
This paper is included in the Proceedings of the 
2017 USENIX Annual Technical Conference (USENIX ATC ’17).

July 12–14, 2017 • Santa Clara, CA, USA

ISBN 978-1-931971-38-6

Open access to the Proceedings of the 
2017 USENIX Annual Technical Conference 

is sponsored by USENIX.

Soft Updates Made Simple and Fast  
on Non-volatile Memory

Mingkai Dong and Haibo Chen, Institute of Parallel and Distributed Systems,  
Shanghai Jiao Tong University

https://www.usenix.org/conference/atc17/technical-sessions/presentation/dong



Soft Updates Made Simple and Fast

on Non-volatile Memory
Mingkai Dong, Haibo Chen

Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

Abstract

Fast, byte-addressable NVM promises near cache la-

tency and near memory bus throughput for file system

operations. However, unanticipated cache line eviction

may lead to disordered metadata update and thus exist-

ing NVM file systems (NVMFS) use synchronous cache

flushes to ensure consistency, which extends critical path

latency.

In this paper, we revisit soft updates, an intriguing

idea that eliminates most synchronous metadata updates

through delayed writes and dependency tracking, in the

context of NVMFS. We show that on one hand byte-

addressability of NVM significantly simplifies depen-

dency tracking and enforcement by allowing better di-

rectory organization and closely matching the per-pointer

dependency tracking of soft updates. On the other hand,

per-cache-line failure atomicity of NVM cannot ensure

the correctness of soft updates, which relies on block

write atomicity; page cache, which is necessary for dual

views in soft updates, becomes inefficient due to double

writes and duplicated metadata. To guarantee the correct-

ness and consistency without synchronous cache flushes

and page cache, we propose pointer-based dual views,

which shares most data structures but uses different point-

ers in different views, to allow delayed persistency and

eliminate file system checking after a crash. In this

way, our system, namely SoupFS1, significantly short-

ens the critical path latency by delaying almost all syn-

chronous cache flushes. We have implemented SoupFS as

a POSIX-compliant file system for Linux and evaluated

it against state-of-the-art NVMFS like PMFS and NOVA.

Performance results show that SoupFS can have notably

lower latency and modestly higher throughput compared

to existing NVMFS.

1. Introduction

Soft updates, which uses delayed writes for metadata up-

dates, tracks per-pointer dependencies among updates in

memory, and enforces such dependencies during write

back to disk, is an intriguing idea that promises metadata

update latency and throughput close to memory-only file

systems [10, 11, 23, 35]. However, soft updates is also

known for its high complexity, especially the complex

dependency tracking as well as enforcement (like roll-

1 Short for Soft updates inspired File System

back/forward to resolve cyclic dependencies, which also

lead to double writes) [1, 3, 9, 13, 22]. A known file sys-

tem developer Valerie Aurora argued that “soft updates

are, simply put, too hard to understand, implement, and

maintain to be part of the mainstream of file system de-

velopment” [1].

In this paper, we revisit soft updates for NVM and ar-

gue that two main sources of the complexity are: 1) the

mismatch between per-pointer based dependency track-

ing and the block-based interface of traditional disks; 2)

excessively delayed writes that complicate dependency

tracking. We then show that soft updates can be made

simple by taking advantage of the byte-addressability

and low latency offered by NVM. Byte-addressability

matches the per-pointer based dependency tracking by

eliminating false sharing among different data struc-

tures and avoiding cyclic dependencies and complex roll-

back/forward. Byte-addressability also allows the use of

more efficient data structures like hash tables in the di-

rectory organization to further simplify the dependen-

cies of file system operations. Besides, page cache and

disk scheduler can be excluded from the storage hierar-

chy because of the byte-addressability and low latency of

NVM, so that soft updates can use in-place writes with

delayed persistency to simplify the dependency track-

ing. The simplified storage hierarchy also eliminates the

gap between the page cache and the file system, mak-

ing the dependency tracking and enforcement semantic-

aware and even simpler.

However, there is still a major challenge that im-

pedes the application of soft updates to NVM. Since page

cache, the software cache layer designed for slow storage

media, is removed for performance concerns, file sys-

tem updates are directly written to CPU cache and per-

sisted to NVM later. Unlike page cache that can be pre-

cisely controlled by file systems, CPU cache is hardware-

managed such that file systems cannot control the evic-

tion of cache lines. State-of-the-art NVM file systems

(NVMFS) [8, 45], like traditional disk-based file systems,

use logging or shadow copying to ensure crash consis-

tency. Yet, instead of buffering data for explicit and peri-

odic flushing later, NVMFS has to eagerly flush critical

metadata in case of accidental eviction of such metadata

to NVM in a wrong order. This necessitates the uses of

high latency operations like clflush/clflushopt+sfence in

USENIX Association 2017 USENIX Annual Technical Conference    719



the critical path of file system related syscalls, which in-

evitably extends the critical path latency.

To overcome the consistency issue from unanticipated

cache line eviction without page cache and cache flush

operations, we review dual views, a latest view and a con-

sistent view, which is used in soft updates for file system

metadata. All metadata in the consistent view is always

persisted and consistent, while metadata in the latest view

is always up-to-date and might be volatile. Without caring

about the cache line eviction, a syscall handler operates

directly in the latest view and tracks the dependencies

of modifications. Unanticipated cache line eviction in the

latest view can never affect the persisted metadata in the

consistent view by design. Background persisters are re-

sponsible for asynchronously persisting metadata from

the latest view to the consistent view according to the

tracked dependencies. They use clflush/clflushopt+sfence

operations to enforce the update dependencies in back-

ground without affecting the syscall latency. A naive ap-

proach to providing dual views is duplicating all metadata

in the file system. Such an approach doubles the memory

usage and causes unnecessary memory copies when syn-

chronizing metadata between the latest view and the con-

sistent view. To implement dual views efficiently, we pro-

pose pointer-based dual views, in which most structures

are shared by both views and different views are observed

by following different pointers. Thanks to pointer-based

dual views, SoupFS avoids almost all synchronous cache

flushes in the critical path, and the consistent view can be

immediately used without performing file system check-

ing or recovery after crashes.

We have implemented SoupFS as a POSIX-

compliant2, NVM-based file system at the backend

of the virtual file system in Linux. Evaluations using dif-

ferent NVM configurations show that SoupFS provides

notably lower latency and modestly higher throughput

compared to state-of-the-art NVM file systems such as

PMFS and NOVA. Specifically, SoupFS achieves up to

80% latency reduction for file system related syscalls in

the micro-benchmarks and improves the throughput by

up to 89% and 50% for Filebench and Postmark.

In summary, the contributions of this paper include:

• A detailed analysis of the complexity of soft updates

and the argument that soft updates can be made simple

for NVM (§2).
• A review of the update dependencies of file systems

on NVM, a simple semantic-aware dependency track-

ing and enforcement mechanism and efficient pointer-

based dual views (§3).
• An implementation of SoupFS on Linux and an ex-

tensive evaluation (§4) that confirms the efficiency of

SoupFS.

2 SoupFS has passed the POSIX-compliant test in http://www.

tuxera.com/community/posix-test-suite/.

2. Background and Motivation

2.1 NVM and NVMFS

Emerging NVM technologies such as PCM, STT-

MRAM, Memristor, NVDIMM and Intel/Micron’s 3D

XPoint are revolutionizing the storage hierarchy by offer-

ing features like byte-addressability, non-volatility, and

close-to-DRAM speed. STT-RAM has lower latency than

DRAM but high cost, making it a promising replacement

for on-chip cache instead of DRAM replacement [47].

Other emerging NVM media like PCM or 3D XPoint

generally have higher latency especially higher write la-

tency than DRAM, which indicates that synchronous

write to NVM would cause higher latency than that to

DRAM. NVDIMM, a commercially available NVM so-

lution, generally has the same performance character-

istics with DRAM as it is essentially battery-backed

DRAM, though it is usually with 10–20X higher price

than DRAM according to a recent price quotation.

Applications

Disk/SSD FS

Page Cache

Device Mapper

Block Layer

Device Drivers

Disk/SSD

NVMFS

NVM

Memory
Bus

64 bit
load/store

SYSCALL

I/O Bus

512/4096B
Disk Cmds

(a) Storage stack

L1/L3/LLC
~1/8/40 cycles

~180 cycles ~600 cycles

Pipeline

Store 

Buffer

Caches (L1/L2/LLC)

WC Buffer

Memory Controller

Memory Bus64 bit

DRAM NVRAM

(b) CPU path

Figure 1: Storage stack and path

While new software can leverage the load/store in-

terface to access NVM directly, quite a lot of software

may continue to access persistent data in NVM through

the file system interface. Hence, there have been inten-

sive efforts in designing NVM file systems (NVMFS) [4–

6, 8, 25, 44, 45]. Figure 1(a) illustrates the storage stacks

from applications to persistent storage for disks (includ-

ing SSD) and NVM. Compared to disk file systems,

NVMFS can avoid major storage software layers like

page cache, device mapper, block layer and drivers, but

instead only relies on memory management for space

management. However, there are also several challenges

that require a redesign of file systems for NVM.

Fine-grained Failure-Atomic Updates: Although it

is claimed that memory controllers supporting Intel

DIMM will also support Asynchronous DRAM Re-

fresh [32], the failure-atomic write unit is only one cache

line size, still far less than 512-/4096-byte for disks. This

fine-grained failure atomicity prevents the use of prior

approaches (like backpointers [3]) relying on coarse-

grained failure atomicity.

720    2017 USENIX Annual Technical Conference USENIX Association

http://www.tuxera.com/community/posix-test-suite/
http://www.tuxera.com/community/posix-test-suite/


Hardware-controlled Ordering: NVMFS elevates

the level of persistency boundary from DRAM/Disk to

CPU cache/NVM. However, unlike disk-based file sys-

tems that have complete control of the order of data

flushed to disk, CPU cache is hardware-managed and

unanticipated cache line eviction may break the order-

ing enforced by sfence/mfence, which only orders on-

chip visibility of data updates across CPU cores. To

this end, prior NVMFS needs to eagerly use clflush or

clflushopt to flush data from CPU cache to the mem-

ory controller [4, 8, 25, 44, 45]. clflushopt allows asyn-

chronously flushing data compared to synchronous and

serialized feature of clflush. But the ordering of clflushopt

must be enforced by memory fences like sfence. Eagerly

flushing cache lines and persisting data would cause high

latency in the critical path, especially for NVM with

higher write latency than DRAM.

Software Efficiency: Unlike in conventional file sys-

tems where slow storage devices dominate access la-

tency, the cost of clflush and clflushopt+sfence is much

higher compared to CPU cache accesses. It becomes the

new bottleneck and must be minimized in the critical

path to approach the near-cache access speed. Besides,

the scarcity of CPU cache volume requires economizing

cache usage to provide more space for applications.

Allocation bitmaps

1 alloc

inode
3 alloc

dentry

dentryinode

directory inode

4

init

dentry

5

attach

inode

2

init

inode

6attach

dentry

(a) General

Allocation bitmaps

1

3

dentryinode

directory inode

4

5

2

6

Journaled
inode

Journaled
dentry

Journaled
bitmap

2’ 4’

1’

3’

0:cmt

7:cmp

Journal

5’
6’

Commit/Complete

(b) Journaling
Figure 2: Persistency dependency of creating a file

2.2 The Cost of Consistency

To address fine-grained atomicity and hardware-

controlled ordering, prior file systems need to order

operations carefully and use synchronous flushing to

preserve crash consistency, which leads to high latency.

Figure 2(a) illustrates the dependency to create a file,

where the dashed arrows denote the persistency ordering.

For example, the arrow from init inode to alloc inode

dictates that the initialization of the new inode must

not be persisted until its allocation information is made

persistent. Prior file systems like PMFS [8] usually use

journaling to handle this issue, which further complicates

the dependencies (as shown in Figure 2(b)) and still

requires eagerly flushing the logs. In this example, there

are around 19 persistency dependencies to be respected,

which requires around 14 clflushes. Packing multiple

journaled metadata into a single cache line can reduce

the number of clflushes, but cannot eliminate them.

2.3 Soft Updates

Soft updates [10, 11, 23, 35] is an intriguing metadata

update technique and has been implemented in FreeBSD

UFS [23]. It has the promise of mostly eliminating syn-

chronous metadata updates and providing fast crash re-

covery by instantly providing a consistent file system.

While soft updates is an intriguing and concise idea to

achieve low latency and high throughput, the block inter-

face exposed by the underlying disk complicates depen-

dency tracking and enforcement in the following ways:

Block-oriented directory organization complicates

dependencies: Like many other disk-based file systems,

soft updates treats directories as regular files organized

by direct blocks and indirect blocks. This block-oriented

directory organization simplifies the implementation of

file systems for block devices but complicates the de-

pendencies due to false sharing. For example, placing

multiple dentries in the same block allows cyclic depen-

dencies, which must be resolved by complicated roll-

back/forward. It also necessitates the additional tracking

of whether the block to store the new dentry is newly al-

located or reused, so that it can be treated differently in

the enforcement.

Delayed writes complicate dependency tracking:

Delaying disk writes of metadata updates is one key idea

of soft updates specially designed for disk-based stor-

age with high write latency. A sequence of dependent

metadata changes, which otherwise can be written syn-

chronously, is delayed with various dependency tracking

structures attached. While asynchronous disk writes im-

prove creation throughput by a factor of two compared

with synchronous writes [23], soft updates must track the

status of delayed operations to maintain ordering for in-

tegrity and security. However, the page cache usually is

unaware of the content in the page, which creates a se-

mantic gap between the page cache (where enforcement

happens) and the file system (where tracking happens).

The gap forces soft updates to involve complex structures

for status and dependency tracking, which complicates

both the critical path of synchronous system calls and the

syncer daemon that is responsible for flushing the delayed

writes.

Roll-back/forward complicates dependency en-

forcement: Soft updates tracks per-pointer metadata up-

dates to eliminate false sharing. However, during en-

forcement, as a disk block still contains many metadata

structures, there are still many cyclic dependencies at the

block level during write-back. Soft updates handles this

complexity by rolling back metadata changes that have

pending dependencies to only write consistent metadata

updates and then rolling forward the reverted metadata

changes to persist the change again. This, however, would

double the disk updates and diminish its gain over jour-

naling mechanisms [36].

USENIX Association 2017 USENIX Annual Technical Conference    721



Soft updates is considered difficult and complicated

to implement and maintain [1, 13]. By rethinking soft

updates on NVM, we find that the byte-addressability

of NVM can simplify the design of soft updates and

delayed persistency of soft updates can further boost the

performance of file systems on NVM.

3. Design and Implementation

To embrace high performance and byte-addressability of

NVM, we design SoupFS, a soft updates implementation

that is simple and fast on NVM. SoupFS redesigns the

directory organization using hash tables to simplify the

complicated dependencies caused by block-oriented di-

rectory organization. The roll-back/forward complexity

is eliminated by removing page cache, thanks to byte-

addressability of NVM. The removal of page cache also

enables a semantic-aware dependency tracking which al-

leviates the complexity caused by delayed writes.

As a result, a syscall handler simply tracks the opera-

tion type along with related pointers, and with file system

semantics in mind, background persisters can enforce the

persistency and dependencies according to the type and

pointers tracked during the syscall.

SoupFS is fast mainly because it applies delayed per-

sistency which eliminates almost all synchronous cache

flushes in the file system syscall critical path. Providing

dual views, a latest view and a consistent view, of file sys-

tem metadata is the key technique to allow delayed per-

sistency and eliminate file system checking after a crash.

However, page cache, which facilitates the implemen-

tation of dual views in soft updates, is removed in SoupFS

for performance and simplicity. To provide dual views

without page cache, we propose efficient pointer-based

dual views by specially designing its metadata structures

so that most structures are shared by both views and dif-

ferent views are observed by following different pointers.

3.1 Directory Organization

directory

inode

1

3

2

4

…

directory

hash table

“file-a”

dentrybuckets

filename 

pointer

inode 

pointer

latest 

next

consistent 

next

0x7b 6

inode

hash len filename

Figure 3: Directory and dentries in SoupFS

Directory operations are the core of many file system

syscalls. In traditional file systems, a directory is orga-

nized akin to regular files but with different registered

operations. Despite poor performance of lookups due to

linear scans, reusing the regular file structures as dentry

arrays is simple to implement and conforms to the us-

age of block devices. However, storing multiple variable-

length dentries in one block causes false sharing that al-

lows cyclic dependencies, which must be resolved by

roll-back/forward and thus significantly complicates the

dependency enforcement.

With the byte-addressability of NVM, we re-organize

directories using hash tables as shown in Figure 3. The

root of a directory points to an array of buckets, each

of which points to a list of dentries. A dentry is a fixed-

sized structure consisting of four pointers to the filename,

the inode, the latest and the consistent next dentry. The

filename is externalized to reduce fragmentation, and the

hash value and length are stored ahead of the filename for

fast comparison. Next pointers point to the next dentry in

the hash table. Two next pointers are stored since a dentry

can be in two hash tables (dual views of the directory) at

the same time. The usage of these two next pointers is

explained in §3.4.

Hash-table-based directory organization simplifies de-

pendencies in SoupFS. Finer-grained structures used in

hash tables avoid false sharing and further the roll-

back/forward in the enforcement. Also, since SoupFS

allocates a new dentry for each directory insertion, we

don’t need to track the dependency additionally. As

a result, tracking the operation type and a pointer to

the added/removed dentry is sufficient for persisting the

metadata and enforcing the dependencies for most of the

time. Update dependencies are further discussed in §3.3.

A dentry occupies 32B which is usually less than one

cache line size. In the implementation, the first few bytes

of a filename can be stored together with its correspond-

ing dentry for memory efficiency.

3.2 Content Oblivious Allocator

Some file systems like EXT4 pre-allocate dedicated space

for inodes. Dedicating space for inodes facilitates inode

management and yields good performance in disk-based

file systems. However, it fixes the number of available in-

odes and incapacitates the file system when inode area is

full even though free data blocks are abundant. Such an

issue is exacerbated significantly when more data struc-

tures are involved, such as the filename and the dentry in

SoupFS.

To address this issue, we provide a content-oblivious

allocator which treats the whole NVM space as a large

memory pool and allocates memory without knowing

what the memory is used for. The content-unawareness

of the allocator breaks the boundary between various

data structures, making the memory management more

flexible and simpler without sacrificing performance and

correctness.

We also categorize the data structures into two kinds

according to the size they use for allocation (see Table 1).

As a result, the content-oblivious allocator only needs to

manage the memory in page size (4KB) and cache line

722    2017 USENIX Annual Technical Conference USENIX Association



Table 1: Data structure sizes in SoupFS
Data Structure Size Allocation Size

inode 64B 64B

filename variable 64B

dentry 32B 64B

hash table (buckets) 4KB 4KB

B-tree node 4KB 4KB

data block 4KB 4KB

size (64B). Filenames, the only variable-length structure,

are split into multiple cache lines linked with pointers if

a single cache line is not sufficient (see Figure 4).

Metadata of the allocator is stored in the bitmap in

NVM, and in-DRAM per-CPU free-lists are used to im-

prove the performance of frequent allocations and deal-

locations. The implementation of the allocator is derived

from ssmalloc [21] and simplified according to two fixed

allocation sizes.

filename cont’d

“A-long-lo”0x3c 25

hash len filename

“ng-long-filename”

next next

Figure 4: Long filenames in SoupFS

3.3 Update Dependencies

It is seldom a single operation to finish a syscall in file

systems. Different data structures are modified in the

file system, and the orders of these modifications are

dedicatedly arranged for crash consistency. Soft updates

summaries these ordering requirements in three rules:

• C1: Never point to a structure before it has been ini-

tialized, e.g., an inode must be initialized before a di-

rectory entry references it.
• C2: Never re-use a resource before nullifying all pre-

vious pointers to it, e.g., an inode’s pointer to a data

block must be nullified before that disk block may be

re-allocated for a new inode.
• C3: Never reset the old pointer to a live resource be-

fore the new pointer has been set, e.g., when renaming

a file, do not remove the old name for an inode until

after the new name has been written.

These three rules are the guidelines of soft updates

dependency tracking and enforcement. SoupFS follows

C2 and C3 and generalizes C1 which is over-restrictive

in most file system operations. Taking the file creation as

an example, the new dentry can hold the reference to the

new inode even before the initialization of the inode is

persisted, as long as the dentry has not been persistently

inserted into the hash table in NVM. That is, before

the dentry becomes reachable from the root, pointers in

the dentry can temporarily violate C1 without causing

any consistency issue. Based on such an observation, we

generalize C1 to be “never let the structure be reachable

from the root until it has been initialized,” which can

further simplify the dependencies in SoupFS.

We then review the update dependencies in different

file system operations in SoupFS. For a file creation, a se-

ries of operations need to be done as shown in Figure 5.

directory

inode

1

3

2

4

…

directory

hash table

“file-a”

buckets

0x7b 6

inode

hash len filename

1

2

3

4

5

Figure 5: Dependencies of creating a file

1 An inode is allocated and initialized with correct in-

formation. 2 A block of memory is allocated and initial-

ized with the filename. 3 A dentry is allocated and the

pointers to the inode and filename are filled. 4 The den-

try is inserted into the hash table of the directory. 5 The

inode of the parent directory is updated. There are sev-

eral pointers in the above operations. However, the only

persistency dependencies we need to guarantee are:

1. 1 2 3 are persisted before the insertion of the

dentry is persisted ( 4 ).

2. The parent directory inode information( 5 ) is per-

sisted after the persistence of dentry insertion ( 4 ).

directory

inode

1

3

2

4

…

directory

hash table

“file-a”

buckets

0x7b 6

inode

hash len filename

1

2
3

4

5

Figure 6: Dependencies of removing a file

For a file removal, the operations are reverted as shown

in Figure 63. 1 Remove the dentry from the hash table.

2 The parent directory inode is modified. 3 The file-

name can be freed. 4 The dentry can be freed. 5 The

inode can be freed if its link count is zero. This time, the

only ordering requirement is that 2 3 4 5 shall be

done after the dentry removal ( 1 ) is persisted.

The creation and removal of directories are largely

as described above. One difference is that additional op-

erations for hash table construction and destruction are

needed. The construction of a hash table includes allo-

cating a page as hash table buckets and erasing it to be

all zeros. The destruction is simply freeing the memory

since a directory can be removed only if it is empty, i.e.

there is no dentry in the hash table. Additionally, we omit

the “.” dentry since it points the current inode. For the

“..” dentry, we simply store it in the inode to avoid other

unnecessary dependencies.

B-tree nodes are metadata structures to organize data

blocks which contain file data. When a file is enlarged,

the newly written data and metadata structure modifica-

tions need to be persisted before the new file size is per-

sisted. These metadata structure modifications include B-

tree height increases, B-tree node allocations and mod-

3 It is not shown in the figure that if the dentry to remove is the head of

the list, the pointer in the corresponding bucket is modified.

USENIX Association 2017 USENIX Annual Technical Conference    723



ifications, and data block allocations. Adding new data

blocks and new inner B-tree nodes to the B-tree cannot be

done atomically without copy-on-write. But even if this is

not done atomically, it will not cause any problems since

all the changes are not visible to users before the update

of the file size. The B-tree root and height are stored in

the inode and can be persisted atomically.

When a file is truncated, the reduced file size shall

be firstly persisted before reduced file data space is re-

claimed. For efficiency, the reclamations of these space

are usually delayed for later file size increases unless the

free space in the file systems is nearly exhausted.

3.4 Pointer-based Dual Views

One key property of soft updates is that it ensures that

metadata present in memory always reflects the latest

state of the file systems (i.e., the latest view) and metadata

persisted in disks is consistent (i.e., the consistent view).

The dual views technique allows delayed persistency and

eliminates file system checking after a crash. Soft updates

implements dual views based on page cache. However, as

memory becomes storage, the page cache is removed for

performance concerns in most NVMFS.

Thus, to provide dual views in NVMFS, a naive ap-

proach is to bring back the “cache” for metadata by main-

taining another copy of the file system metadata. This ap-

proach, however, doubles the memory usage and causes

unnecessary memory copies when synchronizing meta-

data between the latest view and the consistent view. For

example, the whole persisted metadata structure has to be

copied to its cache before the modification.

To implement efficient dual views, we propose

pointer-based dual views in which most structures are

shared by both views and different views are observed by

following different pointers. We will then describe how

different metadata structures (shown in Table 1) are de-

signed to provide pointer-based dual views in SoupFS.

Inodes are already duplicated since VFS has its own

data structure (VFS inode) to present an inode. So

SoupFS uses its own inodes to store the consistent view

and the corresponding VFS inode for the latest metadata.

Filenames are immutable in SoupFS. A filename al-

ways co-exists with its dentry and this binding relation

never changes before the removal of the dentry. Thus the

filename of a dentry can be directly shared by both views.

Dentries are almost read-only. During insertion, a

dentry is inserted to the head of the linked list in the

corresponding bucket. This procedure modifies no exist-

ing dentries. When removing a dentry, its predecessor is

modified to point to the next dentry. SoupFS should be

aware of such a modification so that it can traverse the

list without the removed dentry in the latest view. At the

same time, the removed dentry should be still observable

in the consistent view if the whole removal has not been

persisted. Otherwise, a crash might leave the file system

inconsistent when there are multiple not-yet-persisted in-

sertions and removals.

To share dentries in both views, SoupFS stores a pair

of next pointers, latest next and consistent next, in a

dentry. With these two next pointers, a traversal in the

latest view is done by following the latest next pointer if it

is non-null. Otherwise, the consistent next pointer is used.

This guarantees that the latest information is retrieved

by following the latest-next-first rule and the consistent

view is observed by following only the consistent next

pointers. Since the latest next is also stored in NVM, to

differentiate the real latest next and the leftover latest next

of a crash, SoupFS embeds an epoch number in the latest

next. The epoch number is increased after a crash and

latest next pointers with old epoch numbers are treated

as null. This on-demand checking prevents after-crash

stop-the-world checking in which all leftover latest next

pointers are nullified.

Directory hash table buckets are changed upon an

insertion to the dentry list or the removal of the last den-

try. To provide two views, we maintain a latest bucket

for each of the buckets and if not null, it always points

to the latest first dentry in the dentry list. A latest bucket

and its corresponding real bucket together act similarly to

the two next pointers in dentries. For convenient memory

management, all latest buckets for a hash table are gath-

ered together in a volatile page and allocated on demand.

directory

inode
1

3

2

4

…

buckets

C

D
1

3

2

4

…

directory

VFS

inode

B A

latest buckets

points to latest next dentry

points to consistent next dentry

points to latest buckets

points to consistent buckets

mutually reachable

Figure 7: Dual views in a directory
An example is shown in Figure 7, in which the latest

view can be observed by following dashed arrows and the

consistent view is organized by solid arrows. We can also

know from Figure 7 that dentry D is recently inserted and

B is removed from the directory and both the insertion of

D and removal of B have not been persisted yet4.

B-tree nodes and data blocks: SoupFS focuses on

metadata and does not protect consistency of written data,

which is the same as soft updates5. SoupFS does not pro-

vide two views for B-tree nodes and data blocks. Never-

theless, there are still two views of file data in SoupFS.

4 Since modifications to D and C are directly written in NVM, these

changes might have been persisted. But these changes will be ignored

after a crash since they are not observable in the consistent view.
5 Even though soft updates can leverage page cache to provide two

copies of data, it cannot guarantee a write spanning two blocks can be

persisted atomically.

724    2017 USENIX Annual Technical Conference USENIX Association



Table 2: Operations tracked by SoupFS

OP Type Recorded Data Structures

diradd added dentry, source directory∗, overwritten inode∗

dirrem removed dentry, destination directory∗

sizechg the old and new file size

attrchg -

One is the latest file data that are available by inspect-

ing the B-tree root and the file size stored in VFS in-

ode. The other is the persisted file data which can be

obtained by following the B-tree root and the file size

in SoupFS’s inode. These two B-tree roots and file sizes

form two B-trees that are built on the same set of B-tree

nodes and data blocks. However, neither data in two B-

trees are guaranteed to be consistent after a crash. To pro-

vide data consistency in SoupFS, techniques like copy-

on-write can be adopted.

Allocator: The allocation information in NVM

bitmap presents the consistent view and in-DRAM free-

lists provide the latest view.

3.5 Dependency Tracking

Dependency tracking is one of the key parts of soft up-

dates and is much simplified in SoupFS. Thanks to the

byte-addressability of NVM, there are no more cyclic de-

pendencies in the system. We thus can use a DAG to

present dependencies among different parts of the file

system, according to the paper of soft updates [10]. How-

ever, since SoupFS abandons the page cache and the

block layer, the gap between the page cache and the file

system disappear. In other words, a persister can know

which operation on which structure needs to be persisted.

By endowing with file system semantics, dependency

tracking and enforcement are further simplified.

Dependency Tracking Structures: Although soft

updates tracks dependencies in byte-level granularity, it

is still a block-oriented dependency tracking that uses ad-

ditional structures to track the dependencies among dif-

ferent blocks. Different from the original soft updates,

SoupFS uses an inode-centric semantic-aware way to or-

ganize all dependencies.

op type

related

information

list next

dirty inode list

metadata

op list

list next

metadata

op list

list next

metadata

op list

list next

VFS inode VFS inode VFS inode

Figure 8: Dependency tracking structures

Figure 8 shows dependency tracking structures in

SoupFS. In each VFS inode, an operation list (op list)

tracks all recent operations on this inode that are not yet

persisted. Each of the operations consists of an operation

∗ These structures are only for rename.

type (op type) and related information such as pointers

to data structures involved during the operation. Table 2

shows the operations SoupFS tracks in detail, in which di-

radd and dirrem are used to track in-directory operations,

sizechg is for regular file structure changes and attrchg

is for attribute-only updates of an inode. An operation is

created and inserted to the operation list of the VFS in-

ode during the syscalls (see §3.6). Once the operation list

is not empty, the VFS inode is added to the dirty inode

list, waiting to be handled by the persisters.

Tracking these operations is sufficient for dependency

enforcement. Supposing a VFS directory inode contains a

diradd, by checking added dentry, SoupFS knows almost

everything about the operation, e.g., the filename and the

new inode. SoupFS can then persist these operations in

the correct order that enforces update dependencies.

3.6 POSIX Syscalls

SoupFS classifies POSIX syscalls into the following cat-

egories and handles them accordingly.

Attribute-only Modification: These syscalls, chmod

and chown for instance, only change the attributes of an

inode. SoupFS handles these syscalls by directly updating

the attributes in the corresponding VFS inode and insert

an attrchg into the inode’s operation list.

Directory Modification: Syscalls like create, mkdir,

unlink and rmdir modify the content of a parent direc-

tory. SoupFS handles these syscalls according to steps

described in §3.3. Then it inserts a diradd or a dirrem to

the directory inode’s operation list. The affected dentry is

recorded as related data in the operation.

File Data Modification: These syscalls might mod-

ify the B-tree structures of a regular file. Examples in-

clude write and truncate. The deallocations of nodes are

delayed, and the allocations and attachments of B-tree

nodes and data blocks are directly done in the B-tree. The

new file size and new file root (if changed) are updated

only in the latest view (VFS inode). Finally, a sizechg is

inserted into the inode’s operation list.

Rename: Rename is special since it can involve more

than one directory. Same as soft updates, SoupFS treats

rename as a combination of a creation in the destina-

tion directory and a removal in the source directory. As

a result, two operations, diradd and dirrem are inserted

into the operation lists of the destination directory in-

ode and the source directory inode respectively. Soft up-

dates’s ordering requirement for rename is also adopted

by SoupFS, i.e., the persistence of the creation should

be completed before the persistence of the removal. To

track this dependency, source directory and destination

directory are respectively recorded in diradd and dirrem

as shown in Table 2.

If an existing dentry is overwritten in rename, it is di-

rectly modified by replacing its inode pointer. To reclaim

USENIX Association 2017 USENIX Annual Technical Conference    725



the original inode in the overwritten dentry, SoupFS

records it in diradd as the overwritten inode.

3.7 Dependency Enforcement

Dependency enforcement is done by daemons called per-

sisters. Persisters periodically wake up, retrieve all dirty

inodes from the dirty inode list, and persist each oper-

ation in the operation list according to the ordering re-

quirements. The wake-up frequency can be specified at

mount time as the bound of persistence.

It is simple to persist an operation. For diradd, a per-

sister first ensures the persistence of the allocations and

new structures. Then, it reflects the operation in the con-

sistent view by updating the corresponding consistent

pointer with the latest pointer.

For dirrem, a persister first makes the target data struc-

ture persistently removed from the consistent view, then

reclaims memory used by the removed data structures.

For sizechg, a persister can get the newly allocated B-

tree nodes and data blocks by inspecting the old and the

new file size. Allocations are firstly persisted and then

data blocks and B-tree nodes are persisted in a correct

order. The file size, the B-tree root and height in the

consistent view are updated only after all modifications

within the B-tree are persisted. If it is a truncation, the

truncated B-tree nodes and data blocks can be reclaimed

after the persistence of the new file size, B-tree root and

height. As an optimization, the reclamation is delayed for

later file size increases.

For attrchg, attributes in the VFS inode are persis-

tently written to the consistent inode. The atomicity of

these operations is discussed in §3.8.

Finally, the persisted operation is removed from the

operation list and the VFS inode is removed from the

dirty inode list when its operation list is empty.

In the implementation, we deploy one persister for

each NUMA node to prevent expensive cross-NUMA

memory accesses.

3.8 Atomicity

SoupFS assumes that the failure-atomic write unit of

NVM is a cache line, which is no less than 64 bytes.

Based on this assumption, there are two kinds of atomic

writes used in SoupFS.

The most commonly used one is an atomic update of a

pointer, which is done using atomic operations provided

by CPU. The other write is persisting an inode. Since

the inode size in SoupFS is 64 bytes which is the cache

line size, SoupFS needs to prevent the cache line from

being evicted before updates to the inode are finished.

This is guaranteed by using Intel RTM technology which

will hold the cache line in cache until the transaction

ends. Per-CPU cache-line-sized journals can be used as

fallbacks of RTM to guarantee progress.

Both kinds of atomic writes only guarantee

that an update is not partially persisted. It is the

clflush/clflushopt+sfence that can guarantee the persis-

tence of the update.

3.9 File System Checking

SoupFS is the same as soft updates in file system check-

ing and recovery. Thanks to the consistent view, SoupFS

can be instantly used after a crash without having to

wait for file system checking or recovery. But in order

to collect the memory leaked by the crash, a specialized

fsck needs to be invoked manually. The fsck traverses the

whole file system from the root and reconstructs the allo-

cation bitmaps in which all allocated memory is useful.

3.10 Endurance

Although write endurance is not the design goal of

SoupFS, we expect better write endurance than other

NVMFS, since SoupFS eliminates journaling mecha-

nisms which frequently need to write temporary backup

data in NVM. In SoupFS, almost all writes to NVM are

to modify the persistent state of the file system. The only

exception is updates to the latest next pointer in dentries.

While storing latest next in DRAM can further benefit

the endurance, it involves additional data structures to

track the relation between dentries and latest next point-

ers, which is complex. Moreover, the negative effect of

updating latest next pointers is limited since in the imple-

mentation the update only happens in removal operations

and it is likely to be kept in the cache before the operation

is persisted by the persisters.

4. Evaluation

4.1 Experimental Setup

To evaluate the performance of SoupFS, we run micro-

benchmarks and macro-benchmarks with a dual-socket

Intel Xeon E5 server equipped with NVDIMM. Each 8-

core processor runs at 2.3 GHz with four DDR4 channels.

There are 48 GB DRAM and 64 GB NVDIMM equipped

on the server, and we use one pmem device whose 32GB

NVDIMM locate on one NUMA node in the evaluation.

We compare SoupFS against four Linux file sys-

tems: EXT4, EXT4 with DAX (EXT4-DAX), PMFS and

NOVA. EXT4 can be directly used in Linux 4.9.6, but

PMFS and NOVA need simple modifications to run on

Linux 4.9.6.

PMFS, NOVA, and SoupFS obtain a range of NVM

from kernel driver and manage NVM independently.

EXT4-DAX bypasses the page cache using the DAX in-

terface exposed by the persistent memory driver. We eval-

uate EXT4 only for reference since it cannot guarantee

crash consistency in NVM. We provide no comparison

with the original soft updates as there is no available

soft updates implementation in Linux and simply running

726    2017 USENIX Annual Technical Conference USENIX Association



FreeBSD UFS with soft updates on NVM cannot guaran-

tee consistency due to the lack of block write atomicity.

Table 3: Micro-benchmark characteristics

Name Workload

filetest (I) create (104
×100) (II) unlink (104

×100)

dirtest (I) mkdir (104
×100) (II) rmdir (104

×100)

4.2 Micro-benchmarks

We use two single-threaded micro-benchmarks to eval-

uate the throughput and latency of SoupFS, as shown

in Table 3. The benchmarks run 100 iterations and in

each iteration, the filetest creates 104 files in one direc-

tory and then deletes all of them. The dirtest is similar to

the filetest but it creates directories instead of files.

Figure 9(a) and 9(b) show the throughput and la-

tency of create, unlink, mkdir and rmdir tested using the

filetest and dirtest. Generally, SoupFS performs best in

all these tests. It outperforms NOVA in throughput by

43% to 405%, and reduces latency by 30% to 80%. We

attribute the performance improvement to the reduction

of flushes in the system call path. NOVA also performs

well in the tests since it leverages in-DRAM radix trees

to manage its directories. However, it still needs logs and

cache flush operations to guarantee crash consistency,

which causes relatively worse performance than SoupFS.

Besides journaling and excessive flush operations, PMFS

has high latency and low throughput also because its cost

of directory lookup grows linearly with the increasing

number of directory entries. This is notable for create and

mkdir since one insertion to the directory needs to scan

all existing dentries to find an available slot. For unlink

and rmdir, the latency is very low since our benchmarks

delete the files/directories in the same order they are cre-

ated. If the dentry preceding the to-be-removed dentry is

not in use, PMFS will merge those two dentries during

the removal. Thus in unlink and rmdir, PMFS needs to

search at most two dentries to find the dentry to remove,

yielding low latencies as shown in the figure. EXT4 and

EXT4-DAX leverage hashed B-trees to speed up direc-

tory accesses, thus they achieve better performance than

PMFS.

Figure 9(c) shows the latency distribution for create

in the filetest. Latencies longer than 30us are not shown

in the figure for clarity. The result proves the average

latencies shown in Figure 9(b). Most of the latencies for

SoupFS locate at around 3us and latencies for NOVA at

around 4us. Due to the inefficient directory organization,

latencies for PMFS evenly distribute and steadily rise as

the number of files in a directory increases.

Table 4: Filebench workload characteristics

Workload Average file size # of files I/O size r:w ratio

Fileserver 128KB 10000 1M 1:2

Fileserver-1K 1KB 10000 1M 1:2

Webproxy 16KB 10000 16K 5:1

Varmail 16KB 5000 1M 1:1

4.3 Macro-benchmarks

We evaluate the performance of SoupFS for real world

applications by running a set of macro-benchmark work-

loads, including Filebench and Postmark.

Filebench: Filebench is a file system benchmark that

simulates a large variety of workloads by specifying dif-

ferent models. We integrate the recent fixes to Filebench

by Dong et al. [7] to make our evaluation more accurate.

Table 4 shows the characteristics of Filebench workloads.

We run these benchmarks from 1 to 20 threads multiple

times and report the average to show the throughput and

scalability. The coefficient of variation is 1.8% in aver-

age.

As shown in Figure 11(a) to 11(d) SoupFS performs

best in general. The performance drop after eight threads

is caused by the NUMA architecture. When the num-

ber of threads exceeds eight, either the threads contend

on eight cores of a NUMA node, or there are a lot of

cross-NUMA memory accesses. We thus evaluate with

Filebench bound to one NUMA node and report the re-

sult in Figure 12(a) to 12(d), in which the throughput still

cannot scale well, but the performance drop disappears.

The throughput of fileserver is lower than those of

other Filebench workloads. This is because the default

average file size is 128KB, causing each operation to

write more data and the data write speed dominates.

SoupFS performs slightly better in this workload since it

provides two views of the file size so that it does not need

to persist the B-tree structures immediately. As a draw-

back, the file data are not guaranteed to be persisted after

the write syscall, which is different from other NVMFS.

We also evaluate fileserver with 1K file size to highlight

the metadata operations (Figure 11(b)). The throughput

of all file systems increases and SoupFS outperforms

NOVA by up to 89% and PMFS by up to 47%.

The webproxy involves recreating and reading several

files in a directory with many files. PMFS performs worst

due to its inefficient directory access, while other file sys-

tems, by using hash tables (SoupFS), radix trees (NOVA)

and hashed B-trees (EXT4 and EXT4-DAX), perform

much better. SoupFS performs slightly better when there

are fewer threads because of metadata operations like file

removals and creations.

The varmail acts as a mail server on which users read,

remove, reply, and write mails. In this workload, fsync

operations eliminate the benefit of page cache in EXT4

and the performance of PMFS is limited by its slow

directory design. SoupFS outperforms NOVA by up to

75% due to fast metadata operations.

Postmark: Postmark is a benchmark to simulate mail

servers. We enlarge the number of transactions to 106 in

the default single-threaded Postmark configuration to test

the performance. Figure 10 shows that SoupFS outper-

forms other file systems by about 50%.

USENIX Association 2017 USENIX Annual Technical Conference    727



 0

 100

 200

 300

 400

 500

 600

 700

create

unlink

m
kdir

rm
dir

T
h
ro

u
g
h
p
u
t 
(1

0
3
 o

p
/s

)

ext4
ext4dax

pmfs
nova

soupfs

(a) Throughput

 0

 5

 10

 15

 20

create

unlink

m
kdir

rm
dir

L
a
te

n
c
y
 (

u
s
/o

p
)

ext4
ext4dax

pmfs

  57.5   57.7

nova
soupfs

(b) Latency

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

D
is

tr
ib

u
ti
o
n

Latency (us)

ext4
ext4dax

pmfs
nova

soupfs

(c) Latency CDF for create
Figure 9: Throughput and latency of file system operations

 0

 50

 100

 150

 200

 250

 300

 350

read write

T
h
ro

u
g
h
p
u
t 
(M

B
/s

)

ext4
ext4dax

pmfs
nova

soupfs

Figure 10: Postmark

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0  2  4  6  8  10  12  14  16  18  20

T
h
ro

u
g
h
p
u
t 
(1

0
3
 o

p
s
/s

)

# Threads

(a) fileserver

 0

 200

 400

 600

 800

 1000

 1200

 0  2  4  6  8  10  12  14  16  18  20

T
h
ro

u
g
h
p
u
t 
(1

0
3
 o

p
s
/s

)

# Threads

(b) fileserver-1K

 0

 200

 400

 600

 800

 1000

 1200

 0  2  4  6  8  10  12  14  16  18  20

T
h
ro

u
g
h
p
u
t 
(1

0
3
 o

p
s
/s

)

# Threads

ext4
ext4dax

pmfs
nova

soupfs

(c) webproxy

 0

 200

 400

 600

 800

 1000

 1200

 0  2  4  6  8  10  12  14  16  18  20

T
h
ro

u
g
h
p
u
t 
(1

0
3
 o

p
s
/s

)

# Threads

(d) varmail

Figure 11: Throughput of Filebench (EXT4 does not guarantee correctness)

 0

 50

 100

 150

 200

 250

 300

 350

 0  2  4  6  8  10  12  14  16  18  20

T
h
ro

u
g
h
p
u
t 
(1

0
3
 o

p
s
/s

)

# Threads

(a) fileserver

 0

 200

 400

 600

 800

 1000

 1200

 0  2  4  6  8  10  12  14  16  18  20

T
h
ro

u
g
h
p
u
t 
(1

0
3
 o

p
s
/s

)

# Threads

(b) fileserver-1K

 0

 200

 400

 600

 800

 1000

 1200

 0  2  4  6  8  10  12  14  16  18  20

T
h
ro

u
g
h
p
u
t 
(1

0
3
 o

p
s
/s

)

# Threads

(c) webproxy

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  2  4  6  8  10  12  14  16  18  20

T
h
ro

u
g
h
p
u
t 
(1

0
3
 o

p
s
/s

)

# Threads

(d) varmail

Figure 12: Throughput of Filebench with NUMA binding (EXT4 does not guarantee correctness)

4.4 Sensitivity to NVM Characteristics

Different NVM technologies have different write laten-

cies. The NVDIMM we use has the same performance as

DRAM; however, NVM built by PCM and 3D XPoint is

expected to have higher latency especially higher write

latency than DRAM. We roughly evaluate the sensitivity

to NVM write latency of different file systems by insert-

ing delays after each clflush instruction.

Figure 13 shows the latency of create and unlink in the

filetest micro-benchmark with different delays inserted

after clflush. In both cases, the latency of SoupFS remains

unchanged with increasing delays due to the elimination

of cache flushes in the critical path. The latency of PMFS

and NOVA increases because they need cache flushes for

crash consistency during the syscall. Increasing the de-

lay from 0 to 800ns, the latency of NOVA increases 8us

which is nearly 200% of its original value for create (Fig-

ure 13(a)). The increased value matches our estimation in

§2.2. Although the increased latency for PMFS is similar,

the create latency of PMFS is still dominated by the slow

directory lookup performance, so the relative influence is

not significant. For unlink in Figure 13(b), both NOVA

and PMFS are affected by the clflush delays, with latency

increased from 6us to 18us.

 0
 2
 4
 6
 8

 10
 12
 14

 0  200  400  600  800
Delay (ns)

 56
 58
 60
 62
 64
 66
 68
 70

L
a

te
n

c
y
 (

u
s
)

pmfs
nova

soupfs

(a) create

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0  200  400  600  800

L
a

te
n

c
y
 (

u
s
)

Delay (ns)

pmfs
nova

soupfs

(b) unlink
Figure 13: Latency of filetest with different clflush delays

clflushopt, the asynchronous and parallel version of

clflush, is not available on our evaluation platform. We

thus give no evaluation of clflushopt. However, since

most of the cache flushes in the file systems are for persis-

tency ordering guarantee, file systems usually use a com-

bination of clflushopt+sfence which neutralizes the merit

of asynchronism and parallelism. Other approaches, like

running instructions between clflushopt and sfence or us-

ing existing atomic operations to replace fences, are fea-

sible but they can only be used under certain conditions

where appropriate instructions and existing atomic oper-

ations are available. clwb, which is not available on our

platform either, is similar to clflushopt but keeps the data

in the cache after persisting it. However, the merit of clwb

can barely bring performance improvement since existing

NVMFS are designed to avoid re-accessing flushed cache

lines in one syscall.

728    2017 USENIX Annual Technical Conference USENIX Association



We would also like to compare the impact of different

NVM bandwidth on the performance of SoupFS. Unfor-

tunately, we fail to change the BIOS configuration of the

PCIE extended area as suggested by Sengupta et al. [37],

as it is inaccessible to a normal user. We thus leave such a

comparison as future work. Yet, since the delayed persis-

tency of SoupFS has fewer requirements for immediately

persisting the data which urgently need bandwidth, we

envision that SoupFS would gain more benefits compared

to other alternatives like PMFS and NOVA that require

synchronous flushes.

5. Related Work

Metadata update approaches: Other than soft updates,

there have been various approaches to preserving meta-

data consistency, including shadow paging [14, 18, 30],

log-structuring [17, 19, 24, 31, 33, 34], journaling [2,

12, 39] and WriteAtomic [29]. There have been various

other ways to represent write ordering, using backpoint-

ers [3], transactional checksums [28], patches [9]. For

example, NoFS [3] proposes backpointers to reduce or-

dering requirement when persisting data. It, however, re-

quires adding a backpointer to not only metadata but also

data, which increases storage overhead. Moreover, a key

assumption is that a backpointer and its data or metadata

are persisted atomically, a property not available in NVM.

NVM-aware file systems: Some designs have con-

sidered using NVM to accelerate metadata update per-

formance. For example, Network appliance’s WAFL [14]

leverages NVRAM to keep logs to improve synchronous

log update performance. The Rio cache [27] enabled by

uninterruptible power supply can also be used to log syn-

chronous metadata updates with high performance. How-

ever, even with NVM as cache, they may still suffer from

consistency issues from unanticipated cache line eviction

for metadata updates.

The promising feature of NVM has stimulated the de-

sign and implementation of several recent NVM file sys-

tems such as BPFS [4], SCMFS [44], Aerie [41], EXT4-

DAX [5, 6], NOVA [45] and HiNFS [25]. Generally, they

allow “execute in place” (XIP) to bypass the block layer

and page cache to reduce management overhead, or pro-

vide a buffer cache with in-place commit feature [20].

Wu and Zwaenepoel describe eNVy [43], a storage

system that directly presents flash memory as a linear

address space into memory bus using paging translation.

To overcome slow write performance of flash memory,

eVNy uses a small battery-backed SRAM as a buffer

to create a copy of the updated page to give the illu-

sion of in-place update. As the NVM nowadays could

achieve within one order of magnitude speed of DRAM,

SCMFS [44] and SIMFS [38] further directly map a file

data space into the virtual address space of a process.

These techniques are orthogonal to the design of SoupFS.

Data structures for NVM: Venkataraman et al. [40]

describe a persistent B+ tree implementation for NVM,

yet requires synchronous flushes at each update path.

NV-Tree [46] instead uses DRAM as indexes to re-

duce synchronous flushes cost, but requires scanning all

NVM in order to reconstruct the indexes upon a crash.

Mnemosyne [42] provides a transactional interface for

consistent updates of application data structures. SoupFS

eliminates cache flushes in the critical path of file system

operations and need no journaling for crash consistency.

Crash consistency and memory persistency mod-

els: Chidambaram et al. [2] propose separating order-

ing from durability and introduce optimistic crash con-

sistency by leveraging a hypothetical hardware mecha-

nism called asynchronous durability notification (ADN).

SoupFS can be made simple and efficient with ADN by

avoiding flushing already persistent cache lines.

Foedus [15] leverages the duality of volatile pages and

stratified snapshot pages to provide snapshots and crash

consistency in an NVM-based in-memory database. Most

of the pointers in Foedus are dual-page-pointers stored to-

gether. SoupFS uses a similar technique like “dual point-

ers” to present dual views of the file system metadata in

some structures like dentries. However, the latest pointers

for the latest view may be created on demand and stored

separately from the consistent pointer in SoupFS.

Pelley et al. [26] introduce the concept of memory per-

sistency as an analogy of memory consistency, summa-

rize a set of persistency models such as strict and epoch

persistency and additionally introduce strand persistency.

Kolli et al. [16] further describe a set of techniques like

deferring commit until lock release to different persis-

tency models to relax write orderings for transactions

whose read/write sets are known in advance. Unlike prior

work, SoupFS extends soft updates instead of logging for

ensuring the persistency models.

6. Conclusions

This paper describes SoupFS, a soft updates implemen-

tation for NVM. SoupFS is made simple by leveraging

byte-addressability to simplify dependency tracking and

enforcement. SoupFS is made fast through delaying most

synchronous flushes from the critical path thanks to the

efficient pointer-based dual views. Evaluations show that

SoupFS outperforms state-of-the-art NVMFS.

Acknowledgment

We thank our shepherd Liuba Shrira and the anonymous

reviewers for their constructive comments. This work is

supported in part by National Key Research & Develop-

ment Program of China (No. 2016YFB1000104), China

National Natural Science Foundation (No. 61572314,

61525204 and 61672345), Zhangjiang Hi-Tech program

(No. 201501-YP-B108-012) and CREATE E2S2.

USENIX Association 2017 USENIX Annual Technical Conference    729



References

[1] V. Aurora. Soft update, hard problems.

https://lwn.net/Articles/339337/, 2009.

[2] V. Chidambaram, T. S. Pillai, A. C. Arpaci-Dusseau, and

R. H. Arpaci-Dusseau. Optimistic crash consistency.

In Proceedings of the Twenty-Fourth ACM Symposium

on Operating Systems Principles, pages 228–243. ACM,

2013.

[3] V. Chidambaram, T. Sharma, A. C. Arpaci-Dusseau, and

R. H. Arpaci-Dusseau. Consistency without ordering. In

FAST, page 9, 2012.

[4] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee,

D. Burger, and D. Coetzee. Better i/o through byte-

addressable, persistent memory. In Proceedings of the

ACM SIGOPS 22nd symposium on Operating systems

principles, pages 133–146. ACM, 2009.

[5] Supporting filesystems in persistent memory.

https://lwn.net/Articles/610174/, 2014.

[6] Support ext4 on nv-dimms.

http://lwn.net/Articles/588218/, 2014.

[7] M. Dong, Q. Yu, X. Zhou, Y. Hong, H. Chen, and B. Zang.

Rethinking benchmarking for nvm-based file systems. In

Proceedings of the 7th ACM SIGOPS Asia-Pacific Work-

shop on Systems, pages 20:1–20:7, 2016.

[8] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz,

D. Reddy, R. Sankaran, and J. Jackson. System software

for persistent memory. In Proceedings of the Ninth Euro-

pean Conference on Computer Systems, 2014.

[9] C. Frost, M. Mammarella, E. Kohler, A. de los Reyes,

S. Hovsepian, A. Matsuoka, and L. Zhang. Generalized

file system dependencies. In SOSP, pages 307–320. ACM,

2007.

[10] G. R. Ganger, M. K. McKusick, C. A. Soules, and Y. N.

Patt. Soft updates: a solution to the metadata update

problem in file systems. ACM Transactions on Computer

Systems (TOCS), 18(2):127–153, 2000.

[11] G. R. Ganger and Y. N. Patt. Metadata update performance

in file systems. In Proceedings of the 1st USENIX confer-

ence on Operating Systems Design and Implementation.

USENIX Association, 1994.

[12] R. Hagmann. Reimplementing the cedar file system using

logging and group commit. In SOSP. ACM, 1987.

[13] V. Henson. Khb: A filesystems reading list.

https://lwn.net/Articles/196292/, 2006.

[14] D. Hitz, J. Lau, and M. A. Malcolm. File system design for

an nfs file server appliance. In USENIX winter, volume 94,

1994.

[15] H. Kimura. Foedus: Oltp engine for a thousand cores

and nvram. In Proceedings of the 2015 ACM SIGMOD

International Conference on Management of Data, pages

691–706. ACM, 2015.

[16] A. Kolli, S. Pelley, A. Saidi, P. M. Chen, and T. F. Wenisch.

High-performance transactions for persistent memories. In

Proceedings of the Twenty-First International Conference

on Architectural Support for Programming Languages and

Operating Systems, pages 399–411. ACM, 2016.

[17] R. Konishi, Y. Amagai, K. Sato, H. Hifumi, S. Kihara, and

S. Moriai. The linux implementation of a log-structured

file system. ACM SIGOPS Operating Systems Review,

40(3):102–107, 2006.

[18] E. Kustarz. Zfs-the last word in file systems.

http://www.opensolaris.org/os/community/zfs/, 2008.

[19] C. Lee, D. Sim, J. Hwang, and S. Cho. F2fs: A new file

system for flash storage. In 13th USENIX Conference on

File and Storage Technologies (FAST 15), pages 273–286,

2015.

[20] E. Lee, H. Bahn, and S. H. Noh. Unioning of the buffer

cache and journaling layers with non-volatile memory. In

USENIX Conference on File and Storage Technologies,

pages 73–80, 2013.

[21] R. Liu and H. Chen. Ssmalloc: a low-latency, locality-

conscious memory allocator with stable performance scal-

ability. In Proceedings of the Asia-Pacific Workshop on

Systems, page 15. ACM, 2012.

[22] K. McKusick. Journaling soft updates. In BSDCan, 2010.

[23] M. K. McKusick, G. R. Ganger, et al. Soft updates: A

technique for eliminating most synchronous writes in the

fast filesystem. In USENIX Annual Technical Conference,

FREENIX Track, pages 1–17, 1999.

[24] C. Min, K. Kim, H. Cho, S.-W. Lee, and Y. I. Eom. Sfs:

random write considered harmful in solid state drives. In

FAST, page 12, 2012.

[25] J. Ou, J. Shu, and Y. Lu. A high performance file system

for non-volatile main memory. In European Conference

on Computer Systems, 2016.

[26] S. Pelley, P. M. Chen, and T. F. Wenisch. Memory persis-

tency. In ISCA, pages 265–276. ACM, 2014.

[27] C. PM, N. WT, S. Chandra, C. Aycock, G. Rajamani, and

D. Lowell. The rio file cache: Surviving operating system

crashes. In ASPLOS, 1996.

[28] V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal,

H. S. Gunawi, A. C. Arpaci-Dusseau, and R. H. Arpaci-

Dusseau. Iron file systems. In Proceedings of the Twen-

tieth ACM Symposium on Operating Systems Principles,

SOSP ’05, pages 206–220. ACM, 2005.

[29] V. Prabhakaran, T. L. Rodeheffer, and L. Zhou. Transac-

tional flash. In OSDI, pages 147–160, 2008.

[30] O. Rodeh, J. Bacik, and C. Mason. Btrfs: The linux b-tree

filesystem. ACM Transactions on Storage (TOS), 9(3):9,

2013.

[31] M. Rosenblum and J. K. Ousterhout. The design and im-

plementation of a log-structured file system. ACM Trans-

actions on Computer Systems (TOCS), 10(1):26–52, 1992.

[32] A. M. Rudoff. Deprecating the pcom-

mit instruction. https://software.intel.com/en-

us/blogs/2016/09/12/deprecate-pcommit-instruction,

2016.

[33] S. M. Rumble, A. Kejriwal, and J. Ousterhout. Log-

structured memory for dram-based storage. In Proceed-

730    2017 USENIX Annual Technical Conference USENIX Association



ings of the 12th USENIX Conference on File and Storage

Technologies (FAST 14), pages 1–16, 2014.

[34] M. Seltzer, K. Bostic, M. K. McKusick, and C. Staelin. An

implementation of a log-structured file system for unix. In

Proceedings of the USENIX Winter 1993 Conference Pro-

ceedings on USENIX Winter 1993 Conference Proceed-

ings, pages 3–3. USENIX Association, 1993.

[35] M. I. Seltzer, G. R. Ganger, M. K. McKusick, K. A. Smith,

C. A. Soules, and C. A. Stein. Journaling versus soft up-

dates: Asynchronous meta-data protection in file systems.

In USENIX Annual Technical Conference, General Track,

pages 71–84, 2000.

[36] M. I. Seltzer, G. R. Ganger, M. K. McKusick, K. A. Smith,

C. A. N. Soules, and C. A. Stein. Journaling versus soft up-

dates: Asynchronous meta-data protection in file systems.

In Usenix ATC, 2000.

[37] D. Sengupta, Q. Wang, H. Volos, L. Cherkasova, J. Li,

G. Magalhaes, and K. Schwan. A framework for emulating

non-volatile memory systemswith different performance

characteristics. In Proceedings of the 6th ACM/SPEC

International Conference on Performance Engineering,

pages 317–320. ACM, 2015.

[38] E. Sha, X. Chen, Q. Zhuge, L. Shi, and W. Jiang. De-

signing an efficient persistent in-memory file system. In

IEEE Non-Volatile Memory System and Applications Sym-

posium, pages 1–6, 2015.

[39] Silicon Graphics International Corp. Xfs:

A high-performance journaling file system.

http://oss.sgi.com/projects/xfs, 2012.

[40] S. Venkataraman, N. Tolia, P. Ranganathan, R. H. Camp-

bell, et al. Consistent and durable data structures for non-

volatile byte-addressable memory. In FAST, volume 11,

pages 61–75, 2011.

[41] H. Volos, S. Nalli, S. Panneerselvam, V. Varadarajan,

P. Saxena, , and M. M. Swift. Aerie: Flexible file-system

interfaces to storage-class memory. In Proceedings of the

Ninth Euro- pean Conference on Computer Systems (Eu-

roSys 14), page 14:114:14, 2014.

[42] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne:

Lightweight persistent memory. ACM SIGPLAN Notices,

46(3):91–104, 2011.

[43] M. Wu and W. Zwaenepoel. envy: A non-volatile, main

memory storage system. In ASPLOS, 1994.

[44] X. Wu and A. Reddy. Scmfs: a file system for storage class

memory. In Proceedings of 2011 International Conference

for High Performance Computing, Networking, Storage

and Analysis, page 39. ACM, 2011.

[45] J. Xu and S. Swanson. Nova: A log-structured file sys-

tem for hybrid volatile/non-volatile main memories. In

USENIX Conference on File and Storage Technologies,

pages 323–338, 2016.

[46] J. Yang, Q. Wei, C. Chen, C. Wang, K. L. Yong, and B. He.

Nv-tree: Reducing consistency cost for nvm-based single

level systems. In 13th USENIX Conference on File and

Storage Technologies (FAST 15), pages 167–181, 2015.

[47] J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi. Kiln:

Closing the performance gap between systems with and

without persistence support. In Proceedings of the 46th

Annual IEEE/ACM International Symposium on Microar-

chitecture, pages 421–432. ACM, 2013.

USENIX Association 2017 USENIX Annual Technical Conference    731




