
This paper is included in the Proceedings of the 
2016 USENIX Annual Technical Conference (USENIX ATC ’16).

June 22–24, 2016 • Denver, CO, USA

978-1-931971-30-0

Open access to the Proceedings of the 
2016 USENIX Annual Technical Conference 
(USENIX ATC ’16) is sponsored by USENIX.

A General Persistent Code Caching Framework  
for Dynamic Binary Translation (DBT)

Wenwen Wang, Pen-Chung Yew, Antonia Zhai, and Stephen McCamant,  
University of Minnesota, Twin Cities

https://www.usenix.org/conference/atc16/technical-sessions/presentation/wang



USENIX Association  2016 USENIX Annual Technical Conference 591

A General Persistent Code Caching Framework for Dynamic Binary
Translation (DBT)

Wenwen Wang, Pen-Chung Yew, Antonia Zhai, and Stephen McCamant
University of Minnesota, Twin Cities

{wenwang, yew, zhai, mccamant}@cs.umn.edu

Abstract

Dynamic binary translation (DBT) translates binary code
from one instruction set architecture (ISA) to another
(same or different) ISA at runtime, which makes it very
useful in many applications such as system virtualiza-
tion, whole program analysis, system debugging, and
system security. Many techniques have been proposed to
improve the efficiency of DBT systems for long-running
and loop-intensive applications. However, for applica-
tions with short running time or long-running but with
few hot code regions such as JavaScript and C# applica-
tions in web services, such techniques have difficulty in
amortizing the overhead incurred during binary transla-
tion.

To reduce the translation overhead for such appli-
cations, this paper presents a general persistent code
caching framework, which allows the reuse of translated
binary code across different executions for the same or
different applications. Compared to existing approaches,
the proposed approach can seamlessly handle even dy-
namically generated code, which is very popular in script
applications today. A prototype of the proposed frame-
work has been implemented in an existing retargetable
DBT system. Experimental results on a list of applica-
tions, including C/C++ and JavaScript, demonstrate that
it can achieve 76.4% performance improvement on aver-
age compared to the original DBT system without helper
threads for dynamic binary translation, and 9% perfor-
mance improvement on average over the same DBT sys-
tem with helper threads when code reuse is combined
with help threads.

1 Introduction

Dynamic binary translation or transformation (DBT) has
been widely used in many applications such as system
virtualization, whole program analysis, system debug-
ging, and system security. Most notable examples in-

clude QEMU [6], DynamoRIO [4], Pin [17], Valgrind
[18], and many others [9, 25, 5]. DBT systems can dy-
namically translate guest binary code in one instruction
set architecture (ISA) to another host ISA (same as or
different from guest ISA), and achieve the emulation of
guest applications on the host machines or the enhanced
functionalities of the guest binaries. It bypasses the need
of an intermediate representation such as bytecode in
language-level virtual machines, e.g. Java virtual ma-
chine (JVM) or Dalvik in Android.

Compare to native execution, DBT systems usually
consist of two phases. In the first phase, guest bina-
ries are emulated and profiled on the host system to de-
tect the ”hotness” of code regions. Hot code regions are
then translated and stored in a code cache. It allows the
execution to enter the second phase in which the trans-
lated binaries in the code cache are executed without fur-
ther code emulation or translation. Typically, for long-
running and loop-intensive guest applications, 90% of
the execution time could stay in the second phase [21].
It allows the overhead incurred in the first phase to be
substantially amortized.

Many techniques have been proposed to improve the
efficiency of the DBT systems and the performance of
the translated host binaries [26, 27, 10]. Nevertheless,
for many applications with short running time or long-
running applications with few hot code regions, e.g.,
JavaScript and C# applications in web services [11] that
require fast response time and high throughput, such
techniques have difficulty in amortizing the overhead
from the first phase.

Figure 1 shows the translation overhead (incurred in
the first phase) of SPEC CINT2006 using HQEMU [13],
a QEMU-based retargetable DBT that can dynamically
translate guest binaries across several different major
ISAs such as x86-32, x86-64 and ARM. To more accu-
rately measure the translation overhead of short-running
applications, the small test input is used to shorten their
running time.
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Figure 1: Translation overhead in HQEMU for SPEC CINT2006 with test input.

As shown in Figure 1, more than 40% of the exe-
cution time on average is spent in the first phase for
dynamic translation (more details are discussed in Sec-
tion 2). Therefore, reducing the translation overhead
can significantly improve the performance of these short-
running applications or those with few hot code regions.
Additionally, lower translation overhead can help to re-
duce power consumption - a benefit critical to mobile de-
vices with limited battery life. This is one of the reasons
Google switches Android runtime from Dalvik to ART
with native binaries [1].

One possible approach to reduce translation overhead
is to use static binary translation (SBT), and perform bi-
nary translation offline. It can completely avoid such
translation overhead at runtime. However, SBT has many
open issues to deal with, such as code discovery for ISAs
with variable-length instructions (e.g., Intel x86) and in-
direct branches with unknown branch targets [8, 24].
Also, it is difficult for SBT to leverage runtime informa-
tion to optimize the performance of the translated code.

Besides SBT, helper threads have been proposed to
shift the translation overheads to other threads [13]. Even
though the translation overheads can be hidden substan-
tially this way due to concurrency, it can reduce the sys-
tem throughput, which could be sensitive in a cloud en-
vironment. To reduce re-translation overhead caused by
code cache invalidation, annotation-based and inference-
based schemes have been proposed to mitigate such over-
heads [11]. Even so, they still require re-translation the
first time those guest binaries are re-encountered.

Compared to those approaches, persistent code
caching is an effective alternative to reduce translation
overhead [12, 7, 21, 22]. In this approach, the translated
binaries are reused the next time the same guest applica-
tion is executed (i.e., the generated binaries persist across
different runs of the same application), or reused by other
applications (i.e., the generated binaries such as those in
shared libraries persist across different runs of different
applications). The translation overhead can thus be re-
duced (or eliminated). Existing persistent code caching

approaches [7, 21, 22] leverage guest instruction address
or offset to detect persistent code hits when re-using per-
sistent code. It limits their applicability to unmodified
guest binary code at the same instruction address or off-
set across executions. However, different executions are
very likely to have different guest binary code at the same
instruction address or offset in practice, e.g., dynamically
generated guest binary code.

In this paper, we focus on some main challenges in
DBT systems using persistent code caching. The first
is the need to deal with relocatable guest binaries. The
second is the need to generate relocatable host binaries
in order to persist across different runs for reuse. The
third is the need to deal with the dynamically generated
code by the guest applications, e.g., if the guest binary
is dynamically generated by a just-in-time (JIT) engine,
we need to deal with both the dynamically generated
guest binaries by the JIT engine and the JIT engine itself
[11], so both can persist across different runs.

Relocatable Guest Binaries. Typically, there are
two kinds of relocatable guest binaries, (1) position-
independent guest binaries, and (2) guest binaries that
contain relocatable meta-data for load-time relocation.
If a guest binary is position-independent, the offset from
its starting address can be used to index and search for
its persistent code [7]. However, a shared library may
have different offsets when statically linked in different
applications, hence, the offset alone is not sufficient to
reuse persistent code across statically linked applications
that share the same libraries. For the guest binaries that
contain relocatable meta-data for load-time relocation, it
is also not sufficient to index and search for its persistent
code with only addresses of the guest binary code [21].

Relocatable Host Binaries. Position-dependent ad-
dresses exist in the translated host instructions need
to be relocated. A typical example is the translation
of a guest call instruction into two host instructions,
push next guest PC and jmp. The position-dependent
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branch target next guest PC needs to be made position
independent (i.e., relocatable) in order to be effectively
reused across different execution runs.

Another example is the exit stub in a translated code
trace for returning to the DBT runtime system when the
next guest code block is untranslated. The returned ad-
dress of the next guest block needs to be made relocat-
able as this address could be different in different execu-
tion runs due to relocatable guest binaries.

In addition, a position-dependent host address could
be embedded in a translated host instruction to jump
back from the translated host code to the translator. A
possible solution to this challenge is to ask the DBT to
generate position-independent code and to avoid using
host instructions with embedded position-dependent
addresses. However, this kind of implementation is not
always efficient [7]. Especially for applications with
long running time or mostly covered with hot code
regions that do not require persistent code caching,
position-independent code could introduce unnecessary
runtime overhead.

Dynamically Generated Guest Binaries. JIT engines
have been widely adopted in many languages such as
Java, JavaScript, and C#. Persistent code caching for
dynamically generated code by such JIT engines is very
challenging because their addresses are very likely to
change across runs due to address space layer random-
ization (ASLR) used by operating systems for security
reasons. Furthermore, despite the availability of byte-
code for such applications, their dynamically generated
binaries are often linked with other application-specific
libraries making them difficult to port across different
ISAs with only bytecode. One study shows that an
average of more than 50% of such codes are in native
binaries [15]. Many of the applications written in
languages such as JavaScript also either have very short
running time or have very few hot code regions [20].
Persistent code caching is an effective way to reduce
re-translation overhead and to improve performance
when ported across different ISAs.

This paper aims at addressing the above challenges in
persistent code caching for DBT systems across differ-
ent ISAs. We generate and maintain relocation records in
the persistent code to get around the issues of position-
dependent code mentioned above. Using such relo-
cation records, host instructions that contain position-
dependent addresses can be relocated before it is used.
We also keep the original guest binary code in the gener-
ated persistent code. Only the persistent code that have
the matched guest binary is reused. In this way, persis-
tent code for dynamically generated code can be reused
seamlessly even if the address of the generated code is

changed in a later execution run.
A prototype of such a persistent code caching frame-

work has been implemented in an existing retargetable
DBT system. Experimental results on a set of bench-
marks that include C/C++ and JavaScript applications
demonstrate the effectiveness and efficiency of our ap-
proach. Without trying to optimize our prototype, 76.4%
and 9% performance improvements on average are ob-
served compared to the original system without and with
helper threads for dynamic binary translation, respec-
tively. Experiments on using persistent code across dif-
ferent execution runs for the same application with dif-
ferent inputs show that the size of the persistent code
traces affect the benefits of such persistent code. Ad-
ditionally, experiments on the persistent code accumula-
tion across different applications suggest that an effective
persistent code management is required.

The contributions of this paper are as follows:

• A general persistent code caching framework using
relocation records and guest binary code matching
is proposed to allow position-dependent host bina-
ries to be reused across different execution runs.
This approach is also applicable to dynamically
generated guest binaries from JIT compilers. To the
best of our knowledge, this is the first attempt to
allow dynamically generated guest code to persist
across different execution runs.

• A prototype for such a persistent code caching
framework has been implemented in an existing
DBT system, HQEMU [13], which is a QEMU-
based retargetable DBT system.

• A number of experiments are conducted to demon-
strate the effectiveness and efficiency of this ap-
proach. 76.4% and 9% performance improve-
ments are observed with the help of persistent code
caching compared to a retargetable DBT system
(i.e., HQEMU) without and with the helper threads
for dynamic binary translation.

The rest of the paper is organized as follows. Sec-
tion 2 describes the proposed persistent code caching ap-
proach. Section 3 discusses some important implementa-
tion issues. Section 4 presents our experimental results.
Section 5 discusses other related work. And Section 6
concludes our paper.

2 Persistent Code Caching - Our Approach

In general, DBT systems translate guest binary into host
binary at the granularity of a basic block (or block for
short), which is a sequence of guest instructions with
only one entry and one exit. The generated host code
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Figure 2: Persistent code caching for DBT systems.

is stored in an executable memory region, called code
cache. The measured translation overhead in SPEC
CINT2006 using test input is shown as Block Transla-
tion in Figure 1. After the translation of a guest block,
the DBT system then transfers the execution to the gen-
erated host code in the code cache. During the execution
in the code cache, a jump back to the translator/emulator
is triggered when an untranslated block is encountered,
and the translation is restarted.

In a DBT system, a hash table is used to manage the
mapping from the guest program counter (PC) of the
source binary, i.e., SPC, to the corresponding host PC
of the translated code, i.e., TPC. Each time a new block
is translated, the hash table is updated with the pair of
SPC and TPC. Indirect branches and return instructions
can look up the hash table to find out the TPC of the tar-
get block. A jump stub is used to chain translated code
of two blocks connected via direct branch instruction to
avoid the jump back to the translator, which is extremely
time-consuming. The jump stub is initialized to jump
back to the translator at first. After target block is trans-
lated, it is patched to jump to TPC of target block.

A hot path in the guest binary forms a trace, which
contains several blocks with one entry and multiple ex-
its. The number of blocks in a trace is the size of the
trace. After a trace is formed, the blocks in this trace
are re-translated and more aggressive optimizations can
be applied to achieve a better performance. The transla-
tion/optimization overhead in this process for the SPEC
CINT2006 benchmarks is shown as Trace Translation in
Figure 1.

In our persistent code caching approach, translated
host code for both basic blocks and traces are kept and
reused across executions, i.e., they persist across execu-
tions. Thus, both block translation and trace translation
overheads can be reduced. Figure 2 shows the frame-
work and the work flow of our persistent code caching
approach. It consists of two phases, persistent code gen-
eration and persistent code reuse.

In our approach, persistent code is organized in en-
tries. As shown in Figure 2, after the translator fin-
ishes the translation of a basic block or trace, the gen-

erated host binary code and the related information such
as guest binary code, relocation information and internal
data structures are copied to a host memory region and
form a new persistent code entry. The host memory re-
gion is called persistent code memory and is allocated at
the start of the DBT system. At the end of the program
execution, e.g., a guest exit group Linux system call is
emulated, all entries in the persistent code memory are
flushed to the disk and stored in a persistent code file,
which is used across different executions.

To reuse the persistent code generated in previous ex-
ecutions, the persistent code file is loaded into the mem-
ory at the start of the DBT system and installed into a
two-level hash table, called PHash (persistent code hash
table). The details of PHash is described in Section 2.2.

Before a guest block or trace is translated, PHash is
looked up to check if there is a matching persistent code
entry already. Here, matching means they have the same
guest binary code. If a matched persistent code entry is
found, the translator is bypassed and the translated host
binary in this entry is copied to the code cache directly.
Before the execution of the copied host binary, the re-
quired relocation and recovery are performed to ensure
its correct execution. In this way, the host binary gen-
erated in one execution can be correctly reused in an-
other execution, and the translation overhead is reduced
or eliminated.

In addition, our persistent code caching approach sup-
ports persistent code accumulation across different ex-
ecutions. To accumulate persistent code, those basic
blocks and traces that cannot find their matching entries
in PHash will form new persistent code entries in persis-
tent code memory. At the end of the current execution,
these new persistent code entries are merged with exist-
ing persistent code entries to produce a new persistent
code file.

Our persistent code caching approach can be inte-
grated into most of the existing DBT systems. Only
small changes to the translation work flow is required
to generate, reuse, and accumulate persistent code. In
the following sections, we describe in more details about
our approach.

2.1 Persistent Code Generation

We form a new persistent code entry each time a basic
block or a trace is translated. Each formed persistent
code entry is comprised of three parts: meta-data for the
host binary code (MDHBC), guest binary code (GBC),
and host binary code (HBC). The organization of these
three parts is shown in Figure 3.

MDHBC has two kinds of information: internal
data structure and relocation information. The internal
data structure is used to recover its corresponding
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Figure 3: Detailed structure of persistent code file.

data structure to ensure the correct execution of the
reused host binary code during the execution when the
persistent code is used. The relocation information is
used to convert the position-dependent addresses em-
bedded in the host instructions. GBC is used to find and
verify the matching persistent code entry. And HBC is
the main part of persistent code reused across executions.

Meta Data for Host Binary Code (MDHBC). To gener-
ate MDHBC, we make a copy of the internal data struc-
ture of a block/trace when its translation is completed.
Here, the internal data structure can vary between dif-
ferent DBT systems. In our prototype system, it is the
data structure used by the DBT system (i.e., HQEMU)
to represent each translated block/trace. A unique id is
assigned to each copied data structure, called block/trace
id. Typically, one of the most accessed items in this data
structure is the offset of jump stubs in translated host bi-
nary code, which is used by the DBT system to chain two
translated blocks/traces.

Another important part of MDHBC is the relocation
information. For each block/trace, the relocation infor-
mation is organized into records. Each relocation record
is created for a host instruction whose operands contain
a position-dependent address. Note, if a host instruction
contains a guest position-dependent address and this ad-
dress is also contained in the translated guest instruction,
we do not create relocation record for such a host in-
struction because our guest binary code matching mech-
anism can filter out blocks/traces that include this guest
instruction correctly if this position-dependent address is
changed across executions. We use the example shown
in Figure 4 to explain the information required for relo-
cating host instructions.

In this example, the guest instruction call at guest
address 0x8048008 is translated into two host in-

0x8048000:  … 
0x8048008: call  $0x8048123
0x804800d: mov  %eax, %ebx

0x7fffffff0000:  …
0x7fffffff0015:  push $0x804800d
0x7fffffff001a:  jmp DBT

Guest Binary 
Code

(x86-32)

Host Binary 
Code

(x86-64)

Host instruction at 0x7fffffff0015 requires to be 
relocated because it contains position-dependent 
address, i.e., 0x804800d.

0x8048010:  … 
0x8048018: call  $0x8048123
0x804801d: mov  %eax, %ebx

Guest Binary 
Code

(x86-32)

Binary Translation

Persistent Code 
Reuse

Translation Relocation

Figure 4: Host instruction relocation.

structions push 0x804800d and jmp at host addresses
0x7fffffff0015 and 0x7fffffff001a, respectively.
If the translated code is reused across executions, the
host instruction push 0x804800d is required to be re-
located because it contains guest position-dependent ad-
dress 0x804800d, which is the return address of the call
instruction, or the address of the guest instruction fol-
lowing the call instruction. To relocate such a host in-
struction, two kinds of information are required. (1)
The location of the position-dependent address in code
cache, which is usually the start address of the relo-
cated host instruction plus the size of its opcode. In this
example, the location of 0x804800d in code cache is
0x7fffffff0015 plus the size of push opcode, which
is 1. (2) The correct address that should be put into this
location. In this example, the host code is reused by the
basic block at address 0x8048010 with a call instruction
at 0x8048018. Thus, the correct address is 0x804801d,
which is the return address of this call instruction.

Each relocation record saves two items to keep the two
required pieces of information. The first is the offset from
the starting address of the translated host code for this
block/trace to the location of the position-dependent ad-
dress. In the above example, the offset is 0x16. After the
host code is copied from a persistent code entry to the
code cache for reuse, this offset plus the starting address
of the copied host code is the address for relocation. The
second is a source id that identifies the source of the cor-
rect address. We use an enumerate type for the source
id, called IDType. In the above example, the source id
is GUEST NEXT PC, which means the correct address is
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the address of the guest instruction following the last in-
struction in this block.

To facilitate the generation of relocation records, a uni-
fied API is provided for DBT developers:

extern int gen_reloc_record (int offset,

IDType source,

BLOCK *block,

TRACE *trace);

This function generates a relocation record for block
or trace in its MDHBC. Specifically, it should be called
when a position-dependent address is inserted into a host
instruction during binary translation.

Guest Binary Code. A copy of the guest binary code
of a block is placed in the persistent code memory after
its translation. The address information of this copy is
added to the data structure of this block in MDHBC
for future access. To limit the size of the generated
persistent code, instead of copying the guest binary code
of blocks in a trace, we only keep a list of block ids in
the copied data structure of this trace in MDHBC.

Host Binary Code. After the translation of a block/trace,
the translated host code is copied from code cache to the
persistent code memory. Also, the address information
of this copy needs to be saved into the data structure of
the block/trace in MDHBC.

At the end of the execution, all formed entries in per-
sistent code memory are flushed to disk to produce a per-
sistent code file. The number of persistent code entries is
stored at the beginning of the file, followed by all entries,
as illustrated in Figure 3.

2.2 Persistent Code Reuse
After the generation of persistent code, it can be reused
across executions. This section describes how to reuse
persistent code.

At the beginning of an execution, the persistent code
file is loaded from disk into memory. Each entry in the
file is processed and installed into a two-level hash table,
i.e., PHash. Figure 5 shows the structure of PHash (part
of the second level hash tables is omitted due to space
limitation). Relocation and data structure recovery will
be done later after a matching persistent code entry is
found for a block/trace.

We use L1-PHash and L2-PHash to represent the first
and the second level hash tables in PHash. The hash keys
of L1-PHash and L2-PHash are generated based on the
guest binary code in each persistent code entry. If an en-
try corresponds to a trace, the guest binary of its first ba-
sic block is used to generate the hash key. Note, the prop-
erty of the translated host binary code cannot be used as
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Figure 5: Two-level hash table used to look up persistent
code for reuse.

the hash keys, because there is no translated host binary
code but the original guest binary code of a block/trace
when PHash is looked up to find out the matched entry
for this block/trace.

Specifically, the hash key of L1-PHash is generated
using the size of the guest binary code in bytes. The rea-
son is that guest binary with very large basic blocks is
very rare in practice, which can help to limit the size of
L1-PHash. In our experiments, we found 1024 is enough
for all guest applications evaluated. At the second level,
several bytes in the guest binary are chosen to construct
a byte combination. With this byte combination as in-
put, a simple hash function is used to generate an in-
teger in the range from 1 to 256, which is used as the
hash key of L2-PHash. Compared to a single-level hash
table, this two-level hash table can achieve comparable
performance with a smaller overall table size for persis-
tent code with a very large number of entries.

To limit the size of PHash, L2-PHash is allocated only
when at least one persistent code entry hit it. In other
words, L1-PHash is allocated first and initialized with
NULL. When an entry hits a NULL in L1-PHash, a new
L2-PHash is allocated and its address is used to update
the corresponding NULL entry in L1-PHash. After fill-
ing all persistent code entries, PHash can be used in this
execution without further update.

To find a matching persistent code entry for a basic
block, its guest binary is used to look up PHash. The
boundary of this basic block, i.e., the start and the end
addresses of this basic block, should be identified first,
The start address is usually available in existing DBT
systems. However, the end address is unavailable until
the basic block is being decoded, and a branch instruc-
tion is encountered or the maximum number of guest in-
structions for a basic block is reached [6, 13]. After this,
the guest binary code of this basic block can be used to
look up PHash. Algorithm 1 describes the details of such
a lookup for a basic block.

First, the size of the guest binary code of this block
is used to look up L1-PHash. Second, an hash key is
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Algorithm 1: Persistent Code Reuse
Input: A basic block bb, with the start address and size of

the guest binary code, addr and size
Output: Persistent code entry matching with bb,

otherwise NULL

1 h ← PHash [size];
2 if h = NULL then
3 return NULL;

4 key ← hash func (addr, size);
5 p ← h [key];
6 while p �= NULL do
7 if guest binary same (p, addr, size) then
8 do host code copy (p, bb);
9 do host code relocation (p, bb);

10 do data structure recovery (p, bb);
11 return p;

12 p ← p → next;

13 return NULL;

calculated based on the guest binary code of this block
using a simple hash function to look up L2-PHash. Last,
the list pointed by the hit entry in L2-PHash is scanned.
The guest binary code in each persistent code entry on
this list is compared with the guest binary code of the
input block until a matching entry is found. If there is
no such matching entry, NULL is returned and the transla-
tor is re-invoked to perform the translation. The look-up
procedure for a trace is similar to a basic block. The only
difference is that the guest binary code of all basic blocks
in the trace is compared to find out a matching entry.

After a matching persistent code entry is found, the
host code in this entry is copied to code cache. Then the
relocation records in this entry is applied to the copied
host code. Note, the copied code is still unchained at this
point. However, after we recover the internal data struc-
ture, block/trace chaining will be done automatically by
the translator during the ensuing execution.

Global optimizations applied by DBT systems might
complicate the above look-up process. For example,
some global optimizations for the current basic block
might be based on its predecessor and successor blocks.
A typical example is the conditional code optimization
for Intel x86-like ISAs that have side effects on condi-
tion codes in some instructions [19]. It can eliminate un-
necessary conditional code generation in current block
based on the definition and usage of conditional codes
in its predecessor and successor blocks. In such cases,
if the guest binary code of the predecessor or successor
blocks is changed, the translated host binary code of cur-
rent block cannot be reused.

To deal with this issue, the guest binary of all blocks
that may affect the translation of the current block should

be compared to ensure the consistency of its translated
host code. This can be realized by two steps. First, in
persistent code generation phase, blocks that affect the
translation decisions of current block are saved to MD-
HBC when a global optimization is applied. Second,
during the above lookup process, the guest binary of all
saved basic blocks, not just the current block, are com-
pared to determine a matching persistent code entry for
the current block.

2.3 Persistent Code Accumulation

Even with persistent code, a basic block or a trace may
still need to be translated because it may not have a
matching persistent code entry found. In our approach,
these newly translated host code is accumulated for fu-
ture reuse. To accumulate persistent code from multi-
ple execution runs, we form new persistent code entries
for newly translated blocks and traces in each execution.
At the end of the execution, the newly formed persistent
code entries are merged with existing entries to generate
a new persistent code file. Section 4 discusses the effec-
tiveness of persistent code accumulation across same and
different guest applications.

3 Implementation

A prototype of our persistent code caching approach has
been implemented in an existing retargetable DBT sys-
tem, HQEMU [13], which is a retargetable DBT system
based on QEMU [6]. HQMEU uses original translator in
QEMU, i.e., Tiny Code Generator (TCG), to translate ba-
sic blocks. Moreover, LLVM JIT [14] is used to generate
more efficient code for traces. To detect traces, HQEMU
inserts a profile stub and a predict stub into host binary
generated by TCG for each basic block. The profile stub
is used to count the number of dynamic executions of this
basic block. Once the counter reaches a preset threshold,
the profile stub is disabled and the predict stub is enabled
to form the trace.

After a trace is formed, HQEMU converts TCG inter-
mediate representations (IR) of the basic blocks in this
trace to LLVM IR. Then, an LLVM JIT engine takes
the LLVM IR as input and generates host binary code
on the fly. During this process, several LLVM optimiza-
tion passes are applied to improve the efficiency of the
generated host code. Additional translation/optimization
overhead is also introduced due to the time-consuming
LLVM optimizations applied. To mitigate such trans-
lation/optimization overhead, HQEMU spawns helper
threads to perform translations/optimizations for traces.
However, this solution can reduce the system throughput,
which could be sensitive in a cloud environment.
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Figure 6: Performance improvement achieved by our persistent code caching approach. The base line is the execution
without helper thread and persistent code, i.e., w/o H + w/o P.

The first issue that needs to be addressed in our im-
plementation is helper function calls. For retargetabil-
ity purpose, HQEMU (also in QEMU) leverages helper
functions in the translator to emulate some complicated
guest instructions, e.g., floating point and SSE instruc-
tions. These helper functions are called directly from
code cache via position-dependent addresses. However,
due to ASLR used by operating systems for security rea-
sons, these function addresses are very likely to change
across executions. Therefore, these function calls needs
to be relocated for persistent code caching purpose. In
our implementation, we use the unified API presented in
Section 2.1 to generate relocation entries for helper func-
tion calls generated by TCG. For helper function calls
generated by LLVM JIT, to simplify the implementation,
we leverage redundant debugging meta data to acquire
the relocation information from LLVM JIT.

Another special issue is about global memory and con-
stant memory pool allocate by LLVM JIT during trans-
lating/optimizing traces. Global memory is a memory re-
gion used to save global variables that can be accessed by
different traces. Constant memory pool is a local mem-
ory region allocated by LLVM JIT only for some specific
traces, which is followed by the translated host code for
these traces. For global memory, we save the initial value
of each global variable into MDHBC once it is allocated
by LLVM JIT. These values are used to recover the global
memory in future executions. For constant memory pool,
we adjust the starting address of translated host code for
each trace to start from the beginning of the memory
pool, if it exists. Thus, the constant memory can be saved
and recovered along with the host code of traces.

Here, we focus on x86-32 to x86-64 cross-ISA transla-
tion. In the implementation, the profile stub and the pre-
dict stub are enabled and disabled as in original HQEMU
to detect and form traces, whether or not the persistent
code is available. Besides, each jump stub in host bi-
nary code copied from persistent code entries is set to

jump back to the translator at first and patched later by
the translator via block/trace chaining automatically. To
guarantee the atomicity of the patch operation, which
is a write to a 32 bit memory location, the address of
the location should be 4-byte aligned on the host plat-
form. Fortunately, HQEMU allocates code cache for
each block/trace from an aligned address, which solves
this issue naturally.

4 Experimental Study

Two types of guest applications, SPEC CINT2006 and
SpiderMonkey [3] are employed to evaluate the perfor-
mance. For SPEC CINT2006, the complete suite is in-
cluded using test input. SpiderMonkey is a JavaScript
engine written in C/C++ from Mozilla, which has been
deployed in various Mozilla productions, including Fire-
fox. The performance of SpiderMonkey is evaluated on
Google Octane [2], which is a benchmark suite used to
measure a JavaScript engine’s performance by running a
suite of test applications. Our experiments cover 12 of
15 applications in Octane, due to the failure of 3 applica-
tions when run on original HQEMU.

The experiment platform is equipped with Intel(R)
Xeon CPU 16 cores with Hyper-threading enabled, 64G
bytes memory, and Ubuntu-14.04 with Linux-3.13. To
reduce the influence of random factors, each application
is run three times and their arithmetic average is taken.

4.1 Performance Improvement

Figure 6 shows the performance improvement achieved
by using our persistent code caching approach. The base-
line is the execution without helper thread and persistent
code, i.e., w/o H + w/o P. In this experiment, differ-
ent numbers of helper threads were evaluated, but only
the performance results with one helper thread are pre-
sented here because their results are all very similar. On
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P(capture) P(connect) P(connect rot) P(connection) P(connection rot) P(cutstone) P(dniwog)
capture 100%(4) 90.73%(2.5) 83.04%(2.4) 91.16%(2.3) 76.03%(2.6) 88.22%(2.3) 89.23%(2.2)
connect 66.36%(2.4) 100%(3.5) 76.03%(2.3) 88.58%(2) 71.06%(2.3) 67.25%(2.2) 86.33%(2)

connect rot 73.7%(2.4) 91.9%(2.3) 100%(4) 91.91%(2.2) 83.15%(2.4) 74.38%(2.3) 90.86%(2.2)
connection 43.48%(2.2) 57.48%(2) 49.51%(2.2) 100%(3.5) 47.82%(2.3) 50.81%(2) 84.02%(2.1)

connection rot 70.18%(2.6) 89.27%(2.3) 86.56%(2.4) 92.17%(4.2) 100%(4.2) 70.61%(2.6) 91.12%(2.4)
cutstone 73.97%(2.3) 76.89%(2.2) 70.31%(2.3) 89.40%(2) 64.25%(2.6) 100%(3.6) 88.65%(2)
dniwog 28.83%(2) 37.53%(2) 32.94%(2.1) 56.46%(2) 31.83%(2.2) 33.98%(1.9) 100%(3.3)

Table 1: Persistent code hit ratios with different inputs (the numbers in parentheses are the average numbers of basic
blocks in the hit traces of persistent code).

Figure 7: Effectiveness of persistent code for the same
application with different inputs.

average, 76.4% and 9% performance improvements are
achieved compared to the original DBT system without
and with a helper thread enabled, respectively.

As shown in Figure 6, the performance is improved for
all applications except 400.perlbench with test.pl

input. For this application, our approach achieves 40%
performance improvement without helper threads, but in-
troduces 5.5% overhead with helper threads. After fur-
ther investigation, we have found that this input creates
many child processes (around 72 of them) to perform
many extremely short-running tests.

In the execution with both persistent code and helper
threads, our implementation looks up persistent code be-
fore sending a trace translation request to helper threads.
The performance overhead introduced by this look-up
process might be relatively high for these extremely
short-running tests because the generated persist code is
very large (more details are presented in Section 4.3).
However, in the execution with helper threads but with-
out persistent code, a trace translation request is sent to
helper threads once after the trace is formed, which intro-
duce very little performance overhead. This is also the
reason why it cannot achieve similar performance im-
provement in this application for w/o H + w/ P com-
pared to w/ H + w/o P. Similar characteristics can be
observed on several applications in Octane, e.g., Crypto,

Figure 8: Performance sensitivity of persistent code
caching on the maximum size of traces.

PdfJS, and CodeLoad, but they have different causes.
More details are discussed in Section 4.2.

To study the efficiency of persistent code across dif-
ferent inputs for the same application, an experiment is
performed on 445.gobmk, which plays the game of Go,
a game with simple rules but has extremely complicated
strategies. There are seven inputs for this benchmark
contained in the test input.

In this experiment, persistent code generated from one
input is reused in a run using another input. The exper-
imental result is illustrated in Figure 7, where w/ P(X)

means persistent code generated from X input is used.
Helper thread is disabled in this experiment. As shown
in the figure, persistent code is still helpful to improve
the performance across different inputs. This is because
different inputs of the same application are very likely to
share same blocks/traces. Table 1 shows the percentage
of blocks/traces that can be found in persistent code, i.e.,
persistent code hit ratio. The numbers in the parenthesis
are the average sizes of the hit traces in persistent code.
This size is more than 3 for the same input. However, it
is less than 3 for the different inputs. This means, the av-
erage size of traces shared across different inputs of the
same application is usually not too large.

The default maximum size of a trace is 16 basic blocks
in the original HQEMU. Another experiment is con-
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Figure 9: Effectiveness of persistent code accumulation
from multiple runs of the same application.

ducted to study the performance sensitivity of persistent
code on the size of traces across different inputs. In
this experiment, the input capture is used for generat-
ing persistent code, and the maximum size of a trace is
set between 2 and 16. The persistent code generated in
each maximum trace size is applied to other inputs with
the same maximum trace size. Due to the potential im-
pact of the maximum size on the performance, various
baselines of each input are used depending on the cho-
sen maximum size of traces. As shown in Figure 8, the
best performance is achieved when the maximum size of
traces is 2. This shows why the average size of hit traces
in the last experiment is less than 3. Hence, code persis-
tence across different inputs prefers to use shorter traces
(2 or 3 basic blocks).

4.2 Accumulation Effectiveness
The effectiveness of persistent code accumulation is
evaluated on the same and different applications. Due
to their different behavior, C/C++ and JavaScript ap-
plications in our benchmark suite were evaluated sepa-
rately. Here, we only show the experimental results of
JavaScript applications because C/C++ applications have
similar results and our space is limited here.

Firstly, we evaluate the effectiveness of persistent code
accumulation for the same application. In this experi-
ment, the persistent code is accumulated from multiple
runs for the same application. Each application is exe-
cuted multiple times with previously generated persistent
code accumulated and used in the later runs, if possible.
Each time when a new persistent code is encountered, it
is included for the later runs of the same application to
evaluate the benefit of the accumulation.

Figure 9 shows the performance (normalized to the ex-
ecution time without using persistent code) of each appli-
cation using persistent code accumulated from one run
up to ten runs. As shown in the figure, such persistent
code accumulation is helpful to several applications, e.g.,

Figure 10: Effectiveness of persistent code accumulation
from multiple runs of different applications.

Crypto, PdfJS, and CodeLoad. However, the benefit
of accumulation quickly diminishes after a small num-
ber of runs for most applications. The figure also shows
that persistent code cannot achieve similar performance
improvement for w/o H + w/ P compared to w/ H +

w/o P because persistent code collected from one exe-
cution cannot fully cover the later executions.

Typically, there are two reasons for this phenomenon.
(1) There is a chance to miss some traces due to the
limited buffer size used for trace formation in HQEMU.
These traces have opportunities to be formed and trans-
lated in the executions when persistent code is available.
(2) The behavior of guest JIT engine is changed due to
the performance improvement introduced by persistent
code. In this situation, new guest binary is generated dy-
namically by the guest JIT engine that requires transla-
tion. Generally, the performance becomes stable after
two or three accumulations for most applications shown
in Figure 9 because no significant amount of new host
code is generated beyond that point.

Next, we evaluate the effectiveness of persistent code
accumulation from different applications. In this exper-
iment, the persistent code is accumulated from the exe-
cutions of all applications in a set of twelve applications
except for one. The accumulated persistent code is then
used by the excluded application. To evaluate the effec-
tiveness of accumulation, the excluded application is run
with the persistent code accumulated from one applica-
tion up to eleven applications in the set. Without loss
of generality, the order of the eleven applications chosen
during the accumulation phase is random.

Figure 10 shows the results of this experiment. Ini-
tially, most applications can benefit from the accumu-
lated code. However, as more persistent code is accumu-
lated (from one to eleven), its performance benefit dimin-
ishes and even becomes harmful beyond some point for
some applications. This indicates that persistent code ac-
cumulation from different applications is not always ben-
eficial because large persistent code can introduce high
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Figure 11: Performance overhead introduced by persistent code caching.

Figure 12: The sizes of different parts in persistent code.

overhead in looking up PHash. In our experiments, 5 is
the turning point. Currently, there is no limitation on the
size of accumulated persistent code. An effective persis-
tent code management approach should limit the size to
avoid this detrimental impact.

4.3 Performance Overhead and Code Size

Figure 11 shows the performance overhead introduced
by persistent code generation and PHash lookup. The
baseline is the original execution without helper thread
and without persistent code. As shown in the figure, for
all applications except 400.perlbench with test.pl

input, both kinds of overhead are less than 3%. As men-
tioned before, 400.perlbench with test.pl has multi-
ple child processes. Due to the persistent code accumula-
tion from each child process, a huge generation overhead
is introduced. After analyzing the execution, we found
95% of the performance overhead is caused by disk file
operations. Another overhead is from PHash lookup be-
cause of the large accumulated persistent code. On aver-
age, less than 1% performance overhead is introduced by
our persistent code caching approach.

Figure 12 shows the size of each part of the persis-
tent code. For most applications, the total size is less
than 40MB, except 400.perlbench with test.pl in-

put, which generates a very large persistent code due to
persistent code accumulation. As shown in the figure,
MDHBC is the largest part in persistent code, with 61%
on average. In our current implementation, all informa-
tion in the internal data structures of blocks/traces is kept
for future recovery. However, some of information in
these data structures is never used. There still is a good
potential to further reduce the size of persistent code, and
is part of our future work. The second largest part in per-
sistent code is HBC(Block), which occupies 28% of the
memory space, compared to 6.8% for HBC (Trace). This
is because the host binary of traces is translated and op-
timized by LLVM JIT, while host binary for basic blocks
is translated by TCG and is not optimized.

5 Related Work

The potential of reusing translated code across execu-
tions have been studied in previous work [12, 21, 22, 7].
Using DynamoRIO [4], which is a dynamic binary opti-
mization system, the work [12] shows that many of the
most heavily executed code traces in SPEC CPU2000 are
similarly optimized during successive executions. This
indicates the significant potential for leveraging the inter-
execution persistence of translated/optimized code.

A mechanism of persistent code cache has been im-
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plemented in [21, 22] for Pin [17], which is a dynamic
binary instrumentation system. It takes traces and cor-
responding internal C++ data structures used by Pin as
persistent code, which are generated when the original
code cache in Pin becomes full or at the exit of the execu-
tion. To reuse persistent code across applications, shared
libraries have to be loaded to the same memory address.
Another persistent code caching scheme is proposed for
process shared code cache [7]. It organizes guest appli-
cations and libraries into separate modules, and shares
the code cache of modules among processes. To support
relocatable guest applications, an offset of an instruction
address from the start of the module is used to look up
the persistent code of this module.

Compared to those schemes, our approach has three
significant advantages. First, the guest binary code rather
than the guest instruction address or offset is used to look
up persistent code. It enables our approach to support
dynamically generated code. Second, there is no restric-
tion on the change of guest application and the libraries
it depends on. If the guest application (or the libraries)
is modified since last time when the persistent code was
generated, e.g., upgraded to a newer version, our per-
sistent code can still benefit from the unchanged part in
guest binary code without any modification. Lastly, per-
sistent code generated from a static-linked application,
which contains application code and library code, is still
helpful for other applications (static-linked or dynamic-
linked) that use the same library code. However, it is
difficult to realize this in existing mechanisms.

A similar scheme of guest binary matching, called
guest binary verification, is also explored to reuse trans-
lated code in a single execution [16]. Different from the
approach discussed in this paper, there is no relocation
issue in a single execution. Also, it uses guest instruc-
tion address to discover persistent code, which is differ-
ent from our approach using guest binary code.

There are also several schemes to optimize DBT sys-
tems [11, 26, 27, 10, 23]. Basically, these optimizations
can cooperate with our persistent code caching approach
to improve the performance of DBT systems.

6 Conclusion

This paper presents a general and practical persistent
code caching framework to work within existing DBT
systems. The proposed approach saves translated host
code as persistent code and reuses it across executions to
amortize or mitigate the translation overhead. Different
from existing persistent code caching schemes, our pro-
posed approach uses guest binary code to look up and
verify persistent code. One significant benefit from this
approach is to support persistent code caching for dy-
namically generated code, which is very popular in script

languages. To find out a matching persistent code entry,
a two-level hash table is designed to organize persistent
code entries and speed up the look-up process. A pro-
totype of this approach has been implemented in an ex-
isting retargetable DBT system. Experimental results on
a set of benchmarks, including C/C++ and JavaScript,
show that this approach can achieve 76.4% performance
improvement on average compared to the original DBT
system without helper threads to offload the overhead
of dynamic binary translation, and 9% performance im-
provement on average over the same DBT system with
helper threads when translated code reuse is combined
with the help threads.
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