
This paper is included in the Proceedings of the
2017 USENIX Annual Technical Conference (USENIX ATC ’17).

July 12–14, 2017 • Santa Clara, CA, USA

ISBN 978-1-931971-38-6

Open access to the Proceedings of the
2017 USENIX Annual Technical Conference

is sponsored by USENIX.

Unobtrusive Deferred Update Stabilization
for Efficient Geo-Replication

Chathuri Gunawardhana, Manuel Bravo, and Luis Rodrigues, University of Lisbon

https://www.usenix.org/conference/atc17/technical-sessions/presentation/gunawardhana

Unobtrusive Deferred Update Stabilization for Efficient Geo-Replication

Chathuri Gunawardhana1, Manuel Bravo1,2 and Luı́s Rodrigues1

1INESC-ID, Instituto Superior Técnico, Universidade de Lisboa 2Université Catholique de Louvain, Belgium

Abstract
In this paper, we propose a novel approach to manage

the throughput vs visibility latency tradeoff that emerges
when enforcing causal consistency in geo-replicated sys-
tems. Our approach consists in allowing full concurrency
when processing local updates and using a deferred local
serialisation procedure before shipping updates to remote
datacenters. This strategy allows to implement inexpen-
sive mechanisms to ensure system consistency require-
ments while avoiding intrusive effects on update oper-
ations, a major performance limitation of previous sys-
tems. We have implemented our approach as a variant
of Riak KV. Our evaluation shows that we outperform
sequencer-based approaches by almost an order of mag-
nitude in the maximum achievable throughput. Further-
more, unlike previous sequencer-free solutions, our ap-
proach reaches nearly optimal remote update visibility
latencies without limiting throughput.

1 Introduction

Geo-replication is a requirement for modern internet-
based services in order to improve user-perceived la-
tency. Unfortunately, due to the long network delays
among sites, synchronous replication is prohibitively
slow for most practical purposes. Therefore, many sys-
tems resort to weaker consistency semantics that permit
some form of asynchronous replication strategy.

Among the many consistency guarantees that allow for
asynchronous replication [15], causal consistency [9] has
been identified as the strongest consistency model that
an always-available system can implement [14, 37], be-
coming of practical relevance in geo-replicated settings.
In fact, causal consistency is key in many geo-replicated
storage systems offering from weak [38, 35, 12, 44] to
strong consistency guarantees [41, 34, 17].

Unfortunately, implementing causal consistency is
costly due to the computation, communication, and stor-
age overhead caused by metadata management [19, 27,

16]. A common solution to reduce this cost consists
in compressing metadata by serializing sources of con-
currency, which unavoidably creates false dependencies
among concurrent events, increasing visibility latencies
(time interval between the instant in which an update is
installed in its origin datacenter and when it becomes vis-
ible in remote datacenters).

To safely compress metadata, designers of causally
consistent systems rely either on: (i) centralized se-
quencers (commonly one per datacenter) [44, 12]; or (ii)
global stabilization procedures [24, 10] (executed across
datacenters). The former has the advantage of mak-
ing trivial—and therefore inexpensive—the dependency
checking procedures at the cost of severely limiting con-
currency, as sequencers operate in the critical path of
clients. On the contrary, the latter avoids centralized syn-
chronization points at the cost of periodically running a
global stabilization procedure in the background. The
cost of this procedure has pushed some systems to over-
compress metadata to avoid impairing throughput, with
a significant penalty on the visibility latencies [24].

In this paper, we propose, implement, and evaluate a
novel approach to address the metadata size versus vis-
ibility latency tradeoff. Our approach has some simi-
larities with systems that rely on global stabilization but
also significant differences. As with [24, 10], we let lo-
cal updates proceed without any a priori synchronization.
However, unlike previous systems, we totally order all
updates, in a manner consistent with causality, before
shipping them to remote datacenters. As a result, expen-
sive global stabilization is avoided, as it is trivial for a
datacenter to check whether all updates subsumed in the
timestamps piggybacked by remote updates have been
locally applied (similarly to sequencer-based solutions).

We have implemented our approach as a variant of the
open source version of Riak [6]. We have augmented
Riak with Eunomia1, a service that totally orders all lo-

1Greek goddess of law, her name can be translated as ”good order”.

USENIX Association 2017 USENIX Annual Technical Conference 83

cal updates, before shipping them. Our results show that
Riak+Eunomia outperforms sequencer-based systems by
almost an order of magnitude while serving significantly
better quality-of-service to clients compared with sys-
tems based on global stabilization procedures.

In summary, the contributions of this paper are: i)
The introduction of Eunomia, a new service for unobtru-
sively ordering updates (§3); ii) A fault tolerant version
of Eunomia (§3.3); iii) An experimental comparison of
the maximum load that traditional sequencers and Eu-
nomia can handle, and their potential bottlenecks (§7.1);
iv) The Integration of Eunomia into an always-available
geo-replicated data store (§4) and its performance com-
parison to state-of-the-art solutions (§7.2).

2 Motivation and Goals

We start by motivating our work with a simple experi-
ment, showing that: (i) the major throughput impairment
of sequencer-based solutions is the fact that they operate
in the critical path of clients; and (ii) global stabilization
procedures are expensive in practice, forcing designers
to favour either throughput or visibility latencies.

Figure 1 plots the throughput penalty and visibility
latency overhead introduced by state-of-the-art causally
consistent solutions. Results are normalized against an
eventually consistent system, which adds no overhead
due to consistency management. We vary from 1ms
to 100ms the interval between global stabilization com-
putations to better understand the cost and the conse-
quences of such mechanism. Our deployment consists of
3 datacenters. The round-trip-times across datacenters
are 80ms between datacenter 1 (dc1) and both dc2 and
dc3; and 160ms between dc2 and dc3. In the figure (left
plot), latencies refer to the (90th percentile) delays in-
curred by each system at dc2 for updates originating at
dc1. We compare the performance of 4 systems, namely
S-Seq, A-Seq, GentleRain and Cure. For each solution,
we deploy as many clients as possible (not necessarily
the same amount for each experiment) without saturat-
ing the system.

S-Seq is a system that relies on a sequencer per data-
center to compress metadata; it uses a vector with an en-
try per datacenter to track causality, as in [12, 44]. A-
Seq is an asynchronous (bogus) variant of S-Seq, that
contacts the sequencer in parallel with applying the up-
date. A-Seq does the same total amount of work as S-
Seq and, although it fails to capture causality, it serves
to reason about the potential benefits of removing se-
quencers from client’s critical operational path. Gen-
tleRain [24] and Cure [10] are well known solutions that
rely on global stabilization. The former favours through-
put, over-compressing metadata into a single scalar; the
latter favours visibility latencies, compressing metadata

 0

 30

 60

 90

 120

 150

0 10 20 50 100

V
is

ib
ili

ty
 l
a

te
n

c
ie

s
 (

m
s
)

GentleRain Cure

-50

-40

-30

-20

-10

 0

0 10 20 50 100

T
h

p
u

t
(%

)

Clock computation interval (ms)

S-Seq A-Seq

Figure 1: Update visibility latency vs throughput tradeoff.

into a vector with an entry per datacenter.
The results confirm that the costs inherent to global

stabilization force designers to choose between optimiz-
ing throughput and visibility latencies. As Figure 1
shows, Cure offers lower visibility latencies than Gen-
tleRain (as causality is more precisely tracked) at the
cost of penalizing throughput. GentleRain does the op-
posite tradeoff favouring throughput. Cure can tune this
tradeoff by choosing longer intervals among global sta-
bilization occurrences. Nevertheless, even with long in-
tervals (100ms), Cure still significantly degrades system
throughput by 11.6%. Interestingly, results also show
that by removing the sequencer from client’s critical op-
erational path, sequencer-based approaches could poten-
tially pick a better spot in the tradeoff space, by pro-
viding throughput and visibility latencies comparable to
GentleRain and Cure respectively, with almost no perfor-
mance overhead when compared to the baseline. Note
that in the above experiment, sequencers are not satu-
rated; therefore, the throughout penalty (14.8%) is ex-
clusively caused by the synchronous communication be-
tween the sequencer and the partitions at every client up-
date operation. Later, in §7.1, we experimentally mea-
sure the maximum load that sequencers can handle be-
fore getting saturated.

From these results, it is possible to get the following
insight: in order to alleviate the tension between through-
put and visibility latencies, one has to (i) avoid global
stabilization, and (ii) rely on an abstraction similar to se-
quencers that allows for trivial—therefore inexpensive—
dependency checking procedures, while removing its op-
eration from the client’s critical path. Our goal was then
to design Eunomia, a system with such characteristics.

3 Eunomia: Unobtrusive Ordering

In this section, we present the design and rationale
underlying Eunomia, a new service conceived to re-
place sequencers as building blocks in weakly consistent
geo-replicated storage systems. Unlike traditional se-
quencers, Eunomia lets local client operations to execute
without synchronous coordination, an essential charac-
teristic to avoid limiting concurrency and increasing op-
eration latencies. Then, in the background, Eunomia es-
tablishes a serialization of all updates occurring in the lo-
cal datacenter in an order consistent with causality, based

84 2017 USENIX Annual Technical Conference USENIX Association

N Number of partitions
Clockc Client c clock

pn Partition n
Clockn Current physical time at pn

Ops Set of unstable operations at Eunomia
PartitionTime Vector with an entry per partition at Eunomia

u j.ts Timestamp assigned to update u j

Table 1: Notation used in the protocol description.

Algorithm 1 Operations at client c
1: function READ(Key)
2: send READ(Key) to RESPONSIBLE(Key)
3: receive 〈Value, Ts〉 from RESPONSIBLE(Key)
4: Clockc← MAX(Clockc, Ts)
5: return Value

6: function UPDATE(Key, Value)
7: send UPDATE(Key, Value, Clockc) to RESPONSIBLE(Key)
8: receive Ts from RESPONSIBLE(Key)
9: Clockc← Ts

10: return ok

on timestamps generated locally by the individual servers
that compose the datacenter. We refer to this process as
site stabilization procedure. Thus, Eunomia is capable
of abstracting the internal complexity of a multi-server
datacenter without limiting the concurrency. Eunomia
can be used to improve any existing sequencer-based so-
lution to enforce causal consistency across geo-locations
[38, 44, 12], as shown in §4.

3.1 Eunomia Into Play
In order to convey how Eunomia works, we start by pre-
senting the protocol used to support the interaction be-
tween Eunomia and the machines that constitute a data-
center. In the exposition, we assume that the object-
space is divided into N partitions distributed among data-
center machines. Updates to objects belonging to the
same partition are serialized by the native update pro-
tocol. To simplify the presentation, our pseudocode as-
sumes FIFO links among partitions and Eunomia. Later,
in §3.3, we eliminate this assumption, making its imple-
mentation explicit. Table 1 provides a summary of the
notation used in the protocols.

Eunomia assumes that each individual partition can
assign a timestamp to each update without engaging in
synchronous coordination with other partitions, or with
Eunomia. We will explain below how this can be easily
achieved. These timestamps must satisfy two properties.
Property 1. If an update u j causally depends on a sec-
ond update ui, then the timestamp assigned to u j (u j.ts)
is strictly greater than ui.ts.
Property 2. For two updates ui and u j received by Eu-
nomia from partition pn, if ui is received before u j then
u j.ts is strictly greater than ui.ts.

These two properties imply that updates are causally
ordered across all partitions and that once Eunomia re-

Algorithm 2 Operations at partition pn

1: function READ(Key)
2: 〈Value, Ts〉 ← KV GET(Key)
3: return 〈Value, Ts〉

4: function UPDATE(Key, Value, Clockc)
5: MaxTsn← MAX(Clockn, Clockc +1, MaxTsn +1)
6: KV PUT(Key, 〈Value, MaxTsn〉)
7: u j ← 〈Key, Value, MaxTsn, pn〉
8: send ADD OP(u j) to Eunomia
9: return MaxTsn

10: function HEARTBEAT . Every ∆ time
11: if Clockn ≥MaxTsn +∆ then
12: send HEARTBEAT(pn, Clockn) to Eunomia

ceives an update coming from a partition pn, no update
with smaller timestamp will be ever received from pn. In
order to ensure these properties, clients play a fundamen-
tal role. A client c maintains a local variable, Clockc, that
stores the largest timestamp seen during its session. This
clock value captures the client’s causal dependencies and
it is included in every update request. As described be-
low, partitions compute update timestamps taking into
account the value of client clocks.

The protocol assumes that each partition pn is
equipped with a physical clock. Clocks are loosely syn-
chronized by a time synchronization protocol such as
NTP [5]. The correctness of the protocol does not depend
on the clock synchronization precision and can tolerate
clock drifts. However, as discussed later, large clock
drifts could have a negative impact on the protocol per-
formance (in particular, on how fast the datacenter can
ship updates to remote datacenters). To avoid this limi-
tation, our protocol uses hybrid clocks [30], which have
been shown to overcome some of the limitations of sim-
ply using physical time.

We now describe how events are handled by clients,
partitions and Eunomia (Algs. 1, 2, and 3 respectively).

Read. A client c sends a read request on item Key to
the responsible partition pn (Alg. 1, line 2). When pn
receives the request, it fetches the Value and the times-
tamp Ts that is locally stored for Key and returns both
to the client. Ts is the timestamp assigned by pn to the
update operation that generated the current version. Af-
ter receiving the pair 〈Value, Ts〉, the client computes the
maximum between Clockc and Ts (Alg. 1, line 4) to in-
clude the read operation in its causal history.

Update. A client c sends an update request operation
to the responsible partition pn of the object being up-
dated. Apart from the Key and Value, the request in-
cludes the client’s clock Clockc (Alg. 1, line 7). When
pn receives the request, it first computes the timestamp
of the new update (Alg. 2, line 5). This is computed by
taking the maximum between Clockn (physical time), the
maximum timestamp ever used by pn (MaxTsn) plus one
and Clockc (client’s clock) plus one. This ensures that

USENIX Association 2017 USENIX Annual Technical Conference 85

Algorithm 3 Operations at Eunomia
1: function ADD OP(u j)
2: Ops← Ops ∪ u j
3: 〈Key, Value, Ts, pn〉 ← u j
4: PartitionTime[pn]← Ts

5: function HEARTBEAT(pn, Ts)
6: PartitionTime[pn]← Ts

7: function PROCESS STABLE . Every θ time
8: StableTime← MIN(PartitionTime)
9: StableOps← FIND STABLE(Ops, StableTime)

10: PROCESS(StableOps)
11: Ops← Ops \ StableOps

the timestamp is greater than both Clockc and any other
update timestamped by pn. Then, pn stores the Value and
the recently computed timestamp in the local key-value
store and asynchronously sends the operation to the Eu-
nomia service. Finally, pn returns update’s timestamp to
the client who updates Clockc with it, since it is guaran-
teed to be greater than its current one.

Timestamp Stability. When Eunomia receives an op-
eration from a given partition, it adds it to the set of
non-stable operations Ops and updates the pn entry in the
PartitionTime vector with operation’s timestamp (Alg. 3,
lines 2–4). A timestamp Ts is stable at Eunomia when
one is sure that no update with lower timestamp will be
received from any partition (i.e., when Eunomia is aware
of all updates with timestamp Ts or smaller). Periodi-
cally, Eunomia computes the value of the maximum sta-
ble timestamp (StableTime), which is computed as the
minimum of the PartitionTime vector (Alg. 3, line 8).
Property 2 implies that no partition will ever timestamp
an update with an equal or smaller timestamp than Sta-
bleTime. Thus, Eunomia can confidently serialize all op-
erations tagged with a timestamp smaller than or equal
to StableTime (Alg. 3, line 9). Eunomia can serialize
them in timestamp order, which is consistent to causality
(Property 1), and then send them to other geo-locations
(Alg. 3, line 10). Note that non-causally related updates
coming from different partitions may have been times-
tamped with the same value. In this case, operations are
concurrent and Eunomia can process them in any order.

Heartbeats. If a partition pn does not receive an update
for a fixed period of time, it will send a heartbeat includ-
ing its current time to Eunomia (Alg. 2, lines 10–12).
Thus, even if a partition pn receives updates at a slower
pace than others, it will not slow down the processing of
other partitions updates at Eunomia. When Eunomia re-
ceives a heartbeat from pn, it simply updates its entry in
the PartitionTime vector (Alg. 3, line 6).

Hybrid Clocks. Our protocol combines logical and
physical time. Although Eunomia could simply use log-
ical clocks and still be correct, the rate at which clocks
from different partitions progress would depend on the
rate in which partitions receive update requests. This

may cause Eunomia to process local updates in a slower
pace and thus increase remote visibility latencies, as
the stable time is set to the smallest timestamp received
among all partitions. Differently, physical clocks natu-
rally progress at similar rates independently of the work-
load characterization. This fact—previously exploited
by [24, 10]—makes stabilization procedures resilient to
skewed load distribution. Unfortunately, physical clocks
do not progress exactly at the same rate, forcing proto-
cols to wait for clocks to catch up in some situations in
order to ensure correctness [23, 24, 10, 25]. The logi-
cal part of the hybrid clock makes the protocol resilient
to clock skew by avoiding artificial delays due to clock
synchronization uncertainties [30]. Briefly, if a partition
pn receives an update request with Clockc > Clockn, in-
stead of waiting until Clockn > Clockc to ensure correct-
ness, the logical part of the hybrid clock (MaxTsn) is
moved forward. Then, when a partition pn receives an
update from any client, if the physical part Clockn is still
behind the logical (MaxTsn), the update is tagged with
MaxTsn + 1 in order to ensure clock monotonicity and
thus guarantee Property 2. The interested reader can find
the correctness proof of the algorithm in [29].

3.2 Resilience to Stragglers

A straggler is a partition that, due to a transient lack of
network or processing resources, experiences delays in
contacting other system components. Naturally, strag-
glers do not affect only Eunomia, but affect any system
that attempts to provide the same guaranties. Here, we
discuss how Eunomia differs from other solutions when
coping with stragglers (later in §7.2.3, we report on ex-
periments with stragglers). We distinguish delays that
affect the communication between distinct datacenters
(inter-dc stragglers) and delays that affect the interac-
tion of components inside the same datacenter (intra-dc
stragglers). We expect the former to be more frequent
than the latter [11, 26].

Inter-dc stragglers have a similar impact on every sys-
tem, no matter it is sequencer-based or stabilization-
based (Eunomia, GentleRain [24], Cure [10]). The rea-
son is that inter-dc disturbances affect the transmission
of the data and, therefore, delays the visibility of updates
in a way that is orthogonal to the metadata scheme used.

Intra-dc stragglers are more interesting, because they
affect different approaches in different ways. In a
sequencer-based approach, the straggler experiences de-
lays when contacting the sequencer, which happens be-
fore the update takes place. Therefore, intra-dc strag-
glers affect local clients (because sequencer operation
is in client’s critical path) but have no effect on the re-
mote visibility of updates from healthy partitions. Con-
versely, in stabilization-based approaches, local clients

86 2017 USENIX Annual Technical Conference USENIX Association

are shielded from the instability (because stabilization is
performed in the background) but the remote visibility
of updates from healthy partitions of the straggler’s data-
center is affected (because only stable updates are prop-
agated/applied and the contribution of all partitions is re-
quired to achieve stability). Although there is a trade-
off, given that there is evidence that an increase in the
user-perceived latency may translate into concrete rev-
enue loss [40], we argue that stragglers may affect more
sequencer-based approaches.

3.3 Fault-Tolerance

In the description above, for simplicity, we have de-
scribed the Eunomia service as if implemented by a sin-
gle non-replicated server. Naturally, as any other service
in a datacenter, Eunomia must be made fault-tolerant.
In fact, if Eunomia fails, the site stabilization procedure
stops, and thus, local updates can no longer be propa-
gated to other geo-locations. In order to avoid such limi-
tation, we now propose a fault-tolerant version of Euno-
mia. Note that we disregard failures in datacenters, as the
problem of making data services fault-tolerant has been
widely studied and is orthogonal to our work.

In this new version, Eunomia is composed by a set of
Replicas. Algorithm 4 shows the behaviour of a replica
e f of the fault-tolerant Eunomia service. We assume
the initial set of Eunomia replicas is common knowl-
edge: every replica knows every other replica and ev-
ery partition knows the full set of replicas. Partitions
send operations and heartbeats (Alg. 2, lines 8 and 12
respectively) to the whole set of Eunomia replicas. The
correctness of the algorithm requires the communication
between partitions and Eunomia replicas to satisfy the
prefix-property [38]: an Eunomia replica r f that holds an
update u j originating at pn also holds any other update
ui originating at pn such that ui.ts < u j.ts. This prop-
erty can be ensured with inexpensive protocols that of-
fer only at-least-once delivery. Stronger properties, such
as inter-partition order or exactly-once delivery are not
required to enforce the prefix-property. Our implemen-
tation achieves the prefix-property by having each parti-
tion to keep track of the latest timestamp acknowledged
by each of the Eunomia replicas in a vector denoted as
Ackn. Thus, to each Eunomia replica e f , a partition pn
sends not only the lastest update but the set of updates
including all updates u j such that u j.ts >Ackn[f]. Upon
receiving a new batch of updates Batch (Alg. 4, lines 1–
5), e f process it—in timestamp order—filtering out those
updates already seen, and updating both Ops f and Parti-
tionTime f accordingly with the timestamps of the unseen
updates. After processing Batch, e f acknowledges pn
including the greatest timestamp observed from updates
originating at pn (PartitionTime f [pn]). This algorithm is

Algorithm 4 Operations at Eunomia replica e f

1: function NEW BATCH(Batch, pn)
2: for all u j ∈ Batch,PartitionTime f [pn]< u j.ts do
3: PartitionTime f [pn]← u j.ts
4: Ops f ← Ops f ∪ u j

5: send ACK(PartitionTime f [pn]) to pn

6: function PROCESS STABLE . Every θ time
7: if Leader f == e f then
8: StableTime← MIN(PartitionTime f)
9: StableOps← FIND STABLE(Ops f , StableTime)

10: PROCESS(StableOps)
11: Ops f ← Ops f \ StableOps
12: send STABLE(StableTime) to Replicas f \{e f }

13: function STABLE(StableTime)
14: StableOps← FIND STABLE(Ops f , StableTime)
15: Ops f ← Ops f \ StableOps
16: for all pn ∈ PartitionTime f do
17: PartitionTime f [pn]←MAX(PartitionTime f [pn],StableTime)

18: function NEW LEADER(eg)
19: Leader f ← eg

resilient to message lost and unordered delivery. Never-
theless, it adds redundancy, as replicas may receive the
same update multiple times. §5 proposes a set of opti-
mizations that aim to reduce this overhead.

In addition, to avoid unnecessary redundancy when
exchanging metadata among datacenters, a leader replica
is elected to propagate this information. The existence of
a unique leader is not required for the correctness of the
algorithm; it is simply a mechanism to save network re-
sources. Thus, any leader election protocol designed for
asynchronous systems (such as Ω [20]) can be plugged
into our implementation. A change in the leadership is
notified to a replica e f through the NEW LEADER func-
tion (Alg. 4, line 19). The notion of a leader is used to op-
timize the service’s operation as follows. When the PRO-
CESS STABLE event is triggered, only the leader replica
computes the new stable time and processes stable oper-
ations (Alg. 4, lines 7–10). Then, after operations have
been processed, the leader sends the recently computed
StableTime to the remaining replicas (Alg. 4, line 12).
When replica e f receives the new stable time, it removes
the operations already known to be stable from its pend-
ing set of operations, since it is certain that those opera-
tions have been already processed (Alg. 4, lines 14–15).

4 Supporting Geo-replication

In our previous protocol, we have shown how to un-
obtrusively timestamp local updates in a partial order
consistent with causality. In this section, we complete
the protocol with the necessary mechanisms to ensure
that remote updates—coming from other datacenters—
are made visible locally without violating causality.
Our solution resembles protocols implemented by other
causally consistent geo-replicated storage systems [12,

USENIX Association 2017 USENIX Annual Technical Conference 87

M Number of datacenters
VClockc Client c vector (M entries)

pm
n Partition n at datacenter m

rm Receiver at datacenter m
SiteTimem Applied updates vector at rm

Queuem Queues of pending updates at rm
u j.vts Update u j timestamp vector (M entries)

Table 2: Notation used in the geo-replicated protocol extension.

44]. We assume a total of M datacenters, each of them
replicating the full set of objects. Each datacenter uses
the Eunomia service and thus propagates local updates
in a total order consistent to causal consistency.

Apart from the Eunomia service, each datacenter is ex-
tended with a receiver. This component coordinates the
execution of remote updates. Thus, it receives remote up-
dates coming from remote Eunomia services (as a result
of PROCESS STABLE), and forwards them to the local
datacenter partitions when its causal dependencies are
satisfied. Standard replication techniques [43, 33, 13, 39]
can be employed to make receivers robust to failures, as
otherwise they represent a single point of failure.

In order to simplify the presentation, our pseudocode
assumes FIFO links between each Eunomia service and
the receivers. Nevertheless, this assumption can be easily
dropped if the Eunomia service includes on every mes-
sage send to a receiver, no only the latest update but all
previous updates that have not been acknowledge (by the
receiver) yet. This mechanism, which is similar to the
one described in §3.3, preserves the prefix-property, and
therefore tolerates message lost and unordered delivery.

We now explain how the metadata is enriched and the
changes we need to apply to our previous algorithms. Ta-
ble 2 summarizes the notation used in this section.

Updates are now tagged with a vector with an en-
try per datacenter, capturing inter-datacenter dependen-
cies. The client clock is consequently also extended to
a vector (VClockc). We could easily adapt our protocols
to use a single scalar, as in [24]. Nevertheless, vector
clocks make a more efficient tracking of causal depen-
dencies introducing no false dependencies across data-
centers, which reduces the update visibility latency, at
the cost of slightly increasing the storage and computa-
tion overhead. This overhead, unlike in [10], is negligible
in our protocol as Eunomia allows for trivial dependency
checking procedures. Note that the lower-bound update
visibility latency for a system relying on vector clocks
is the latency between the originator of the update and
the remote datacenter, while with a single scalar it is the
latency to the farthest datacenter.
Update. When a client c issues an update operation, it
piggybacks its VClockc summarizing both local and re-
mote dependencies. A partition pn computes u j vector
timestamp (u j.vts) as follows. First, the local entry of the
vector u j.vts[m] is computed as the maximum between
Clockn, MaxTsn +1 and VClockc[m]+1, similarly to Al-

Algorithm 5 Operations at rm

1: function NEW UPDATE(u j , k)
2: Queuem[k]← [Queuem[k]|u j] . add to tail

3: function CHECK PENDING . Every ρ time
4: 〈Queuem, SiteTimem〉 ← FLUSH(1, Queuem, SiteTimem)

5: function FLUSH(k, Queuem, SiteTimem)
6: if k > M then
7: return 〈Queuem, SiteTimem〉
8: else if k = m then
9: FLUSH(k+1, Queuem, SiteTimem)

10: else
11: u j ←HEAD(Queuem[k])
12: if ∀d ∈M \{m,k},SiteTimem[d]≥ u j.vts[d] then
13: pm

n ← RESPONSIBLE(u j.key)
14: send APPLY(u j) to pm

n
15: receive ok from pm

n
16: SiteTimem[k]← u j.vts[k]
17: POP(Queuem[k])
18: FLUSH(1, Queuem, SiteTimem)
19: else
20: FLUSH(k+1, Queuem, SiteTimem)

gorithm 2, line 5. This permits Eunomia to still be able
to causally order local updates based on u j.vts[m]. Sec-
ond, the remaining entries (remote datacenter entries) are
assigned to their sibling entries in VClockc. When the op-
eration is completed, pn returns u j.vts to the client who
can directly substitutes its VClockc since u j.vts is known
to be strictly greater than VClockc.

Read. Read operations execute as in Algorithms 1 and 2.
The only difference is that the returned timestamp is
a vector instead of a scalar. Thus, in order to update
VClockc, a client c applies the MAX operation per entry.

Update Propagation. The site stabilization procedure
proceeds as before, totally ordering local updates based
on the local entry of their vector timestamp (u.vts[m]).
Eunomia propagates local updates to remote datacenters
in u.vts[m] order. Each update piggybacks its u.vts.

Remote Update Visibility. Algorithm 5 details re-
ceivers’ operation. A receiver rm maintains two impor-
tant pieces of state: a queue of pending updates per re-
mote datacenter (Queuem[k]), and a vector with an en-
try per remote datacenter (SiteTimem) indicating the lat-
est update operation locally applied from each of the
remote datacenters. When rm receives a remote up-
date u j coming from datacenter k, it simply adds it to
its corresponding queue. Periodically, rm triggers the
CHECK PENDING function (Algorithm 5 lines 4 and 18).
This function ensures, by means of the tail recursive
FLUSH function, that no pending operation is left unexe-
cuted. Two conditions have to be satisfied before sending
an update u j to the local partitions: (i) all previously re-
ceived updates coming from k have already been applied
locally; and (ii) u j dependencies, which are subsumed
in u j.vts, are visible locally. Both conditions are triv-
ially checked by relying on the information subsumed
in Queuem and SiteTimem. When a pending operation

88 2017 USENIX Annual Technical Conference USENIX Association

u j originating at k is applied, both Queuem[k] and Site-
Timem[k] are updated consequently.

5 Optimizations

We propose a set of optimizations that aim at enabling
Eunomia to handle even heavier loads.

Communication Patterns. Eunomia constantly receives
operations and heartbeats from partitions. This is an
all-to-one communication schema and, if the number of
partitions is large, it may not scale in practice. In or-
der to overcome this problem and efficiently manage a
large number of partitions, two simple techniques have
been used: (i) build a propagation tree among partition
servers; and (ii) batch operations at partitions, and propa-
gate them to Eunomia only periodically. Both techniques
are able to reduce the number of messages received by
Eunomia per unit of time at the cost of a slight increase
in the stabilization time.

Separation of Data and Metadata. In the protocols de-
scribed before, partitions send updates (including the up-
date value) to the Eunomia service, which is responsible
for eventually propagating them to remote datacenters.
This can limit the maximum load that Eunomia can han-
dle and become a bottleneck due to the potentially large
amount of data that has to be handled. In order to over-
come this limitation, we decouple data from metadata.

In our prototype, for each update operation, partitions
generate a unique update identifier (u.id), composed of
the local entry of the update vector timestamp (u.vts[m])
and the object identifier (Key). We avoid sending the
value of the update to Eunomia. Instead, partitions only
send the unique identifier u.id together with the parti-
tion id (pm

n). Eunomia is then only responsible for han-
dling and propagating these lightweight identifiers, while
the partitions itself are responsible for propagating (with
no order delivery constraints) the update values together
with u.id to its sibling partitions in other datacenters. A
receiver rm proceeds as before, but a partition pm

n can
only install the remote operation once it has received
both the data and the metadata. This technique slightly
increases the computation overhead at partitions, but it
allows Eunomia to handle a significantly heavier load in-
dependently of update payloads.

6 Implementation

The Eunomia service is approximately 200 lines of C++
code2. We integrated it with a version of Riak KV [6],
a very popular [3] weakly consistent datastore used by

2Available at https://github.com/chathurilanchana/

C-Stabilizer/tree/master/src

many companies offering cloud-based services includ-
ing Uber [2], bet365 [2] and Rovio [7]. Its integration
consisted of 100 lines of Erlang code. We expect that in-
tegrating Eunomia into other popular NoSQL datastores
such as Cassandra [32] would require a comparable ef-
fort as these datastores are architecturally very similar.

Since Riak KV is implemented in Erlang, we first
attempted to build Eunomia using the Erlang/OTP
framework, but unfortunately we reached a bottleneck in
our early experiments. Note that for Eunomia to work,
we need to store a potentially large number of updates,
coming from all logical partitions composing a data-
center, and periodically traverse them in timestamp or-
der when a new stable time is computed. Inserting and
traversing this (ordered) set of updates was limiting the
maximum load that Eunomia could handle, as accessing
an item in a list using the built-in Erlang data type re-
quires linear time with the number of elements in the list.
The C++ version does not suffer from these limitations.

At its core, Eunomia is uses a red-black tree [28], a
self-balancing binary search tree optimized for insertions
and deletions, which guarantees logarithmic search, in-
sert and delete cost, and linear in-order traversal cost,
a critical operation for Eunomia. In our case, the red-
black tree turned out to be more efficient than other self-
balancing binary search trees such as AVL trees [8].

Furthermore, in order to fully explore the capaci-
ties of Eunomia, we have integrated Eunomia with a
causally consistent geo-replicated datastore implement-
ing the protocol presented in §3 and §4. Our proto-
type, namely EunomiaKV3, is built as a variant of Riak
KV [6], and includes the optimizations discussed in §5.
Since the open source version of Riak KV does not sup-
port replication across Riak KV clusters, we have also
augmented it with geo-replication support.

7 Evaluation

Our main goal with the evaluation is to show that Euno-
mia does not suffer from the limitations of the competing
approaches. Therefore, we compare Eunomia both with
approaches based on sequencers and based on global sta-
bilization. We recall that the main disadvantage of se-
quencers is to throttle throughput, because they operate
in the critical path of local clients. Therefore, we aim
at showing that Eunomia does not compromise the intra-
datacenter concurrency and can reach higher throughput
that sequencer-based approaches. Conversely, the ex-
pensiveness of the global stabilization approach forces
designers to favour either throughput or remote update
visibility latencies. Thus, we also aim at showing that

3Available at https://github.com/chathurilanchana/riak_
kv/tree/causal-dev-multidc-nostat-nostraggler

USENIX Association 2017 USENIX Annual Technical Conference 89

https://github.com/chathurilanchana/C-Stabilizer/tree/master/src
https://github.com/chathurilanchana/C-Stabilizer/tree/master/src
https://github.com/chathurilanchana/riak_kv/tree/causal-dev-multidc-nostat-nostraggler
https://github.com/chathurilanchana/riak_kv/tree/causal-dev-multidc-nostat-nostraggler

Eunomia optimizes both.

Experimental Setup. The experimental test-bed used is
a private cloud composed by a set of virtual machines
deployed over 20 physical machines (8 cores and 40 GB
of RAM) connected via a Gigabit switch. Each VM,
which runs Ubuntu 14.04, and is equipped with 2 (vir-
tual) cores, 10GB disk and 9GB of RAM memory; is al-
located in a different physical machine. Before running
each experiment, physical clocks are synchronized using
the NTP protocol [5] through a near NTP server.

Workload Generator. Each client VM runs its own in-
stance of a custom version of Basho Bench [1], a bench-
marking tool. For each experiment, we deploy as many
client instances as possible without overloading the sys-
tem. Latencies across datacenters are emulated using
netem [4], a Linux network emulator tool. The values
used in operations are a fixed binary of 100 bytes. Our
key-space is composed by 100k keys. The ratio of reads
and updates is varied depending on the experiment. Be-
fore running the experiments, we populate the database.
Each experiment runs for more than 6 minutes. In our
results, the first and the last minute of each experiment is
ignored to avoid experimental artifacts.

7.1 Eunomia Throughput

We report on a number of experiments that aim at:
(i) measuring the maximum load that our efficient im-
plementation of Eunomia can handle, varying the num-
ber of partitions connected to it; and (ii) assessing how
replication and failures affect Eunomia’s performance.

For comparison, these experiments also compute the
throughput upper-bound of a traditional sequencer. Our
implementation of a sequencer mimics traditional im-
plementations [44, 12]. In every update operation, data-
center partitions synchronously request a monotonically
increasing number to the sequencer before returning to
the client. We have also implemented a fault-tolerant
version of the sequencer based on chain replication [43]:
Replicas are organized in a chain. Partitions send re-
quests to the head of the chain. Requests traverse the
chain up to the tail. When the tail receives a request, it
replies back to the partition, which returns to the client.

In order to stretch as much as possible the implementa-
tion, circumventing potential bottlenecks in the system,
we directly connect clients to Eunomia, bypassing the
data store. Thus, each client acts as a partition in a multi-
server datacenter. This allowed us to emulate very large
datacenters, with much more servers than the ones that
were at our disposal for these experiments, and overload
Eunomia in a way that would be otherwise impossible
with our testbed.

Throughput Upper-Bound. We first compare the non

 0
 50

 100
 150

 200
 250
 300

 350
 400

T
h

ro
u
g
h
p
u

t
(K

o
p
s
/s

e
c
)

Eunomia 15
Eunomia 30
Eunomia 45
Eunomia 60
Eunomia 75
Sequencer

Figure 2: Maximum throughput achieved by Eunomia and an
implementation of a sequencer. We vary the number of parti-
tions that propagate operations to Eunomia.

fault-tolerant version of the Eunomia against a non fault-
tolerant implementation of a sequencer. In these exper-
iments, partitions batch updates and only send them to
Eunomia after 1ms.

Figure 2 plots the maximum throughput achieved by
both services. As results show, Eunomia maximum
throughput is reached when having 60 partitions issuing
operations eagerly (with zero waiting time between op-
erations). We observe that Eunomia is able to handle
almost an order of magnitude more operations per sec-
ond than a sequencer (more precisely, 7.7 times more
operations, exceeding 370kops while the sequencer is
saturated at 48kops). Considering that according to our
experiments, a single machine in a Riak cluster is able
to handle approximately 3kops per second, results con-
firm that sequencers limit intra-datacenter concurrency
and can easily become a bottleneck for medium size clus-
ters (i.e, for clusters above 150 machines, the sequencer
would be the limiting factor of system performance),
even assuming a read dominant (9:1) workload, a com-
mon workload for internet-based services. Nevertheless,
under the same workload assumptions, more than a thou-
sand machines could be used before saturating Eunomia.

Another advantage of Eunomia in comparison to se-
quencers is that batching is not in client’s critical path.
Thus, Eunomia’s throughput can be further stretched by
increasing the batching time (while slightly increasing
the remote update visibility latency). Such stretching
cannot be easily achieved with sequencers, as any at-
tempt to batch requests at the sequencer blocks clients.

A final conclusion can be drawn from this experiment:
Eunomia maximum capacity does not significantly varies
with the number of partitions. Although we hit the max-
imum load with 60 partitions, we run an extra experi-
ment increasing the number to 75 to see if this nega-
tively impacts Eunomia’s performance and we observed
a very similar throughput. The reason is that the bottle-
neck of our Eunomia implementation is the propagation
to other geo-locations rather than the handling of oper-
ations. This confirms that the use of a red-black self-
balancing search tree was an appropriate design choice.

Fault-Tolerance Overhead. In the following experi-
ments we measure the overhead introduced by the fault-
tolerant version of Eunomia. Figure 3 compares the max-
imum throughput achievable by Eunomia when increas-

90 2017 USENIX Annual Technical Conference USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

N
o

rm
a
liz

e
d
 t

h
ro

u
g
h
p

u
t

Eunomia Non-FT
Eunomia 1-FT
Eunomia 2-FT
Eunomia 3-FT

Sequencer Non-FT
Sequencer 3-FT

Figure 3: Maximum throughput achieved by a fault-tolerant
version of Eunomia and sequencers. Non-FT denotes non fault-
tolerant versions while 1-, 2-, and 3-FT denote fault-tolerant
versions with 1, 2, and 3 replicas

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 100 200 300 400 500 600 700N
o
rm

a
liz

e
d
 t
h
ro

u
g

h
p
u
t

Time (seconds)

Non-FT
3-FT
2-FT
1-FT

Figure 4: Impact of failures in Eunomia.

ing the number of replicas up to three. For complete-
ness, the plot also includes the throughput for a non fault-
tolerant sequencer and its fault-tolerant version with a
chain of three replicas. We normalized the throughput
against the non fault-tolerant version of Eunomia. As
results show, the fault-tolerant version of Eunomia only
adds a small overhead (roughly 9% penalty) indepen-
dently on the number of replicas. We expect this over-
head to increase as the number of replicas increases, but
we consider three replicas to be a realistic number. On
the other hand, adding fault-tolerance to the sequencer
version adds a penalty of almost 33%, thus being more
expensive proportionally. The reason for this difference
is that Eunomia replicas do not need to coordinate as
their results are independent of relative order of inputs,
while sequencer replicas need to coordinate to avoid pro-
viding inconsistent sequence numbers.

Impact of Failures. Finally, we experiment injecting
failures into Eunomia. Figure 4 plots the results nor-
malized against the non fault-tolerant Eunomia (Non-FT
line). We compare Eunomia with one, two, and three
replicas. As the figure shows, at the beginning of the
experiment, all three versions produce similar through-
put (confirming Figure 3 results). After 160 seconds, we
crash one replica. As expected, the throughput of 1-FT
drops to zero since no more replicas are available. The
rest of the versions (2-FT and 3-FT), after a short pe-
riod of fluctuation, slightly increase their throughput up
to 95% of the Non-FT version throughput. Finally, after
210 more seconds (at 470), we crash a second replica.
Again, the 2-FT as expected drops its throughput to zero.
The 3-FT version, this time almost without fluctuations,
is capable of achieving the maximum throughput in few
seconds. These results demonstrate that failures have
negligible impact in Eunomia. Note that sometimes the
multi-replica version go beyond the Non-FT line because
the Non-FT line is drawn by computing the average.

7.2 Experiments with Geo-Replication

We now report on a set of experiments offering evidence
that a causally consistent geo-replicated datastore built
using Eunomia is capable of providing higher throughput
and better quality-of-service than previous solutions that
avoid the use of local sequencers.

For this purpose, we have implemented Gen-
tleRain [24] and a variation of it that uses vector clocks
instead of a single scalar to enforce causal consistency
across geo-locations. The latter resembles the causally
consistency protocol implemented by Cure [10]. Both
approaches are sequencer-free that rely on a global stabi-
lization procedure in order to apply operations in remote
locations consistently with causality. For this, sibling
partitions across datacenters have to periodically send
heartbeats, and each partition within a datacenter has to
periodically compute its local-datacenter stable time. In
our experiments, we set the time interval of this events
to 10ms and 5ms respectively unless otherwise specified.
These values are in consonance to the ones used by the
authors of these works. For a fair comparison, both ap-
proaches are implemented using the EunomiaKV’s code-
base and thus integrated with Riak KV.

In most of our experiments, we deploy 3 datacenters,
each of them composed of 8 logical partitions balanced
across 3 servers. The emulated round-trip-times across
datacenters are 80ms between dc1 and both dc2 and dc3,
and 160ms between dc2 and dc3. These latencies are ap-
proximately the round-trip-times between Virginia, Ore-
gon and Ireland regions of Amazon EC2.

7.2.1 Throughput

In the following experiments, we measure the through-
put provided by EunomiaKV, GentleRain, Cure, and an
eventually consistent multi-cluster version of Riak KV.
Note that the latter does not enforce causality, and thus
partitions install remote updates as soon as they are re-
ceived. Therefore, the comparison of EunomiaKV with
Riak KV allows to assess the overhead that enforcing
causal consistency adds when using our approach. As
discussed below, this overhead is very small.

We experiment with both uniform and power-law key
distributions, denoted with U and P respectively in Fig-
ure 5. For each of them, we vary the read:write ratio
(99:1, 90:10, 75:25 and 50:50). These ratios are rep-
resentative of real large internet-based services work-
loads. As shown by Figure 5, the throughput of all solu-
tions decreases as we increase the percentage of updates.
Nevertheless, EunomiaKV always provides a compa-
rable throughput to eventual consistency. Precisely,
on average, EunomiaKV only drops 4.7% of through-
put, being extremely close in read intensive workloads
(1% drop). Differently, GentleRain and Cure are al-

USENIX Association 2017 USENIX Annual Technical Conference 91

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

50:50 U 75:25 U 90:10 U 99:1 U 50:50 P 75:25 P 90:10 P 99:1 P

T
h

ro
u
g
h
p

u
t
(o

p
s
/s

e
c
)

Eventual
EunomiaKV

GentleRain
Cure

Figure 5: Throughput comparison between EunomiaKV and
state-of-the-art sequencer-free solutions.

ways significantly below both eventual consistency (and
EunomiaKV). This is due to the cost of the global stabi-
lization procedure. Note that the throughput difference
between GentleRain and Cure is caused by the overhead
introduced by the metadata enrichment procedure of the
latter (as discussed in §4). Based on our experiments, it is
possible to conclude that the absolute number of updates
per unit of time is the factor that has the largest impact in
EunomiaKV (rather than key contention).

7.2.2 Remote Update Visibility

To compare the quality-of-service that can be provided
by EunomiaKV, GentleRain, and Cure, we measure re-
mote update visibility latencies. In EunomiaKV, we
measure the time interval between the data arrival and the
instant in which the update is executed at the responsible
partition. Note that, for an update to be applied, a data-
center needs to have access to the metadata (in our case,
provided by Eunomia) and check that all of its causal de-
pendencies have also been previously applied locally. In
our implementation, partitions ship updates immediately
to remote datacenters. Therefore, we have observed that
updates are always locally available to be applied by the
time metadata indicates that its causal dependencies are
already satisfied locally. Although other strategies could
be used to ship the payload of the updates, this has a cru-
cial advantage for the evaluation of Eunomia: under this
deployment the update visibility latency is exclusively
influenced by the performance of the metadata manage-
ment strategy, including the stabilization delay incurred
at the originating datacenter.

On the other hand, for GentleRain and Cure, we mea-
sure the time interval between the arrival of the remote
operation to the partition and when the global stabiliza-
tion procedure allows its visibility. Note that all values
presented in the figures already factor-out the network
latencies among datacenters (which are the same for all
protocols); thus numbers capture only the artificial arti-
facts inherent to the different approaches.

Figure 6 (left plot) shows the cumulative distribution
of the latency before updates originating at dc1 become
visible at dc2. We observe that EunomiaKV offers, by
far, the best remote update visibility latency. In fact, for
almost 95% of remote updates, EunomiaKV only adds
15ms extra delay. On the other hand, with GentleRain

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

C
D

F

Remote update visibility (milliseconds)

GentleRain Cure

 0 20 40 60 80 100 120

EunomiaKV

Figure 6: Left: from dc1 to dc2 (40ms trip-time). Right: from
dc2 to dc3 (80ms trip-time).

and Cure the extra delay goes up to 80ms and 45ms re-
spectively for the same amount of updates. Unsurpris-
ingly, GentleRain extra delay is larger than Cure’s be-
cause of the amount of false dependencies added when
aggregating causal dependencies into a single scalar. In
fact, GentleRain is not capable of making updates visible
without adding 40ms of extra delay. Again, the scalar is
the cause of this phenomenon since the minimum delay
will not depend on the originator of the update but on the
travel time to the furthest datacenter. This confirms the
rationale presented in the discussion of §4.

Although both Cure and EunomiaKV rely on vector
clocks for tracking causal dependencies, EunomiaKV is
able to offer better remote update latencies because par-
titions are less overloaded since checking dependencies
in EunomiaKV is trivial due to Eunomia. Note that in
EunomiaKV, even 20% of remote updates are made vis-
ible without any extra delay, and thus reaching the opti-
mal remote update visibility latency.

Finally, in order to isolate the impact of GentleRain’s
global stabilization procedure independently of the meta-
data size, we measure the remote update visibility la-
tency at dc3 for updates originating at dc2. As one can
observe in Figure 6 (right plot), GentleRain exhibits bet-
ter remote update latencies than Cure but still worse than
EunomiaKV. In this setting, vector clocks does not help
reducing latencies. Thus, the gap between Cure and Gen-
tleRain is exclusively due to the storage and computa-
tional overhead caused by vector clocks. Furthermore,
the fact that EunomiaKV still provides better latencies
is, once again, an empirical evidence that global stabi-
lization procedures are expensive in practice.

7.2.3 Impact of Stragglers

Finally, we assess the impact of stragglers in
EunomiaKV and its competitors. Due to lack of
space, and given that they provide no significant insight,
we omit experimental results for inter-dc stragglers.

In these experiments, we use three datacenters (same
setup of previous experiments) that run under optimal
conditions during 1 minute. Then, during the second
minute, we introduce a straggler. This is a partition
of dc3 that communicates abnormally with its local se-
quencer or Eunomia service. In Eunomia, instead of
communicating every millisecond (as every other parti-

92 2017 USENIX Annual Technical Conference USENIX Association

 0

 50

 100

 150

 200

 0 30 60 90 120 150 180

C
lie

n
t-

o
b

s
e

rv
e

d
 l
a

te
n

c
y
 (

m
s
)

Runtime (seconds)

Sequencer-based Stabilization-based

 0

 50

 100

 150

 200

 0 30 60 90 120 150 180

R
e

m
o

te
 u

p
d

a
te

 v
is

ib
ili

ty
 (

m
s
)

Figure 7: Client-observed latency (measured as the averaged
latency observed by clients of the straggling datacenter dc3) vs.
remote update visibility latency (measured at dc2 for updates
originating at dc3) tradeoff disclosed by intra-dc stragglers (one
second straggling interval).

tion), the straggler contacts Eunomia less frequently. In
the sequencer-based system, a similar delay (on average)
is introduced when the straggler partition contacts the se-
quencer. We have experimented with three straggling in-
tervals: 10, 100 and 1000ms, all exhibiting similar pat-
terns. Figure 7 shows results for a 1 second straggling
interval, as it is the most striking result. After the strag-
gling period, the partition gets healed.

As expected (§3.2), intra-dc stragglers do not affect
the remote visibility of updates in sequencer-based ap-
proaches but clients notice a significant increase in la-
tency. In contrast, stabilization-based approaches are ca-
pable of shielding clients from stragglers and the cost of
increasing the remote visibility of updates. Note that the
stabilization-based results were obtained with Eunomia,
but GentleRain and Cure exhibit a similar behaviour.

8 Related work

The support for causal consistency can already be found
in early pioneer works in distributed systems, such as
Bayou [38, 42], Lazy Replication [31], and the ISIS [18]
toolkit. Recently, and tackling scalability challenges
close to ours, multiple weakly consistent geo-replicated
data stores implementing causal consistency across geo-
locations have been proposed. We group them into two
categories: (i) sequencer-based solutions [12, 44, 21];
(ii) and sequencer-free solutions [35, 22, 36, 24, 10].

Sequencer-based. These solutions rely on a sequencer
per datacenter to enforce causal consistency. The se-
quencer totally orders local updates, in a causally con-
sistent manner, and propagate them to remote locations.
This design centralizes, thus simplifying, the implemen-
tation of causal consistency. Nevertheless, the use of
synchronous sequencers limits the intra-datacenter con-
currency, as demonstrated by our experiments. Swift-
Cloud [44] and ChainReaction [12] rely on a vector clock
with an entry per datacenter to track causal dependen-
cies, similarly to EunomiaKV. Practi [21], on the con-
trary, uses a single scalar and a sophisticated mechanism
of invalidations. Similar to EunomiaKV, Practi separates
the propagation of data and metadata. This and the con-
cept of imprecise invalidations optimize Practi for partial

replication, a setting that has not yet been explored in this
work. We have shown that sequencers may get easily sat-
urated for medium-size clusters, while Eunomia is able
to handle much heavier loads (up to 7.7 times more).

Sequencer-free. There have been two major trends in
this category: (i) solutions that rely on explicit depen-
dency check messages [35, 22, 36]; and (ii) solutions
based on global stabilization procedures [24, 10].

COPS [35] and Eiger [36] finely track dependencies
for each individual data item allowing full concurrency
within a datacenter. Updates are tagged with a list of
dependencies. When a datacenter receives a remote up-
date, it needs to explicitly check each dependency. This
process is expensive and limits systems performance [24]
due to the large amount of metadata managed. Orbe [22]
aggregates dependencies belonging to the same logical
partition into a scalar, only partially solving the problem.

Alternatives that use less metadata rely on a back-
ground global stabilization procedure [24, 10]. This pro-
cedure equips partitions with sufficient information to
safely execute remote updates consistently with causal-
ity. Thus, these solutions manage to aggregate the meta-
data as sequencer-based solutions without relying on an
actual sequencer. As our extensive evaluation has empir-
ically demonstrated, global stabilization procedures are
expensive in practice, forcing designers to favour either
throughput [24] or remote visibility latency [10]. Our
evaluation shows that EunomiaKV does not force de-
signers to sacrifice any of the two, exhibiting signifi-
cantly better throughput and remote visibility latencies
than Cure and GentleRain respectively.

9 Conclusions

We have presented a novel approach for building causally
consistent geo-replicated data stores. Our solution re-
lies on Eunomia, a new service that abstracts the inter-
nal complexity of datacenters, a key feature to reduce
the cost of causal consistency. Unlike sequencers, Eu-
nomia does not limit the intra-datacenter concurrency
by performing an unobtrusive ordering of updates. Our
evaluation shows that Eunomia can handle very heavy
loads without becoming a performance bottleneck (up to
7.7 times more operations per second than sequencers).
Experiments also show that EunomiaKV (a causally
consistent geo-replicated protocol that integrates Euno-
mia), unlike previous systems, permits optimizing both
throughput and remote update visibility latency simul-
taneously. In fact, results have shown that EunomiaKV
only adds a slight throughput overhead (4.7% on aver-
age) and exceptionally small artificial remote visibility
delays when compared to an eventually consistent data
store that makes no attempt to enforce causality.

USENIX Association 2017 USENIX Annual Technical Conference 93

Acknowledgments

We would like to thank our shepherd Chunqiang (CQ)
Tang, Kuganesan Srijeyanthan, and anonymous review-
ers for their comments and suggestions. This research
has been supported in part by the Horizon 2020 project
732 505 LightKone, by the Erasmus Mundus Doctorate
Programme under Grant Agreement No. 2012-0030, by
the European Master in Distributed Computing (EMDC),
and by FCT through projects PTDC/ EEI-SCR/ 1741/
2014 (Abyss) and UID/ CEC/ 50021/ 2013.

References
[1] Basho Bench.

http://github.com/basho/basho_bench.

[2] bet365.
http://www.bet365.com/.

[3] Customers of Riak KV.
http://basho.com/about/customers/.

[4] Netem.
http://www.linuxfoundation.org/collaborate/

workgroups/networking/netem.

[5] The network time protocol.
http://www.ntp.org.

[6] Riak KV.
https://github.com/basho/riak_kv.

[7] Rovio.
http://www.rovio.com/.

[8] ADELSON-VELSKII, M., AND LANDIS, E. An algorithm for the
organization of information. Tech. rep., DTIC Document, 1963.

[9] AHAMAD, M., NEIGER, G., BURNS, J. E., KOHLI, P., AND
HUTTO, P. W. Causal memory: definitions, implementation, and
programming. Distributed Computing 9, 1 (1995), 37–49.

[10] AKKOORATH, D., TOMSIC, A., BRAVO, M., LI, Z., CRAIN,
T., BIENIUSA, A., PREGUIÇA, N., AND SHAPIRO, M. Cure:
Strong semantics meets high availability and low latency. In Pro-
ceedings of the International Conference on Distributed Comput-
ing Systems (Osaka, Japan, 2016).

[11] AL-FARES, M., LOUKISSAS, A., AND VAHDAT, A. A scalable,
commodity data center network architecture. In Proceedings of
the ACM SIGCOMM 2008 Conference on Data Communication
(Seattle, WA, USA, 2008), pp. 63–74.

[12] ALMEIDA, S., LEITÃO, J. A., AND RODRIGUES, L. Chainreac-
tion: A causal+ consistent datastore based on chain replication. In
Proceedings of the 8th ACM European Conference on Computer
Systems (Prague, Czech Republic, 2013).

[13] ALSBERG, P. A., AND DAY, J. D. A principle for resilient shar-
ing of distributed resources. In Proceedings of the 2nd Interna-
tional Conference on Software Engineering (San Francisco, CA,
USA, 1976).

[14] ATTIYA, H., ELLEN, F., AND MORRISON, A. Limitations of
highly-available eventually-consistent data stores. In Proceedings
of the ACM Symposium on Principles of Distributed Computing
(Donostia-San Sebastián, Spain, 2015).

[15] BAILIS, P., DAVIDSON, A., FEKETE, A., GHODSI, A.,
HELLERSTEIN, J. M., AND STOICA, I. Highly available trans-
actions: Virtues and limitations. Proc. VLDB Endow. 7, 3 (Nov.
2013), 181–192.

[16] BAILIS, P., FEKETE, A., GHODSI, A., HELLERSTEIN, J. M.,
AND STOICA, I. The potential dangers of causal consistency and
an explicit solution. In Proceedings of the ACM Symposium on
Cloud Computing (San Jose, California, 2012).

[17] BALEGAS, V., DUARTE, S., FERREIRA, C., RODRIGUES, R.,
PREGUIÇA, N., NAJAFZADEH, M., AND SHAPIRO, M. Putting
consistency back into eventual consistency. In Proceedings of
the 10th ACM European Conference on Computer Systems (Bor-
deaux, France, 2015).

[18] BIRMAN, K., SCHIPER, A., AND STEPHENSON, P. Lightweight
causal and atomic group multicast. ACM Trans. Comput. Syst. 9,
3 (Aug. 1991).

[19] BRAVO, M., DIEGUES, N., ZENG, J., ROMANO, P., AND RO-
DRIGUES, L. On the use of clocks to enforce consistency in the
cloud. IEEE Data Eng. Bull 38, 1 (2015), 18–31.

[20] CHANDRA, T., HADZILACOS, V., AND TOUEG, S. The weakest
failure detector for solving consensus. J. ACM 43, 4 (July 1996),
685–722.

[21] DAHLIN, M., GAO, L., NAYATE, A., VENKATARAMANA, A.,
YALAGANDULA, P., AND ZHENG, J. Practi replication. In Pro-
ceedings of the 3rd Symposium on Networked Systems Design and
Implementation (San Jose, CA, USA, 2006).

[22] DU, J., ELNIKETY, S., ROY, A., AND ZWAENEPOEL, W. Orbe:
Scalable causal consistency using dependency matrices and phys-
ical clocks. In Proceedings of the ACM Symposium on Cloud
Computing (Santa Clara, CA, USA, 2013).

[23] DU, J., ELNIKETY, S., AND ZWAENEPOEL, W. Clock-si: Snap-
shot isolation for partitioned data stores using loosely synchro-
nized clocks. In Proceedings of the 32nd IEEE Symposium on
Reliable Distributed Systems (Braga, Portugal, 2013).

[24] DU, J., IORGULESCU, C., ROY, A., AND ZWAENEPOEL, W.
Gentlerain: Cheap and scalable causal consistency with physical
clocks. In Proceedings of the ACM Symposium on Cloud Com-
puting (Seattle, WA, USA, 2014).

[25] DU, J., SCIASCIA, D., ELNIKETY, S., ZWAENEPOEL, W., AND
PEDONE, F. Clock-RSM: Low-latency inter-datacenter state ma-
chine replication using loosely synchronized physical clocks. In
Proceedings of the 44th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (Atlanta, Georgia
USA, 2014).

[26] GREENBERG, A., HAMILTON, J. R., JAIN, N., KANDULA, S.,
KIM, C., LAHIRI, P., MALTZ, D. A., PATEL, P., AND SEN-
GUPTA, S. Vl2: A scalable and flexible data center network. In
Proceedings of the ACM SIGCOMM 2009 Conference on Data
Communication (Barcelona, Spain, 2009), pp. 51–62.

[27] GUERRAOUI, R., PAVLOVIC, M., AND SEREDINSCHI, D.-A.
Trade-offs in replicated systems. Data Engineering (2016), 14.

[28] GUIBAS, L. J., AND SEDGEWICK, R. A dichromatic framework
for balanced trees. In Proceedings of the 54th IEEE Annual Sym-
posium on Foundations of Computer Science (Ann Arbor, Michi-
gan, USA, 1978), pp. 8–21.

[29] GUNAWARDHANA, C., BRAVO, M., AND RODRIGUES, L.
Unobtrusive deferred update stabilization for efficient geo-
replication. arXiv:1702.01786 [cs.DC] (Feb. 2017).

[30] KULKARNI, S. S., DEMIRBAS, M., MADAPPA, D., AVVA, B.,
AND LEONE, M. Logical physical clocks. In Proceedings of
the 18th International Conference on Principles of Distributed
Systems (Cortina d’Ampezzo, Italy, 2014).

[31] LADIN, R., LISKOV, B., SHRIRA, L., AND GHEMAWAT, S. Pro-
viding high availability using lazy replication. ACM Trans. Com-
put. Syst. (1992).

94 2017 USENIX Annual Technical Conference USENIX Association

http://github.com/basho/basho_bench
http://www.bet365.com/
http://basho.com/about/customers/
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.ntp.org
https://github.com/basho/riak_kv
http://www.rovio.com/

[32] LAKSHMAN, A., AND MALIK, P. Cassandra: A decentralized
structured storage system. SIGOPS Oper. Syst. Rev. 44, 2 (Apr.
2010), 35–40.

[33] LAMPORT, L. The part-time parliament. ACM Trans. Comput.
Syst. 16, 2 (May 1998), 133–169.

[34] LI, C., PORTO, D., CLEMENT, A., GEHRKE, J., PREGUIÇA,
N., AND RODRIGUES, R. Making geo-replicated systems fast as
possible, consistent when necessary. In Proceedings of the 10th
USENIX Conference on Operating Systems Design and Imple-
mentation (Hollywood, CA, USA, 2012), pp. 265–278.

[35] LLOYD, W., FREEDMAN, M. J., KAMINSKY, M., AND ANDER-
SEN, D. G. Don’t settle for eventual: Scalable causal consistency
for wide-area storage with cops. In Proceedings of the 23rd ACM
Symposium on Operating Systems Principles (Cascais, Portugal,
2011).

[36] LLOYD, W., FREEDMAN, M. J., KAMINSKY, M., AND ANDER-
SEN, D. G. Stronger semantics for low-latency geo-replicated
storage. In Proceedings of the 10th Symposium on Networked
Systems Design and Implementation (Lombard, IL, USA, 2013).

[37] MAHAJAN, P., ALVISI, L., AND DAHLIN, M. Consistency,
availability, and convergence. Tech. rep., University of Texas at
Austin, 2011.

[38] PETERSEN, K., SPREITZER, M. J., TERRY, D. B., THEIMER,
M. M., AND DEMERS, A. J. Flexible update propagation
for weakly consistent replication. In Proceedings of the 16th
ACM Symposium on Operating Systems Principles (Saint Malo,
France, 1997).

[39] SCHNEIDER, F. B. Implementing fault-tolerant services using
the state machine approach: A tutorial. ACM Comput. Surv. 22,
4 (Dec. 1990), 299–319.

[40] SCHURMAN, E., AND BRUTLAG, J. The user and business im-
pact of server delays, additional bytes, and HTTP chunking in
web search. In Velocity Web Performance and Operations Con-
ference (San Jose, CA, USA, 2009).

[41] SOVRAN, Y., POWER, R., AGUILERA, M. K., AND LI, J.
Transactional storage for geo-replicated systems. In Proceedings
of the 23rd ACM Symposium on Operating Systems Principles
(Cascais, Portugal, 2011).

[42] TERRY, D. B., DEMERS, A. J., PETERSEN, K., SPREITZER,
M. J., THEIMER, M. M., AND WELCH, B. B. Session guar-
antees for weakly consistent replicated data. In Proceedings of
the 3rdInternational Conference on Parallel and Distributed In-
formation Systems (Austin, TX, USA, 1994).

[43] VAN RENESSE, R., AND SCHNEIDER, F. B. Chain replication
for supporting high throughput and availability. In Proceedings of
the 6th symposium on Operating systems design and implemen-
tation (San Francisco, CA, USA, 2004).

[44] ZAWIRSKI, M., PREGUIÇA, N., DUARTE, S., BIENIUSA, A.,
BALEGAS, V., AND SHAPIRO, M. Write fast, read in the past:
Causal consistency for client-side applications. In Proceedings of
the annual ACM/IFIP/USENIX Middleware conference (Vancou-
ver, Canada, 2015).

USENIX Association 2017 USENIX Annual Technical Conference 95

