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ABSTRACT

We propose a new HTM-assisted concurrency control
protocol, called HTCC, that achieves high scalability and
robustness when processing OLTP workloads. HTCC at-
tains its goal using a two-pronged strategy that exploits
the strengths of HTM. First, it distinguishes between hot
and cold records, and deals with each type differently –
while accesses to highly contended data are protected us-
ing conventional fine-grained locks, accesses to cold data
are HTM-guarded. This remarkably reduces the database
transaction abort rate and exploits HTM’s effectiveness
in executing low-contention critical sections. Second, to
minimize the overhead inherited from successive restarts
of aborted database transactions, HTCC caches the in-
ternal execution states of a transaction for performing
delta-restoration, which partially updates the maintained
read/write set and bypasses redundant index lookups dur-
ing transaction re-execution at best effort. This approach
is greatly facilitated by HTM’s speedy hardware mecha-
nism for ensuring atomicity and isolation. We evaluated
HTCC in a main-memory database prototype running on
a 4 socket machine (40 cores in total), and confirmed that
HTCC can scale near-linearly, yielding high transaction
rate even under highly contended workloads.

1 INTRODUCTION

With the introduction of Intel’s newly released Haswell
processors, hardware transactional memory (HTM) is fi-
nally available in mainstream computing machines. As
promised in its initial proposal twenty years ago, HTM
greatly simplifies the implementation of correct and effi-
cient concurrent programs.

A major target application for exploiting HTM is mod-
ern multicore OLTP databases, where sophisticated con-
currency control protocols must be designed to guarantee
isolation among threads. To benefit from HTM, effective
solutions should reduce HTM’s high abort rate caused by

capacity overflow, which is a major limitation of Intel’s
current implementation. A promising approach [34] is
to apply HTM to optimistic concurrency control (OCC)
protocol, where transaction computation is entirely de-
tached from commitment. While achieving high trans-
action rate under certain scenarios, this solution unfor-
tunately gives rise to unsatisfactory performance when
processing highly contended workloads. This is because
conventional OCC is intrinsically sensitive to skewed
data accesses, and, in fact, protecting OCC’s commit-
ment with the speculative HTM can make the protocol
even more vulnerable to contentions.

In this paper, we introduce HTCC, a new HTM-
assisted concurrency control mechanism that achieves
robust transaction processing even under highly con-
tended workloads. The design of HTCC is inspired by
two observations. First, massive volumes of transactions
in a contended workload skew their accesses on a very
few popular data records, and optimistically accessing
these records are likely to result in high abort rate due to
data conflicts. Second, an aborted database transaction
may be successively re-executed before it is eventually
committed, and such re-executions incur the overhead of
repeatedly retrieving the same records via index lookups.

Based on these facts, HTCC adopts a two-pronged
approach that takes full advantage of the strengths of
HTM. On the one hand, HTCC splits the data into hot
and cold records, and a combination of pessimistic fine-
grained locking and optimistic HTM is leveraged to pro-
tect a transaction’s accesses differentially according to
the degree of contentions. This mechanism avoids fre-
quent data conflicts on highly contended records, and
fully exploits HTM’s effectiveness in executing lowly
contended critical sections. On the other hand, to min-
imize the overhead incurred from successive restarts of
aborted database transactions, HTCC further maintains a
thread-local structure, called workset cache, to buffer the
accessed records of each operation within a transaction.
When an aborted transaction is re-executed, HTCC per-
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forms an efficient delta-restoration: records to be read or
written during the re-execution are fetched directly from
the cache, and unnecessary overhead caused by redun-
dant index lookups is largely reduced. However, this de-
sign requires maintenance of a transaction’s read/write
sets and handling of deadlocks. With HTM, potential
deadlocks are now handled by HTM’s hardware scheme;
this not only simplifies the design but also minimizes the
overhead of deadlock resolution (as there is no longer the
need to manage deadlocks for cold data explicitly).

We implemented HTCC in CAVALIA (source code:
https://github.com/Cavalia/Cavalia), a
main-memory database prototype that is built from the
ground up. Our evaluation confirmed that HTCC can
yield much higher transaction rate on a 4 socket machine
(40 cores in total) compared to the state-of-the-art
concurrency control protocols, especially under highly
contended workloads.

This paper is organized as follows: Section 2 provides
a preliminary study to show the design intuition of HTCC.
Section 3 explains how HTCC reduces database transac-
tion abort rate caused by data conflicts, and Section 4
describes how HTCC eliminates unnecessary overhead in
restarting aborted database transactions. We report ex-
tensive experiment results in Section 5. Section 6 re-
views related works and Section 7 concludes this work.

2 PRELIMINARY

Hardware transactional memory. Hardware transac-
tional memory (HTM) aims at simplifying the imple-
mentation of correct and efficient parallel algorithms.
With the release of Intel’s Transactional Synchroniza-
tion Extension (TSX) instructions, programmers nowa-
days can simply use xbegin and xend to guard a code
segment that should be executed transactionally. Upon
finishing an HTM region, all the memory writes encap-
sulated in this region will appear atomically. TSX in-
structions also eliminate the need for implementing soft-
ware mechanisms for deadlock resolution, and its intrin-
sic hardware-level mechanism efficiently ensures atom-
icity and isolation with little overhead.

The TSX instructions use the CPU cache to store exe-
cution buffers for an HTM region. The cache-coherence
protocol is leveraged to track data conflicts at cache-
line granularity. Such use of existing features in mod-
ern CPU architectures makes it possible to provide low-
overhead hardware support for transactional memory. To
guarantee forward progress, a fallback routine that ac-
quires coarse-grained exclusive locks will be executed
after an HTM region has been aborted for a certain pre-
determined number of times. We refer to this number as
the restart threshold.

The major limitation of the current HTM implemen-
tation is its high abort rate, which is caused by either
capacity overflow or data conflicts. First, the capacity of
an HTM region is strictly constrained by both the CPU
cache size and the cache associativity, and any violation
of such constraint can directly give rise to HTM region
abort. Second, HTM executes the protected critical sec-
tions in a speculative manner, and two concurrent HTM
regions updating to the same memory address can re-
sult in either region being aborted. While the capacity-
overflow problem can be addressed through a careful de-
sign of critical sections, data conflicts among dozens of
threads can severely restrict the HTM scalability, making
it less effective as a general mechanism to support a wide
spectrum of concurrent program workloads. Besides
the costly restart overhead, frequent aborts severely hurt
HTM’s performance because of the well-known lemming
effect [8]. As the repeated aborts of a single HTM re-
gion eventually lead to the acquisition of a global coarse-
grained lock, all other HTM regions cannot proceed un-
til the lock is released. This consequently forces all the
concurrent HTM regions to abort, resulting in fully seri-
alized execution without parallelism.
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(a) Low-contention workload.
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(b) High-contention workload.

Figure 1: Processing multi-key transactions. Please note
the difference in y-axis ranges.

Figure 1 compares HTM with conventional fine-
grained locking mechanism when processing multi-key
transactions on a standard hash map with 1 million data
records. Each transaction randomly updates 10 records,
and the access contention is controlled by a parameter
θ , indicating the skewness of the Zipfian distribution.
The fine-grained locking scheme acquires locks associ-
ated with all the targeted records and prevents deadlocks
by pre-ordering its write sets; such an approach is also
used in the validation phase of traditional OCC proto-
col [32]. The restart threshold for HTM regions is varied
from 1 (see HTM(1)) to 64 (see HTM(64)). Figure 1a
shows that, by setting the restart threshold to larger than
4, HTM achieves 2X better performance (31 vs 16 M
tps) when processing low-contention workloads (θ = 0)
with 40 threads. However, the results exhibited in Fig-
ure 1b indicate that the transaction rate achieved by HTM
deteriorates significantly under highly contended work-
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loads (θ = 0.8). In particular, with restart threshold set
to 64, HTM reaches a transaction rate of 1.1 M tps with
40 threads enabled. This number is remarkably smaller
than 3.7 M tps, which is attained by fine-grained locking.

Given the experimental results presented above, we
confirm that Intel’s HTM implementation is more suit-
able for protecting lowly contended data accesses. Fine-
grained locking, in comparison, is still more attractive
for executing high-contention workloads.

Optimistic concurrency control. Modern multicore
OLTP database is a major target for applying HTM.
However, the capacity limit of Intel’s HTM implementa-
tion prevents a one-to-one mapping from database trans-
actions to HTM regions. A promising solution [34] to ad-
dress this problem is to apply HTM to conventional OCC
protocol [15], which splits the execution of a database
transaction into three phases: (1) a read phase, which ex-
ecutes all the read and write operations in the transaction
according to the program logic without any blocking; (2)
a validation phase, which checks the transaction conflicts
by certifying the validity of the transaction’s read set; and
(3) a write phase, which installs all the transaction writes
to the database atomically. Fine-grained locks for all the
records that are accessed by the transaction must be ac-
quired on entering the validation phase and be released
when terminating the write phase. A transaction T1 will
be aborted if it fails the validation phase. Such a failure
indicates that a certain committed concurrent transaction
T2 has modified the values of certain records in T1’s read
set during T1’s read phase. We refer to the time period
during T1’s read phase as vulnerable window, where in-
consistent accesses can occur.

To improve the performance of conventional OCC, ex-
isting solution [34] adopts HTM to completely replace
the fine-grained locks that are used during the transac-
tion’s validation and write phases. However, as HTM
executes guarded code segment speculatively, the valida-
tion and the write phases consequently become vulnera-
ble to contention. More specifically, any committed up-
dates from a concurrent transaction T2 can abort a trans-
action T1 even if T1 is within the validation and the write
phases that are protected by HTM region, as HTM does
not forbid any concurrent accesses. As a result, the vul-
nerable window in such a HTM-assisted OCC protocol
can span across the whole database transaction. Figure 2
depicts the difference between conventional OCC [15]
and existing HTM-assisted OCC [34].

The characteristic of the existing HTM-assisted OCC
protocol makes it unattractive for processing highly con-
tended workloads. Therefore, we design a new concur-
rency control protocol that fully exploits the power of
HTM to achieve robust transaction processing.

Read Validation Write

Vulnerable window

Vulnerable window

Conventional 
OCC

HTM-assisted 
OCC

Atomic execution

Figure 2: Conventional OCC v.s. HTM-assisted OCC.

3 REDUCING ABORT RATE

HTCC is an HTM-assisted OCC-style protocol that can
achieve high transaction rate by leveraging a combina-
tion of fine-grained locking and HTM. The key intuitions
are that contended OLTP workloads skew their accesses
on a small portion of data records in the database, and
HTM yields a remarkably higher performance when pro-
tecting low-contention critical sections. This section de-
scribes how HTCC fully exploits the benefits of HTM and
reduces the likelihood of database transaction aborts.

3.1 Data Record Classification
HTCC splits the data into hot and cold records so as to
choose the best scheme for locking each single record
that is accessed by a certain database transaction. As de-
picted in Figure 3, HTCC maintains five metadata fields
for each data record: (1) a lock flag showing the record’s
lock status; (2) a ts attribute recording the commit time-
stamp of the last writer; (3) a vis flag indicating whether
the record is visible to inflight transactions; (4) a hot flag
specifying whether the record is highly contended; and
(5) a cnt attribute counting the number of validation fail-
ures triggered by the conflicting accesses to the record
during a certain time slot.

ts Key Value

ContentMetadata

lock vis hot cnt

Figure 3: Structure of a data record.

The vis flag of a record has three possible states:
public state indicating that the record is visible to all
the inflight transactions; private state indicating that
the record is newly inserted by an uncommitted trans-
action; and dead state indicating that the corresponding
record has been deleted by a committed transaction. Dur-
ing transaction processing, HTCC automatically tracks a
transaction’s conflicting accesses and atomically incre-
ments the cnt field for the record to which the access
raises the validation failure. To achieve this, the cnt field
is packed into a single word to allow CAS operation. A
background thread is spawned to periodically (e.g., 60
seconds) check the failure counts and mark the most con-
tended records by flipping the associated hot flag. A
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record that is no longer frequently accessed during a con-
stant time duration will be tagged back to cold. The flip
of a hot flag is performed transactionally, and every in-
flight transaction will always see a consistent hot flag of
each record from its start to its final commitment. That
is, the background thread can change a record’s hot flag
only if no concurrent transaction is accessing this record.

3.2 Hybrid Transaction Processing

Like OCC, HTCC divides the execution of a transaction
into read, validation, and write phases. However, HTCC
adopts a hybrid synchronization mechanism to execute
a single transaction: on the one hand, pessimistic fine-
grained locking is employed to protect the accesses to
hot records; on the other hand, HTM region is leveraged
to guard the accesses to cold records. For each transac-
tion, HTCC maintains a thread-local read/write set (rw-
set) to store information about the records read or written
by the transaction. Each element in the rw-set keeps an
array with five basic fields: 〈record,data, ts,hot, type〉,
where record stores the pointer to the original record in
the database, data buffers a local copy of the accessed
record’s content, ts identifies the timestamp value of the
record at the time it was accessed by the transaction, hot
indicates whether the accessed record is contended or
not, and type shows the access type (read (R), write (W),
or both (RW)) to the record. When accessing a hot record
in a transaction, HTCC performs updates directly to the
original record in the database, and the locally buffered
copy is used for content recovery should the database
transaction be aborted. However, when accessing a cold
record, updates performed by the transaction will be tem-
porarily held in the local copies before they are being in-
stalled to the original records. The following subsections
describe the three phases of HTCC in detail.

Read phase. HTCC speculatively accesses cold
records during a transaction’s read phase. The function
AccessRecord(r, T) in Figure 4 depicts how an
operation with access type T on record r is performed
in the read phase. To access a record r in a transaction,
HTCC first checks r’s hot flag and acquires the associated
read or write lock if this flag is set to true. Subsequently,
a new element e in the rw-set is created for r. All the
fields, including record, data, ts, hot, and type are atom-
ically stored in e. The type field in e is updated to T to
indicate the access type (i.e., read, write, or both).

The acquisition of fine-grained locks for hot records
during the read phase can cause deadlocks. Therefore,
certain deadlock-resolution scheme must be employed
to guarantee forward progress. Our current implemen-
tation adopts a no-wait-style strategy [5], which aborts a
database transaction if a certain lock cannot be obtained
within a certain time range.

ACCESSRECORD(r, T):  
  // =========== LOCK HOT RECORDS ==========
  if (r.hot == true) then
    r.acquire_lock();
  e = rw_set.insert(r);
  e.set(r, r.data, r.ts, r.hot, T);

COMMIT():

  //  ============ VALIDATION ==============
  do
    is_success = true;
    
    HTM_BEGIN(); // begin HTM txn
    foreach e in rw_set do
      if e.hot == false then
        if e.type == R || e.type == RW then
          if e.ts != e.record.ts then
            HTM_END(); // end HTM txn
            Repair transaction;
            is_success = false;
            break;
  while (is_success == false);
  
  commit_ts = generate_commit_ts();

  // ======== UPDATE COLD RECORDS ==========
  foreach e in rw_set do
    if e.hot == false then
      if e.type == W || e.type == RW then
        install(e.record, e.data);
        e.record.ts = commit_ts;
  HTM_END(); // end HTM txn
  
  // ======== UPDATE HOT RECORDS ===========
  foreach e in rw_set do
    if e.hot == true then
      if e.type == W || e.type == RW then
        install(e.record, e.data);
        e.record.ts = commit_ts;

  // ======== UNLOCK HOT RECORDS ===========
  foreach e in rw_set do
    if e.hot == true then
      e.record.release_lock();
  

RTM-guarded region

Figure 4: The framework of HTCC.

Validation phase. As HTCC touches cold records in a
consistency-oblivious manner through the read phase, a
validation phase must be invoked subsequently to check
the validity of every cold record that is read by this trans-
action. Similar with the existing HTM-assisted OCC
protocol [34], HTCC leverages HTM region to protect the
atomic execution of the validation phase.

As shown in the function Commit() in Figure 4,
HTCC begins its validation phase by informing the
hardware to start executing in transactional mode with
xbegin instruction. After that, HTCC iterates over the
rw-set S and checks if any cold record read by the current
transaction has been modified by any committed concur-
rent transaction. The record value loaded at the read
phase is determined to be invalid if the corresponding
element e in S stores a timestamp ts that is different from
that attached in the original record (i.e., e.record.ts).
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Such an invalidation is made by the inconsistent read
operation that first touches this record. On encounter-
ing any invalid element in the rw-set, HTCC will repair
the transaction instead of re-executing it from scratch.
We defer the discussion on the repairing process to the
next section. The validation phase terminates when the
transaction eventually reads all the records consistently
or aborts due to deadlocks (for hot records).

Write phase. A transaction that has passed the val-
idation phase will enter the write phase to make every
update visible to all the concurrent transactions. The
write phase of HTCC is also described in Figure 4. Under
the protection of HTM region, HTCC installs the locally
buffered contents back to every accessed cold record,
with a commit timestamp commit ts attached to iden-
tify the partial dependencies among transactions [32]. In
particular, pointer swap [34] is used for local-copy in-
stallation, as this mechanism minimizes the HTM region
capacity. On exiting the HTM region, the timestamp
commit ts is written to all the updated hot records, and
fine-grained locks are finally released to make every hot
record visible to all other inflight transactions.

The protocol described above leverages the utmost
of two distinct synchronization mechanisms: accesses
to hot records are protected by fine-grained locking,
which yields satisfactory performance when processing
high-contention workloads; accesses to cold records are
guarded by HTM region, which achieves much higher
throughput when executing lowly contended workloads.
The next section continues to explore the feature of HTM
that further accelerates HTCC’s performance.

4 MINIMIZING RESTART OVERHEAD

While the proposed hybrid processing mechanism can
effectively reduce the database transaction abort rate, it
may still result in expensive re-execution overhead if
an inflight database transaction is blindly rejected once
validation failure occurs. We develop a transaction re-
pair mechanism that greatly benefits from HTM’s guar-
antee of atomicity and isolation. By keeping track of
the accesses of each operation at runtime in a workset
cache, HTCC re-executes a failed transaction only by
performing delta-restoration, which effectively reutilizes
the contents in the cache to speed up the restoration of
each operation in the transaction. Thanks to the use of
HTM, the accesses to cold records during the repair stage
are still processed optimistically, bringing little overhead
to the system runtime.

4.1 Workset Cache
The processing cost of a database transaction is domi-
nated by the time to retrieve data records from the cor-

responding database indexes. On detecting an invalid el-
ement in the rw-set during validation, a database trans-
action has to be (successively) aborted and re-executed
from scratch, fetching the same records through in-
dex lookups multiple times. The overhead caused by
these redundant index lookups can be largely reduced by
caching the accessed records in thread-local data struc-
tures during the initial execution of a transaction.

L1: x<-read(A)
L2: write(A, x+1)
L3: y<-read(B)
L4: z<-read(C)
L5: write(z, x+y)

R-A

R-A

R-B

R-C

R-D

PROGRAM CACHE STORAGE

Figure 5: Workset cache for a transaction.

Based on this intuition, HTCC maintains a workset
cache, which is constructed during the read phase, that
buffers a list of record pointers for all the records that are
accessed by each operation in a transaction. In particular,
we refer to the set of records accessed by a certain oper-
ation as the operation’s workset. Figure 5 shows such a
caching structure maintained for a running transaction.
The initial execution of the read operation L1 fetches a
data record R-A using candidate key A and caches the
pointer to R-A in the corresponding entry of the workset
cache. Similarly, the write operation L5 loads the record
R-D through the index and buffers its pointer into the
workset cache before performing real updates. Should
the database transaction be aborted, the subsequent re-
execution can tap on the record pointers from the workset
cache to minimize index traversal. This approach saves a
significant amount of efforts for committing transactions
that are prone to abort. Note that for a range operation
that accesses multiple records, its workset needs to main-
tain all the pointers to its targeted records.

4.2 Delta-Restoration

With the workset cache maintained for each transac-
tion, HTCC repairs an aborted database transaction with
delta-restoration, which re-utilizes the internal states
created during the transaction execution without restart-
ing the transaction from scratch. The main idea of delta-
restoration is that, by leveraging the maintained workset
cache, most of the index lookups can be bypassed by di-
rectly accessing the buffered record pointers, and only a
small portion of the re-set needs to be updated, and the
incurred overhead to ensure atomicity and isolation can
be largely reduced through HTM’s support.

As shown in Figure 4, on confronting a validation fail-
ure of a transaction, HTCC directly exits the HTM region
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and starts repairing the entire transaction, during which
stage all the operations in a transaction will be restored
at best effort. Figure 6 describes how HTCC restores an
operation opt with access type T (i.e., read, write, or
both) in a transaction with two distinct schemes: fast-
restoration and slow-restoration.

RESTORE(opt, T):   
  if is_key_invariant(opt) == false then
  // =========== FAST-RESTORATION ========== 
    W = get_workset(opt);
    perform(opt, W); // perform read or write
  else
  // =========== SLOW-RESTORATION ========== 
    V = index_lookup(opt);
    W = get_workset(opt);
    set_workset(opt, V);
    
    ins_set, del_set = compute_delta(V, W);
    foreach del in del_set do
      if del.hot == true then
        del.release_lock();
      rw_set.erase(del);
    foreach ins in ins_set do
      if ins.hot == true then
        ins.acquire_lock(); // deadlock?
      e = rw_set.insert(ins);
      e.set(ins, ins.data, ins.ts, ins.hot, T);

    perform(opt, V); // perform read or write

Update rw-set

Figure 6: Restore a single operation in a transaction.

Fast-restoration. This scheme re-executes an op-
eration in the transaction without invoking any index
lookups. Instead, all the targeted records are directly
fetched from the workset cache constructed at runtime.
In particular, fast-restoration only works for an operation
opt if the accessing key has not been updated, which es-
sentially indicates that the corresponding records to be
accessed by this operation should be identical to those
maintained in the workset cache.

Slow-restoration. This scheme is specifically de-
signed for an operation whose accessing key has been
changed due to the restoration of its parent operations.
Compared with fast-restoration, slow-restoring an oper-
ation opt is more expensive, as the targeted records that
should be accessed by opt have to be re-fetched through
index lookup. Consequently, the corresponding work-
set maintained for opt in the caching structure must also
be refreshed. As shown in Figure 6, after retrieving all
the records required by opt through index lookup us-
ing a candidate key key, the slow-restoration refreshes
its workset cache by updating the opt’s workset from W
to V . Subsequently, the difference between W and V is
computed. In particular, the delta-set ins set contains all
the new records that must be inserted into the rw-set, and
the delta-set del set contains all the records that should
be removed from the rw-set.

Figure 7 illustrates the two types of restoration mech-
anisms using the sample transaction shown in Figure 5.
During the repair of the transaction, the restoration of L2

directly fetches the pointer R-A from its local cache with-
out resorting to the index lookup. However, the accessing
key of L5 is dependent on the output of L4, which can be
modified during L4’s restoration. Once a change in ac-
cessing key is detected, the restoration of L5 has to tra-
verse the index and update the workset before perform-
ing the real write.

L1: x<-read(A)
L2: write(A, x+1)
L3: y<-read(B)
L4: z<-read(C)
L5: write(z, x+y)

R-A

R-A

R-B

R-C

R-D

PROGRAM CACHE STORAGE

Figure 7: Fast-restoration (solid line) and slow-
restoration (dashed line) of an operation.

Delta-restoration, however, is not for free, as the up-
date of the rw-set has to resort to certain synchroniza-
tion mechanism for protecting records that are newly in-
serted into the rw-set. In particular, deadlock can oc-
cur if fine-grained locking is utilized. HTM’s deadlock-
free scheme to protect complex critical sections in con-
trast provides an elegant and efficient way for tackling
this problem. Throughout the repair stage, HTCC keeps
processing cold records in a consistency-oblivious man-
ner, meaning that no fine-grained locks are acquired
to guarantee atomicity. The consistency checking of
these newly inserted cold records are deferred until the
next round of validation, where HTM region is lever-
aged to guard the critical section. This design effec-
tively offloads the overhead brought by deadlock reso-
lution to the hardware mechanism, and the software fine-
grained locking mechanism is only used for protecting
hot records. When updating the rw-set, all the locks as-
sociated with the hot records maintained in the delta-set
del set should be released during slow-restoration. Sim-
ilarly, every newly fetched hot record in ins set must be
locked before adding them into the rw-set rw set.
HTCC returns back to the validation phase once all

the operations within a transaction has been restored. It
should be noted that for transactions containing condi-
tional branches, some operations may no longer be exe-
cuted due to the change of decisions made in those con-
ditional statements. As a result, HTCC further needs to
remove all the elements that are no longer accessed by
the transaction from the rw-set before validating it again.
A transaction can proceed to commit only if all the ele-
ments in the rw-set have been successfully validated.

To conclude, the use of HTM has contributed to the ef-
ficiency of this repair mechanism and ultimately the su-
periority of HTCC. The gain in performance comes from
two sources. First, there is no need to maintain locks
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for cold data. This significantly reduces the overhead of
the repair mechanism as the number of cold data is much
larger than that of hot data. Second, the hardware sup-
port provided for HTM to ensure atomicity and isolation
of the HTM regions (the part of the transactions that ac-
cess the cold data) naturally offers superior performance
(as compared to a software-based scheme).

4.3 Operation Dependency Extraction
While workset caching can reduce the overhead of trans-
action re-execution, an invalidation failure will trigger
restoration of all the operations within the transaction.
As an inconsistent read usually affects only a limited por-
tion of the transaction program, performance can be im-
proved if the code segment to be re-executed can be min-
imized. In fact, an understanding of the dependencies
across operations can determine the subset of operations
to be restored when invalidation occurs. HTCC therefore
extracts two types of dependencies from the program at
compile time: (1) key dependency, which occurs when
the accessing key of an operation depends on the result of
its previous operation; and (2) value dependency, which
occurs when the non-key value to be used by an opera-
tion depends on the result of its previous operation. Fig-
ure 8 depicts the dependency relations within the transac-
tion shown in Figure 5. Operations L2 and L5 are value-
dependent on L1, as L1 assigns the variable x that will be
used as non-key value in both L2 and L5. Operation L5
is also key-dependent on its previous read operation L4,
which generates the accessing key z for L5.

L1: x<-read(A)

L2: write(A, x+1)

L5: write(z, x+y)

L3: y<-read(B) L4: z<-read(C)

Figure 8: Dependency relations within a transaction.

To identify the read operation that produces the invalid
element in the rw-set, HTCC adds an operation field to
each element. Such a field tracks the operation that first
reads the corresponding record, and will be further used
for identifying all the affected operations that must be
re-executed for preserving correctness.

Figure 9 shows how the extracted dependencies facili-
tates the repair of a transaction. Given an invalid element
e that causes the validation failure, the repair mechanism
starts by identifying the operation opt that performs the
first read to e. Since opt is the initial inconsistent oper-
ation, all its descendant operations must be restored to
guarantee serializability. Correct restoration mechanism

REPAIR(e):
  opt = e.operation;
  Restore(opt); // restore operation
  DS = extract_dependent_set(opt);
  PS = DS;
  while PS.is_empty() == false do
    opt = PS.pop_front();
    Restore(opt); // restore operation
    RS = extract_dependent_set(opt);
    PS.append_set(RS);
    

Figure 9: Repair a transaction with dependency relations.

is selected for each inconsistent operation by checking
its dependency relations with its parent operations. After
restoring an operation opt, all its child operations in the
dependent-set RS will be inserted into the restoration set
PS. The repair mechanism terminates once all the poten-
tially inconsistent operations have been restored. Subse-
quently, HTCC restarts the validation phase, which even-
tually terminates if all the elements in the transaction’s
read set pass the validation phase.

In the current version of our system, all the transac-
tions are implemented in C++. We leveraged LLVM Pass
framework [1] to extract dependencies from a transaction
program at compile time. While the classic interprocedu-
ral data-flow analysis techniques [27] can precisely cap-
ture operation relations for programs containing function
calls, we currently do not yet support dependency extrac-
tion for nested transactions, where a transaction can be
invoked in the process of another transaction. We leave
the support of nested transactions as a future work.

4.4 Extended Database Operations
This section depicts how HTCC supports inserts, deletes,
and range queries without sacrificing serializability.

Inserts. To insert a record R in a transaction T1,
HTCC performs an early insertion to hold a place for R in
the database during T1’s read phase. The to-be-inserted
record R is added to T1’s rw-set, with its vis flag set to
private, indicating that R is not yet ready for access.
The vis flag is updated to public only if T1 has been
successfully committed. If a concurrent transaction T2
attempts to perform the same insertion, only one trans-
action can succeed. Should T1 commit before T2, T2 will
detect this conflict during the validation phase and trigger
repair mechanism to handle failed insertion.

Deletes. A transaction marks the deletion of an ex-
isting record R by setting R’s vis flag to dead. A
garbage collection thread periodically reclaims all the
deleted records that are still maintained in the database.
A deleted record R can be safely reclaimed if R is no
longer referred to in any running transaction’s rw-set.

Range queries. Range queries can lead to phantom
problem [9]. Instead of resorting to the classic next-
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key locking mechanism [23] for tackling such problem,
HTCC leverages a solution that is first introduced by
Silo [32]. HTCC maintains both the version number and
the leaf pointers in a transaction’s rw-set. Any structural
modification caused by concurrent inserts or deletes will
be detected by checking the version’s validity. Once an
invalidity is discovered, HTCC restores any inconsistent
operations by invoking the repair mechanism.

5 SERIALIZABILITY

In this section, we give an informal argument on why
HTCC is capable to enforce full serializability.

First, HTCC’s a combination of fine-grained locking
and HTM yields serializable results. We reduce the pro-
posed scheme to two-phase locking (2PL) protocol. Let
us consider a transaction T accessing two records R1
and R2. If R1 and R2 are both tagged as hot records,
then HTCC locks both records using fine-grained locking
scheme, which is equivalent to 2PL, hence database seri-
alizability is guaranteed. If R1 and R2 are both tagged as
cold records, then HTCC leverages HTM region to pro-
tect the atomic access to them. This scheme is serializ-
able, as is proved in the previous work [34]. If R1 is a hot
record and R2 is a cold record, then HTCC acquires the
lock on R1 before entering the HTM region where R2’s
atomic access is protected. On passing the validation,
HTCC exits the HTM region and eventually releases the
lock on R1. During this stage, no new lock is acquired,
and hence the protocol obeys the constraints set in the
2PL scheme. Therefore, this protocol is serializable.

Second, HTCC’s repair mechanism in the valida-
tion phase does not compromise database serializability.
HTCC executes the repair mechanism in a consistency-
oblivious manner, that is, no synchronization schemes
are applied during this stage. However, once the repair
mechanism completes, HTCC falls back to the very be-
ginning of the validation phase, and all the records read
by the transaction will be validated within an HTM re-
gion. Hence, the serializability is guaranteed.

To conclude, HTCC yields serializable results when
processing transactions.

6 EXPERIMENTS

In this section, we evaluate the performance of HTCC.
All the experiments are performed in a main-memory
database prototype, called CAVALIA, that is implemented
from the ground up in C++.

We deployed CAVALIA on a multicore machine run-
ning Ubuntu 14.04 with four 10-core Intel Xeon Proces-
sor E7-4820 clocked at 1.9 GHz, yielding a total of 40
cores. Each core owns a private 32 KB L1 cache and a

private 256 KB L2 cache. Every 10 cores share a 25 MB
L3 cache and a 64 GB local DRAM. We have enabled
hyper-threading, and the machine provides 80 hardware
threads in total. Note that due to hyper-threading, the
experiments with more than 40 threads may yield sub-
linear scalability, as we shall see later in this section. We
compare HTCC with a collection of concurrency control
protocols, as listed below:

2PL: The classic two-phase locking with wait-die strat-
egy adopted for resolving deadlocks [5].

OCC: The classic OCC protocol with scalable timestamp
generation mechanism applied [32].

SOCC: A variation of conventional OCC protocol imple-
mented in Silo [32].

HOCC. An HTM-assisted OCC protocol proposed by
Wang et al [34].

HTO. An HTM-assisted timestamp ordering protocol
proposed by Leis et al [17].

All the protocols in comparison are implemented in
CAVALIA. Similar with the original implementation of
Silo, our SOCC implementation also adopts the epoch-
based timestamp generation mechanism and eliminates
the need of tracking anti-dependency relations. How-
ever, instead of using Masstree [22] as the underlying
index, we leveraged libcuckoo [19] for indexing primary
keys. The implementation of HOCC is adapted from that
of OCC. Following the description of Wang et al. [34], we
directly protected the validation phase using HTM region
and adopted pointer swap to minimize the likelihood of
hardware transaction abort caused by capacity overflow.
Our implementation of HTO basically follows the orig-
inal paper [17], but we ignored the proposed storage-
layer optimizations, as the storage layout in a database
system should be orthogonal to the upper-layer concur-
rency control protocol. We use the TPC-C benchmark [2]
to evaluate the performance.The workload contention is
controlled by changing the number of warehouses, and
decreasing this number can increase the contention. In
our experiments, HTCC’s automatic scheme (see Section
3.1) is applied for identifying hot records.

Existing bottlenecks. We begin our experiments with
a detailed analysis on the state-of-the-art HTM-assisted
concurrency control protocol [34]. We first measure the
performance of HOCC to see whether this protocol is ro-
bust to workload contentions. Figure 10 shows the trans-
action rate achieved by the HOCC protocol with the HTM
region’s restart threshold increased from 1 (HOCC(1))
to 64 (HOCC(64)). The number of warehouses is set to
40, yielding a low data contention. As the result indi-
cates, with the restart threshold set to 64, HOCC can suc-
cessfully scale on 80 threads, achieving a transaction rate
at over 2.1 M transactions per second (tps). This number
is 15% higher than that achieved by OCC, showing that
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HTM can provide a more efficient scheme for executing
low-contention critical sections.
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Figure 10: Performance of HOCC with different restart
thresholds. The number of warehouses is set to 40.

While the previous work [34] as well as our experi-
ment shown above confirmed the efficiency of the exist-
ing HTM-assisted protocol under low-contention work-
loads, the performance can drop drastically when pro-
cessing highly contended workloads. Figure 11 shows
the experiment result. By setting the number of ware-
houses to 4, the performance of HOCC deteriorates dras-
tically regardless of the restart threshold. In particular,
with the thread count set to 80, HOCC only yields around
200 K tps, while OCC under the same scenario achieves
over 550 K tps, exhibiting a much better scalability. This
is mainly because the speculative execution of HTM can
give raise to high abort rate, and frequent aborts subse-
quently result in costly restart overhead as well as the
lemming effect, which eventually leads to pure serialized
execution without parallelism. This result is also consis-
tent with that reported by Makreshanski et al [21].
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Figure 11: Performance of HOCC with different restart
thresholds. The number of warehouses is set to 4.

An interesting observation in the experiment above
is that, as shown in Figure 12, the database transaction
abort rate1 generated by HOCC drops with the increase of
thread count. With the restart threshold set to 64, HOCC
yields an abort rate of 0.45, which is much smaller than
that attained with 56 threads enabled (1.18). This re-
sult is different from that achieved by OCC, which suf-

1The abort rate equals to the ratio the number of transaction re-
executions to the number of committed transactions.

fers higher contention with more threads accessing the
same records. This observation is still a consequence
of the lemming effect, which results in pure serialized
execution of database transactions, and therefore fewer
transactions get aborted.
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Figure 12: Database transaction abort rate of HOCC. The
number of warehouses is set to 4.

To conclude, the state-of-the-art HTM-assisted OCC
protocol may not be an attractive solution for supporting
contended OLTP workloads.

Transaction rate. Next, we compare HTCC with sev-
eral other concurrency control protocols. We set the
restart threshold of all the HTM-assisted protocols to 64.

The following experiment evaluates the performance
of each protocol under low-contention workloads. Fig-
ure 13 shows the result with the number of warehouses
set to 40. All the four OCC-style protocols, includ-
ing HTCC, OCC, SOCC, and HOCC, scale near-linearly
when the thread count is increased from 1 to 40. With
over 40 threads enabled, the performance stablizes, and
stops improving. As explained earlier, this is because
the hyper-threading scheme can produce sub-linear scal-
ability, hence constraining the performance of the tested
protocols. Thanks to the efficiency of HTM and work-
set caching, HTCC yields over 10% higher transaction
rate than OCC. Under the same scenario, the HTM-
assisted HOCC only produces a similar performance with
that of SOCC. Despite the absence of hardware transac-
tional support, SOCC still generates a very competitive
result, as it fully eliminates the necessity for tracking
anti-dependency relations. Compared with these OCC-
style protocols, 2PL achieves a lower transaction rate.
The main reason is that it requires a longer locking dura-
tion for every record read or written by a transaction, and
hence the overall performance is bounded. As a varia-
tion of timestamp ordering (TO) protocol, HTO still suf-
fers high overhead for maintaining internal data struc-
tures [41], consequently leading to unsatisfactory results,
even if HTM is utilized.

Next, we compare the performance of these protocols
with the number of warehouses set to 4. In this scenario,
the workload is highly contended. Figure 14 shows the
transaction rate of each protocol with the thread count

9
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Figure 13: Performance comparison with the number of
warehouses set to 40.

varied from 1 to 80. With 80 threads enabled, HTCC can
process around 1,000 K transactions per second (tps),
and this number is respectively 2 times and 6 times
higher than that attained by SOCC and HOCC. OCC yields
similar performance compared to 2PL, but the overhead
for tracking anti-dependency makes it 10% slower than
SOCC. The low performance of HOCC and HTO also indi-
cate that the state-of-the-art HTM-assisted protocol can-
not scale well under high-contention workloads.
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Figure 14: Performance comparison with the number of
warehouses set to 4.

To further validate the scalability of HTCC, we mea-
sure the transaction rate achieved by each protocol with
the number of warehouses changed from 4 to 40. Fig-
ure 15 shows the result with 40 threads enabled. Com-
pared with all the other protocols, HTCC yields a superior
transaction rate even under highly contended workloads.
Specifically, the performance of HTCC is constantly 1.2
to 2 times higher than that achieved by SOCC. While
HOCC produces good performance when the number of
warehouses is set to 40, its unoptimized use of HTM
makes it vulnerable to workload contentions.

All the experiment results reported above have con-
firmed that HTCC achieves much better performance than
the existing (HTM-assisted) concurrency control proto-
cols, especially under highly contended workloads.

Transaction latency. The following experiment mea-
sures the latency achieved by each OCC-style protocol.
We omit the measurement for 2PL and HTO, as our pre-
vious experiments have already shown that these two
protocols cannot attain high performance under various
types of workloads. Figure 16 shows the corresponding
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Figure 15: Performance comparison with the number of
threads set to 40.

results with 40 threads enabled. The number of ware-
houses is set to 4. Compared with the other three pro-
tocols, HTCC incurs a comparatively lower latency when
processing NewOrder transactions. Specifically, 89%
of the transactions can reach the final commitment within
160 µs. This number is much larger than that achieved by
OCC (78%) and SOCC (73%). This is because HTCC at-
tempts to repair any invalid accesses instead of restarting
the entire transaction when an validation failure occurs.
This approach essentially saves the resources that have
been allocated for executing the transaction. In contrast
to the other three protocols, HOCC gives rise to signif-
icantly higher transaction latency, and only 37% of the
transactions can commit within 640 µs. The key reason is
that the unoptimized use of HTM makes HOCC extremely
vulnerable to conflicting accesses, and the lemming ef-
fect caused by frequent aborts eventually leads to pure
serialized execution without parallelism, making the re-
sultant transaction latency intolerable.
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Figure 16: Comparison of transaction latency. The num-
ber of warehouses is set to 4.

Performance breakdown. HTCC attains robust trans-
action processing due to the use of a hybrid synchro-
nization scheme, a workset-caching strategy, and a static-
analysis-facilitated optimization. We next examine how
these mechanisms contribute to HTCC’s performance.

We first study the effectiveness of the hybrid synchro-
nization mechanism. As shown in Table 1, when pro-
cessing transactions on a database with 4 warehouses us-
ing OCC, 62.9% and 31.0% of the database transaction
aborts are respectively caused by the conflicting accesses
to the records in the WAREHOUSE and the DISTRICT
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tables. Therefore, applying fine-grained locks on these
records can potentially reduce the performance degrada-
tion caused by high abort rate. Keeping this observa-
tion in mind, we disable HTCC’s automatic scheme for
data classification and manually select different sets of
hot records and measure the influence to HTCC’s trans-
action rate. Figure 17 shows the result with the num-
ber of warehouses set to 4. When all the records are
labeled as cold (i.e., HTM region is utilized to guard
atomic accesses to the targeted data records), the perfor-
mance of HTCC drops drastically once the thread count
reaches 32 (see HTCC (None)). However, if all the
records in the WAREHOUSE table are labeled as hot
data, the performance degradation is remarkably miti-
gated (see HTCC (W)). In particular, HTCC attains a
comparatively high performance with every record in the
WAREHOUSE and the DISTRICT tables tagged as hot
(see HTCC (W+D)). These results directly confirmed the
effectiveness of fine-grained locking in protecting con-
flicting records. The same figure also reports HTCC’s
performance when all the records in the database are la-
beled as hot (see HTCC (All)). In this case, the effects
of HTCC is indeed equivalent to that of 2PL. As shown in
Figure 17, the resulting performance is still much lower
than that of HTCC (W+D), and this essentially indicates
the superior performance of HTM region when executing
low-contention critical sections.

Table 4 WHs 10 WHs 40 WHs

WAREHOUSE 62.9% 56.6% 46.8%
DISTRICT 31.0% 37.2% 42.6%

Others 6.1% 6.2% 10.6%

Table 1: Data contentions in each table with 80 threads.
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Figure 17: Effectiveness of hybrid concurrency control
scheme. The number of warehouses is set to 4.

Figure 18 provides a performance analysis on how the
workset caching strategy as well as the static-analysis-
facilitated optimization benefit the transaction process-
ing. The number of warehouses in this experiment
is still set to 4, generating a highly contended work-
load. We measure the transaction rate produced by: (1)
HTCC, (2) HTCC with static-analysis optimization dis-

abled (see HTCC(-S)), (3) HTCC with both the work-
set caching and the static-analysis optimization disabled
(see HTCC(-SC)), and (4) OCC. In this experiment,
we have enabled hybrid processing scheme. Please
note that HTCC(-SC) essentially tests the performance
purely achieved by the hybrid processing scheme. As
shown in Figure 18, the performance gaps among HTCC,
HTCC(-S), HTCC(-SC), and OCC widen with the in-
crease of thread count. When scaling to 40 threads,
HTCC yields a transaction rate at around 1.2 M tps,
which is respectively over 10% and 40% higher than
that of HTCC(-S) and HTCC(-SC). This confirmed
the effectiveness of both the workset caching and static-
analysis-facilitated optimization in HTCC. The same ex-
periment also shows that HTCC(-SC) achieves around
20% higher performance compared to OCC, and this fur-
ther reaffirmed the efficiency of the hybrid concurrency
control scheme in HTCC.
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Figure 18: Effectiveness of workset caching and static-
analysis-facilitated optimization. The number of ware-
houses is set to 4.

The delta-restoration mechanism adopted by HTCC in-
curs a certain amount of overhead to the system run-
time. To quantify the overhead, we compare HTCC with
HTCC(NV), a variation of HTCC that commits a trans-
action without invoking HTCC’s validation phase. It
should be noted that, due to the absence of the valida-
tion phase, HTCC(NV) will yield inconsistent query re-
sult. However, as it fully bypasses HTCC’s overhead in
restoring inconsistent operations, it essentially provides
a higher bound on the performance that HTCC can po-
tentially achieve. Figure 19 shows the performance com-
parison between HTCC and HTCC(NV). The number of
threads is set to 40. As the number of warehouses in-
creases, the performance of HTCC becomes closer to that
of HTCC(NV). This is because increasing the number of
warehouses will decrease the workload contention, and
a transaction processed under lower contention is less
likely to fail the validation phase. With the number of
warehouses set to 4, HTCC(NV) can yield over 40%
higher transaction rate, which reflects the overhead of
operation restoration.

To sum up, the hybrid synchronization mechanism,
the workset caching strategy, and the static-analysis-
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Figure 19: Overhead of delta-restoration. The number of
threads is set to 40.

facilitated optimization scheme altogether provide a re-
markable performance boost for HTCC.

7 RELATED WORK

Transaction processing. Extensive research efforts have
been invested into the development of main-memory
database systems. A pioneering work is Silo [32], a
shared-everything database that attains high transaction
rate using a variation of the conventional OCC proto-
col [15]. Researchers from Microsoft recently analyzed
the performance of multi-version OCC [16, 18], and
their study further lays the foundation for the Hekaton
database [7]. However, neither Silo nor Hekaton is ro-
bust to contended workload, and Yu et al. [41]’s thor-
ough scalability evaluation of traditional concurrency
control protocols on 1000 cores further confirmed this
point. Several recent works have proposed partitioning
scheme to achieve higher scalability on multicore archi-
tectures [28]. Both DORA [25] and PLP [26], which
are built on top of Shore-MT [12], partition data among
cores to reduce long lock waiting time on a centralized
lock manager. Several databases [13, 14, 31] employ a
deterministic execution model that achieves high scala-
bility using partition-level locks. While these databases
can yield high transaction rate when the workload is well
partitioned, the performance may severely degrade with
an increasing number of distributed transactions. Lever-
aging program semantics can boost the performance of
OLTP databases. Several works [24, 37, 42] leveraged
transaction chopping [29] to speed up transaction pro-
cessing and failure recovery. While HTCC optimizes its
performance by using a similar static-analysis mecha-
nism adopted in Wu et al. [36], its HTM-assisted hybrid
protocol and caching mechanism can be directly applied
to any ad-hoc transactions.

Transactional memory. Transaction memory is well
studied in recent years [10, 11]. Sonmez et al. [30]
proposed a mechanism that allows STM to dynamically
select the best scheme for individual variables. While
their design is similar with the hybrid protocol intro-
duced in this paper, their work is restricted in the field

of STM and did not consider the overhead caused by re-
executing aborted transactions. Xiang et al. [39] also
observed a high abort rate of HTM transactions and
presented a consistency-oblivious (i.e., OCC-like) so-
lution [3, 4] for reducing the HTM abort rate caused
by capacity overflow, Their following work [38] further
mitigated the conflict-caused abort problem using advi-
sory lock. Litz et al. [20] borrowed the idea of snap-
shot isolation from the database community to reduce
the abort rate. Different from these works, HTCC relies
on a hybrid protocol and a lightweight caching mecha-
nism to reduce the abort rate as well as the incurred abort
overhead. Several recent works have exploited HTM to
improve the performance of OLTP databases. Yoo et
al. [40] utilized Intel’s TSX to build efficient indexes,
and Makreshanski et al. [21] further studied the inter-
play of HTM and lock-free indexing methods. Wang
et al. [33] also employed HTM to build a concurrent
skiplist. These studies on concurrent database indexes
revealed that high abort rate due to capacity overflow
and data contention can severely restrict HTM’s perfor-
mance. To deal with the high abort rate caused by HTM’s
capacity overflow, Leis et al. [17] and Wang et al. [34]
respectively modified the timestamp ordering and OCC
protocols to fully explore HTM’s benefits in atomic exe-
cution. While achieving satisfactory performance when
processing low-contention workloads, neither of them
is able to sustain high transaction rate if the workload
is contended. Wei et al. [35] and Chen et al. [6] ex-
ploited HTM and RDMA to build speedy distributed
OLTP databases. As a departure from these works, HTCC
focuses on exploiting the benefits of HTM for scalable
and robust transaction processing on multicores.

8 CONCLUSION

We have proposed HTCC, an HTM-assisted concurrency
control protocol that aims at providing scalable and ro-
bust in-memory transaction processing. HTCC attains its
goal by reducing the transaction abort rate and minimiz-
ing the overhead of restarting aborted transactions. Our
experiments confirmed that HTCC can yield high perfor-
mance even under highly contended workloads. As a fu-
ture work, we will explore how HTM can be leveraged
to improve the performance of modern multi-version
database systems.
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