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Abstract
The operating system is tasked with maintaining the
coherency of per-core TLBs, necessitating costly syn-
chronization operations, notably to invalidate stale
mappings. As core-counts increase, the overhead of
TLB synchronization likewise increases and hinders
scalability, whereas existing software optimizations
that attempt to alleviate the problem (like batching)
are lacking.

We address this problem by revising the TLB
synchronization subsystem. We introduce several
techniques that detect cases whereby soon-to-be
invalidated mappings are cached by only one TLB
or not cached at all, allowing us to entirely avoid
the cost of synchronization. In contrast to existing
optimizations, our approach leverages hardware
page access tracking. We implement our techniques
in Linux and find that they reduce the number of
TLB invalidations by up to 98% on average and thus
improve performance by up to 78%. Evaluations
show that while our techniques may introduce
overheads of up to 9% when memory mappings
are never removed, these overheads can be avoided
by simple hardware enhancements.

1. Introduction
Translation lookaside buffers (TLBs) are perhaps the
most frequently accessed caches whose coherency
is not maintained by modern CPUs. The TLB is
tasked with caching virtual-to-physical translations
(“mappings”) of memory addresses, and so it is
accessed upon every memory read or write operation.
Maintaining TLB coherency in hardware hampers
performance [33], so CPU vendors require OSes to
maintain coherency in software. But it is difficult for
OSes to efficiently achieve this goal [27, 38, 39, 41, 48].

To maintain TLB coherency, OSes employ the
TLB shootdown protocol [8]. If a mapping m that
possibly resides in the TLB becomes stale (due to
memory mapping changes) the OS flushes m from
the local TLB to restore coherency. Concurrently,
the OS directs remote cores that might house m in
their TLB to do the same, by sending them an inter-
processor interrupt (IPI). The remote cores flush

their TLBs according to the information supplied by
the initiator core, and they report back when they
are done. TLB shootdown can take microseconds,
causing a notable slowdown [48]. Performing TLB
shootdown in hardware, as certain CPUs do, is faster
but still incurs considerable overheads [22].

In addition to reducing performance, shootdown
overheads can negatively affect the way applications
are constructed. Notably, to avoid shootdown la-
tency, programmers are advised against using mem-
ory mappings, against unmapping them, and even
against building multithreaded applications [28, 42].
But memory mappings are the efficient way to use
persistent memory [18, 47], and avoiding unmap-
pings might cause corruption of persistent data [12].

OSes try to cope with shootdown overheads by
batching them [21, 43], avoiding them on idle cores,
or, when possible, performing them faster [5]. But
the potential of these existing solutions is inherently
limited to certain specific scenarios. To have a gener-
ally applicable, efficient solution, OSes need do know
which mappings are cached by which cores. Such in-
formation can in principle be obtained by replicating
the translation data structures for each core [11], but
this approach might result in significantly degraded
performance and wasted memory.

We propose to avoid unwarranted TLB shoot-
downs in a different manner: by monitoring access
bits. While TLB coherency is not maintained by the
CPU, CPU architectures can maintain the consis-
tency of access bits, which are set when a mapping
is cached. We contend that these bits can therefore
be used to reveal which mappings are cached by
which cores. To our knowledge, we are the first to
use access bits in this way.

In the x86 architecture, which we study in this
paper, access bit consistency is maintained by the
memory subsystem. Exploiting it, we propose tech-
niques to identify two types of common mappings
whose shootdown can be avoided: (1) short-lived
private mappings, which are only cached by a single
core; and (2) long-lived idle mappings, which are
reclaimed after the corresponding pages have not
been used for a while and are not cached at all. Using

USENIX Association 2017 USENIX Annual Technical Conference    27



these techniques, we implement a fully functional
prototype in Linux 4.5. Our evaluation shows that
our proposal can eliminate more than 90% of TLB
shootdowns and improve the performance of mem-
ory migration by 78%, of copy-on-write events by
18–25%, and of multithreaded applications (Apache
and parallel bzip2) by up to 12%.

Our system introduces a worst case slowdown
of up to 9% when mappings are only set and never
removed or changed, which means no shootdown
activity is conducted. This slowdown is caused,
according to our measurements, due to the overhead
of our TLB manipulation software techniques. To
eliminate it, we propose a CPU extension that would
allow OSes to write entries directly into the TLB, and
resembles the functionality provided by CPUs that
employ software-TLB.

2. Background and Motivation
2.1 Memory Management Hardware

Virtual memory is supported by most modern CPUs
and used by all the major OSes [9, 32]. Using vir-
tual memory allows the OS to utilize the physical
memory more efficiently and to isolate the address
space of each process. The CPU translates the virtual
addresses to physical addresses before memory ac-
cesses are performed. The OS sets the virtual address
translations (also called “mappings”) according to
its policies and considerations.

The memory mappings of each address space are
kept in a memory-resident data structure, which is
defined by the CPU architecture. The most common
data structure, used by the x86 architecture, is a radix-
tree, which is also known as a page-table hierarchy.
The leaves of the tree, called the page-table entries
(PTEs), hold the translations of fixed-sized virtual
memory pages to physical frames. To translate a
virtual address into a physical address, the CPU
incorporates a memory management unit (MMU),
which performs a “page table walk” on the page
table hierarchy, checking access permissions at every
level. During a page-walk, the MMU updates the
status bits in each PTE, indicating whether the page
was read from and/or written to (dirtied).

To avoid frequent page-table walks and their as-
sociated latency, the MMU caches translations of
recently used pages in a translation lookaside buffer
(TLB). In the x86 architecture, these caches are main-
tained by the hardware, bringing translations into
the cache after page walks and evicting them accord-
ing to an implementation-specific cache replacement
policy. Each x86 core holds a logically private TLB.

Unlike memory caches, TLBs of different CPUs are
not maintained coherent by hardware. Specifically,

x86 CPUs do not maintain coherence between the
TLB and the page-tables, nor among the TLBs of
different cores. As a result, page-table changes may
leave stale entries in the TLBs until coherence is
restored by the OS. The instruction set enables the
OS to do so by flushing (“invalidating”) individual
PTEs or the entire TLB. Global and individual TLB
flushes can only be performed locally, on the TLB of
the core that executes the flush instruction.

Although the TLB is essential to attain reasonable
translation latency, some workloads experience fre-
quent TLB cache-misses [4]. Recently, new features
were introduced into the x86 architecture to reduce
the number and latency of TLB misses. A new instruc-
tion set extension allows each page-table hierarchy to
be associated with an address-space ID (ASID) and
avoid TLB flushes during address-space switching,
thus reducing the number of TLB misses. Micro-
architectural enhancements introduced page-walk
caches that enable the hardware to cache internal
nodes in the page-table hierarchy, thereby reducing
TLB-miss latencies [3].

2.2 TLB Software Challenges

The x86 architecture leaves maintaining TLB co-
herency to the OSes, which often requires frequent
TLB invalidations after PTE changes. OS kernels
can make such PTE changes independently of the
running processes, upon memory migration across
NUMA nodes [2], memory deduplications [49], mem-
ory reclamation, and memory compaction for accom-
modating huge pages [14]. Processes can also trigger
PTE changes by using system calls, for example
mprotect, which changes protection on a memory
range, or by writing to copy-on-write pages (COW).

These PTE changes can require a TLB flush to
avoid caching of stale PTEs in the TLB. We distin-
guish between two types of flushes: local and remote,
in accordance with the core that initiated the PTE
change. Remote TLB flushes are significantly more
expensive, since most CPUs cannot flush remote
TLBs directly. OSes therefore perform a TLB shoot-
down: The initiating core sends an inter-processor
interrupt (IPI) to the remote cores and waits for
their interrupt handlers to invalidate their TLBs and
acknowledge that they are done.

TLB shootdowns introduce a variety of overheads.
IPI delivery can take several hundreds of cycles [5].
Then, the IPI may be kept pending if the remote core
has interrupts disabled, for instance while running
a device driver [13]. The x86 architecture does
not allow OSes to flush multiple PTEs efficiently,
requiring the OS to either incur the overhead of
multiple flushes or flush the entire TLB and increase
the TLB miss rate. In addition, TLB flushes may
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indirectly cause lock contention since they are often
performed while the OS holds a lock [11, 15]. It is
noteworthy that while some CPU architectures (e.g.,
ARM) enable to perform remote TLB shootdowns
without IPIs, remote shootdowns still incur higher
performance overhead than local ones [22].

2.3 OS Solutions and Shortcomings

To reduce TLB related overheads, OSes employ
several techniques to avoid unnecessary shootdowns,
reduce their time, and avoid TLB misses.

A TLB shootdown can be avoided if the OS can
ensure that the modified PTE is either not cached in
remote TLBs or can be flushed at a later time, but
before it can be used for an address translation. In
practice, OSes can only avoid remote shootdowns in
certain cases. In Linux, for example, each userspace
PTE is only set in a single address space page-table
hierarchy, allowing the OS to track which address
space is active on each core and flush only the TLBs
of cores that currently use this address space. The
TLB can be flushed during context switch, before any
stale entry would be used.

A common method to reduce shootdown time is
to batch TLB invalidations if they can be deferred [21,
47]. Batching, however, cannot be used in many
cases, for example when a multithreaded application
changes the access permissions of a single page.
Another way to reduce shootdown overhead is
to acknowledge its IPI immediately, even before
invalidation is performed [5, 43].

Flush time can be reduced by lowering the number
of TLB flushes. Flushing multiple individual PTEs is
expensive, and therefore OSes can prefer to flush the
entire TLB if the number of PTEs exceeds a certain
threshold. This is a delicate trade-off, as such a flush
increases the number of TLB misses [23].

Linux tries to balance between the overheads of
TLB flushes and TLB misses when a core becomes
idle, using a lazy TLB invalidation scheme. Since the
process that ran before the core became idle may be
scheduled to run again, the OS does not switch its
address space, in order to avoid potential future TLB
misses. However, when the first TLB shootdown is
delivered to the idle core, the OS performs a full TLB
invalidation and indicates to the other cores not to
send it further shootdown IPIs while it is idle.

Despite all of these techniques, shootdowns can
induce high overheads in real systems. Arguably, this
overhead is one of the reasons people refrain from
using multithreading, in which mapping changes
need to propagate to all threads. Moreover, applica-
tion writers often prefer copying data over memory
remapping, which requires TLB shootdown [42].

2.4 Per-Core Page Tables

Currently, the state-of-the-art software solution for
TLB shootdowns is setting per-core page tables, and
according to the experienced page-faults track which
cores used each PTE [11,19]. When a PTE invalidation
is needed, a shootdown is sent only to cores whose
page tables hold the invalidated PTE.

Maintaining per-core page tables, however, can
introduce substantial overheads when some PTEs
are accessed by multiple cores. In such a case, OS
memory management operations become more ex-
pensive, as mapping modifications require changes
the of PTEs in multiple page-tables. The overhead of
PTE changes is not negligible, as some require atomic
operations. RadixVM [11] reduces this overhead by
changing PTEs in parallel: sending IPIs to cores that
hold the PTE and changing them locally. This scheme
is efficient when shootdowns are needed, as one IPI
triggers both the PTE change and its invalidation.
Yet, if a shootdown is not needed, for example when
the other cores run a different process, this solution
may increase the overhead due to the additional IPIs.

Holding per-core page tables can also introduce
high memory overheads if memory is accessed by
multiple cores. For example, in recent 288 core
CPUs [24], if half of the memory is accessed by
all cores, the page tables will consume 18% of the
memory or more if memory is overcommitted or
mappings are sparse.

While studies showed substantial performance
gains when per-core page tables are used, the limi-
tations of this approach may have not been studied
well enough. For example, in an experiment we con-
ducted memory migration between NUMA nodes
was 5 times slower when memory was mapped in
48 page-table hierarchies (of 48 Linux running pro-
cesses in our experiment) instead of one. Previous
studies may have not shown these overheads as
they considered a teaching OS, which lacks basic
memory management features [11]. In addition, pre-
vious studies experienced shootdown latencies of
over 500k cycles, which is over 24x of the latency
that we measured. Presumably, the high overhead
of shootdowns could overshadow other overheads.

3. The Idea
The challenge in reducing TLB shootdown overhead
is determining which cores, if at all, might be caching
a given PTE. Although architectural paging struc-
tures do not generally provide this information, we
contend that the OS can nevertheless deduce it by
carefully tracking and manipulating PTE access-bits.
The proclaimed goal of access bits is to indicate if
memory pages have been accessed. This functional-
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ity is declared by architectural manuals and is used
by OSes to make informed swapping decisions. Our
insight is that access bits can be additionally used
for a different purpose: to indicate if PTEs are cached
in TLBs, as explained next.

Let us assume: that (1) a PTE e might be cached
by a set of cores S at time t0; that (2) e’s access bit is
clear at t0 (because it was never set, or because the
OS explicitly cleared it); and that (3) this bit is still
clear at some later time t1. Since access bits are set
by hardware whenever it caches the corresponding
translations in the TLB [25], we can safely conclude
that e is not cached by any core c < S at t1.

We note that our reasoning rests on the fact that
last-level TLBs are private per core [6, 27, 29] and so
translations are not transferred between them. Linux,
for example, relies on this fact when shooting down
a PTE of some address space α while avoiding the
shootdown at remote cores whose current address
spaces are different than α (§2.3). This optimization
would have been erroneous if TLBs were shared,
because Linux permits the said remote cores to
freely load αwhile the shootdown takes place, which
would have allowed them to cache stale mappings
from a shared last-level TLB, thereby creating an
inconsistency bug.

We identify two types of mappings that can help
us optimize TLB shootdown by leveraging access-bit
information. The first is short-lived private mappings of
pages that are accessed exclusively by a single thread
and then removed shortly after; this access pattern
may be exhibited, for example, by multithreaded
applications that use memory-mapped files to read
data. The second type is long-lived idle mappings of
pages that are reclaimed by the OS after they have
not been accessed for a while; this pattern is typical
for pages that cease to be part of the working set of
a process, prompting the OS to unmap them, flush
their PTEs, and reuse their frames elsewhere.

4. The System
Using the above reasoning (§3), we next describe
the Linux enhancements we deploy on an x86
Intel machine to optimize TLB shootdown of short-
lived private mappings (§4.1) and long-lived idle
mappings (§4.2). We then describe “software-PTEs”,
the data structures we use when implementing our
mechanisms (§4.3). To distinguish our enhancements
from the baseline OS, we collectively denote them
as ABIS—access-based invalidation system.

4.1 Private PTE Detection

To avoid TLB shootdown due to a private mapping,
we must (1) identify the core that initially uses this

mapping and (2) make sure that other cores have not
used it too at a later time. As previously shown [27],
the first item is achievable via demand paging,
the standard memory management technique that
OSes employ, which traps upon the first access to a
memory page and only then sets a valid mapping [9].
The second item, however, is more challenging,
as existing approaches to detect PTE sharing can
introduce overheads that are much higher than those
we set out to eliminate (§6).

Direct TLB Insertion Our goal is therefore to find
a low-overhead way to detect PTE sharing. As a
first step, we note that this goal would have been
easily achievable if it was possible to conduct direct
TLB insertion—inserting a mapping m directly into
a TLB of a core c without setting the access bit of
the corresponding PTE e. Given such a capability, as
long as m resides in the TLB, subsequent uses of m
by c would not set the access-bit of e, as no page table
walks are needed. In contrast, if some other core c̄
ends up using m as well, the hardware will walk the
page table when inserting m to the TLB of c̄, and it
will therefore set e’s access bit, thereby indicating
that m is not private.

Direct TLB insertion would have thus allowed
us to use turned-off access bits as identifiers of
private mappings. We remark that this method is best-
effort and might lead to false-positive indications
of sharing in cases where m is evicted from the
TLB and reinserted later. This issue does not affect
correctness, however. It simply implies that some
useless shootdown activity is possible. The approach
is thus more suitable for short-lived PTEs.

Alas, current x86 processors do not support di-
rect TLB insertion. One objective of this study is
to motivate such support. When proposing a new
hardware feature, architects typically resort to simu-
lation since it is unrealistic to fabricate chips to test
research features. We do not employ simulation for
two reasons. First, because we suspect that it might
yield questionable results, as the OS memory man-
agement subsystems that are involved are complex
to realistically simulate. Second, since TLB insertion
is possible on existing hardware even without hard-
ware support, and can benefit workloads that are
sensitive to shootdown overheads, shortening run-
times by 0.56x (= 1

1.78 ; see Figure 5) at best. Although
runtimes might be 1.09x longer in the worst case,
our results indicate that real hardware support will
eliminate this overhead (§5.1).

Note that although direct TLB insertion is not
supported in the x86 architecture, it is supported
in CPUs that employ software-managed TLBs. For
example, Power CPUs support the tlbwe instruction
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that can insert PTE directly into the TLB. We there-
fore consider this enhancement achievable with a
reasonable effort.

Approximation Let us first rule out the naive ap-
proach to approximate direct TLB insertion by: (1) set-
ting a PTE e; (2) accessing the page and thus prompt-
ing hardware to load the corresponding mapping
m into the TLB and to set e’s access bit; and then
(3) having the OS clear e’s access bit. This approach is
buggy due to the time window between the second
and third items, which allows other cores to cache
m in their TLBs before the bit is cleared, resulting in
a false sharing indications that the page is private.
Shootdown will then be erroneously skipped.

We resolve this problem and avoid the above race
by using Intel’s address space IDs, which is known
as process-context identifiers (PCIDs) [25]. PCIDs
enable TLBs to hold mappings of multiple address
spaces by associating every cached PTE with a PCID
of its address space. The PCID of the current address
space is stored in the same register as the pointer to
the root of the page table hierarchy (CR3), and TLB
entries are associated with this PCID when they are
cached. The CPU uses for address translation only
PTEs whose PCID matches the current one. This
feature is intended to allow OSes to avoid global
TLB invalidations during context switch and reduce
the number of TLB misses.

PCID is not currently used by Linux due to the
limited number of supported address spaces and
questionable performance gains from TLB miss re-
duction. We indeed exploit this feature in a different
manner. Nevertheless, our use does not prevent or
limit future PCID support in the OS.

The technique ABIS employs to provide direct TLB
insertion is depicted in Figure 1. Upon initialization,
ABIS preallocates for each core a “secondary” page-
table hierarchy, which consists of four pages, one
for each level of the hierarchy. The uppermost level
of the page-table (PGD) is then set to point to the
kernel mappings (like all other address spaces). The
other three pages are not connected at this stage to
the hierarchy, but wired dynamically later according
to the address of the PTE that is inserted to the TLB.

While executing, the currently running thread T
occasionally experiences page faults, notably due
to demand paging. When a page fault fires, the OS
handler is invoked and locks the PT that holds the
faulting PTE—no other core will simultaneously
handle the same fault.

At this point, ABIS loads the secondary space to
CR3 along with a PCID equal to that of T (Step 1 in
Figure 1). After, ABIS wires the virtual-to-physical
mapping of the target page in both primary and
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Figure 1: Direct TLB insertion using a secondary hierarchy.

secondary spaces, leaving the corresponding access
bit in the primary hierarchy clear (Step 2).

Then, ABIS reads from the page. Because the asso-
ciated mapping is currently missing from the TLB (a
page fault fired), and because CR3 currently points
to the secondary space, reading the page prompts
the hardware to walk the secondary hierarchy and
to insert the appropriate translation to the TLB, leav-
ing the primary bit clear (Step 3). Importantly, the
inserted translation is valid and usable within the
primary space, because both spaces have the same
PCID and point to the same physical page using the
same virtual address. This approach eliminates he
aforementioned race: no other core is able to access
the secondary space, as it is private to the core.

After reading the page, ABIS loads the primary
hierarchy back to CR3, to allow the thread to continue
as usual (Step 4). It then clears the PTE from the
secondary space, thereby preventing further use of
translation data from the secondary hierarchy that
may have been cached in the hardware page-walk
cache (PWC). If the secondary tables are used by the
CPU for translation, no valid PTE will be found and
the CPU will restart a page-walk from the root entry.

Finally, using our “software-PTE” (SPTE) data
structure (§4.3), ABIS associates the faulting PTE e
with the current core c that has just resolved e. When
the time comes to flush e, if ABIS determines that e
is still private to c, it will invalidate e on c only, thus
avoiding the shootdown overhead.

Coexisting with Linux Linux reads and clears ar-
chitectural access bits (hwA-s) via a small API, allow-
ing us to easily mask these bits while making sure
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that both Linux and ABIS simultaneously operate
correctly. Notably, when Linux attempts to clear an
hwA, ABIS (1) checks whether the bit is turned on,
in which case it (2) clears the bit and (3) records
in the SPTE the fact that the associated PTE is not
private (using the value ALL_CPUS discussed further
below). Note, however, that Linux and ABIS can
use the access bit in a conflicting manner. For ex-
ample, after a page fault, Linux could expect to see
the access bit turned on, whereas ABIS’s direct TLB
insertion makes sure that the opposite happens. To
avoid any such conflicts, we maintain in the SPTE a
new per-PTE “software access bit” (swA) for Linux,
which reflects Linux’s expectations. The swA bits are
governed by the following rules: upon a page fault,
we set the swA; when Linux clears the bit, we clear
the swA; and when Linux queries the bit, we return
an OR’d value of swA and hwA. These rules ensure
that Linux always observes the values it would have
observed in an ABIS-less system.

ABIS attempts to reduce false indications of PTE
sharing when possible. We find that Linux performs
excessive full flushes to reduce the number of IPIs
sent to idle cores as part of the shootdown procedure
(§2.3). In Linux, this behavior is beneficial as it
reduces the number of TLB shootdowns at the cost
of more TLB misses, whose impact is relatively small.
In our system, however, this behavior can result in
more shootdowns, as it increases the number of false
indications. ABIS therefore relaxes this behavior,
allowing idle cores to service a few individual PTE
flushes before resorting to a full TLB flush.

Overhead Overall, the overhead of direct TLB in-
sertions in our system is≈550 cycles per PTE (respon-
sible for the worst-case 9% slowdown mentioned
earlier). This overhead is amortized when multi-
ple PTEs are mapped together, for example, via one
mmap system-call invocation, or when Linux serves
a page-fault on a file-backed page and maps adjacent
PTEs to avoid future page-faults [36].

4.2 TLB Version Tracking

Based on our observations from §3, we build a TLB
version tracking mechanism to avoid flushes of long-
lived idle mappings. Let us assume that a PTE e
might be cached by a set of cores S at time t0, and
that each core c ∈ S performed a full TLB flush during
the time period (t0, t1). If at time t1 the access bit of
e remains clear (i.e., was not cleared by software),
then we know for a fact e is not cached by any
TLB. If the OS obtained the latter information by
atomically reading and zeroing e, then all TLB flushes
associated with e (local and remote) can be avoided.
To detect such cases, we first need to maintain a “full-

uncached
ver=uncached

private
CPU=[current]
ver=[AS].ver

potentially	
shared
CPU=all

ver=[AS].ver

PTE	change	when
access-bit is	set

faulted-in

PTE	flush

PTE	flush

PTE	change	when
access-bit	is	set

Figure 2: A finite state machine that describes the various states
of a PTE. In each state, the assignment of the caching core and
version are denoted. On each transition the access-bit is cleared.

flush version number” for S, such that the version is
incremented whenever all cores c ∈ S perform a full
TLB flush. Recording this version for each e at the
time e is updated would then allow us to employ the
optimization.

TLB version tracking The most accurate way to
track full flushes is by maintaining a version for
each core, advancing it after each local full flush,
and storing a vector of the versions for every PTE.
Then, if a certain core’s version differs from the
corresponding vector coordinate (and the access-
bit is clear), a flush on that core is not required.
Despite its accuracy, this scheme is impractical, as it
consumes excessive memory and requires multiple
memory accesses to update version vectors. We
therefore trade off accuracy in order to reduce the
memory consumption of versions and the overheads
of updating them.

ABIS therefore tracks versions for each address
space (AS, corresponds to the above S) and not for
each core. To this end, for every AS, we save a version
number and a bitmask that marks which cores have
not performed a full TLB flush in the current version.
The last core to perform a full TLB flush in a certain
version advances the version. At the same time, it
marks in the bitmask which cores currently use this
AS and can therefore cache PTEs in the next version.
To mitigate cache line bouncing, the core that initiates
a TLB shootdown updates the version on behalf the
target cores.

Avoiding flushes After a PTE access-bit is cleared,
ABIS stores the current AS version as the PTE version.
Determining later whether a shootdown is needed
requires some attention, as even if the PTE and the AS
versions differ, a flush may be necessary. Consider
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Figure 3: Flush type decision algorithm.

a situation in which the access-bit is cleared, and
the PTE version is updated to hold the AS version.
At this time, some of the cores may have already
flushed their TLB for the current AS version, and
their respective bit in the bitmask is clear. The AS
version may therefore advance before these cores
flush their TLB again, and these cores can hold stale
PTEs even when the versions differ. Thus, our system
avoids shootdown only if there is a gap of at least
one version between the AS and the PTE versions,
which indicates a flush was performed on all cores.

Since flushes cannot be avoided when the access-
bit is set, this bit should be cleared and the PTE
version updated as frequently as possible, assuming
it introduces negligible overheads. In practice, ABIS
clears the bit and updates the version whenever the
OS already accesses a PTE for other purposes, for
example during an mprotect system-call or when
the OS considers a page for reclamation.

Uncached PTEs The version tracking mechanism
can also prevent unwarranted multiple flushes of
the same PTE. Such flushes may occur, for example,
when a user first calls an msync system call, which
performs writeback of a memory mapped file, and
then unmaps the file. Both operations require flush-
ing the TLB since the first clears PTEs’ dirty-bit and
the second sets a non-present PTE. However, if the
PTE was not accessed after the first flush, the second
flush is unnecessary, regardless of whether a full TLB
flush happened in between. To avoid this scenario,
we set a special version value, UNCACHED, as the PTE
version when it is flushed. This value indicates the
PTE is not cached in any TLB if the access-bit is
cleared, regardless of the current AS version.

Coexisting with Private PTE Detection Version
tracking coexists with private PTE detection. The
interaction between the two can be described in a

generation swA caching	core

15															9								8								7 0

software	page	table	(SPT)

page	table	(PT)

frame	meta-data
(	struct page )

PT	spin-lock

SPT	pointer

PFN stat/protection

63																		 11 0

Figure 4: Software PTE (SPTE) and its association to the page
table through the meta-data of the page-table frame.

state machine,as shown in Figure 2. In the “uncached”
state a TLB flush is unnecessary; in the “private”
state at most one CPU needs to perform a TLB flush;
and in the “potentially shared” state all the CPUs
perform TLB flush.1 In the latter two states, a TLB
flush may still be avoided if the access-bit is clear
and the current address space version is at least two
versions ahead of the PTE version. Figure 3 shows
ABIS flush decision algorithm.

4.3 Software PTEs

As we noted before, for our system to perform in-
formed TLB invalidation decisions, additional infor-
mation must be saved for each PTE: the PTE ver-
sion, the CPU which caches the PTE, and a software
access-bit. Although we are capable of squeezing
this information into two bytes, the architectural PTE
only accommodates three bits for software use. We
therefore allocate a separate “software page-table”
(SPT) for each PT, which holds the corresponding
“software-PTEs” (SPTEs). The SPTE is not used by
the CPU during page-walks and therefore causes
little cache pollution and overhead.

An SPTE is depicted in Figure 4. We use 7 bits
for the version, 1 bit for the software access-bit, and
another byte to track the core that caches the PTE
if the access-bit is cleared. We want to define the
SPTE in a manner that ensures a zeroed SPTE would
behave in the legacy manner, allowing us to make
fewer code changes. To do so, we reserve the zero
value of the “caching core” field to indicate that
the PTE may be cached by all CPUs (ALL_CPUS) and
instead store the core number plus one.

When the OS wishes to access the SPTE of a certain
PTE, it should be able to easily access it. Yet the PTE
cannot accommodate a pointer to its SPTE. A possible
solution is to allocate two page-frames for each page-

1 A TLB flush is not required on CPUs that currently use a different
page-table hierarchy as explained in §2
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Figure 5: Normalized runtime and number of TLB shootdowns in
ABIS when running vm-scalability benchmarks. The numbers
above the bars indicate the baseline (left) runtime in seconds and
(right) rate of TLB shootdowns in thousands/second.

table, one holding the CPU architectural PTEs and
the second holding the corresponding SPTEs, each
in a fixed offset from its PTE. While this scheme is
simple, it wastes memory as it requires the SPTE to
be the same size as a PTE (8B), when in fact SPTE
only occupies two bytes.

We therefore allocate an SPT separately during the
PT construction, and set a pointer to the SPT in the
PT page-frame meta-data (page struct). Linux can
quickly retrieve this meta-data, allowing us to access
the SPTE of a certain PTE with small overhead. The
SPTE pointer does not increase the page-frame meta-
data, as it is set in an unused PT meta-data field
(second quadword). The SPT therefore increases
page table memory consumption by 25%. ABIS
prevents races during SPT changes by protecting it
with the same lock that is used to protect PT changes.
It is noteworthy that although SPT management
introduces a overhead, it is negligible relatively to
other overheads in the workloads we evaluated.

5. Evaluation
We implemented a fully-functional prototype of
the system, ABIS, which is based on Linux 4.5.
As a baseline system for comparison we use the
same version of Linux, which includes recent TLB
shootdown optimizations. We run each test 5 times
and report the average result. Our testbed consists
of a two-socket Dell PowerEdge R630 with Intel 24-
cores Haswell EP CPUs. We enable x2APIC cluster-
mode, which speeds up IPI delivery.

In our system we disable transparent huge pages
(THP), which may cause frequent full TLB flushes, in-
crease the TLB miss-rate [4] and introduce additional
overheads [26]. In practice, when THP is enabled,
ABIS still shows benefit when small pages are used

(e.g., in the Apache benchmark shown later) and no
impact when huge pages are used (e.g., PBZIP2).

As a fast block device for our experiments we
use ZRAM, a compressed RAM block device, which
is used by Google Chrome OS and Ubuntu. This
device latency is similar to that of emerging non-
volatile memory modules. In our test, we disable
memory deduplication and deep sleep states which
may increase the variance of the results.

5.1 VM-Scalability

We use the vm-scalability test suite [34], which is
used by Linux kernel developers to exercise the
kernel memory management mechanisms, test their
correctness and measure their performance.

We measure ABIS performance by running bench-
marks that experience high number of TLB shoot-
downs.2 To run the benchmarks in a reasonable time,
we limit the amount of memory each test consumes
to 32GB. Figure 5 presents the measured speedup,
the runtime, the relative number of sent TLB shoot-
downs and their rate. We now discuss these results.

Migrate. This benchmark reads a memory mapped
file and waits while the OS is instructed to migrate
the process memory between NUMA nodes. During
migration, we set the benchmark to perform a busy-
wait loop to practice TLB flushes. We present the
time that a 1TB memory migration would take. ABIS
reduces runtime by 44% and shootdowns by 92%.

Multithreaded copy-on-write (cow-mt). Multiple
threads read and write a private memory mapped
file. Each write causes the kernel to copy the original
page, update the PTE to point to the copy, and flush
the TLB. ABIS prevents over 97% of the shootdowns,
reducing runtime by 20% for sequential memory
accesses and 15% for random by avoiding over 97%.

Memory mapped reads (mmap-read). Multiple
processes read a big sparse memory mapped file. As
a result, memory pressure builds up, and memory
is reclaimed. While almost all the shootdowns are
eliminated, the runtime is not affected, as apparently
there are more significant overheads, specifically
those of the page frame reclamation algorithm.

Multithreaded msync (msync-mt). Multiple threads
access a memory mapped file and call the msync
system-call to flush the memory changes to the file.
msync can cause an overwhelming number of flushes,
as the OS clears the dirty-bit. ABIS eliminates 98%
of the shootdowns but does not reduce the runtime,
as file system overhead appears to be the main
performance bottleneck.

2 We find that due to some benchmarks practice unrealistic
scenarios. Our revised tests are released with ABIS code.
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Figure 6: Execution of an Apache web server which serves the Wrk workload generator.

Anonymous memory read (anon-r-seq). To evalu-
ate ABIS overheads we run a benchmark that per-
forms sequential anonymous memory reads and
does not cause TLB shootdowns. This benchmark’s
runtime is 9% longer using ABIS. Profiling the bench-
mark shows that the software TLB manipulations
consume 9% of the runtime, suggesting that hard-
ware enhancements to manipulate the TLB can elim-
inate most of the overheads.

5.2 Apache Web Server

Apache is the most widely used web server soft-
ware. In our tests, we use Apache v2.4.18 and enable
buffered server logging for more efficient disk ac-
cesses. We use the multithreaded Wrk workload
generator to create web requests [50], and set it to
repeatedly request the default Apache web page for
30 seconds, using 400 connections and 6 threads.
We use the same server for both the generator and
Apache, and isolate each one on a set of cores. We
ensure that the generator is unaffected by ABIS.

Apache provides several multi-processing mod-
ules. We use the default “mpm_event” module,
which spawns multiple processes, each of which
runs multiple threads. Apache serves each request
by creating a memory mapping of the requested
file, sending its content and unmapping it. This be-
havior effectively causes frequent invalidations of
short-lived mappings. In the baseline system, the in-
validation also requires expensive TLB shootdowns
to the cores that run other threads of the Apache
process. Effectively, when Apache serves concurrent
requests using multiple threads, it triggers a TLB
shootdown for each request that it serves.

Figure 6a depicts the number of requests per sec-
ond that are served when the server runs on different
number of cores. ABIS improves performance by 12%

when all cores are used. Executing the benchmark
reveals that the effect of ABIS on performance is
inconsistent when the number of cores is low, as
ABIS causes slowdown of up to 8% and speedups
of to 42%. Figure 6b presents the number of TLB
shootdown that are sent and received in the baseline
system and ABIS. As shown, in the baseline sys-
tem, as more cores are used, the amount of sent TLB
shootdowns becomes almost identical to the number
of requests that Apache serves. ABIS reduces the
number of both sent and received shootdowns by
up to 90% as it identifies that PTEs are private and
that local invalidation would suffice.

5.3 PBZIP2

Parallel bzip2 (PBZIP2) is a multithreaded imple-
mentation of the bzip2 file compressor [20]. In this
benchmark we evaluate the effect of reclamation
due to memory pressure on PBZIP2, which in itself
does not cause many TLB flushes. We use PBZIP2 to
compress the Linux 4.4 tar file. We configured the
benchmark to read the input file into RAM and split
it between processors using 500k block size. We run
PBZIP2 in a container and limit its memory to 300MB
to induce swap activity. This activity causes the in-
validation of long-lived idle mappings as inactive
memory is reclaimed.

The time of compression is shown in Figure 7a.
ABIS outperforms Linux by up to 12%, and the
speedup grows with the number of cores. Figure 7b
presents the number of TLB shootdowns per second
when this benchmark runs. The baseline Linux
system sends nearly 200k shootdowns regardless of
the number of threads, and the different shootdown
send rate is merely due to the shorter runtime
when the number of cores is higher. The number
of received shootdowns in the baseline system is
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Figure 7: Execution of PBZIP2 when compressing the Linux kernel. The process memory is limited to 300MB to practice page
reclamation.

proportional to the number of cores, as the OS
cannot determine which TLBs cache the entry, and
broadcasts the shootdown messages to all the cores
that run the process threads. In contrast, ABIS can
usually determine that a single TLB needs to be
flushed. When 48 threads are spawned, a shootdown
is sent on average to 10 remote cores in ABIS, and to
18 cores using baseline Linux.

5.4 PARSEC Benchmark Suite

We run the PARSEC 3.0 benchmark suite [7], which
is composed of multithreaded applications that are
intended to represent emerging shared-memory
programs. We set up the benchmark suite to use the
native dataset and spawn 32 threads. The measured
speedup, the runtime, the normalized number of TLB
shootdowns and their rate in the baseline system
are presented in Figure 8. As shown, ABIS can
improve performance by over 3% but can also induce
overheads of up to 2.5%. ABIS reduces the number
of TLB shootdowns by 96% on average.

The benefit of ABIS appears to be limited by the
overhead of the software technique it uses to insert
PTEs into the TLB. As this overhead is incurred after
each page fault, workloads which trigger consider-
ably more page faults than TLB shootdowns experi-
ence slowdown. For example, “canneal” benchmark
causes 1.5k TLB shootdowns per second in the base-
line system, and ABIS prevents 91% of them. How-
ever, since the benchmark triggers over 55k page-
faults per second, ABIS reduces performance by 2.5%.
In contrast, “dedup” triggers 33k shootdowns and
370k page faults per second correspondingly. ABIS
saves 39% of the shootdowns and improves perfor-
mance by 3%. Hardware enhancements or selective
enabling of ABIS could prevent the overheads.

5.5 Limitations

ABIS is not free of limitations. The additional opera-
tions and data introduce performance and memory
overheads, specifically the insertions of PTEs into
the TLB without setting the access-bit. However, rel-
atively simple hardware enhancements could have
eliminated most of the overhead (§7). In addition,
the CPU incurs overhead of roughly 600 cycles when
it sets the access-bit of shared PTEs [37].

To detect short-lived private mappings, our sys-
tem requires that the TLB be able to accommodate
them during their lifetime. New CPUs include rather
large TLBs of up to 1536 entries, which may map
6MB of memory. However, non-contiguous or very
large working sets may cause TLB pressure, induce
evictions, and cause false indications that PTEs are
shared. In addition, frequent full TLB flushes, for in-
stance during address-space switching or when the
OS sets the CPU to enter deep sleep-state have simi-
lar implications. Process migration between cores is
also damaging as it causes PTEs to be shared between
cores and requires shootdowns. These limitations
are often irrelevant to a well-tuned system [30, 31].

Finally, our system relies on micro-architectural
behavior of the TLBs. We assume the MMU does not
perform involuntary flushes and that the same PTE
is not marked as “accessed” multiple times when it
is already cached. Experimentally, this is not always
the case. We further discuss these limitations in §7.

6. Related Work
Hardware Solutions. The easiest solution from a
software point of view is to maintain TLB coherency
in hardware. DiDi uses a shared second-level TLB
directory that tracks which PTEs are cached by which
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Figure 8: Normalized runtime and number of TLB shootdowns
in ABIS when running PARSEC benchmarks. The numbers
above the bars indicate the baseline (left) runtime in seconds and
(right) rate of TLB shootdowns in thousands/second.

core and performs TLB flushes accordingly [48].
Teller et al. proposed that OSes save a version count
for each PTE, to be used by hardware to perform TLB
invalidations only when memory is addressed via a
stale TLB entry [39]. Li et al. eliminate unwarranted
shootdowns of PTEs that are only used by a single
core by extending PTEs to accommodate the core
that first accessed a page, enhancing the CPU to track
whether a PTE is private and avoiding shootdowns
accordingly [27].

These studies present compelling evaluation
results; however, they require intrusive micro-
architecture changes, which CPU vendors are appar-
ently reluctant to introduce, presumably due to a
history of TLB bugs [1, 16, 17, 35, 46].

Software Solutions. To avoid unnecessary recur-
ring TLB flushes of invalidated PTEs, Uhlig tracks
TLB versions and avoids shootdowns when the re-
mote cores already performed full TLB flushes after
the PTE changed [43, 44]. However, the potential of
this approach is limited since even when TLB invali-
dations are batched, the TLB is flushed shortly after
the last PTE is modified.

An alternative approach for reducing TLB flushes
is to require applications to inform the OS how mem-
ory is used or to control TLB flushes explicitly. Corey
OS avoids TLB shootdowns of private PTEs by re-
quiring that user applications define which memory
ranges are private and which are shared [10]. C4 uses
an enhanced Linux version that allows applications
to control TLB invalidations [40]. These systems,
however, place an additional burden on application
writers. Finally, we should note that reducing the
number of memory mapping changes, for example
by improving the memory reclamation policy, can

reduce the number of TLB flushes. However, these
solutions are often workload dependent [45].

7. Hardware Support
Although our system saves most of the TLB shoot-
downs, it does introduce some overheads. Hardware
support that would allow privileged OSes to insert
PTEs directly to the TLB without setting the access-
bit would eliminate most of ABIS’s overhead. Such
an enhancement should be easy to implement as we
achieve an equivalent behavior in software.

ABIS would able to save even more TLB flushes if
CPUs avoid setting the PTE access-bit after the PTE
is cached in the TLBs. We encountered, however,
in situations where such events occur. It appears
that when Intel CPUs set the PTE dirty-bit due to
write access, they also set the access-bit, even if the
PTE is already cached in the TLB. Similarly, before a
CPU triggers a page-fault, it performs a page-walk
to retrieve the updated PTE from memory and may
set the access-bit even if the PTE disallows access.
Since x86 CPUs invalidate the PTE immediately after,
before invoking the page-fault exception handler,
setting the access-bit is unnecessary.

CPUs should not invalidate the TLB unnecessarily,
as such invalidations hurt performance regardless of
ABIS. ABIS is further affected, as these invalidations
cause the the access-bit to be set again when the
CPU re-caches the PTE. We found that Intel CPUs
(unlike AMD CPUs) may perform full TLB flushes
when virtual machines invalidate huge pages that
are backed by small host pages.

8. Conclusion
We have presented two new software techniques
that prevent TLB shootdowns in common cases,
without replicating the mapping structures and
without incurring more page-faults. We have shown
its benefits in a variety of workloads. While our
system introduces overheads in certain cases, these
can be reduced by minor CPU enhancements. Our
study suggests that providing OSes better control
over TLBs may be an efficient and simple way to
reduce TLB coherency overheads.

Availability
The source code is publicly available at:
http://nadav.amit.to/publications/tlb.
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