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Abstract— The proliferation of connected sensing de-
vices (or Internet of Things) can in theory enable a range
of applications that make rich inferences about users and
their environment. But in practice developing such appli-
cations today is arduous because they must implement all
data sensing and inference logic, even as devices move
or are temporarily disconnected. We develop Beam, a
framework that simplifies IoT applications by letting
them specify “what should be sensed or inferred,” with-
out worrying about “how it is sensed or inferred.” Beam
introduces the key abstraction of an inference graph to
decouple applications from the mechanics of sensing and
drawing inferences. The inference graph allows Beam to
address three important challenges: (1) device selection
in heterogeneous environments, (2) efficient resource us-
age, and (3) handling device disconnections. Using Beam
we develop two diverse applications that use several dif-
ferent types of devices and show that their implementa-
tions required up to 12x fewer source lines of code while
resulting in up to 3 higher inference accuracy.

1 Introduction

Connected sensing devices, such as cameras, ther-
mostats, in-home motion, door-window, energy, wa-
ter sensors [2], collectively dubbed as the Internet of
Things (10T), are rapidly permeating our living environ-
ments [3], with an estimated 50 billion such devices in
use by 2020 [34]. In theory, they enable a wide variety
of applications spanning security, efficiency, healthcare,
and others. But in practice, developing IoT applications
is arduous because the tight coupling of applications to
specific hardware requires each application to implement
the data collection logic from these devices and the logic
to draw inferences about the environment or the user.
Unfortunately, this monolithic approach where appli-
cations are tightly coupled to the hardware, is limiting
in two important ways. First, for application developers,
this complicates the development process, and hinders
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broad distribution of their applications because the cost
of deploying their specific hardware limits user adoption.
Second, for end users, each sensing device they install is
limited to a small set of applications, even though the
hardware capabilities may be useful for a broader set of
applications. How do we break free from this monolithic
and restrictive setting? Can we enable applications to be
programmed to work seamlessly in heterogeneous envi-
ronments with different types of connected sensors and
devices, while leveraging devices that may only be avail-
able opportunistically, such as smartphones and tablets?

To address this problem, we start from an insight that
many inferences required by applications can be drawn
using multiple types of connected devices. For instance,
home occupancy can be inferred by either detecting mo-
tion or recognizing people in images, with data sampled
from motion sensors (such as those in security systems or
Nest [12]), cameras (e.g. Dropcam [4], Simplicam [18]),
microphone, smartphone GPS, or using a combination of
these sensors, since each may have different sources of
errors. We posit that inference logic, traditionally left up
to applications, ought to be abstracted out as a system
service, thus decoupling “what is sensed and inferred”
from “how it is sensed and inferred”. Such decoupling
enables applications to work in heterogeneous environ-
ments with different sensing devices while at the same
time benefiting from shared and well trained inferences.
Consequently, there are three key challenges in design-
ing such a service:

Device selection: The service must be able to select the
appropriate devices in a deployment that can satisfy an
application’s inference request (including inference ac-
curacy). Device selection helps applications to run in het-
erogeneous deployments. It also helps applications to op-
erate in settings with user mobility where the set of us-
able devices may change over time. Moreover, applica-
tions can leverage multiple available devices to improve
inference accuracy, as shown in Figure 1.

Efficiency: For inferences that are computationally ex-
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Figure 1: Improvement in occupancy and activity in-
ference accuracy by combining multiple devices in
a lab deployment. For occupancy, sensor set 1 =
{camera, microphone} in one room and set 2 ={PC
interactivity detection} in a second room. For physi-
cal activity, set 1 = {phone accelerometer} and set 2 =
{wrist worn FitBit [5]}.

pensive to run locally on user devices, or to support de-
ployments that span geographical boundaries, the service
should be able to offload computation to remote servers.
In doing so, the service should partition computation
while efficiently using network bandwidth.
Disconnection tolerance: The service should be able to
handle dynamics that can arise due to device disconnec-
tions and user mobility.

To address these challenges concretely, we propose
Beam, an application framework and associated runtime
which provides applications with inference-based pro-
gramming abstractions. It introduces the key abstraction
of an inference graph to not only decouple applications
from the mechanics of sensing and drawing inferences,
but also directly aid in addressing the challenges iden-
tified above. Applications simply specify their inference
requirements, while the Beam runtime bears the onus of
identifying the required sensors in the given deployment
and constructing an appropriate inference graph.

Inference graphs are made up of modules which are
processing units that encapsulate inference algorithms;
modules can use the output of other modules for their
processing logic. Beam introduces three simple building
blocks that are key to constructing and maintaining the
inference graph: typed inference data units (IDUs) which
guide module composability, channels that abstract all
inter-module communications, and coverage tags that aid
in device selection. The Beam runtime instantiates the
inference graph by selecting suitable devices and assign-
ing computational hosts for each module. Beam also mu-
tates this assignment by partitioning the graph at runtime
for efficient resource usage. Beam’s abstractions and run-
time together provide disconnection tolerance.

Our implementation of the Beam runtime works
across Windows PCs, tablets, and phones. Using the
framework, we develop two realistic applications, eight
different types of inference modules, and add native
support for many different types of sensors. Further,
Beam supports all device abstractions provided by

Activity

HomeOS [33], thus enabling the development of a vari-
ety of inference modules. We find that for these applica-
tions: 1) using Beam’s abstractions results in up to 4.5x
fewer development tasks and 12x fewer source lines of
code with negligible runtime overhead; 2) inference ac-
curacy is 3x higher due to Beam’s ability to select de-
vices in the presence of user mobility; and 3) network re-
source usage due to Beam’s dynamic graph partitioning
matches hand-optimized versions for the applications.

2 Beam Overview

In this section, we first describe two representative
classes of applications and distill the challenges an infer-
ence framework should address. Next, we describe the
key abstractions central to Beam’s design in addressing
the identified challenges.

2.1 Example Applications

Our motivation for designing Beam are data-driven-
inference based applications, aimed at homes [12, 19],
individual users [11, 14, 59, 69, 72] and enterprises [8,
16, 24, 46, 60]. We identify the challenges of building
an inference framework by analyzing two popular appli-
cation classes in detail, one that infers environmental at-
tributes and another that senses an individual user.

Rules: A large class of popular applications is based on
the ‘If This Then That (IFTTT)’ pattern [9, 67]. IFTTT
enables users to create their own rules connecting sensed
attributes to desired actions. We consider a particular
rules application which alerts a user if a high risk appli-
ance, e.g., electric oven, is left on when the home is un-
occupied [64]. This application uses the appliance-state
and home occupancy inferences.

Quantified Self (QS) [11, 14,23, 35, 53] disaggregates
a user’s daily routine by tracking her physical activity
(walking, running, etc), social interactions (loneliness),
mood (bored, focused), computer use, and more.

Using these two popular classes of applications we ad-
dress three important challenges they pose: device selec-
tion, efficiency, and disconnection tolerance, as detailed
in Section 1. Next, we explain the key abstractions in
Beam aimed at tackling these challenges.

2.2 Beam Abstractions

In Beam, application developers only specify their de-
sired inferences. To satisfy the request, Beam bears the
onus of identifying the required sensors and inference
algorithms in the given deployment and constructing an
inference graph.

Inference Graphs are directed acyclic graphs that con-
nect devices to applications. The nodes in this graph cor-
respond to inference modules and edges correspond to
channels that facilitate the transmission of inference data
units (IDUs) between modules. While these abstractions
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Figure 2: Inference graph of modules for the Quantified Self (QS) app. Adapters are device driver modules.

are described in more detail below, Figure 2 shows an
example inference graph for the QS application that we
later build and evaluate. The graph uses eight different
devices spread across the user’s home and workplace,
and includes mobile and wearable devices. The applica-
tion requests a top-level inference as an IDU and Beam
dynamically selects the modules that can satisfy this in-
ference based on the devices available. For example, in
Figure 2, to satisfy the application’s request for infer-
ences pertaining to fitness activities Beam uses a mod-
ule that combines inferences drawn separately from a
user’s smartphone GPS, accelerometer, and Fitbit device,
thus forming part of the inference graph for QS. Figure 3
shows the inference graph for the Rules application.
Composing an inference as a directed graph enables
sharing of data processing modules across applications
and other modules that require the same input. In Beam,
each computing device associated with a user, such as a
tablet, phone, PC, or home hub, has a part of the runtime,
called the Engine. Engines are computational hosts for
inference graphs. Figure 4 shows two engines, one on the
user’s home hub and another on her phone; the inference
graph for QS (shown in Figure 2) is split across these
engines, while the QS application runs on a cloud server.
For simplicity, we do not show another engine that may
run on the user’s work PC.
IDU: An Inference data unit (IDU) is a typed inference,
and in its general form is a tuple <t,e,s>, which denotes
any inference with state information s, generated by an
inference algorithm at time ¢ and error e. The types of
the inference state s, and error e, are specific to the in-
ference at hand. For instance, s may be of a numerical

Rules App

Home
Occupanc
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Figure 3: Inference graph for the Rules application.

type such as a double (e.g., inferred energy consump-
tion), or an enumerated type such as high, medium, or
low. Similarly, error e may specify a confidence measure
(e.g., standard deviation), probability distribution, or er-
ror margin (e.g., radius). IDUs abstract away “what is
inferred” from “how it is inferred”. The latter is handled
by inference modules, which we describe next.

Inference Modules: Beam encapsulates inference algo-
rithms into modules. Inference modules consume IDUs
from one or more modules, perform certain compu-
tation using IDU data and pertinent in-memory state,
and output IDUs. Special modules called adapters inter-
face with underlying sensors and output sensor data as
IDUs. Adapters are device drivers that decouple “what
is sensed” from “how it is sensed”. Inference developers
specify (1) a module’s input dependencies (either as IDU
types or as modules), (ii) the IDU type it generates, and
(iii) its configuration parameters. Modules have complete
autonomy over how and when to output an IDU, and can
maintain arbitrary internal states. Listing | shows a spec-
ification for the Home Occupancy inference module in
the Rules inference graph (Figure 3). It lists (i) input de-
pendencies of PC Activity OR Mic Occupancy OR Cam-
era Occupancy, (ii) HomeOccupancylDU to be the type
of output it generates, and (iii) a control parameter, sam-
pleSize, that specifies the temporal size of input samples
(in seconds) to consider in the inference logic. Applica-
tion developers request the local engine for desired infer-
1<Spec>
2 <ControlParameters> <!-- Module parameters —->

<Param name="sampleSize" type="int" value="5"/>
4 </ControlParameters>

6 <Output> <!-- Output channel IDU spec ——>
7 <Inference type="Beam.IDU.HomeOccupancyIDU"/>
§ </Output>
9

10 <Input> <!-- Input channels —-—>

11 <InputBlock type="OR">

12 <InputChannel Mode="FreshPush">

13 <Module type="Beam.Modules.PCActivity"/>

14 <Module type="Beam.Modules.MicOccupancy"/>
15 <Module type="Beam.Modules.CameraOccupancy"/>
16 </InputChannel>

17 </InputBlock>
18 </Input>
19</Spec>

Listing 1: Module specification of Home Occupancy.
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Figure 4: An overview of different components in an example Beam deployment with 2 Engines.

ences, for example:
enginelInstance.Request (
Beam.Modules.ModHomeOccupancy,
tags, Mode.FreshPush);
These are satisfied by inference modules implemented by
inference developers, and applications receive IDUs via
a callback.

Channels: To ease inference composition, channels link
modules to each other and to applications, abstracting
away the complexities of connecting modules across dif-
ferent devices. Channels provide support for disconnec-
tions tolerance and enable optimizations such as batching
IDU transfers for efficiency. Every channel has a single
writer and a single reader module. Modules can have
multiple input and output channels. Channels connecting
modules on the same engine are local. Channels connect-
ing modules on two different engines, across a local or
wide area network, are remote channels. Remote chan-
nels enable applications and inference modules to seam-
lessly use remote devices or modules. Channels can be
either configured to deliver IDUs to the reader as soon
as the writer pushes it (FreshPush, as seen in Listing 1
line 12), or to deliver IDUs in batches thus amortizing
the cost of computation and network transfers.

Coverage Tags: Coverage tags help manage sensor cov-
erage. Each adapter is associated with a set of coverage
tags which describes what the sensor is sensing. For ex-
ample, a location string tag can indicate a coverage area
such as “home” and a remote monitoring application can
use this tag to request an occupancy inference for this
coverage area. Coverage tags are strongly typed. Beam
uses tag types only to differentiate tags and does not dic-
tate tag semantics. This gives applications complete flex-
ibility in defining new tag types. Adapters are assigned
tags by the respective engines at setup time, and are up-
dated at runtime to handle dynamics (Section 3.1).
Beam’s runtime also consists of a Coordinator which
interfaces with all engines in a deployment and runs on a
replicated server that is reachable from all engines. The

coordinator maintains remote channel buffers to support
reader or writer disconnections (typical for mobile de-
vices). It also provides a place to reliably store state of
inference graphs at runtime while being resistant to en-
gine crashes and disconnections. The coordinator is also
used to maintain reference time across all engines. En-
gines interface with the coordinator using a persistent
web-socket connection, and instantiate and manage the
parts of inference graphs local to them.

3 Beam Runtime

In this section, we describe how the Beam runtime uses
the inference graph to aid in device selection, efficient
graph partitioning, and handling device disconnections.

3.1 Device Selection

Beam simplifies application development by automati-
cally selecting devices that match its inference request in
heterogeneous deployments and in the presence of user
mobility. Beam leverages the device discovery mech-
anism in HomesOS [33] to discover and instantiate
adapter modules for available sensors in the deployment.

Applications request their local Beam engines for all
inferences they require, including the coverage associ-
ated with each inference. All application requests are for-
warded to the coordinator. Using inference module spec-
ifications and devices with matching coverage tags avail-
able in the deployment !, the coordinator recursively re-
solves all required inputs of each module. A module’s
coverage tag set includes tags from the downstream mod-
ules it processes data from.

Handling environmental dynamics: Movement of
users and devices can change the set of sensors and de-
vices that satisfy an application’s requirement. For in-
stance, consider an application that requires camera in-
put from the device currently facing the user at any time,
such as the camera on her home PC, work PC, or smart-
phone. In such scenarios, the inference graph needs to

I'The requested tag must match one of the adapter tags.
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be updated dynamically. Beam updates the coverage tags
to handle such dynamics. Tags of location type (e.g.,
“home”) are assumed to be static and are only edited by
the user. For tags of type user, the sensed subject is mo-
bile and hence the sensors that cover it may change. The
coordinator’s tracking service manages the coverage tags
associated with adapters on various engines.

The user tracking service updates the coverage tags
as the user moves. When a user leaves home for work,
the tracking service removes the user tag from device
adapters on the home PC and adds them to adapters on
her smartphone. When she arrives at work, the tracking
service removes the user tag from her smartphone and
add them to adapters on her work PC. The user tracking
service relies on device interactions. When a user inter-
acts with a device, it updates the tags of all sensors on
the device to include the user’s tag.

Finally, changes in coverage tags (e.g., due to user
movements) or device availability (e.g., device discon-
nections and re-connections) will result in the coordi-
nator reselecting devices for requested inferences and
recreating the graph accordingly.

3.2 Inference Partitioning for Efficiency

Beam uses the inference graph for partitioning computa-
tion across devices and optimizing for efficiency.

Graph creation and partitioning: The Beam coordina-
tor maintains a set of inference graphs in memory as an
incarnation. When handling an inference request, the co-
ordinator first incorporates the requested inference graph
into the incarnation, re-using already running modules,
and merges inference graphs if needed. Once the coordi-
nator finishes resolving all required inputs for each mod-
ule in the inference graph, it determines where each mod-
ule should run using the optimization schemes described
next. The coordinator then initializes remote channels
and partitions the graph into engine-specific subgraphs
which are sent to the engines. Whenever the tracking ser-
vice updates coverage tags, e.g. due to user movements,
the coordinator re-computes the inference graphs and
sends updated subgraphs to the affected engines. Next,
the engines receive their respective subgraphs, compare
each subgraph to existing ones, and update them by ter-
minating deleted channels and modules before initializ-
ing new ones. Engines ensure that exactly one inference
module of each type with a given coverage tag is created.

Optimizing resource usage: In Beam, optimizations are
either performed reactively, i.e., when an application is-
sues/cancels an inference request, or proactively at peri-
odic intervals.

Beam’s default reactive optimization determines
where each module should run by partitioning the infer-
ence graph to minimize the number of remote channels.
Let G(V,E) be an inference graph, where V represents

the nodes (inference modules), and E represents its adja-
cency matrix. In E, ¢;; is the cost of the edge (channel)
connecting module i to module j; e;; = 0 if two modules
are not connected directly. Beam’s optimizer determines
potential partitions of the inference graph and picks the
partition with the minimum cost. To determine a parti-
tion Py |p|, Beam assigns each module i € V to run on
adeviced € D. That is, p;; = 1 if module i runs on device
d and p;; = 0 otherwise. We define the cost matrix of a
partition P of the inference graph as Cip|x|p| = PTEP,
where cg,4, denotes the sum of the cost of all channels
from device d; to device d,. Since the reactive optimizer
aims at minimizing the number of remote channels, here
e;j = 1 for all connected modules i and j in the graph.
An adapter module runs on a device co-located with the
sensor, and an application runs on the device requested
by the user. Beam solves the following linear program to
find P with the minimum cost:

Minimize Z Cd,dy
Vd\,d,€D,d #d)

subjectto Y piu=1 VieV
deD
pia €{0,1} Vi€V,VdeD

Beam’s default proactive optimization minimizes the
amount of data transferred over remote channels by solv-
ing the same linear program but using the data rate profile
of each edge as e;;. Engines profile their subgraphs, and
report profiling data (e.g., per-channel data rate or es-
timated per-module CPU utilization) to the coordinator
periodically. Other potential optimizations can minimize
CPU/memory usage at engines, or IDU delivery latency.
Beam allows for modular replacement of optimizers. The
coordinator applies optimizations by re-configuring in-
ference graphs and remapping the engine on which each
inference module runs.

Scatter node optimization: The coordinator further op-
timizes the inference graph by finding remote channels
which have the same writer module, and whose readers
reside on a common engine (R,). For each such set of
edges (E), it adds a single remote channel edge from the
writer to a new scatter node at R,. The scatter node is
then set as the writer for all edges in E, in effect, replac-
ing multiple remote channels with one and reducing the
amount of wide-area network transfers by a factor of |E|.

3.3 Disconnection Tolerance

Beam’s remote channels always go through the coor-
dinator and support reader/writer disconnections by us-
ing buffers at the coordinator. Thus, a channel is split
into three logical components: writer-side, reader-side,
and coordinator-side (present only in remote channels).
A channel’s writer-side and coordinator-side component
buffer IDUs. Channels offer two guarantees: i) readers do
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Adapter Inference Module
PC Event PC Activity
PC Input PC Occupancy
Phone GPS Semantic Location
Accelerometer Fitness Activity
Fitbit N
Energy Meter (HomeOS) Appliance Usage
Camera (HomeOS) Camera Occupancy
PC Mic/Tablet Mic Mic Occupancy
PC Mic/Tablet Mic Social Interaction

Table 1: Sample adapters and inference modules.

not receive duplicate IDUs, and ii) readers receive IDUs
in FIFO timestamp order. Beam specifies a default size
for remote channel buffers but also allows application de-
velopers to customize buffer sizes based on deployment
scenarios, e.g., network delays and robustness.

Internally, channels assign sequence numbers to IDUs.
They are used for reader-writer flow control, and in re-
mote channels for applying back-pressure on the writer-
side component when the coordinator-side buffer is full,
e.g., when a reader is disconnected. Currently, the writer-
side and coordinator-side buffers use the drop-tail policy
to minimize data transfer from writer to coordinator in
the event of a disconnected/lazy reader (as opposed to
drop head). This design implies that after a long discon-
nection a reader will first receive old inference values fol-
lowed by recent ones.

Channels and modules do not persist data. If neces-
sary, applications and modules may use a temporal data
store, such as Bolt [37], to make inferences durable.

4 Implementation

Our Beam prototype is implemented in C# as a cross-
platform portable service that can be used by .NET v4.5,
Windows Store 8.1, and Windows Phone 8.1 applica-
tions. The Beam inference library has sample implemen-
tations for 8 inference modules and 9 adapters (listed in
Table 1). It also includes a HomeOS-adapter that allows
Beam to leverage various other device abstractions pro-
vided by HomeOS [33], such as the camera and energy
meter device drivers used by some of our sample infer-
ences. Each Beam module has a single data event queue
and a thread to deliver received IDUs (akin to the ac-
tor model [22, 26, 29]). All communication between the
coordinator and engine instances uses the SignalR [17]
library, and Json.NET [10] is used for data serializa-
tion. The engine library, coordinator, sample adapters,
and tracking service are implemented in 6614, 952, 1824,
and 219 (total=9609) source lines of code respectively.

4.1 Sample Applications

We implement the motivating applications described in
Section 2.1 in Beam. Inference graphs of Rules and
Quantified Self (QS) are shown in Figure 3 and Figure 2,
respectively. Device adapters such as Microphone, Cam-

era, and PC Event adapters are shared by both inference
graphs. For common inference modules such as the PC
Activity inference, Beam instantiates only one of them
across these graphs. Changes in coverage tags and de-
vice availability caused by user mobility prompt Beam
to re-select appropriate devices for inference graphs. For
instance, PC Activity for QS might either be drawn from
the home PC or the work PC depending on the user’s
current location.

4.1.1 Rules Application

The Rules application requires the Appliance Usage and
Home Occupancy inferences implemented as follows.

The Appliance Usage inference module reads aggre-
gated power consumption of a home from a whole-home
power meter, or a utility smart-meter, and disaggregates
it to determine the set of appliances that are on at any
given instant, using the CO algorithm from [39], config-
ured with 10 commonly owned home appliances [25].
The whole-house power readings are generated using
our power-sensor adapter, which interfaces with an Aeon
ZWave whole-house meter [1].

The Mic Occupancy inference module reads audio
samples using the PC Microphone adapter at a sampling
rate of 8 kHz (in 4 second frames), and filters out back-
ground noise (such as wind, fans, etc.) [38]. If after fil-
tering, the audio sample still indicates sound is present,
the inference output is ‘occupied’.

The PC Activity module infers the current activity a
user is performing on a PC (described in Section 4.1.2).

The Camera Occupancy module receives streaming
video input from an adapter provided by the HomeOS
web-cam driver. The input video is of 640 x 480 reso-
lution and streams at a frame rate of 1 fps. The module
compares consecutive frames in the video. If any signif-
icant difference indicating possible human movement is
detected [28], the inference output is ‘occupied’.

The Home Occupancy module combines Mic Occu-
pancy, Camera Occupancy, and PC Activity modules, to
produce a Home Occupancy inference, outputting ‘oc-
cupied’ if one of the following is true: Mic Occupancy,
Camera Occupancy, or PC Activity # No activity.

4.1.2 Quantified Self (QS) Application

QS tracks a user’s fitness activities, social behaviors, and
computing activities on a PC. It is implemented as a Win-
dows Azure web application. Users view plots of their
data at leisure on the QS webpage. The inference mod-
ules used by this application are described as follows.
The Social Interaction (Is Alone) module detects the
presence of human voice, outputting ‘user not alone’
when human voice is present (likely due to conversa-
tions with others, though false positives may arise due to
TV sounds and background noises). It computes the mel-
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1// Inference developers implement module logic

2public class ModHomeOccupancy:InferenceModuleBase {

s // Read parameters from the specification XML file

4 public override void Initialize (ModuleSpec spec) {

5 this.paramList = spec.getControlParams();

6 // set state and initialize using parms

7}

8 // Callback to receive IDUs from input channel(s)

9 public override void DataReceived (IChannel channel
, List<IIDU> inputSignals) {

10 // Compute occupancy based on input

11 HomeOccupancyIDU inferenceResult =

12 computeOccupancy (inputSignals) ;

13 // Push result IDUs to output channel (s)

14 if (!changedSincelastPush (inferenceResult))

15 foreach (IChannel ch in outputChannels

16 ch.Push (inferenceResult);

17}

8 // ...

19}

20// App developer: request inferences from engine

2ipublic class QSApp InferenceModuleBase {

22 void startInference() {

23 // Get an instance of the local engine

24 Beam.Engine engine = Beam.Engine.Instance;

25 // Prepare coverage tags

26 List<CoverageTag> tag = new List<CoverageTag>();
27 tag.Add (new PersonCoverageTag ("Userl"));

28 // Register for inference notifications

29 engine.Request (Beam.Modules.ModHomeOccupancy, tag
, Mode.FreshPush, this);

30}

31 // Callback to receive IDUs from input channel (s)

32 public override void DataReceived (IChannel channel
, List<IIDU> occupancyInferences ) {

33 // Perform actions based on IDUs received ...

4}

35}

Listing 2: Example usage of the Beam API.
frequency cepstral coefficients (MFCC) [32, 52] over a
200 ms window of the microphone adapter data at 44.1
kHz and uses a decision tree [58] to classify if human
voice is present. The module also incorporates movement
detection by analyzing video streams from the camera.

The PC Activity inference module reads the name of
the currently active desktop window from the PC-event
adapter using a Win32 system call. It then classifies the
name into one of the known PC activity categories (cod-
ing, web browsing, social networking, emailing, read-
ing etc.) using a pre-configured mapping. It also infers
the psychological state of the user (bored vs. focused)
using the features proposed in [51], including window
switches, web page switches, time spent browsing Face-
book.com, and time spent using e-mail.

The Fitness Activity module implements the algorithm
from [61] to infer human transportation modes (still,
walking, driving) using the phone accelerometer. It also
uses the Fitbit [5] API to fetch users’ FitBit activity logs,
and combines it with accelerometer-based inferences.

4.2 APIs

Listings 1 and 2 show how application and inference de-
velopers leverage the Beam APIs using the Home Occu-
pancy inference as an example.

Inference developers provide an XML specification
for each inference module (Listing 1) configuring its

Application components and their description

Sensor driver: Handled by M-Hub and Beam
One driver per sensor type.

Inference logic: Handled by M-Lib and Beam

For each inference an application requires, at least one inference com-
ponent is needed, e.g., incorporating feature extraction techniques, infer-
ence algorithm, learning model, etc.

Parameter tuning: Simplified by Beam
An application must also incorporate logic to match its inference logic
with the underlying sensors (for a range of sensors), e.g. configuring
sensor-specific parameters such as sampling rate, frame rate for cameras,
sensitivity level for motion sensors, etc.

Cloud service: Simplified by Beam

Depending on the development approach, an application may require sev-
eral cloud services, e.g., a storage service for data archival, an execution
environment for hosting inference logic, authentication services, etc.

Device disconnection tolerance: Handled by Beam
Since devices such as smartphones, tablets, may have intermittent con-
nectivity, developers need to appropriately handle disconnections.

User interface (UI): Simplified by Beam
Typical applications require certain UI components, e.g., to allow config-
uration of sensors for data collection, or for users to view results.

Table 2: Components of inference-based applications.

parameters as well as the input and output chan-
nel IDU types. They then implement the module us-
ing Beam’s APIs (Listing 2, line 1-19) extending the
InferenceModuleBase helper class. The module is
first initialized with control parameters (line 5). It re-
ceives inputs in the DataReceived callback (line 9),
performs the implemented inference logic (line 11), and
sends result IDUs to output channels (line 14-16).
Application developers simply request a specific infer-
ence module, e.g. Home Occupancy (Listing 2, line 20-
35). The application specifies coverage tags (line 26-27),
and invokes the local engine’s Request method (line
29) to register for inference notifications. Beam then
instantiates the required inference graph and returns a
channel to the application with the requested module as
writer. Result IDUs are received by the application via
the DataReceived callback (line 32).

5 Evaluation

We evaluate how Beam’s inference graph abstraction
simplifies application development, benchmark its per-
formance, and evaluate its efficacy in addressing the
three key challenges identified in Section 1. Our evalu-
ation uses micro-benchmarks as well as the two motivat-
ing applications from Section 4.1.

First, in Section 5.2 we quantify how Beam’s abstrac-
tions simplify application development and evaluate the
overhead of graph creation. Then, in Section 5.3, we
evaluate how Beam’s device selection in a real-world
deployment with user mobility improves inference ac-
curacy. Next, in Section 5.4, we show the impact of
Beam’s inference graph partitioning to optimize for effi-
cient resource usage. Finally, in Section 5.5 we showcase
Beam’s ability to handle device disconnections.
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Figure 5: Development tasks using different develop-
ment approaches in the two applications (Rules, QS)

For our experiments, the Beam coordinator runs on a
Windows Azure VM (with AMD Opteron Processor, 7
GB RAM, 2 virtual hard disks, running Windows Server
2008 R2); the engines run on desktop machines (with
AMD FX-6100 processor, 16 GB RAM, running Win-
dows 8.1) and a Windows Phone (Nokia Lumia). Both
sample applications, Rules and Quantified Self (QS), run
on the same VM as the coordinator; local engines run in
the cloud, a home PC, phone, and a work PC.

5.1 Development Approaches

To quantify the reduction in development effort achieved
by Beam, we explore different approaches that a devel-
oper may adopt to design such applications.
Monolithic-All Cloud (M-AC). In this approach, the ap-
plication is developed as a monolithic silo without the
use of any framework. All application logic is tightly
coupled to the sensing devices, and all collected data is
relayed to cloud services, as is the case with Xively [20]
and SmartThings [19]. The cloud service runs the appli-
cation’s data processing and inference logic.
Monolithic-Cloud and Device (M-CD). In this ap-
proach, an application developer hard-codes the divi-
sion of inference logic across the cloud VM and end de-
vices [13, 69]. Thus, sensor values are processed to some
degree on the end device before being uploaded to the
cloud VM which hosts the remainder of the application
logic. Depending on the deployment and resource con-
straints, the developer may need to hand-optimize the re-
source usage (e.g., CPU, memory, or network usage).
Monolithic-using inference libraries (M-Lib). This ap-
proach is similar to the previous one (M-CD), except that
application developers may use libraries of inference al-
gorithms tuned by domain experts, thus leading to some
reduction in development effort [31, 44, 57].
Monolithic-using sensor hub systems (M-Hub). Plat-
forms such as HomeOS [33], Homeseer [7], and oth-
ers [15], facilitate the development of applications by
providing homogeneous device-based programming ab-
stractions. Typically, these platforms implement sensor
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Figure 6: SLoC using different development ap-
proaches in the two applications (Rules, QS)

drivers and regulate access to different sensors; applica-
tions still implement inference logic.

Beam. In this approach, an application on any of the
user’s devices simply presents its inference requests to
the local Beam instance. Using the inference graph ab-
straction, Beam bears the onus of device selection, opti-
mizing for efficiency, and handling disconnections. Note
that using Beam does not preclude the M-Hub approach
where all sensing and inference logic run locally on a
single hub device (e.g., a home hub). We refer to such
scenarios built using Beam’s inference abstractions as
Beam-Hub, with the engine and coordinator running lo-
cally without needing an external network connection.

5.2 Evaluation of Inference Abstraction

In this section we highlight the saving in application de-
velopment effort using Beam’s inference graph abstrac-
tion and quantify the overhead of graph creation.

5.2.1 Comparison of Development Effort

We implement our representative applications using the
different development approaches described above and
present a quantitative comparison of the development ef-
fort using two metrics: (i) number of development tasks
and (ii) number of source lines of code (SLoC). Num-
ber of development tasks is defined as the number of ar-
chitectural components that need to be designed, imple-
mented, and maintained for a complete functioning ap-
plication. To analyze development effort in greater depth,
these components can further be categorized based on the
function they perform (Table 2). This metric captures the
diverse range of tasks developers of applications for con-
nected devices are required to handle. Although compar-
ing the number of tasks provides insight into the devel-
opment effort required for each approach, different com-
ponents often require varying levels of implementation
efforts. Thus, to distinguish individual components, we
also measure the number of source lines of code (SLoC)
required for the components in each approach.

Figures 5 and 6 show the number of development tasks
and number of SLoC, respectively, for the Rules and QS
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Sample scenario 1 (local inference)

Sample scenario 2 (remote inference)

Appl’s request  App2’s request H Appl’srequest App2’s request Reevaluation
Total 232.54 £ 1.63 246.71 £+ 16.62 237.43 £12.76 230.24 £ 3.53 -
Request and subgraph transfer 230.35 £ 1.68 246.24 £ 16.62 236.13 £ 12.75 229.73 £3.47 -
Coordinator (inference graph creation) 1.05 £ 0.14 0.16 + 0.01 0.90 + 0.04 0.20 + 0.07 0.12 +0.01
Coordinator (split inference graphs) 0.06 + 0.01 0.12 £ 0.01 0.06 + 0.01 0.15 £ 0.07 0.11 £ 0.01
Engine (instantiate subgraphs) 1.05 £0.13 0.16 £ 0.03 0.30 £ 0.08 0.12 £ 0.04 0.40 £0.10

Table 3: Inference graph setup times (in ms) in two sample scenarios, with one standard deviation.

applications using the different development approaches.
We observe that for the Rules application, Beam reduces
the number of development tasks by 4.5, and the num-
ber of SLoC by 4.8x, compared with M-AC and M-
CD. Similarly, for the QS application, Beam reduces the
number of development tasks by 3, and the number of
SLoC by 12x, compared with M-AC and M-CD.

Number of development tasks: As shown in Fig-
ure 5, the approaches of Monolithic-All Cloud (M-AC)
and Monolithic-Cloud and Device (M-CD) have similar
number of development tasks for both the Rules (on left)
and the QS application (on right). M-CD requires devel-
opers to hard-code the division of tasks between end-
point devices and cloud servers, thus statically optimiz-
ing for better resource usage than M-AC (Section 5.4).

Compared with M-AC and M-CD, the M-Lib ap-
proach reduces developer effort. It leverages existing li-
braries which provide implementations of inference al-
gorithms and also handle their training and tuning. Sim-
ilarly, in the M-Hub approach, developer effort is re-
duced due to existing sensor driver implementations pro-
vided by the platform. Finally, when using Beam, appli-
cation developers do not need to design or implement
sensor drivers, inference logic, tuning timing parame-
ters, or handling disconnections. Application developers
only need to decide their required inferences, and de-
velop application-specific components, e.g., user inter-
face, third-party authentication, etc.

Number of SLoC: As shown in Figure 6, we observe
that for all approaches, the SLoC count is generally pro-
portional to the development task count. For most ap-
proaches SLoC is dominated by tasks of developing sen-
sor drivers and inference logic. For instance, the Social
Interaction inference in QS contributes more than 9796
SLoC. Both Beam and M-Lib help alleviate this com-
plexity. Beam improves upon M-Lib by handling the
complexity of implementing sensor drivers, disconnec-
tion tolerance, and optimizing resource usage, etc.

5.2.2 Overhead of Inference Graph Creation

We study the time taken by Beam to satisfy requests for a
single Mic Occupancy inference, which in turn uses the
PC Mic adapter. We consider two sample scenarios, 1)
applications request for a local inference, and 2) applica-
tions request for a remote inference. In both cases, appli-
cation 1 initiates a request first, followed by application

2, with the same coverage tag.

In both scenarios, the overhead of instantiating and
maintaining the inference graph at end-points is minimal
and dwarfed by the latency of transferring the request to
the coordinator and receiving back the subgraphs.

Table 3 shows the overhead of graph creation for each
of the scenarios. In both cases, the second request uses
less time for graph creation at the coordinator, since
much of the graph already exists when the second re-
quest arrives (e.g., module specifications are not re-read).
Likewise, in both scenarios, time spent at the engine(s) in
applying the subgraph is lower for the second request as
compared to the first request. Further, it is lower in sce-
nario 2 because the inference graph is split across two
engines. Lastly, the coordinator performs a periodic re-
evaluation based on the channel data rates and applies
the proactive optimization discussed in Section 3.2. The
time taken to perform the re-evaluation is minimal.

5.3 Device Selection

Unlike other approaches described in Section 5.1, the in-
ference graph in Beam can select devices for applications
even in heterogeneous environments with user mobil-
ity, resulting in increased inference accuracy. We demon-
strate this using the PC Activity inference in the context
of the QS application (inference graph in Figure 2).

We perform an experimental lab deployment with two
locations - a lab which acts as ‘home’ and an office.
Movements from home to office are used to simulate
user commuting. We compute Beam’s inference accu-
racy against manually-collected ground truth data from
the deployment, and compare it to three other develop-
ment approaches that may be used in the absence of a
Beam-like tracking service. The first approach performs
the PC Activity inference using only inputs from the
home PC, while the second approach uses only inputs
from the work PC. We assume that the home PC goes
into sleep after a certain period of user inactivity, while
the work PC remains on even after the user leaves. In the
third approach, the inference is drawn using simultane-
ous inputs from both the home and work PCs. However,
when the two inputs conflict, the output is set to ‘Other’.

Figure 7 shows a comparison of inference accuracy
for these different schemes over a ten minute interval of
using the QS application. Inferring PC-based activities
using only the home PC works accurately until the user
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Figure 7: Beam’s tracking service improves infer-
ence accuracy (measured against ground truth) sig-
nificantly over other approaches all of which fail to
select devices in the presence of user mobility.

leaves home, but deviates significantly from ground truth
once the user has left. Similarly, using only the work PC
can only accurately compute the PC-based activities of
the user after the user arrives at work. On the other hand,
using both the work and home PC without a tracking
service often produces conflicting results, for instance,
when home PC and work PC both generate PC Activ-
ity inferences during user commuting. Beam’s tracking
service correctly identifies the location of the user and
triggers the inference graph to re-select appropriate de-
vices, achieving inference accuracy 3x higher than the
best performing scheme above. Using the tracking ser-
vice, Beam’s smartphone engine can also correctly indi-
cate that the user is ‘Mobile’ while commuting. Table 4
summaries these accuracy improvements.

Although the above experiments are performed in a
lab setting with a simulated commuting scenario, hav-
ing a longer commuting time will only reduce the accu-
racy of non-Beam approaches, since only Beam with the
tracking service can infer user commuting and all other
approaches will yield incorrect results. Finally, we ex-
pect to observe a similar accuracy improvement for other

Setup | Accuracy
Home PC only, without tracking service 29.68%
Work PC only, without tracking service 26.94%
Home PC and work PC, without tracking service 4.59%
Home PC and work PC, with Beam’s tracking service 88.16%

Table 4: Accuracy of PC Activity Inference compared
to ground truth (a summary of Figure 7).

inferences that require handling of sensor coverage, e.g.
the Social Interaction inference in the QS application.

5.4 Efficient Resource Usage

Next, we illustrate that Beam can match the resource us-
age of hand-optimized applications by partitioning the
inference graph across devices. We also evaluate differ-
ent optimization schemes used in Beam. Although we
consider network usage to benchmark Beam in this pa-
per, we expect similar optimizations can be performed on
other resources such as CPU usage, latency, and energy.

Graph partitioning: For the Rules and QS applications,
we compare Beam’s data transfer overhead (i.e., number
of bytes transferred over the wide area) with that of dif-
ferent approaches (M-AC, M-CD, M-Lib, M-Hub). Fig-
ure 8 shows the total number of bytes transferred over
the wide area in one hour, for the sample applications
using different approaches. Medians and standard devi-
ations across three runs are reported. M-AC incurs the
largest overhead, because it transfers all sensor data from
the device to a cloud VM for processing. On the other
hand, the M-CD, M-Lib, and M-Hub approaches are op-
timized to perform most of their processing at the edges
before transferring data to the cloud VM. Beam automat-
ically partitions the inference graph using both reactive
and proactive optimizations and comes close to match-
ing the network transfer overhead incurred by M-CD; it
incurs a slightly higher overhead for transferring control
messages such as forwarding the application’s request to
the coordinator, receiving the part of the inference graph
to instantiate, sending channel data rates to coordinator
(for proactive optimization), acknowledgments, etc. Note
that, when the M-Hub approach is used for the Rules ap-
plication, there is no wide area IDU transfers because all
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Figure 8: Total bytes transferred over the wide area
for a 60 minute run of the Rules and QS apps using
different approaches. Y-axis is in log scale.
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Figure 9: Sample configurations of the Mic Occu-
pancy inference, with different optimization goals.

required sensors are present locally at home.

Optimization schemes: Next, we evaluate the effect of
different optimization schemes in Beam. We focus on
a simple inference graph, where two applications run-
ning on cloud servers subscribe to the Mic Occupancy
inference. Figure 9 shows the three configurations that
result from Beam optimizations in isolation and Fig-
ure 10 shows their network resource consumption over
a 100-second interval. Beam’s default reactive optimiza-
tion (Figure 9 #1) minimizes the number of remote chan-
nels resulting in a large amount of microphone data be-
ing transmitted over the wide area. Beam’s proactive op-
timization notices these large uploads and uses channel
data rates to re-evaluate and re-partition the inference
graph (Figure 10 at 20 s), thus moving the Mic Adapter
closer to the edge (Figure 9 #2), and reducing wide area
transfers significantly. Finally, enabling Beam’s scatter
node optimization (Figure 9 #3) halves the network over-
head, for two consumer applications, compared with the
proactive optimization without the scatter node.

5.5 Handling Disconnections

In this section we quantify the ability of the Beam in-
ference graph to handle device disconnections. Remote
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Figure 10: Network resource consumption over a 100
seconds interval for configurations in Figure 9. Y-axis
is in log scale. IDUs are generated every 4 seconds.
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Figure 11: Remote channel time trace. Write rate is
10 values per second, and writer buffer and coordi-
nator buffer are sized at 100 values each.

channels in Beam buffer data at both the coordinator and
at the writer endpoints to tolerate reader and writer dis-
connections. The size of these buffers and the writer’s
sending rate determine the time window for which dis-
connections are lossless, and can be sized as per the de-
ployment scenario. Figure 11 shows a time series plot
of the number of IDUs and data messages received by a
reader over a 100 seconds interval. The writer produces
ten IDUs every second. Each IDU produced is pushed out
in a separate data message until a reader disconnection at
t=15s results in data buffering, first at the coordinator,
and then at the writer. We constrain the channel buffers
at the writer and coordinator ends to 100 IDUs each, thus
supporting buffering of only 20 seconds worth of IDUs
in this configuration, forcing the remaining IDUs to be
dropped. When the reader reconnects at t=80 s, the 200
buffered IDUs are batched in a small number of data
messages and delivered to the reader, showing Beam’s
support for tolerating device disconnections.

6 Related Work

Beam’s inference graph draws inspiration from data-
flow graphs used in a wide range of scenarios such as
routers [45], operating systems [54, 62], data-parallel
computation frameworks [6, 40], and Internet ser-
vices [70]. Beam is the first framework that provides in-
ference abstractions to decouple applications, inference
algorithms, and devices, using the inference graph for
device selection, efficiency, and disconnection tolerance.
We classify prior work into four categories.

Device abstraction frameworks: HomeOS [33] and
other platforms [7, 15, 21, 68] provide homogeneous
programming abstractions to communicate with devices.
For instance, HomeOS applications can use a generic
motion sensor role, regardless of the sensor’s vendor
and protocol. These approaches only decouple device-
specific logic from applications, but are unable to decou-
ple inference algorithms from applications. Moreover,
they cannot provide device selection or inference parti-
tioning capabilities.
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Cross-device frameworks: Rover [41], an early dis-
tributed object programming framework for mobile ap-
plications, allows programmers to partition client-server
applications; it provides abstractions such as relocatable
objects and queued remote procedure calls to ease appli-
cation development. Sapphire [73], a more recent frame-
work, requires programmers to specify per-object de-
ployment managers which aid in runtime object place-
ment decisions, while abstracting away complexities of
inter-object communication. MagnetOS [48] dynami-
cally partitions a set of communicating Java objects in
a sensor network with a focus on energy efficiency. Like
these frameworks, channels in Beam abstract away local
and remote inter-module communication. Beam funda-
mentally differs from them by using the inference graph
to decouple applications from sensing and inferences, aid
in device selection to operate in heterogeneous environ-
ments, and support global resource optimizations.
Macro-programming frameworks [27, 36, 49] provide
abstractions to allow applications to dynamically com-
pose dataflows [50, 56]. Semantic Streams [71] and Task
Cruncher [66] address sharing sensor data and process-
ing across devices. However these approaches focus on
data streaming and simple processing methods, e.g., ag-
gregations, rather than generic inferences, and do not tar-
get general purpose devices e.g., phones, PCs. In addi-
tion, they do not address device selection or inference
partitioning at runtime.

Mobile sensing frameworks: Existing work has focused
only on applications requiring continuous sensing on a
single mobile device. Kobe [31], Auditeur [57], and Sen-
ergy [44] propose libraries of inference algorithms to
promote code re-use and explore single device energy-
latency-accuracy trade-offs. Other work [42, 43, 44, 47]
has focused on improving resource utilization by sharing
sensing and processing across multiple applications on a
mobile device. None of these approaches address prob-
lems such as modular inference composition, device se-
lection with user mobility, inference partitioning across
multiple devices, or handling disconnections.

An early version of our work appears in a workshop
paper that outlined the problem and presented a basic
design [65]. The current paper extends the design, im-
plements real applications, and evaluates performance.

7 Discussion
We discuss potential improvements to Beam.

Error and error propagation: Beam currently supports
typed errors such as probability distributions (e.g. mean
and standard deviation), and error margin (e.g. center
and radius). Although error propagation has been stud-
ied in the field of artificial intelligence (e.g. neural net-
work [63]), there is no prior work on error propagation in
mobile context sensing. We are investigating techniques

to enable inference module developers to implement cus-
tomized error propagation functions for specific infer-
ences, so that Beam can propagate the error from a mod-
ule’s inputs to its output.

Actuation and timeliness: Many in-home devices pos-
sess actuation capabilities, such as locks, switches, cam-
eras, and thermostats. Applications and inference mod-
ules in Beam may want to use such devices. If the in-
ference graph for these applications is geo-distributed,
timely propagation and delivery of such actuation com-
mands to the devices becomes important and raises in-
teresting questions of what is the safe thing to do if an
actuation arrives “late”.

Data archival and correlation mining: Prior work has
shown that exploiting the correlation among inferences
can effectively reduce sensing cost [55]. While Beam
modules do not currently store data either at the engines
or the coordinator, applications and modules may use
a temporal datastore, such as Bolt [37], to make infer-
ences durable. Storing and querying archived inference
data will allow inference developers to perform correla-
tion mining to improve inferences.

Data privacy: While we do not address privacy concerns
in our work, we believe the use of inferences can enable
better data privacy controls [30]. For example, users may
allow an application to access the occupancy inference
(using a camera) instead of the raw image data used for
drawing the inference. This prevents the leakage of pri-
vate information by preventing other inferences that can
be drawn using the raw data. Moreover, Beam’s cover-
age tags allow the user to define fine-grained controls,
for instance, allowing an application to access activity
inference only for a certain user tag.

8 Conclusion

Applications using connected sensing devices are dif-
ficult to develop today because they must incorporate
all the data sensing and inference logic, even as de-
vices move or are temporarily disconnected. We design
and implement Beam, a framework and runtime for dis-
tributed applications using connected devices. Beam in-
troduces the inference graph abstraction which is central
to decoupling applications, inference algorithms, and de-
vices. Beam uses the inference graph to address the chal-
lenges of device selection, efficient resource usage, and
device disconnections. Using Beam, we develop two rep-
resentative applications (Rules and QS), where we show
up to 4.5x lower number of tasks and 12x lower source
line of code in application development effort, with neg-
ligible runtime overhead. Moreover, Beam results in up
to 3 higher inference accuracy due to its ability to select
devices in heterogeneous environments, and Beam’s dy-
namic optimizations match hand-optimized applications
for network resource usage.
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