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Abstract

The current primary concern of out-of-core graph pro-
cessing systems is improving disk I/O locality, which
leads to certain restrictions on their programming and ex-
ecution models. Although improving the locality, these
constraints also restrict the expressiveness. As a re-
sult, only sub-optimal algorithms are supported for many
kinds of applications. When compared with the opti-
mal algorithms, these supported algorithms typically in-
cur sequential, but much larger, amount of disk I/O.

In this paper, we explore a fundamentally different
tradeoff: less total amount of I/O rather than better lo-
cality. We show that out-of-core graph processing sys-
tems uniquely provide the opportunities to lift the restric-
tions of the programming and execution model (e.g., pro-
cess each loaded block at most once, neighborhood con-
straint) in a feasible manner, which enable efficient algo-
rithms that require drastically less number of iterations.
To demonstrate the ideas, we build CLIP, a novel out-of-
core graph processing system designed with the principle
of “squeezing out all the value of loaded data”. With the
more expressive programming model and more flexible
execution, CLIP enables more efficient algorithms that
require much less amount of total disk I/O. Our experi-
ments show that the algorithms that can be only imple-
mented in CLIP are much faster than the original disk-
locality-optimized algorithms in many real-world cases
(up to tens or even thousands of times speedup).

1 Introduction

As an alternative to distributed graph processing, disk-
based single-machine graph processing systems (out-of-
core systems) can largely eliminate all the challenges of
using a distributed framework. These systems keep only
a small portion of active graph data in memory and spill
the remainder to disks, so that a single-machine can still
process large graphs with the limited amount of memory.
Due to the ease of use, several out-of-core systems have
been developed recently [15, 26, 41]. These systems
make practical large-scale graph processing available to
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anyone with a modern PC. It is also demonstrated that
the performance of a single ordinary PC running Grid-
Graph is competitive with a distributed graph processing
framework using hundreds of cores [41].

The major performance bottleneck of out-of-core sys-
tems is disk I/O. Therefore, improving the locality of
disk I/O has been the main optimization goal. The cur-
rent systems [15, 26, 41] use two requirements to achieve
this goal. First, the execution engine defines a specific
processing order for the graph data and only iterates the
edges/vertices according to such order, which means that
each edge/vertex is processed at most once in an iter-
ation. By avoiding fully asynchronous execution, this
technique naturally reduces the tremendous amount of
random disk I/O that would have otherwise occurred.
The second is the neighborhood constraint that requires
a single user-defined programming kernel to access only
the neighborhood of its corresponding input vertex/edge.
This requirement improves the locality of disk I/O and
also makes automatic parallelization of in-memory pro-
cessing practical.

According to our investigation, almost all existing
out-of-core systems enforce the above two requirements
in their programming and execution models, which as-
sure the good disk I/O locality for the algorithms that
they supported. However, these restrictions (e.g., pro-
cess each loaded block at most once, neighborhood con-
straint) also affect the models’ expressiveness and flex-
ibility and lead to the sub-optimal algorithms. As a re-
sult, the execution incurs sequential, but excessive, the
amount of disk I/0O, compared with more efficient algo-
rithms which require drastically less iterations.

As an illustration, the “at most once” requirement
obviously wastes the precious disk bandwidth. Many
graph algorithms (e.g. SSSP, BFS) are based on itera-
tive improvement methods and can benefit from iterat-
ing multiple times on a loaded data block. Moreover,
many important graph problems (e.g., WCC, MIS) can
be solved with much less iterations (typically only one
pass is enough) by changing algorithms. However, these
algorithms require the removal of “neighborhood con-
straint”. In essence, we argue that the current systems
follow a wrong trade-off: they improve the disk I/O lo-
cality at the expense of less efficient algorithms with
the larger amount of disk I/O, wasting the precious disk
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bandwidth. As a consequence, current out-of-core sys-
tems only achieve sub-optimal performance.

In this paper, we propose CLIP, a novel disk-based
graph processing system, in which supporting more ef-
ficient algorithms is the primary concern. We argue that
out-of-core graph processing systems uniquely provide
the opportunities to lift the restrictions of the program-
ming and execution model (e.g., process each loaded
block at most once, neighborhood constraint) in a fea-
sible manner. Specifically, CLIP is designed with the
principle of “squeezing out all the value of loaded data”,
It defines a programming model that supports /) loaded
data reentry by allowing more flexible processing or-
der; and 2) beyond-neighborhood accesses by allowing
an “edge function” to update vertex properties that do not
belong to the input edge’s neighborhood.

Essentially, CLIP chooses an alternative trade-off by
enabling more efficient algorithms and more flexible ex-
ecutions at the expense of accessing vertices beyond the
neighborhood. Obviously, randomly accessing vertices
in disk incurs random disk I/O that is detrimental to per-
formance. To mitigate this issue, CLIP simply mmap all
the vertex data into memory. Without incurring develop-
ment efforts, this method is vastly different from existing
systems that load only needed part of vertices at a time
(e.g., GraphChi, X-Stream, GridGraph).

Using this method, although the vertex data could re-
side in either memory or disk, Lin et al. [17] showed
that the built-in caching mechanism of mmap is partic-
ularly desirable for processing real-world graphs, which
often exhibit power-law degree distributions [12]. In
such graphs, high-degree nodes tend to be accessed
much more frequently than others and hence will always
be cached in memory and result in good performance.
Moreover, because the vertex data are typically much
smaller than edge data but are accessed more frequently,
our method is deemed to be a good heuristic in memory
allocation that naturally reserves as much memory for
vertices as possible. In fact, in our experiments, we /)
test on many different real-world graphs that contain up
to 6.6 billion edges; and 2) modulate the maximum size
of memory that the system is allowed to use for simulat-
ing the different size of available memory, from 32GB
down to only 128MB (even 16MB for small graphs), by
using cgroup. According to the results, CLIP is faster
than any existing out-of-core systems on various mem-
ory limits.

The evaluation of our system consists of two parts.
First, we evaluate the effectiveness of loaded data reen-
try, which can be applied to not only our system but also
existing frameworks. According to our experiments, this
simple technique can significantly reduce the number of
required iterations for intrinsically iterative algorithms
like SSSP and BFS, achieving up to 14.06x speedup.

Second, we compare our novel beyond-neighborhood al-
gorithms with prior ones on many important graph prob-
lems. We found that they can reduce the number of
required iterations from 7~6261 to only one pass for
popular graph problems such as WCC (3.25x-4264 x
speedup) and MIS (20.9x-60x speedup).

2 Out-of-Core Graph Processing

GraphChi [15] is the first large-scale out-of-core graph
processing system that supports vertex programs. In
GraphChi, the whole set of vertices are partitioned into
“intervals”, and the system only processes the related
sub-graph of an interval at a time (i.e., only the edges
related to vertices in this interval are accessed). This
computation locality of vertex program (i.e. access only
the neighborhood of input vertex) makes it easy for
GraphChi to reduce random disk accesses. As a result,
GraphChi requires a small number of non-sequential disk
accesses and provides competitive performance com-
pared to a distributed graph system [15].

Some successor systems (e.g., X-Stream [26], Grid-
Graph [41]) propose an edge-centric programming
model to replace the vertex-centric model used in
GraphChi. A user-defined function in the edge-centric
model is only allowed to access the data of an edge and
the related source and destination vertices. This require-
ment also enforces a similar neighborhood constraint as
the vertex-centric models, and hence ensures the systems
to incur only limited amount of random disk I/O.

However, although these existing out-of-core graph
processing systems differ vastly in detailed implementa-
tion, they share two common design patterns: /). Graph
data (i.e. edges/vertices) is always (selectively) loaded
in specific order and each of the loaded data block is
processed at most once in an iteration; 2). They all re-
quire that the user-defined functions should only access
the neighborhood of the corresponding edge/vertex.

3 Reducing Disk I/0

According to our investigation, these two shared patterns
could potentially prohibit programmers from construct-
ing more efficient algorithms, and therefore increase the
total amount of disk I/O. Motivated by this observation,
our approach lifts the restrictions in the current program-
ming and execution model by: /) providing more flexible
processing order; and 2) allowing the user-defined func-
tion to access an arbitrary vertex’s property. This section
discuss the rationale behind these two common patterns,
and why they are not always necessary in an out-of-core
system. More importantly, with the restrictions removed,
how our approach could enable more efficient algorithms
that require less number of iterations and less amount of
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Figure 1: SSSP example. All the edges of this graph have the same distance set to 1.

disk I/O. In essence, our approach squeezes out all the
values of loaded data.

3.1 Reentry of Loaded Data

Out-of-core systems typically define a specific pro-
cessing order for the graph data and only iterate the
edges/vertices according to such order. This is natural,
because a fully asynchronous graph processing would in-
cur the tremendous amount of random accesses to the
graph data, drastically reducing disk I/O performance.
However, this strategy could potentially increase the
number of required iterations of many graph problems
(e.g. SSSP, BFS) based on iterative improvement algo-
rithms.

Figure 1 shows an example that calculates single
source shortest path (SSSP) on a graph of 6 vertices. In
SSSP, the vertex property dist[v] is initialized to O for ver-
tex 1 and oo for the others (Figure 1 (a)). The edge func-
tion applied to each edge (u,v) checks whether dist[v]
is larger than dist[u] + 1, If it is true, dist[v] is immedi-
ately updated as dist[u] + 1. Figure 1 (b) shows the exe-
cution, where each iteration sequentially loads one edge
at a time, processes it and updates dist[v] if necessary.
As a result, 4 iterations are needed. The number of it-
erations is determined by the diameter of the graph. To
mitigate this issue, some prior systems (e.g., GraphChi,
GridGraph) /) allows an update function to use the most
recent values of the edges/vertices; and 2) provides selec-
tive scheduling mechanisms that skip certain data blocks
if they are not needed. Although these optimizations en-
able “asynchronous execution”, the essential workflow
is not changed as each block loaded is still processed at
most once in every iteration.

We argue that the current approaches fail to exhaust
the value of loaded data, because a block of edges rather
than only one edge is loaded at a time. While the edges
in a block are independent, they constitute a sub-graph
in which information could be propagated by process-
ing it multiple times. In another word, the system could
squeeze more value of the loaded data block. This ap-
proach is a mid-point between fully synchronous and
asynchronous processing and achieves the best of both:
ensuring sequential disk I/O by synchronously process-

ing between blocks; and, at the same time, enabling asyn-
chronous processing within each block.

The idea is illustrated in the example in Figure 1 (c).
Here, we partition the edges into blocks that each con-
tains two edges, and we apply two computation passes to
every loaded block. As a result, the number of iterations
is reduced to 2. In the extreme case, if the user further
enlarges the loaded data block to contain 6 edges, then
only one iteration is needed. We call the proposed simple
optimization technique loaded data reentry. As we see
from the SSSP example in Figure 1, loaded data reentry
could effectively reduce the number of iterations, reduce
the amount of disk I/O and eventually reduce the whole
execution time. For each loaded data block, more CPU
computation is required. Considering the relative speed
of CPU and disk I/O, trading CPU computation for less
disk I/O is certainly a sensible choice.

3.2 Beyond the Neighborhood

“Loaded data reentry” is simple and requires only moder-
ate modifications to be applied to existing systems (e.g.,
GridGraph). However, to apply the principle of “squeez-
ing all the values of loaded data” to more applications,
we found that the neighborhood constraint imposed by
existing systems prohibits the possibility of optimizing in
many cases. This neighborhood constraint is enforced by
almost all single-machine graph processing systems be-
cause in this way one can easily infer the region of data
that will be modified by the inputs, which is necessary
for disk I/O optimizations. Despite the rationale behind,
neighborhood constraint limits the expressiveness of pro-
gramming model in a way that certain algorithms cannot
be implemented in the most efficient manner.

We use weakly connected component (WCC) to ex-
plain the problem. WCC is a popular graph problem that
calculates whether two arbitrary vertices in a graph are
weakly connected (i.e., connected after replacing all the
directed edges with undirected edges). With the existing
programming models, this problem can only be solved
by a label-propagation-based algorithm, in which each
node repeatedly propagates its current label to its neigh-
bors and update itself if it receives a lower label. The in-
trinsic property of this algorithm (i.e., the label informa-
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tion only propagates one hop in each iteration) inevitably
causes the large number of required iterations to cover-
age, especially for graphs with large diameters. How-
ever, if the user-defined function is allowed to update the
property of an arbitrary vertex, a disjoint-set [11, 29, 30]
data structure can be built in memory. Based on the
disjoint-set, WCC problem for any graph can be solved
with only one pass of the edges.

In general, this method is used in a class of graph al-
gorithms termed Graph Stream Algorithms [21], where
a graph G = (V,E) is represented as a stream of edges,
the storage space of an algorithm is bounded by O(|V]).
Graph Stream Algorithms has been studied by the theo-
retical community for about twenty years [21, 23], and
it has been shown that if a randomly accessible O(|V])
space is given, many important graph algorithms can
be solved by reading only one (or a few) pass(es) of
the graph stream [8]. Unfortunately, the whole class of
Graph Stream Algorithms cannot be implemented by the
programming model of current disk-based out-of-core
systems (or only in a very inefficient manner).

3.3 Limitations

Although the “beyond-neighborhood” algorithms offer
significant performance improvements, it also becomes
more difficult to infer the range of vertices that will be ac-
cessed by a user-defined function. As a result, it becomes
more challenging to: 1) selectively load vertex proper-
ties; and 2) automatically parallelize the execution.

To address the first problem, our solution is to simply
mmap all the vertices into memory. While counterintu-
itive, this straightforward method actually works quite
well on many real-world scenarios. In our experiments,
we test various data size (up to 6.6B edges) and memory
limits (down to only 16MB for small graphs). Results
show that our system largely outperforms existing ones
in many real-world cases.

The reason of this phenomenon is two-fold. First,
the size of vertices is usually considerably smaller than
the size of edges but used much more frequently. Our
method is deemed to be a good heuristic in memory al-
location that naturally reserves as much memory for ver-
tices as possible. Since the density of real-world dataset
is usually larger than 30, in typical cases, our method
could in fact keep all the vertices in memory. This be-
havior is even valid for industrial-grade workloads. Re-
searchers in Facebook declared in their paper “One Tril-
lion Edges: Graph Processing at Facebook Scale” [7]
that industry graphs “can be two orders of magnitude
larger” than popular benchmark graphs, which means
“hundreds of billions or up to one trillion edges”. But,
even for such huge graphs, the number of vertices is only
about one billion (288M vertices and 60B edges for Twit-
ter, 1.39B vertices and 400B edges for Facebook). This

number means that most of the vertices can be cached in
memory as the edges typically only need to be read in a
stream fashion. This assumption is still valid after using
reentry, because we only reentry the loaded edges.

Even more, as discussed in Lin et al. [17], the caching
mechanism of mmap is particularly desirable for pro-
cessing real-world graphs, which often exhibit power-
law degree distributions. Our experiment results validate
this assumption. Since these high-degree vertices are al-
ways cached in memory, accesses to their properties are
cheap. In contrast, the other low-degree vertices may be
swapped out if the memory limit is low, but they are ac-
cessed very infrequently.

As for the second problem, our observation is that:
since the complexity of computation is quite low, disk
I/O is the real bottleneck. It is also confirmed by our re-
sults in Section 5: the performance of our single-thread
implementation can in fact match the multi-threaded
all-in-memory systems and is significantly faster than
prior multi-threaded out-of-core systems. The same phe-
nomenon is also observed by many existing investiga-
tions [26], which conclude that there is no need of us-
ing multi-threading in an out-of-core environment. To
be more general, we also provide a multi-threaded mode
in CLIP, which requires users to use atomic operation
if necessary. Based on our experience, the increased
programming burden is quite limited (only requires the
straightforward replacement of the original instruction
by the atomic counterpart).

4 CLIp

To support the loaded data reentry and beyond-
neighborhood optimization, we design and implement a
C++-based novel out-of-core graph processing system,
CLIP. CLIP allows users to flexibly write more efficient
algorithms that require less number of iterations (and less
disk I/0O) than algorithms based on previous program-
ming models. The flexibility of our system is achieved
due to /) its unique execution workflow; and 2) the abil-
ity to break neighborhood constraint. The kernel pro-
gramming API of CLIP is still “edge function”, which is
very similar to X-Stream and GridGraph and hence will
not much affect the programmability.

4.1 Workflow

CLIP uses the same data model as X-Stream and Grid-
Graph, where the data is modeled as a directed data graph
and only the property of vertices can be modified. Fig-
ure 2 illuminates the main workflow of CLIP in detail.
As for the computation, its procedure is split into two
phases. The first phase sorting is a pre-processing proce-
dure that sorts all the edges according to a specific order
defined by users. We provide a simple interface to al-
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low the assignment of the user-defined identifier for each
edge. The system will sort edges according to the iden-
tifiers. This procedure is typically used to sort edges in
grid order!, where the length of grid is the page size.
With this order, the accesses to the property of vertices
show good locality. If this standard pre-processing is
used, it is the same as GridGraph. But, by exposing
this API to users, we provide more flexibility. In our ex-
periments, we observe that other orders (e.g., sorting by
source only) may be helpful in certain cases (e.g., mem-
ory size is enough for caching all the vertices).

f(e) Block-1
@< Block-2

Block-n

T Sorting

| Execution
Edges (Sequential Read)

LN
Memory LE | - | = | < | ,l Ve All vertices
. Reentry ’,’ (Random R/W)
N
--Lload ------ D R Rt B
| N ,
Disk | Block-1 | Block-2 | <<<<<< | Block-n |

Figure 2: Main workflow of CLIP.

The second phase execution is an iterative procedure
that circularly reads edges until the property of vertices
are converged. Within each iteration, CLIP loads and
processes each of the data block by executing the user-
defined “edge function” on every edge. Traditional graph
processing systems restrict that each data block is pro-
cessed with only one execution pass in an iteration. In
CLIP, each loaded data block is processed by multiple
execution passes until all the vertices/edges become in-
active. Moreover, we allow users to specify a maximum
reentry times (MRT), which is the maximum number of
passes that will be executed for every loaded data block.
MRT is useful when most further local updating will be
invalided by global updating.

4.2 APIs

The programming interface of CLIP is defined in Table
1. This simple API is similar to those provided by ex-
isting edge-centric out-of-core systems [26, 41]. Sort()
and Exec() are used to execute one iteration of the sort-
ing and execution phase, respectively. To facilitate the
users, we also provide a VMap() function that iterates
every vertex and applies the user-defined input function.
Table 1 also defines the type of input parameters and re-
turn value of each API function. The input parameter of
user-defined function ¥, and &, both contain v_list with

'Grid order means that the adjacent matrix of this graph is cut
into grids and the edges belonging to the same grid are stored con-
tiguously. Specifically, an edge (src, dst) is sorted by (src/grid_length,
dst/grid_length, src, dst).

type Vertices. Vertices is a container by which we can
access the property of an arbitrary vertex (mmap-ed into
the address space).

Specifically, the input of Sort() is a user-defined
function J; that accepts an edge as input and returns a
double as the edge’s identifier. After the sorting phase,
users of CLIP may repeatedly call the function Exec ()
to perform the execution phase for updating the property
of vertices. During an iteration, the user-defined func-
tion J, is applied to edges (potentially multiple times)
and can update the property of arbitrary vertices.

Table 1: Programming model of CLIP.

Sort(Fy) — F, := double function(Edge &e)
Exec(F,) — F, :=void function(Vertices &v_list, Edge &e)
VMap(F,) — F, = void function(Vertices &v_list, VertexID &vid)

Our system also supports selective scheduling, which
enables us to skip an edge or even a whole block if it is
not needed. Specifically, through the v_list argument, F,
can both modify the property of an arbitrary vertex and
set its activity. We define that /) an edge is inactive if its
source vertex is inactive; and 2) an entire block is inactive
if all the edges it contains are inactive. CLIP automati-
cally maintains the activity of every edge/block and uses
this information to avoid the unnecessary execution.

4.3 Disk I/O

Although the bandwidth of disk is constantly improv-
ing, it still remains as the main bottleneck of out-of-
core graph processing systems. Thus, in CLIP, we im-
plement an overlapping mechanism by using a separate
loading thread that continuously reads data into a cir-
cular buffer until it is full. Moreover, CLIP also en-
ables selective scheduling to further improve the perfor-
mance. This mechanism is implemented by maintaining
the current activity of vertices with a bit-array. With this
data structure, CLIP implements two kinds of skipping,
namely edge skipping and block skipping. As we have
mentioned in Section 4.2, for block skipping, an entire
on-disk edge grid will be ignored when it does not con-
tain any active edges (very easy to check bit-array since
these source vertices are a continuous range). Moreover,
in order to further enable edge skipping, one needs to
use Sort () function to sort the input edges according to
their source vertex. In that case, edges that have the same
source vertex will be placed continuously and hence can
be skipped at once if this source vertex is inactive (no
need of checking the source ID for every edge).

4.4 Examples

To illustrate the usages of CLIP’s API, this sec-
tion presents the implementation of SSSP and WCC,
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which benefit from loaded data reentry and beyond-
neighborhood optimization, respectively.

SSSP In SSSP, a property “distance” is attached to each
edge and the shortest path is defined as the lowest ag-
gregating distance of all the edges along the path. Sim-
ilar to other systems, we use a relaxing-based algorithm
to solve this problem [5, 9]. Algorithm 1 illustrates the
pseudo-code of this algorithm. The VMap function is
called in the beginning for initialization, which is fol-
lowed by a series of execution iterations. Each of these
iterations executes the same edge function J, on every
edge, which modifies the distance property of the edge’s
destination vertex and sets it to active.

Algorithm 1 SSSP Algorithm in CLIP.

Functions:
Fy(volist,vid) - — {
if vid == start do
v_list[vid|.dist + 0;
v_list.setActive(vid,true);
else v_list|vid].dist < INF;
v_list.setActive(vid, false); }
Fo(volist,e) —{
dist < v_list[e.src|.dist + e.weight
if v_list[e.dst].dist > dist do
v_list[e.dst].dist + dist;
v_list.setActive(e.dst,true);
else v_list.setActive(e.dst, false); }
Computation:
VMap(3,);
Until convergence:
Exec(F,);

Note that this SSSP implementation is almost the same
as original ones, because the trade-off between execution
time and disk time is modulated only by MRT. As we will
show in Section 5.2.3, the value of MRT is important for
achieving a good performance, but it is rather simple to
choose an MRT that is good enough.

WCC Different from the label-propagation based al-
gorithm used by prior systems, our algorithm builds a
disjoint-set over the property of vertices and uses it to
solve WCC for an arbitrary graph with only one itera-
tion. Disjoint-set, also named union-find set, is a data
structure that keeps track of a set of elements partitioned
into a number of disjoint subsets. It supports two use-
ful operations: 1) find(v), which returns an item from v’s
subset that serves as this subset’s representative; and 2)
union(u, v), which joins the subsets of # and v into a sin-
gle subset. Typically, one can check whether two items u
and v belong to the same subset by comparing the results
of find(u) and find(v). It is guaranteed that if # and v are
from the same subset then find(u) == find(v). Otherwise,
one can invoke a union(u, v) to merge these two subsets.

Algorithm 2 presents the code of our disjoint-set based
WCC algorithm. Figure 3 gives an example. In our im-
plementation, each vertex maintains a property pa that
stores the ID of a vertex. If pa[u] = v, we name that

the “parent” of vertex u is v. Vertex u is the representa-
tive of its subset if and only if pa[u] = u. Otherwise,
if palu] # u, the representative of u’s subset can only
be found by going upstream along the pa property un-
til finding a vertex that satisfies the above restriction (i.e.
function find in Algorithm 2). For example, if pa[3] = 2,
pal2] =1, pa[1] = 1, the subset representative of all these
three vertices is 1. The union function is implemented by
finding the representative of the two input vertices’ sub-
set and setting one’s pa to another. Therefore, the whole
procedure of our WCC algorithm can be simply imple-
mented by applying the union function to every edge.

Algorithm 2 WCC Algorithm in CLIP.

Functions:
T fina (v-Aist,vid) -— {
if v_list[vid].pa == vid do return vid;
else return v_list|vid].pa =
F fpina (v-list,v_list[vid).pa); }
Funion (v-List,src,dst) -— {
8 < Ffing (v list, src);
d < T ping(vlist,dst);
if s < d do v_list[d].pa < v_list[s].pa;
else if s > d do v_list[s].pa < v_list|d].pa; }
Fe(volist,e) :— { Funion(v-list,e.src,e.dst); }
Fy(vlist,vid) -— {
v_list[vid].pa + vid;
v_list.setActive(vid,true); }
Computation:
VMap(F,):
Exec(F,);

In Figure 3 (a), the graph has 4 vertices and 3 edges,
the pa of every vertex is illustrated by arrows in Fig-
ure 3 (b). At the beginning of our algorithm, each vertex
belongs to a unique disjoint subset. Hence, all arrows
point to their starting vertex (1 in Figure 3(b)). During
the execution, the first edge read is (1,2), so their subsets
are union-ed by pointing vertex 2’s arrow to 1 (2 in Fig-
ure 3(b)). In the second step, edge (2,3) is read and their
subsets are also union-ed. By going toward upstream of
vertex 2’s arrow, we can find that its representative is 1.
As a result, the union is performed by pointing vertex 3’s
arrow to vertex 1 (3 in Figure 3(b)). Similarly, the arrow
of vertex 4 is redirected to vertex 1 after reading edge
(3,4) (4 in Figure 3(b)). Eventually, all arrows point to
vertex 1 and hence we found that there is only one weak
connected component in the graph.

As one can imagine, this disjoint-set based algorithm
always requires only one iteration to calculate WCC for
an arbitrary graph, so that it leads to much less work than
the original label-propagation based algorithm. But, a
potential problem of this algorithm is that, when access-
ing the property of a vertex, it also needs to access its
parent’s property (i.e., breaking the neighborhood con-
straint). Thus, in an extreme case that the property of
vertices cannot be all cached and the accesses to parents
show great randomness, it may lead to very bad perfor-
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mance. However, this problem can be avoided by two
simple optimizations: /) when calling union on two ver-
tices, always uses the vertex that has smaller ID as the
parent; and 2) iterate the edge grids by their x index,
which means that the grids are read in the order of “(0,
0), (0, 1), ..., (0, P-1), (1, 0), ...” if the graph edges are
partitioned into P x P grids. According to our evalua-
tion, these two simple optimizations can make sure that
most of the parents are stored in the first several pages of
vertex property and hence show good locality.
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Figure 3: WCC example.
S Evaluation

In this section, we present our evaluation results on CLIP
and compare it with the state-of-art systems X-Stream
and GridGraph (as they are reported to be faster than
other existing out-of-core graph processing systems like
GraphChi). We split all the benchmarks we tested into
two categories by their properties and discuss the reason
of our speedup respectively.

5.1 Setup
5.1.1 Environment

All our experiments are performed on a single machine
that is equipped with two Intel(R) Xeon(R) CPU ES-
2640 v2 @ 2.00GHz (each has 8-cores), 32GB DRAM
(20MB L3 Cache), and a standard 1TB SSD. According
to our evaluation, the average throughput of our SSD is
about 450MB/s for sequential read. We use a server ma-
chine rather than an ordinary PC for the testing because
we want to show that the single-thread algorithms im-
plemented in CLIP is even faster than the multi-threaded
implementations in X-Stream and GridGraph, which can
take advantage of at most 16 threads.

5.1.2 Benchmarks

We consider two categories of benchmarks. The first
category is asynchronous applications, which includes
SSSP, BES and other algorithms like delta-based PageR-
ank [37], diameter approximation [25], transitive clo-
sures [32], betweenness centrality [6], etc. For this
kind of applications, the same relaxation based algo-
rithms can be implemented with CLIP as in X-Stream
and GridGraph. The only difference is that the user of

CLIP can inform the system to enable loaded data reen-
try by setting MRT. The second category is beyond-
neighborhood applications (e.g., WCC, MIS), which
require users to develop new algorithms to achieve
the best performance. One should notice that, for
each application, we use either “reentry” or “beyond-
neighborhood”, so that there is no need for a piecewise
breakdown of the performance gain.

5.1.3 Methodology

The main performance improvement of CLIP is achieved
by reducing the number of iterations with more efficient
algorithms. Thus, if all the disk data is cached in memory
(which is possible as we have a total of 32GB memory),
we cannot observe the impact of disk I/O on overall per-
formance. In order to demonstrate our optimizations in a
realistic setting with disk I/O, we use cgroup to set vari-
ous memory limits (from 16MB to 32GB).

Specifically, for every combination of (system, appli-
cation, dataset), we test three different scenarios: /) all-
in-memory, i.e., limit is set to 32GB so that most of
the tested datasets can be fully contained in memory;
2) semi-external, where the memory limit is enough for
holding all the vertices but not all the edges; and 3) ex-
ternal, where the memory limit is extremely small so
that even vertices cannot be fully held in memory. As the
number of vertices and edges are different for different
datasets, the thresholds used for semi-external and exter-
nal are also dataset-specific. The exact numbers are pre-
sented in Table 2, from which we can see that the limit is
down to only 16MB as the vertex number of LiveJournal
is less than SM.

Table 2: The real-world graph datasets. A random
weight is assigned for unweighted graphs.
Graph Vertices Edges Type Threshold
external semi
LiveJournal [3] 4.85M 69.0M Directed 16MB 256MB
Dimacs [4] 23.9M 58.3M Undir. 64MB 256MB
Twitter [14] 41.7M 1.47B Directed 128MB 4GB
Friendster [2] 65.6M 1.8B Directed 128MB 4GB
Yahoo [1] 1.4B 6.64B Directed 4GB 8GB

Moreover, for the clarity of presentation, if not speci-
fied explicitly, we always attempt all the possible number
of threads and report the best performance. This means
that we use at most 16 threads for testing X-Stream and
GridGraph. In contrast, we testing CLIP with 16 threads
for asynchronous applications but only one thread for
beyond-neighborhood algorithms.

5.2 Loaded Data Reentry

We use two applications, SSSP and BFS, to evaluate the
effect of loaded data reentry technique. All of them can
be solved by relaxation based algorithms.
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Table 3: Execution time (in seconds) On SSSP/BFS. For each case, we report the results of all three scenarios in the format
of “external / semi-external / all-in-memory”. ‘-’ is used if we cannot achieve all-in-memory even when the limit is set to 32GB.
Since X-Stream requires extra memory for shuffling the messages, 32GB is not enough even for smaller datasets like Friendster
and Twitter. ‘co’ means that the application does not finish after running 24 hours.

CLIp 30.14 7/ 11.23 /7 5.09 3202 / 1981 / 316.1

LiveJournal Dimacs Friendster Twitter Yahoo
X-Stream 3579/ 1184/ 8.45 77212/ 22647/ 853.2 6352 / 3346 / - 4065 / 2255 / - o [/ o [ -
SSSP  GridGraph 6642/ 48.1 / 6.97 14618/ 13480/ 889.9 1086 / 784.6 / 85.31 1639 / 1083 / 83.51 77298/ 17432/ -

176.2/ 55.79 / 55.85 1353 / 600.6 / 91.82 18160/ 6932 / -

X-Stream 91.50 / 22.94 7 4.06
BFS  GridGraph 1320/ 154 / 2.49
CLip 10.01/ 546 / 253

8934 / 6538 / 114.9
5199 / 5239 / 406.2
1768 / 1059 / 96.12

2526 / 1084 / -
499.6 / 493.7 / 61.54
98.87 / 38.55/ 38.72

1421 / 6274/ - o [/ oo [ -
220.5/ 209.6 / 32.16 35572/ 7403 / -
1412/ 1104/ 447 10533/ 3297 / -

5.2.1 Comparison

The results are presented in Table 3, in which all the
three different scenarios are included. In this table, ‘-’
means that we cannot achieve all-in-memory even when
the limit is set to 32GB. and ‘e’ means that the appli-
cation does not finish after running 24 hours. As we
can see, CLIP can achieve a significant speedup (1.8x-
14.06x) under the semi-external scenario. In contrast,
the speedup on external scenario is less (only up to
6.16x). This is reasonable because, with a smaller limit,
the number of edges that can be held in memory is
less, therefore, the diameter of the sub-graph loaded into
memory is smaller. As a result, the effect of reentry is
also weaker. Moreover, even for all-in-memory settings,
CLIP still outperforms the others if the diameter of the
graph is large (e.g., we achieve a 2.7x speedup on Di-
macs), which is because that CLIP allows the information
to be propagated faster within a sub-graph and eventually
makes the convergence faster.

In order to justify the above argument, we compare the
number of iterations that is needed for converge on CLIP
and the other systems. Results show that our loaded data
reentry technique can greatly reduce this number. This
improvement is especially significant for large-diameter
graphs, like Dimacs, where more than 90% of the itera-
tions can be reduced.
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Figure 4: The scalability for SSSP on Twitter graph,
evaluated in semi-external scenario.

5.2.2 Scalability

Since we use the same algorithm as X-Stream and Grid-
Graph, our implementation of SSSP and BFS follow the
neighborhood constraint. Following neighborhood con-
straint makes it easy to enable the multi-thread model of

CLIP to leverage the multi-core architecture. However,
since disk I/O is the real bottleneck, there is actually not
a big difference between using multi-thread or not.
Figure 4 illustrates our experiments results on scala-
bility. As we can see, GridGraph has the best scalabil-
ity as it can achieve a 1.55x speedup by using 4 threads.
However, it is large because the single-thread baseline of
GridGraph is inefficient. In fact, the single-thread CLIP
is already faster than multi-thread version of GridGraph.
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Figure 5: Execution time and required iterations for ex-
ecuting SSSP on Dimacs graph in the semi-external sce-
nario, with different MRT values.

5.2.3 MRT

The value of Maximum Reentry Times (MRT) modulates
the trade-off between global updating and local updating.
As its effect depends not only on the property of input
graph but also on the type of application, there isn’t a
rule for calculating the best MRT. But, according to our
experiences, heuristically setting MRT to 5-10 is usually
enough for producing a performance that is matchable
with the best possible result (less than 4% difference).
For example, all the values we reported in Table 3 is
measured at “MRT = 5”. The intuitive reason for this
phenomena is that the diameter of a real-world graph is
typically not large. Figure 5 shows the execution time
and required iterations of SSSP on Dimacs graph with
different MRTs. We see that both an excessively small
MRT (e.g., =1) or an excessively large MRT (>20) are
not helpful. When MRT is larger than 10, while the num-
ber of iterations is decreasing, the execution time will
actually increase. The reason is that large MRT will lead
to many useless iterations within each block, which in-
creases the amount of calculation of CPU without prop-
agating the updates to other blocks.
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Table 4: Execution time (in seconds) on WCC and MIS. Format of this table is the same as Table 3. As the size of vertex
property is only 1/4 of other applications in MIS, its corresponding thresholds for external and semi-external execution is also only

1/4 of the given number in Table 2, e.g., only 4MB for executing MIS with LiveJournal in external scenario.

LiveJournal Dimacs Friendster Twitter Yahoo
X-Stream 179.5/ 57.77 1 10.25 16633/ 6751 / 185.3 4521 / 2341 / - 1904 / 1194 / - o [/ o [ -
WCC  GridGraph 2232/ 13.8 / 3.57 6547 / 5757 /| 422.5 967.5/ 466.6 / 82.95 4315/ 2723/ 62.3 19445/ 2916 / -
CLip 373/ 240 / 243 261 / 135 / 133 186 / 65.48 / 64.56 132.7 / 49.03 / 48.85 310.6 / 2209/ -
X-Stream 422.1/ 152.6/ 13.06 103.4/ 4142/ 5.95 9880 / 4867 / - 5513 / 3042 / - o [/ oo [ -
MIS  GridGraph 166.6 / 122.1/ 2.98 46.32/ 39.19/ 14.46 3945 / 3777 /| 253.7 2510 / 2473 / 156.1 o [/ o [ -
CLip 6.7 / 2.57 | 2.58 1.6 / 117 / 1.21 188.8 / 62.49/ 62.18 90.44 / 49.08 / 49.13 321.5/ 22027/ -

5.3 Beyond-neighborhood
5.3.1 Applications

For some problems, new algorithms need to be imple-
mented to leverage beyond-neighborhood strategy. Be-
sides WCC that described in Section 4.2, we introduce
one more example named MIS in our evaluation.

MIS is an application that finds an arbitrary maxi-
mal independent set for a graph. In graph theory, a set
of vertices constitutes an independent set if and only if
any two of these vertices do not have an edge in be-
tween. We define that a maximal independent set as a
set of vertices that /) constitutes an independent set; and
2) is not a proper subset of any other independent sets.
Note that there may be multiple maximal independent
sets in a graphs, and MIS only requires to find one ar-
bitrary maximal independent set from them. To solve
this problem, X-Stream and GridGraph implement the
same parallel algorithm that is based on Monte Carlo al-
gorithm [19]. In contrast, we use a simple greedy algo-
rithm to solve this problem, which consists of three steps:
1) a Sort() is invoked to sort all the edges by their source
IDs; 2) a VMap() is called to set the property of all the
vertices to true; and 3) an Exec() is executed which it-
erates all the edges in order and set the property in_mis
of the input edge e’s source vertex to false if and only
if “e.dst < e.src && v_listle.dst].in_mis == true”. Af-
ter executing only one time of the Exec(), the final re-
sults can be obtained by extracting all the vertices whose
property in_mis are true.

Our MIS algorithm is not only beyond-neighborhood
but also requires that the edges are processed in a spe-
cific order. Thus, it is essentially a sequential algorithm
that requires users to use the Sort () function provided
by CLIP to define a specify pre-processing procedure.
However, our algorithm is much faster than the parallel
algorithm used by X-Stream and GridGraph, because it
requires only one iteration for arbitrary graphs.

5.3.2 Comparison

Table 4 shows the evaluation results on beyond neighbor-
hood applications. We see that CLIP can achieve a signif-
icant speed up over the existing systems on all the three
scenarios: up to 2508 x on external, up to 4264x on

semi-external, and up to 139x on all-in-memory. Same
as the asynchronous algorithms, the main reason of the
speedup in CLIP is that the algorithms require much less
iterations to calculate the results. The original algorithms
can only converge after using tens or even thousands of
iterations. In contrast, out algorithms require only one it-
eration for all the graphs. As a result, even if we can only
use a single thread to execute our beyond-neighborhood
algorithms, the large amount of disk I/O and computa-
tion avoided by this iteration reduction is enough to offer
better performance than other parallel algorithms.

Moreover, as we can see from the table, even though
that the algorithms used by CLIP do not follow the neigh-
borhood constraint, they are still much faster than the
other systems in the external scenario, where the vertices
are not fully cached in memory. As we have explained
in Section 3.3, this is because that the caching mech-
anism of mmap is particularly suitable for processing
power-law graphs. Hence, the number of pages swap-
ping needed for vertices are moderate, at least far less
from offsetting the benefit we gain from reducing redun-
dant read of edges.

6 Discussion
6.1 Scope of Application

Although our “reentry” technique is quite simple, it es-
sentially provides a midpoint between the fully syn-
chronous algorithm and the fully asynchronous algo-
rithm. It makes the convergence faster than fully syn-
chronous execution but makes an implementation more
“disk-friendly” than fully asynchronous execution (i.e.
process once a block rather than once a vertex). As a re-
sult, all applications that can benefit from asynchronous
execution can benefit from “reentry”, because they are
based on the same principle.

In contrast, the application of “beyond-neighborhood”
does rely on the existence of such algorithms. But, ac-
cording to our study, there are indeed a large set of ap-
plications can be optimized with our model. For exam-
ple, finding WCC of a graph lies at the core of many
data mining algorithms, and is a fundamental subroutine
in graph clustering. Thus, our method can benefit not
only WCC itself but also all these applications. Simi-
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larly, MIS shares a similar access pattern of many graph
matching applications. In fact, the number of these so-
called Graph Stream Algorithms is large enough for pub-
lishing a survey on them [8, 21].

Essentially, our “beyond-neighborhood” optimization
fundamentally enhances the expressiveness of the ver-
tex programs so that important graph operations like
“pointer-jumping” could be implemented. A recent ar-
ticle [16] made the same observation but only discussed
it in the context of Galois [24]. This paper shows that
such more expressive programming model is not only
applicable for in-memory but also feasible for out-of-
core graph processing systems. Even more, we argue that
the significant performance improvements that “beyond-
neighborhood” can achieve also overshadows its limita-
tion on applicability.

6.2 Programmability

McSherry et al. [22] have observed that the scalability
of many distributed graph processing system is based on
their inefficient single-thread implementation. As a re-
sult, they argue that specialized optimized implementa-
tions should be used in many real-world scenarios, which
share the same principle as our system. However, dif-
ferent from their work that uses a set of distinct pro-
grams, CLIP is a complete system that provides a general
enough programming model.

The trade-off between more flexibility (potentially
worse programmability) and better performance is well-
known. Neighborhood-constraint systems choose one
extreme of this spectrum, which provides the best pro-
grammability but worse performance. McSherry et al.’s
work [22] and some others (e.g., Galois [24], smart al-
gorithm in GoFFish [27], Polymer [35]) choose the other
extreme. They provide only some basic functionalities
(e.g., concurrent loop) or even barely anything. These
methods can achieve the best performance, but impose a
much larger burden on programmers.

In contrast, we believe that CLIP is a sweet spot in
the design space that is just right for out-of-core sys-
tems. The slight sacrifice of programmability is defi-
nitely worthwhile because this makes CLIP up to tens
and even thousands of times faster than existing systems.
According to our evaluation, the programming model of
CLIP helps us to write all the programs described in this
paper in less than 80 lines of codes, comparing to 1200
lines for the native algorithms (many lines of code are
used for dealing with chores like I/O, partitioning, etc.).

6.3 Compared with In-memory System

Thanks to flexibility of CLIP, its performance on many
kinds of applications is matchable with in-memory sys-
tems. As an illustration, Table 5 presents the comparison
between CLIP (semi-external mode) and manually opti-

mized algorithms that implemented in Galois. Since the
loading of data dominates the execution time, the per-
formance of CLIP is indeed comparable to Galois. CLIP
is slower than Galois on large datasets (Friendster, Twit-
ter) because we use different encoding formats for the
binary graph file on disk. Take “Twitter”” as an example,
the input edges size of WCC is 11.25GB for Galois but
21.88GB for CLIP.

Besides Galois, GraphMat [28] is also an in-memory
graph processing system that takes advantage from ef-
ficient matrix operations. According to our evaluation,
GraphMat requires only 0.72s to calculate the WCC of
LiveJournal, which is faster than both Galois and CLIP
(while it requires 9.78s for loading data). However,
GraphMat employs a synchronous execution engine that
enforces neighborhood constraint. Thus, for graphs that
have a large diameter, its performance is poor. For exam-
ple, GraphMat needs 6262 iterations (221.9s) to achieve
the convergence of WCC algorithm on Dimacs (only 1
iteration and 1.35s are needed for CLIP).

Table 5: Execution time (in seconds) for CLIP and Ga-

lois. ‘-’ designates out of memory.

LiveJournal Dimacs Friendster ~ Twitter Yahoo
WCC
Galois 2.58 1.81 49.75 42.36
CLIp 24 1.35 65.48 49.03 220.9
MIS
Galois 2.01 1.36 40.14 34.15
CLIpP 2.57 1.17 62.49 49.08 220.2

6.4 Concurrency

As mentioned in Section 5.2.2, users of CLIP can enable
multi-thread execution for applications that voluntarily
obey the neighborhood constraint (e.g., SSSP). Specifi-
cally, for executing VMap () in parallel, the whole vertex
set is split into equal intervals that are dispatched to dif-
ferent worker threads. Similarly, for executing Exec (),
the loaded edge grid is further split and dispatched. With
neighborhood constraint, the concurrency control can be
implemented by fined-grained locking in a straightfor-
ward manner. However, although the locking mecha-
nism can assure the correctness of our system, certain
downsides of asynchronous execution still exist in CLIP,
such as non-deterministic execution and unstable per-
formance. However, asynchronous execution has been
demonstrated to be able to accelerate the convergence of
iterative computations [10].

Besides multi-threads, there are also some graph sys-
tems that support multi-tenant execution [7, 20]. Differ-
ent from them, CLIP is a single machine graph process-
ing system and does not support multi-tenant execution,
which is similar to prior systems [15, 26, 41]. Typically,
multi-tenant is more useful for distributed systems that
share the same cluster.
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6.5 Evaluation on HDD

It is worth mentioning that, CLIP can also achieve a
good performance on slow storage devices (e.g., HDD).
We evaluate CLIP on a standard 3TB HDD and com-
pare it with X-Stream and GridGraph. According to our
evaluation, the average throughput of our HDD is about
150MB/s for sequential read. Table 6 shows the eval-
uation results under the semi-external scenario. Since
the amount of loading data dominates the execution
time, CLIP can achieve a similar or even better speedup
(5.59%-5999x for WCC, 2.32x-15.37x for BFS) with
the evaluation on SSD.

Table 6: Execution time (in seconds) on HDD. ‘e’ means
that the application does not finish after running 24 hours.

LiveJournal Dimacs Friendster Twitter Yahoo
WCC
X-Stream 128.1 15417 5219 2519 oo
GridGraph 34.68 16467 1314 785.9 8764
CLip 6.2 2.57 160.2 132.1 590.4
BFS
X-Stream 53.25 16943 2566 1067 oo
GridGraph 34.28 12790 1431 604.8 22528
CLip 14.77 2659 93.1 217.3 8844

6.6 Preprocessing Time

Pre-processing is a necessary procedure for most (e.g.,
GraphChi, GridGraph, CLIP) but not all (e.g., X-
Stream) out-of-core graph processing systems. The pre-
processing cost of CLIP is similar to GridGraph, as
they are almost the same. Moreover, although some-
times the pre-processing time is longer than the execu-
tion time, it is still worthwhile in terms of total execu-
tion time. For example, the total execution time (pre-
processing+computation) of computing MIS on Friend-
ster is 4867s for X-Stream and 3962.5s for GridGraph.
In contrast, the total execution time of CLIP is 145.3s for
pre-processing and only 62.49s for computation, which
in total is 207.79s. As we can see, the total execu-
tion time of CLIP is 19.07 x faster than GridGraph and
23.42 x faster than X-Stream, not to mention that the pre-
processing cost can be amortized by reusing the results.

7 Related Work

There are also many distributed graph processing sys-
tems. Pregel [20] is the earliest distributed graph pro-
cessing system that proposes a vertex-centric program-
ming model, which is later inherited by many other graph
processing systems [12, 18, 26, 36, 40]. Some exist-
ing works [27, 31], such as Giraph++ [32], have sug-
gested to replace “think as vertex” with “think as sub-
grapg/partition/embedding”. They can take advantage of
the fact that each machine contains a subset of data rather
than only one vertex/edge and hence are much faster
than prior works. However, none of these existing works

could support the beyond-neighborhood algorithms used
by CLIP.

Similarly, in addition to GraphChi, X-Stream and
GridGraph, there are other out-of-core graph processing
systems using alternative approaches [13, 17, 38, 39].
However, most of them only focus on maximizing the
locality of disk I/O and still use neighborhood-constraint
programming model. As a counter example, MMap [17]
leverages the memory mapping capability found on op-
erating systems by mapping edge and vertex data files in
memory, which inspires the design of CLIP. But, MMap
only demonstrates that mmap’s caching mechanism is
naturally suitable for processing power-law graphs. It
does not consider the limitations of the original out-of-
core systems’ restrictions , which is the key contribution
of this work.

There are some works [34, 39] that aim to load only
necessary data in an iteration, which can also reduce disk
I/0. However, these methods are actually an orthogonal
optimization with our efforts of reducing the number of
iterations. According to our evaluation, our simple selec-
tive scheduling method is enough for our case.

Some existing works [15, 33] are proposed to support
evolving graphs, which is not currently supported in our
system. But, although it is not discussed, the same mech-
anism for dealing with evolving graph in GraphChi can
be added to CLIP in a straightforward manner. To main-
tain the consistency of data, we reserve all the addition
and deletion of edges within an iteration and only apply
them in the interval between two iterations.

8 Conclusion

In this paper, we propose CLIP, a novel out-of-core
graph processing system designed with the principle of
“squeezing out all the value of loaded data”. With the
more expressive programming model and more flexible
execution, CLIP enables more efficient algorithms that
require much less amount of total disk I/O. Our exper-
iment results show that CLIP is up to tens or some-
times even thousands times faster than existing works X-
Stream and GridGraph.
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