frequency.
Accordingly, the monitoring thread of SmartMD induces
7.8% higher CPU overhead than that of Ingens. With
the knowledge on access frequency and repetition rate
of each large page, as well as on which of its subpage
are duplicates, SmartMD can more efficiently and pre-
cisely locate large pages for effective deduplication. As
shown Table 5, SmartMD’s deduplication thread spends
9.4% lower CPU time than that of Ingens. Comparison
of deduplication effectiveness with Ingens will be pre-
sented in Section 5.3.

Memory overhead. SmartMD uses 3 bits to store
each of the eight counting bloom filters for each base
page. Since the size of a base page is 4KB, the ra-
tio of extra memory space used to store the filters is
only (3bits x 8) = (4KB) = 3/2!2. For each large page,
we use 32B to store its access frequency and repetition
rate, as well as some necessary pointers. Since the size
of a large page is 2MB, SmartMD requires additional
32B+2MB=1/ 216 of the memory space for large pages.
For example, 16 GB memory is used during the running
of Libliner on four VMs. SmartMD needs about 12MB
to store bloom filers for base pages and 0.25MB to store
metadata for large pages. Apparently the memory over-
head of SmartMD is negligible.

5.2 Performance and Memory saving

In this section, we compare SmartMD with two com-
monly used mechanisms in major OSes, which are KSM
or no-splitting, using different benchmark programs on
their performance and memory usage. Comparison with
Ingens will be presented in Section 5.3. By aggressively
splitting any large pages to maximize deduplication op-
portunities, KSM can achieve the highest memory sav-
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Figure 7: Memory saving under various deduplication policies.

ing. On the other hand, no-splitting represents an op-
timization only on performance by preserving all large
pages. Here we study the trade-off made by SmartMD
between performance and memory saving by comparing
it with the KSM and no-splitting schemes.

We first show performance of the benchmarks by using
SmartMD, KSM and no-splitting in Fig. 6, where we nor-
malize the performance, whose metrics are introduced in
the description of the benchmarks in Section 5, against
that of the no-splitting scheme. In the experiments, we
use two different check_interval values (1.0s and 2.6s)
in SmartMD to vary the time period between reseting
access bits and its next reaching of the bits. Accord-
ingly, SmartMD is named SmartMD-1s and SmartMD-
2.6s, respectively. Fig. 6 shows that for the benchmarks
SmartMD achieves nearly the same performance as no-
splitting by using a larger check_interval. In contrast,
SmartMD improves KSM’s performance by up to 42.7%
by only spliting necessary large pages.

Experiment results on memory saving are shown in
Fig. 7. Because no-splitting does not perform splitting
of large pages and conducts deduplication in the unit of
large page, it reduces memory usage by a small percent-
age (6% or less). In contrast, SmartMD and KSM can
reduce memory usage by a much larger amount, which
is usually 4x to 31x as large as the saving received in no-
splitting. Fig. 7 also show , we can also see that in gen-
eral SmartMD reduces about the same amount of mem-
ory as KSM. Interestingly, in some execution periods of
some benchmarks, such as Liblinear, SmartMD reduces
more memory than KSM. By using counting Bloom fil-
ters and labeling of duplicate pages, SmartMD can com-

plete its scan of memory to find duplicate pages much
faster than KSM, and carry out deduplication in a more
timely manner. For example, to reduce memory usage of
Liblinear by 3.2GB SmartMD-2.6s and KSM take 118s
and 161s, respectively.

Looking into Figs. 6 and 7, we can see that SmartMD
takes both benefits on memory saving and access perfor-
mance. Specifically, SmartMD can save 4x to 21x as
much memory as the no-splitting scheme while keep-
ing similar access performance. For example, with
Graph500 SmartMD can save 3.82 GB memory space,
or 35.4% of the total memory, which is 9x the memory
space saved by no-splitting. In the meantime, SmartMD
can achieve up to 15.8% of performance improvement
over KSM while achieving a memory saving similar to
KSM.

Additionally, SmartMD can be configured to tune the
weight of its optimization goals between access perfor-
mance and memory saving. With SmartMD, we can
improve either the access performance or memory sav-
ing while minimally compromising the other goal. For
example, the performance of Sysbench is improved by
12.9% with increasing checking interval from 1.0s to
2.6s. Meanwhile, the memory saving only decreases by
4.3%. This is because SmartMD splits only large pages
with low access frequency and high repetition rate. In
this way, SmartMD can ensure that each splitting can
bring benefit of memory saving but incur small negative
impact on memory access performance. Furthermore,
base pages can be opportunistically converted back to
large pages to benefit the performance of SmartMD.
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Figure 8: Comparison of memory saving between Ingens and SmartMD.
Ingens | SmartMD Single-CPU | NUMA
Graph500 0.989 0.992 Graph500 0.8% 1.6%
SPECjbb2005 | 0.991 0.994 SPECjbb2005 0.6% 2.1%
Liblinear 0.987 0.991 Liblinear 0.9% 1.8%
Sysbench 0.982 0.989 Sysbench 1.1% 2.6%
Biobench 0.976 0.982 Biobench 1.8% 3.9%

Table 6: Performance normalized to that of No-splitting.

5.3 Comparison with Ingens

Kwon et al. [22] proposed Ingens to enable conversion
from base pages to large pages to maintain high memory
access. It also selectively splits large pages for more ef-
fective deduplication. However, in the selection of large
pages, it only considers access frequency and does not
take into account of repetition rate. In addition, it does
not consider page access frequency in the decision of
reconstruction of large pages. Table 6 shows the per-
formance of the benchmark programs with SmartMD
and Ingens. For SmartMD check_interval is set at 2.6s.
Fig. 8 shows the memory saving of SmartMD and In-
gens. We see that SmartMD can save 1.3x to 3.5x as
much memory as Ingens while still keeping performance
of SmartMD to that of Ingens. While Ingens splits any
large pages that are considered cold, it has to throttle
generation of cold pages to keep memory access per-
formance close to that of no-splitting. This is achieved
by postponement of checking accessing bits. However,
this approaches leaves fewer pages available for dedupli-
cation. SmartMD can more precisely identify the right
large pages (with low access frequency and high repetion
rate) for splitting. It is less likely to conduct unnecessary
splitting. SmartMD also performs necessary reconstruc-
tion of large pages to keep high memory performance.

5.4 Performance in a NUMA Environment

In the above experiments, all VMs are hosted on one
physical CPU in a NUMA system. However, if they are
hosted on different CPUs, deduplication may make ac-
cesses of originally local pages become more expensive
ones of remote pages, causing performance degradation.

To study performance impact of the NUMA architec-

Table 7: Performance degradation by using SmartMD on
NUMA. The degradation is calculated against the perfor-
mance of No-splitting with the same benchmark.

ture, we place two VMs on one physical CPU, and an-
other two on a different CPU and re-run the benchmarks
with SmartMD. The performance results are shown in
Table 7. As shown, running SmartMD in the NUMA
environment does cause larger performance degradation.
However, the NUMA impact is very small, as SmartMD
only splits large pages into base pages and deduplicate
them only for those with low access frequency. Thus,
even if many pages are deduplicated and relocated, only
a very limited number of remote accesses are induced.

5.5 Performance in a Memory Over-

committed System

In this section, we evaluate the performance with
different memory loads: no-overcommitted, slight-
overcommitted and severe-overcommitted, which corre-
spond to scenarios where the ratios of memory demand
of an application to the usable memory size as 0.8, 1.1,
and 1.4, respectively. We compare the performance of
benchmarks using KSM, Ingens, and No-splitting, and
the performance results are shown in Fig. 9. We can
see that when the system has sufficient memory, perfor-
mance of SmartMD is close to that of No-splitting. This
is because when the memory utilization is low, SmartMD
sets the cold threshold (T hresh.,;4) to zero to keep large
pages from being split.

With the increase of the host’s memory load, the ac-
cess performance of No-splitting drops much faster than
other three schemes. With less effective deduplication,
No-splitting has a larger memory demand. When the de-
mands is larger than usable memory size, it will cause
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Figure 9: Performance in overcommitted systems.

more serious swapping of the program’s working set be-
tween the memory and the disk, significantly slowing
down the program’s execution. With few pages dedu-
plicated and larger memory demand than SmartMD, In-
gens also shows significantly degraded performance in a
memory overcommitted system.

SmartMD outperforms the other three schemes in
the memory overcommitted systems. For example, for
Graph500 SmartMD achieves up to 38.6% of perfor-
mance improvement over other schemes. Using intel-
ligently selective and adaptive conversion between large
pages and base pages, SmartMD can make a better trade-
off between memory saving and access performance un-
der different levels of memory overcommitments.

6 Related Work

Management of large pages. To efficiently use large
pages, researchers proposed schemes to manage pages
of different sizes [16, 26]. For example, Navarro et
al. [25] provide a tool for FreeBSD to support multiple
page sizes with contiguity-awareness and fragmentation
reduction. Gorman et al. [18] propose a placement
policy for physical page allocator, which mitigates
fragmentation and increases contiguity by grouping
pages according to whether the pages can be migrated.
Their subsequent work [19] proposes an API for appli-
cations to explicitly request huge pages. Different from
SmartMD, the above works do not consider memory
deduplication.

Memory Deduplication. Memory  dedupli-
cation has attracted attention of many re-
searchers [11, 24, 20, 29, 28, 15, 21, 30]. In-memory
deduplication technique was first implemented in
VMWares ESX server [30], which requires no assistance
from guest OSes and performs transparently in the
hypervisor layer. KSM [11] is implemented as a kernel
thread, which periodically scans memory pages to detect
duplicate pages. Miller et al. [24] find that data in

the page cache are more likely to be duplicates. They
propose a memory deduplication scanner named XLH to
identify duplicate pages. Gupta et al. propose Difference
Engine [20] to deduplicate partial base pages with partial
redundancy. The above works can be considered as
aggressive deduplication schemes whose sole objective
is to reduce memory usage. However, they do not
consider impact of using large pages on deduplication
efficacy as well as performance impact of splitting large

pages.

The Ingens Deduplication Ingens [22] is a recently
proposed memory deduplication scheme most similar
to SmartMD. Ingens provides a coordinated transparent
huge page support for the OS and hypervisor. In con-
trast, SmartMD achieves higher memory saving while
maintaining similar access performance with its three
advantages. (1) SmartMD selectively splits large pages
according to their access frequency and repetition rate,
while Ingens only considers pages’ access frequency. (2)
SmartMD reconstructs split large pages based on their
access frequency, while Ingens reconstructs a large page
as long as most of its subpages are utilized. (3) SmartMD
adaptively selects pages for splitting and reconstruction,
and uses sampling-based counting bloom filters and du-
plication labels to reduce overhead.

7 Conclusion

In this work, we propose SmartMD, an adaptive and effi-
cient scheme, to manage memory with pages of different
sizes. SmartMD can simultaneously take both the bene-
fit of high performance by accessing memory with large
pages, and the benefit of high deduplication rate by man-
aging memory with base pages. Experimental results
show that compared to KSM and no-splitting, SmartMD
can either saves more memory space with similar mem-
ory access performance, or achieves higher memory ac-
cess performance with similar memory saving.
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