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Abstract
Given current technology trends towards fast storage de-
vices and the need for increasing data processing density,
it is important to examine key-value store designs that re-
duce CPU overhead. However, current key-value stores
are still designed mostly for hard disk drives (HDDs) that
exhibit a large difference between sequential and random
access performance, and they incur high CPU overheads.

In this paper we present Tucana, a feature-rich key-
value store that achieves low CPU overhead. Our design
starts from a Bε –tree approach to maintain asymptotic
properties for inserts and uses three techniques to reduce
overheads: copy-on-write, private allocation, and direct
device management. In our design we favor choices that
reduce overheads compared to sequential device accesses
and large I/Os.

We evaluate our approach against RocksDB, a state-
of-the-art key-value store, and show that our approach
improves CPU efficiency by up to 9.2× and an average
of 6× across all workloads we examine. In addition, Tu-
cana improves throughput compared to RocksDB by up
to 7×. Then, we use Tucana to replace the storage en-
gine of HBase and compare it to native HBase and Cas-
sandra two of the most popular NoSQL stores. Our re-
sults show that Tucana outperforms HBase by up to 8×
in CPU efficiency and by up to 10× in throughput. Tu-
cana’s improvements are even higher when compared to
Cassandra.

1 Introduction

Recently, NoSQL stores have emerged as an important
building block in data analytics stacks and data access
in general. Their main use is to perform lookups based

1Also with the Department of Computer Science, University of
Crete, Greece.

2Also with the Department of Computer Engineering, University of
Murcia, Spain.

on a key, typically over large amounts of persistent data
and over large numbers of nodes. Today, Amazon uses
Dynamo [16], Google uses BigTable [9], Facebook and
Twitter use both Cassandra [29] and HBase [2].

The core of a NoSQL store is a key-value store that
performs (key,value) pair lookup. Traditionally key-
value stores have been designed for optimizing accesses
to hard disk drives (HDDs) and with the assumption that
the CPU is the fastest component of the system (com-
pared to storage and network devices). For this reason,
key-value stores tend to exhibit high CPU overheads. For
instance, our results show that popular NoSQL stores,
such as HBase and Cassandra, require several tens or
hundreds of thousands of cycles per operation. For rela-
tively small data items we therefore need several modern
cores to saturate a single 1 Gbit/s link or equivalently
a 100-MB/s-capable HDD. Given today’s limitations in
power and energy and the need to increase processing
density, it is important to examine designs that not only
exhibit good device behavior, but also improve host CPU
overheads.

Our goal in this paper is to draw a different balance
between device and CPU efficiency. We start from a
Bε –tree [7] approach to maintain the desired asymp-
totic properties for inserts, which is important for write-
intensive workloads. Bε –trees achieve this amortization
by buffering writes at each level of the tree. In our case,
we assume that the largest part of the tree (but not the
data items) fit in memory and we only perform buffer-
ing and batching at the lowest part of the tree. Then,
we develop a design that manages variable size keys and
values, deals with persistence, and stores data directly on
raw devices.

Although we still use the buffering technique of Bε –
trees to amortize I/Os, we take a different stance with re-
spect to randomness of I/Os. Unlike LSM-trees [43], we
do not make an effort to generate large I/Os. LSM-trees
produce large I/Os by maintaining large sorted containers
of data items in memory, which can then be read or writ-
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Figure 1: Throughput vs. block size for one HDD and
two SSDs, measured with FIO [3].

ten as a whole. These large sorted containers are main-
tained via a compaction technique that relies on sorting
and merging smaller pieces. Although this approach has
proven extremely effective for HDDs, it results in high
CPU overheads and I/O amplification, as we show in our
evaluation for LSM-trees.

New storage technologies, such as flash-based solid-
state drives (SSDs) and non-volatile memory (NVM) are
already part of the I/O hierarchy with increasing use.
Such devices decrease the role of randomness in data ac-
cesses. Figure 1 shows throughput for random I/Os on
two different generations of SSDs and a HDD for differ-
ent queue depths and request sizes. We see that HDDs
achieve peak throughput for request sizes that approach
1 MB for both reads and writes. Increasing the number
of outstanding I/Os does not provide a significant benefit.
On the other hand, a commodity SSD of 2015 achieves
both maximum write throughput and more than 90% of
the maximum read throughput at 32 outstanding requests
of 32 KB size. The 2010 SSD has roughly the same be-
havior with 256 KB requests. Allowing a higher degree
of randomness enables us to reduce read and write traffic
amplification in the design of the key-value store, which
has significant cost in terms of CPU and memory.

We design a full featured key-value store, Tucana,
that achieves lower host CPU overhead per operation
than other state-of-the-art systems. Tucana provides
persistence and recovery from failures, arbitrary dataset
sizes, variable key and value sizes, concurrency, multi-
threading, and versioning. We use copy-on-write (CoW)
to achieve recovery without the use of a log, we di-
rectly map the storage device to memory to reduce space
(memory and device) allocation overhead, and we or-
ganize internal and leaf nodes similar to traditional ap-
proaches [11] to reduce CPU overhead for lookup oper-
ations.

To evaluate our approach, we first compare with
RocksDB, a state-of-the-art key-value store. Our results
show that Tucana is up to 9.2× better in terms of cy-
cles/op and between 1.1× to 7× in terms of ops/s, across

all workloads. This validates our hypothesis that ran-
domness is less important for SSD devices, when there
is an adequate degree of concurrency and relatively small
I/O requests.

To examine the impact of our approach in the context
of real systems, we use Tucana to improve the through-
put and efficiency of HBase [2], a popular scale-out
NoSQL store. We replace the LSM-based storage engine
of HBase with Tucana. Data lookup, insert, delete, scan,
and key-range split and merge operations are served from
Tucana, while maintaining the HBase mapping of tables
to key-value pairs, client API, client-server protocol, and
management operations (failure handling and load bal-
ancing). The resulting system, H-Tucana, remains com-
patible with other components of the Hadoop ecosys-
tem. We compare H-Tucana to HBase and Cassandra
using YCSB and we find that, compared to HBase, H-
Tucana achieves between 2− 8× better CPU cycles/op
and 2−10× higher operation rates across all workloads.
Compared to Cassandra, H-Tucana achieves even higher
improvements.

Our specific contributions in this work are:

• The design and implementation of a key-value data
store that draws a different balance between device
behavior and host overheads.

• Practical Bε –tree extensions that leverage mmap-
based allocation, copy-on-write, and append-only
logs to reduce allocation overheads.

• An evaluation of existing, state-of-the-art, persistent
key-value stores and a comparison with Tucana, as
well as an improved implementation of HBase.

The rest of this paper is organized as follows: Sec-
tion 2 provides an overview of persistent data structures.
Section 3 describes our design. Section 4 presents our
evaluation methodology and our experimental analysis.
Section 5 reviews prior related work. Finally, Section 6
concludes the paper.

2 Background

Persistent stores can be categorized into four groups:
key-value stores [18, 22, 25], NoSQL stores [2, 29], doc-
ument DBs [12], and graph DBs [37, 52]. The last two
categories are generally more domain specific. In this
work we target the first two and we use the term stores to
refer collectively to both categories.

The abstraction offered by key-value stores is typically
a flat, object-like abstraction, whereas NoSQL stores of-
fer a table-based abstraction, closer to relational con-
cepts. The operations supported by such stores, regard-
less of the abstraction used, consist of simple dictionary
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operations: get(), put(), scan(), and delete(), with possi-
ble extensions for versioned items and management op-
erations, key-range split and merge. Although this is a
simple abstraction over stored data, it has proven to be
powerful and convenient for building modern services,
especially in the area of data processing and analytics.

State-of-the-art stores [2, 18, 22, 29] have been de-
signed primarily for HDDs and typically use at their
core an LSM-tree structure. LSM-trees [43] are a write-
optimized structure that is a good fit for HDDs where
there is a large difference in performance between ran-
dom and sequential accesses. LSM-trees organize data
in multiple levels of large, sorted containers, where each
level increases the size of the container. Additionally,
small amounts of search metadata, such as Bloom filters,
are used for accelerating scan and get operations.

This organization has two advantages. First, it requires
little search metadata because containers are sorted and
therefore, practically all I/Os generated are related to
data items (keys and values). Second, due to the con-
tainer size, I/Os can be large, up to several MB each,
resulting in optimal HDD performance. The drawback
is that for keeping large sorted containers they perform
compactions which (a) incurs high CPU overhead and
(b) results in I/O amplification for reads and writes.

Going forward device performance and CPU-power
trends dictate different designs. In this work, we use as a
basis a variant of B-trees, broadly called Bε –trees [7].

Bε –trees are B-trees with an additional per-node
buffer. By using these buffers, they are able to batch in-
sert operations to amortize their cost. In Bε –trees the to-
tal size of each node is B and ε is a design-time constant
between [0,1]. ε is the ratio of B that is used for buffer-
ing, whereas the rest of the space in each node (1-ε) is
used for storing pivots.

Buffers contain messages that describe operations that
modify the index (insert, update, delete). Each such op-
eration is initially added to the tree’s root node buffer.
When the root node buffer becomes full, the structure
uses the root pivots to propagate a subset of the buffered
operations to the buffers of the appropriate nodes at the
next level. This procedure is repeated until operations
reach a leaf node, where the key-value pair is simply
added to the leaf. Leaf nodes are similar to B-Trees and
they do not contain an additional buffer, beyond the space
required to store the key-value pairs. The cost of an inser-
tion in terms of I/Os is O( logB N

εB1−ε ), where a regular B-Tree
has O(logB N) [7, 26].

A get operation is similar to a B-Tree. It traverses the
path from the root to the corresponding leaf. This re-
sults in similar complexity to B-trees, regarding I/O op-
erations. The main difference is that in a Bε –tree we also
need to search the buffers of the internal nodes along the
path. A range scan is similar to a get, except that mes-

sages for the entire range of keys must be checked and
applied as the appropriate subtree is traversed. There-
fore, buffers are frequently modified and searched. For
this reason, they are typically implemented with tree in-
dexes rather than sorted containers.

Compared to LSM-trees, Bε –trees incur less I/O am-
plification. Bε –trees use an index, compared to LSM-
trees, in order to remove the need for sorted containers.
This results in smaller and more random I/Os. As device
technology reduces the I/O size required to achieve high
throughput, using a Bε –tree instead of an LSM-tree is a
reasonable decision.

Next, we present the design of Tucana, a key-value
store that aims to significantly improve the efficiency of
data access.

3 Tucana Design

Figure 2 shows an overview of Tucana. More specif-
ically, Figure 2a shows the index organization, which
uses Bε –trees as a starting point (Section 3.1). In Fig-
ure 2b we depict Tucana’s approach for allocation and
persistence, which we discuss in Sections 3.2 and 3.3,
respectively.

3.1 Tree Index
Figure 3 shows the differences between Tucana and
a Bε –tree. On the left side of the figure we show a Bε –
tree, which we explain in Section 2. On the right side of
the figure we show Tucana, where we distinguish nodes
that fit in main memory from those that do not. To im-
prove host-level efficiency (in terms of cycles/op), Tu-
cana limits buffering and batching to the lowest part of
the tree. In many cases today, the largest part of the in-
dex structure (but not the actual data) fits in main mem-
ory (DRAM today and byte-addressable NVM in the fu-
ture) and therefore, we do not buffer inserts in interme-
diate nodes. Tucana design provides desirable asymp-
totic properties for random inserts, where a single I/O is
amortized over multiple insert operations. On the other
hand, Bε –trees generate smaller I/Os with higher ran-
domness compared to LSM-trees. However, they do not
require compaction operations and incur lower I/O am-
plification. Using fast storage devices we can trade com-
pactions with smaller random I/Os, compared to what
an LSM-tree produces, without affecting device perfor-
mance.

Figure 2a shows the index organization in Tucana.
The index consists of internal nodes with pointers to
next level nodes and pointers to variable size keys (piv-
ots). We use a separate space per internal node to store
the variable size keys themselves. Pointers to keys are
sorted based on the key, whereas keys are appended to
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Figure 3: Comparison of Bε –tree (left) and Tucana
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fits in memory above the dashed line and the rest that
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the buffer. The leaf nodes contain sorted pointers to the
key-value pairs. We use a single append-only log to store
both the key and values. The design of the log is similar
to the internal buffers of Bε –trees.

Insert operations traverse the index in a top down fash-
ion. At each index node, we perform a binary search over
the pivots to find the next level node to visit. When we
reach the leaf, we append the key-value pair to the log
and we insert the pointer in the leaf, keeping pointers
sorted by the corresponding key. Then, we complete the
operation. Compared to Bε –trees we avoid the buffer-
ing at intermediate nodes. If a leaf is full, we trigger a
split operation prior to insert. Split operations, in index
or leaf nodes, produce two new nodes each containing
half of the keys and they update the index in a bottom-
up fashion. Delete operations place a tombstone for the
respective keys, which are removed later. Deletes will
eventually cause rebalancing and merging [4].

Point queries traverse the index similar to inserts to
locate the appropriate leaf. At the leaf, we perform a bi-
nary search to locate the pointer to the key-value pair.
Since there are no intermediate buffers as in Bε –trees,
we do not need to perform searches in the intermediate
levels. Finally, range queries locate the starting key sim-
ilar to point queries and subsequently use the index to
iterate over the key range. It is important to notice that
in contrast to Bε –trees we do not need to flush all the
intermediate buffers prior to a scan operation.

We note that binary search in the leaf nodes and index
nodes is a dominant function used by all operations. To
reduce memory footprint for metadata, Tucana does not
store keys in leaves. This means that keys during binary
search need to be retrieved from the device. To avoid
this, Tucana uses two optimizations, prefixes and hashes.

We store as metadata, a fixed-size prefix for each key
in the leaf block. Binary search is performed using these
prefixes, except when they result in ambiguity, in which
case the entire key is fetched from the log. Prefixes im-
prove performance of inserts, point queries, and range
queries. In our tuning of prefixes we find that for differ-
ent types of keys, prefixes eliminate 65%–75% of I/Os
during binary search in leaves.

Additionally, a hash value for each key is stored in the
leaf nodes. Hashes help with point queries. For a point
query we first do a binary search over prefixes. If this re-
sults in a tie, then we linearly examine the corresponding
(so not all) hashes. We use Jenkins hash function (one-
at-a-time) [27] to produce 4-byte hashes. Then the key is
read to ensure there is no collision. In our experiments
we find that hashes identify the correct key-value pair in
more that the 98% of the cases.

The memory footprint can be analyzed as follows. As-
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sume N is the number of keys in the dataset, C is the
number of pointers in internal nodes and L in leaves, B
is the block size used for internal nodes and leaves, and
h = logC N/L is the height of the tree. Sk and Sv are the
average sizes for keys and values respectively. The size
(bytes) of the different components of the index are:

dataset = (Sk +Sv)N, (1)

f ull index = internal nodes+ leaves

= (B+CSk)
h−1

∑
i=0

Ci +B
N
L
,

(2)

index
dataset

=
L(B+CSk)+BC

CL(Sk +Sv)
. (3)

Equation 3 shows the ratio of the index to the dataset.
Now, if we consider that C and L are similar (e.g. in our
implementation we use C=230 and L=192) and that B/C
is the pointer size, which typically is 8 bytes, we have:

index
dataset

=
16+Sk

Sk +Sv
(4)

If we consider that the size of values (Sv) is at least 20×
larger than the size of the keys (Sk) and that key size is
at least 16 bytes, the index size is around 10% the size
of the dataset. Given current cost per GB for DRAM and
FLASH, and if we assume that a server spends roughly
the same cost for DRAM and FLASH, it is reasonable
to assume that the index fits in memory, especially in
servers used for data analytics.

For cases when the index fits in memory and the
dataset does not, then each search requires one I/O. For
inserts, I/O operations for consecutive random inserts are
amortized due to the append log.

In case where the index starts to exceed memory, more
I/Os are required for each search and insert. Since inter-
nal nodes and leaves store pointers to keys and keys are
stored in a log, we need two I/Os to read or update an ar-
bitrary item at the bottom of the tree. In this case we need
to introduce buffering at additional levels of the index.

3.2 Device layout and access
Figure 2b depicts the data layout in Tucana. Tucana
manages a set of contiguous segments of space to store
data. Each segment can be a range of blocks on a phys-
ical, logical, virtual block device, or a file. To reduce
overhead, segments should be allocated directly on vir-
tual block devices, without the use of a file system. Our
measurements show that using XFS as the file system
results in a 5-10% reduction in throughput compared to
using a virtual block device directly without any file sys-
tem.

Each segment is composed of a metadata portion and
a data portion. The metadata portion contains the su-
perblock, the free log, and the segment allocator meta-
data (bitmap). The superblock contains a reference to a
descriptor of the latest persistent and consistent state for
a segment. Modifying the superblock commits the new
state for the segment. Each segment has a single allocator
common for all databases (key ranges) in a segment. The
data portion contains multiple databases. Each database
is contained within a single segment and uses its own
separate indexing structure.

The allocator keeps persistent state about allocated
blocks of a configurable size, typically set to 4 KB, and
multiples of it. For this purpose, it uses bitmaps be-
cause in key-value stores allocations can be in the or-
der of KBs, as opposed to filesystems that typically do
larger allocations. Moreover, allocator bitmaps are ac-
cessed directly via an offset and at low overhead, while
for searches there are efficient bit parallel techniques [8].
It also maintains state about free operations and performs
them lazily in a log structure named Free log.

In all persistent key-value stores, including Tucana,
the index includes pointers to data items in the storage
address space. During system operation, part of the in-
dex and data are cached in memory. When traversing
the index to serve an operation, there is a need to trans-
late storage pointers to pointers in memory. This leads
to frequent cache lookups that cannot be avoided easily.
Essentially, the cache serves as a mechanism to translate
pointers from the storage to the memory address space.
Previous work [24] indicates that when all data and meta-
data fit in memory, managing this cache requires about
one-third of the index CPU cycles.

Most key-value stores today follow this caching ap-
proach [2, 18, 22, 29, 41]. This allows the key-value store
to also control the size and timing of I/O operations be-
tween the memory cache and the storage devices, as well
as the cache policy.

Instead, Tucana uses an alternative approach based
on mmap. mmap uses a single address space for both mem-
ory and storage and virtual memory protection to deter-
mine the location (memory or storage) of an item. This
eliminates the need for pointer translation at the expense
of page faults. We note that pointer translation occurs
during index operations regardless of whether items are
in memory or not, whereas page faults occur only when
items are not in memory. The use of mmap also allows
Tucana to use a single allocator for memory and device
space management. Additionally, mmap eliminates data
copies between kernel and user space.

The use of mmap has three drawbacks. First, each write
operation of variable size is converted to a read-modify-
write operation, increasing the amount of I/O. In our
design, due to the copy-on-write persistence (see Sec-
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tion 3.3), all writes modify eventually the full page and
there can be no reads to unwritten parts of a page. There-
fore, we use a simple filter block device in the kernel,
which filters read-before-write operations and merely re-
turns a page of zeros. Write and read-after-write opera-
tions are not filtered and are forwarded to the actual de-
vice. The filter module uses a simple, in-memory bitmap
and is initialized and updated by Tucana via a set of
ioctls. The size of the in-memory bitmap is proportional
to the block device size (for 1 TB of storage we need
32 MB of memory).

Second, mmap results in the loss of control over the
size and timing of I/O operations. mmap generates page-
sized I/Os (4 KB). To mitigate the impact of small I/Os
we use madvise to instruct mmap to generate larger I/Os.
To control their timing we use msync for specific items
and memory ranges during commit operation.

Third, mmap introduces page faults for fetching data.
The number of page faults depends on mmap kernel page
eviction policy. Tucana would benefit from custom evic-
tion policies that keep the index and the tail of the append
log in memory. In this work, we do not make an attempt
to control these policies. However, future work should
examine this issue in more detail.

3.3 Copy-on-write persistence

Tucana uses a Copy-on-Write (CoW) approach for per-
sistence instead of a Write-Ahead-Log (WAL). WAL
produces sequential write I/Os at the expense of doubling
the amount of writes (in the log and later in place). CoW
performs only the necessary writes, however, it generates
a more random I/O pattern. Therefore, although a WAL
is more appropriate for HDDs, CoW has more potential
for fast devices. The use of CoW is also motivated by
three additional reasons; (a) It is amenable to supporting
versioning. (b) It allows instantaneous recovery, without
the need to redo or undo a log. (c) It helps increase con-
currency by avoiding lock synchronization for different
versions of each data item [33], as we discuss in the next
subsection.

The state of a segment consists of the allocator, tree
metadata, and buffers. CoW is used to maintain the con-
sistency of both allocator and tree metadata. The bitmap
in each segment is organized in buddy pairs, as shown
in Figure 2b. Each buddy pair consists of two 4 KB
blocks that contain information about allocated space.
Each buddy is marked with a global per segment increas-
ing counter named epoch. The epoch field is incremented
after a successful commit operation and denotes the lat-
est epoch in which the buddy was modified. At any given
point only one buddy of the pair is active for write opera-
tions, whereas the other buddy is immutable for recovery.
Commits persist and update modified buddy pairs.

The allocator defers free operations with the use of
the free log [6]. Directly applying a free operation that
could be rolled back in the presence of failures is more
complicated as it can corrupt persistent state. We log free
operations using their epoch id, and we perform them
later after their epoch becomes persistent.

To maintain the consistency of the tree structure dur-
ing updates, each internal index and leaf node uses
epochs to distinguish its latest persistent state. During an
update, the node’s epoch indicates whether a node is im-
mutable, in which case a CoW operation takes place. Af-
ter a CoW operation for inserting a key, the parent of the
node is updated with the new node location in a bottom-
up fashion. The resulting node belongs to epoch+1 and
will be persisted during the next commit. Subsequent
updates to the same node before the next commit are
batched by applying them in place. Since we store keys
and values in buffers in an append-only fashion, we need
to only perform CoW on the header of each internal
node.

Tucana’s persistence relies on the atomic transition
between consistent states for each segment. Metadata
and data in Tucana are written asynchronously to the
devices. However, transitions from state to state occur
atomically via synchronous updates to the segment’s su-
perblock with msync (commits). Each commit creates
a new persistent state for the segment, identified by a
unique epoch id. The epoch of the latest persistent state
of a segment is stored in a descriptor to which the su-
perblock keeps a reference.

Commits can take place in parallel with read and write
operations. To achieve this, a commit is performed in two
steps: (1) Initially, it marks the current state as persistent
by increasing the epoch of the system. This state includes
the bitmap and the tree indexes for this segment. (2) It
flushes the state of the segment to the device. In case of
a failure during a commit, the segment simply rolls back
to the latest persistent state by ignoring any writes that
have reached the device but were not committed via the
metadata epoch states.

During a commit operation, the bitmap cannot be
modified by new allocations (a subset of the write op-
erations) because this may change the state on the device
(mmap may propagate any write from memory to the de-
vice asynchronously). In case the current commit fails,
then both buddy pairs will be inconsistent. To avoid this,
allocations during a commit are buffered in a temporary
location in memory and are applied at the end of the com-
mit.

3.4 Concurrency in Tucana

Concurrency in key-value stores is important for scaling
up as server density increases in terms of CPU, storage,



USENIX Association  2016 USENIX Annual Technical Conference 543

and network throughput. Key-value stores typically op-
erate under high degrees of concurrency, due to the large
numbers of client requests.

Similar to most key-value stores, Tucana partitions
datasets in multiple databases (key ranges). Requests in
different ranges can be served without any synchroniza-
tion. The only exception in Tucana is insert operations
in different regions that are stored in the same segment.
In this case the existence of a single segment allocator
requires synchronization across ranges during allocation
operations. To reduce the impact of such synchroniza-
tion, the allocator operates in a batched mode, where a
request reserves more space than required for the current
operation. Subsequent inserts to the same database do
not need to request space from the allocator.

Within each range, Tucana allows any number of con-
current reads and a single write without synchroniza-
tion. To achieve this, Tucana uses the versions of the
segment created through commits, similar to read-copy-
update synchronization [38]. In particular, we serve read
operations from the latest persistent version of the seg-
ment, which is immutable. Writes on the other hand are
served from the modified root which contains all modifi-
cations.

Updates applied by an application are visible to read-
ers after a commit. Tucana’s API offers additional fence
operations to allow higher layers to control when updates
become visible.

Finally, in the current state of the prototype, Tucana
does not allow multiple concurrent writes in the same
range. Although there are possible optimizations, espe-
cially to allow non-conflicting writes via copy-on-write,
or dynamic partitioning of the key-space, we leave these
for future work.

3.5 H-Tucana

HBase [2] is a scale-out columnar store which supports
a small and volatile schema. HBase offers a table ab-
straction over the data, where each table keeps a set of
key-value pairs. Each table is further decomposed into
regions, where each region stores a contiguous segment
of the key space. Each region is physically organized as
a set of files per column, as shown in Figure 4.

At its core HBase uses an LSM-tree to store data [43].
We use Tucana to replace this storage engine, while
maintaining the HBase metadata architecture, node fault
tolerance, data distribution and load balancing mecha-
nisms. The resulting system, H-Tucana, maps HBase re-
gions to segments (Figure 4), while each column maps to
a separate tree in the segment. In our work, and to elim-
inate the need for using HDFS under HBase, we modify
HBase so that a new node handles a segment after a fail-
ure. We assume that segments are allocated over a reli-
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Figure 4: Table storage in HBase and H-Tucana. CF
stands for column family.

able shared block device, such as a storage area network
(SAN) or virtual SAN [39, 50] and are visible to all nodes
in the system. In this model, the only function that HDFS
offers is space allocation. Tucana is designed to manage
space directly on top of raw devices, therefore, it does
not require a file system. H-Tucana assumes the respon-
sibility of elastic data indexing, while the shared storage
system provides a reliable (replicated) block-based stor-
age pool.

4 Experimental evaluation

In this section, we compare Tucana to RocksDB [18]
and H-Tucana to HBase [2] and Cassandra [29]. Tucana
and RocksDB support similar features including persis-
tence and recovery, arbitrary size keys and values and
versions. In the same category there are other popu-
lar key-value stores, such as LevelDB, KyotoDB, Berke-
leyDB, and PerconaFT (based on Fractal Index Trees).
In our experiments we find that RocksDB outperforms
all of them [19, 23] and therefore, we present only the
comparison between Tucana and RocksDB.

HBase and Cassandra are NoSQL databases that are
widely used as a back-end for high throughput systems.
HBase and Cassandra use LSM-trees [43].

4.1 Methodology
Our experimental platform consists of two systems
(client and server) each with two quad-core Intel(R)
Xeon(R) E5520 CPUs running at 2.7 GHz. The server
is equipped with 48 GB DDR-III DRAM, and the client
with 12 GB. Both nodes are connected with a 10 Gbits/s
network link. As storage devices, the server uses four
Intel X25-E SSDs (32 GB) and we make a RAID-0 with
them using the standard md Linux driver. Tucana is im-
plemented in C and can be accessed from applications as
a shared library. H-Tucana is cross-linked between the
Java code of HBase and the C code of Tucana.

We use the open-source Yahoo Cloud Serving Bench-
mark (YCSB) [13] to generate synthetic workloads. The
default YCSB implementation executes gets as range
queries and therefore, exercises only scan operations.
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Workload
A 50% reads, 50% updates
B 95% reads, 5% updates
C 100% reads
D 95% reads, 5% inserts
E 95% scans, 5% inserts
F 50% reads, 50% read-modify-write

Table 1: Workloads evaluated with YCSB. All work-
loads use a query popularity that follows a Zipf distribu-
tion except for D that follows a latest distribution.

For this reason, we modify YCSB to use point queries
for get operations. Range queries are still exercised in
Workload E, which uses scan operations.

When comparing RocksDB and Tucana we use a low-
overhead C++ version of YCSB-C [13, 45]. The orig-
inal Java YCSB benchmark requires JNI to run with
RocksDB and Tucana, which are written in C++ and C
respectively, incurring high overheads.

In all cases, we run the standard workloads proposed
by YCSB with the default values. Table 1 summarizes
these workloads. We run the following sequence pro-
posed by the YCSB author: Load the database using
workload A’s configuration file, run workloads A, B, C,
F, and D in a row, delete the whole database, reload the
database with workload E’s configuration file, and run
workload E.

When comparing Tucana to RocksDB we use 256
YCSB threads and 64 databases (unless noted otherwise)
and we choose the appropriate database by hashing the
keys. When comparing H-Tucana to HBase and Cassan-
dra we use 128 YCSB threads and 8 regions for HBase
and H-Tucana. Cassandra is hash-based and does not
support the notion of region, so we use a single table.

We use a small dataset that fits in memory and a large
dataset that does not. The small dataset is composed
of 60M or 100M records when using Tucana and H-
Tucana, respectively. The large dataset has 300M or
500M records when using Tucana and H-Tucana, respec-
tively.

In all the cases, the load phase creates the whole
dataset and the run phases issue 5 million operations,
bounded also by time (one hour max). With Tucana,
even in the case of the large dataset the index nodes fit
in memory as per our assumptions.

We measure efficiency as cycles/op, which shows the
cycles needed to complete an operation on average. We
calculate efficiency as:

cycles/op =
CPU utilization

100 × cycles
s × cores

average ops
s

, (5)
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Figure 5: Tucana improvement compared to RocksDB in
cycles per operation.
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Figure 6: Performance of TucanaDB and RocksDB in
ops/s.

where CPU utilization is the global average of CPU
utilization among all processors, excluding idle and I/O
time, as given by mpstat. As cycles/s we use the per-
core clock frequency. average ops/s is the throughput
reported by YCSB and cores is the number of cores in-
cluding hyperthreads.

4.2 Efficiency of Tucana

Figure 5 shows the improvement over RocksDB in effi-
ciency. In workloads Load A and Load E that are insert
intensive, Tucana is similar to RocksDB for both small
and large datasets, since both use write-optimized data
structures. In all other workloads Tucana outperforms
RocksDB by 5.2× to 9.2× for the small dataset and by
2.6× to 7× for the large dataset.

We note that increased efficiency can also be achieved
with low absolute performance, which is not desirable.
Figure 6 shows ops/s for the two systems. We see that
for the small dataset Tucana outperforms RocksDB by
2× to 7× and by 4.47× on average in absolute perfor-
mance (throughput) as well. For the large dataset, where
both systems are limited by device performance, Tucana
outperforms RocksDB by 1.1× to 2.1× and by 1.35×
on average. Average SSD utilization for all workloads is
93% for Tucana and 78% for RocksDB. Tucana has on
average smaller request size, 86 KB compared to 415 KB
for RocksDB. As next generation SSDs close the gap be-
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SSD (2010) SSD (2015)
Inserts Write (GB) rq sz time (s) time (s)
Tucana 123 18K 133 31

RocksDB 435 884K 623 100
Speedup 4.68 3.22

SSD (2010) SSD (2015)
Inserts Read (GB) rq sz time (s) time (s)
Tucana 26 4K 256 140

RocksDB 29 6K 229 171
Speedup 0.89 1.22

Table 2: Performance for the traffic pattern induced
by Tucana and RocksDB as modeled with FIO to isolate
device behavior.
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Figure 7: Total amount of data read and written during
each YCSB workload.

tween sequential and random performance, we expect
even larger performance improvements over RocksDB
and similar stores.

Next, we examine I/O amplification and randomness.
We run an insert-only benchmark (random distribution)
using a single database of size 36.3 GB. RocksDB writes
435 GB while Tucana writes 123 GB, thus 3.5× less than
RocksDB. Due to compaction operations, RocksDB also
reads 2.3× the amount of data read by Tucana, 69 GB
vs. 29 GB. Table 2 shows the performance difference
between these two patterns on two different SSD gener-
ations, using FIO (Flexible I/O) [3] to generate each pat-
tern. For inserts, Tucana’s I/O pattern is 4.68× faster on
the older SSD (2010) and 3.22× faster on the newer SSD
(2015), compared to RocksDB’s I/O pattern and volume.
For gets, the difference in volume size and request size is
lower and performance differences are smaller. The I/O
pattern of RocksDB is better by 11% for the older SSD,
whereas the I/O pattern of Tucana is better by 22% for
the newer SSD.

Figure 7 shows read and write amplification using 64
databases. Although Tucana incurs less I/O on average
for both read and write, the difference with RocksDB in
this case is smaller. On average RocksDB writes 3.33×
and reads 1.25× more data.
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Figure 8: Number of cycles needed for YCSB work-
loads.
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Figure 9: Scalability of RocksDB and TucanaDB with
increasing threads, using the small dataset.

Next, we examine the absolute number of cycles/op
for each workload (Figure 8a). Each operation is a com-
posite operation over a row with ten qualifiers and there-
fore a get operation performs ten lookup operations. For
this reason, we also present numbers for the same work-
loads, with one qualifier per row in Figure 8b. In addi-
tion, in the case of Workload E the default average length
of a range query is fifty. In Figure 8b we change the scan
length to five. On average, an insert operation takes about
26K cycles (Load A & Load E), a point query (get) 4K
cycles (Run C) and a range query (scan), including ini-
tialization and five rows of one qualifier about 18K cy-
cles (Run E). The other workloads are mixes of these
operations. If we examine a breakdown of cycles, we see
that on average 15% is used by YCSB, 43% by Tucana,
38% by the OS kernel, and 4% by other server processes.
More specifically, for an insert-only benchmark 35% is
used by Tucana and 60% by OS kernel. On the other
hand for a get-only benchmark 66% is used by Tucana
and 26% by kernel. System time is due to mmap that han-
dles page faults, mappings, and the swapper that evicts
dirty pages to devices.

Finally, Figure 9 shows scalability of Tucana and
RocksDB with the number of server cores. We use
the small dataset that fits in memory, partitioned in 64
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databases, and we increase the load by increasing the
number of YCSB threads that issue requests. For gets,
Tucana is able to scale and it saturates the full server at
16 YCSB threads. Tucana provides lock-less gets and
therefore uses all available cores. After warm-up, where
data is brought in memory, system utilization is about
100% at 16 YCSB threads. On the other hand, RocksDB,
even after warm up, still has about 25% idle CPU time at
8 or more YCSB threads, indicating synchronization bot-
tlenecks.

For inserts, Tucana saturates the server at about
8 YCSB threads, where CPU is utilized at 90-95%.
RocksDB scales up to 8 threads also, where it saturates
the server. Due to its more random I/O pattern, Tucana
incurs higher device utilization, about 50% vs. 20% for
RocksDB. Generally, scaling for puts in both systems is
related to the number of databases. In this work, we do
not explore this dimension further.

4.3 Impact on NoSQL store performance

In this section, we analyze the efficiency and perfor-
mance of H-Tucana, compared to HBase [2] and Cas-
sandra [29].

Figure 10 depicts the speedup in efficiency (cycles/op)
achieved by H-Tucana over HBase and Cassandra. We
see that H-Tucana significantly outperforms both HBase
and Cassandra. Compared to HBase, H-Tucana uses
fewer cycles/op by up to 2.9×, 8.4×, and 5.6× for write-
intensive, read intensive, and mixed workloads. Com-
pared to Cassandra, the improvement depends on the size
of the dataset. With the small dataset H-Tucana out-
performs Cassandra by up to 5.8×, 16.1×, and 13.5×
for the write, read intensive, and mix workloads, respec-
tively. With the large dataset, H-Tucana improves cy-
cles/op over Cassandra by up 3.9×, 61.4×, and 37.2×
write, read-intensive and mixed workloads respectively.

Next, we examine throughput in terms of ops/s. Fig-
ure 11 shows performance in kops/s whereas Figure 12
depicts the amount of data read and written by each
workload.

For the small dataset, H-Tucana has up to 5.4× higher
throughput compared to HBase, and up to 10.7× com-
pared to Cassandra. In addition, H-Tucana does not per-
form any reads during the run phases. Cassandra does
not read any data either, whereas HBase reads 5.1 GB
and 5.2 GB when running workloads A and E, respec-
tively. The amount of data written to the device is signif-
icantly reduced by H-Tucana by 38% and 17% compared
to HBase and Cassandra.

For the large dataset, during the run phase, H-Tucana
outperforms HBase and Cassandra by up to 10.7× and
153.3×, respectively. This improvement is reflected in
a significant reduction of the amount of data read from
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Figure 10: Improvement in efficiency (cycles/op)
achieved by H-Tucana over HBase and Cassandra.
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Figure 11: Throughput (kops/s) achieved by H-Tucana,
HBase and Cassandra.
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Figure 12: Amount of data, in GB, read/written by H-
Tucana, HBase, and Cassandra.

the storage device, by up to 16× and 6.9× compared to
HBase and Cassandra, respectively. For read-intensive
and mixed workloads, H-Tucana is more lightweight not
only in CPU utilization but also in the amount of data
read. Our modified Bε –tree performs faster lookups than
the LSM-trees used by HBase and Cassandra, obtaining
significant improvement in throughput.

During the load phase (write intensive workloads) for
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Figure 13: Number of cycles needed by H-Tucana for
YCSB workloads.

the large dataset H-Tucana exhibits up 2.5× and 3.7×
worse throughput than HBase and Cassandra, as shown
in Figure 11b). Figure 12 shows that during the load
phase, H-Tucana writes 264 GB and reads 69 GB, al-
though the size of the dataset including metadata is
77.2 GB. This is not inherent to the design of Tucana,
as shown by the results in Section 4.2, but rather due
to mmap, as follows.

With mmap modified disk blocks are written to the de-
vice not only during Tucana’s commit operations, but
also periodically, by the flush kernel threads when they
are older than a threshold or when free memory shrinks
below a threshold, using an LRU policy and madvise

hints. We believe that due to the increased memory pres-
sure in H-Tucana compared to Tucana due to the Java
HBase front-end, mmap evicts not only log pages, but
also leaf pages. This reduces the amount of I/Os that can
be amortized for inserts due to the limited buffering in
our Bε –tree. To solve this problem, we need to (a) con-
trol better which pages are evicted by mmap, which will
be effective up to roughly the 10-15% ratio of memory
to SSD capacity (see Section 3.1), and (b) add buffer-
ing one level higher in the Bε –tree. In the same figure,
we notice that in run D phase, using the small dataset,
we write more data than the other systems. This is be-
cause workload D inserts new key-value pairs and then
searches for them. YCSB always searches for keys that
exist in the database. In Tucana newly inserted keys ap-
pear in searches only after a commit operation. If a key is
not found, we issue a commit operation to read it. These
commit operations cause increased traffic to/from the de-
vice. However the other systems retrieve the new values
directly from memory. In the large dataset case all sys-
tems write them to devices and all of them write about
the same amount of data.

Figure 13 shows the cycles/op in H-Tucana to exe-
cute all the workloads with ten (default configuration)
and with one qualifier. With ten qualifiers, write inten-
sive workloads require on average 172K cycles/op and
read intensive and mix workloads require on average
115K cycles/op. Workload E that performs scans uses
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Figure 14: Scalability of H-Tucana and HBase with the
small dataset.

more than 2.3M cycles/op (for retrieving 50 key-value
pairs). Figure 13b shows that with a single key, all write-
intensive, read-intensive, and mixed workloads require
on average 27K cycles/op, whereas workload E requires
900K cycles/op. In more detail, we see that on average
40% of the time is used by the HBase component in H-
Tucana, 23% by Tucana, 33% by the system, and 5% by
other processes.

Figure 14 shows the scalability for H-Tucana and
HBase when increasing the number of YCSB threads at
the client. We have not measured the scalability for Cas-
sandra because it is not as competitive. We use the small
dataset to avoid accesses to the storage device.

For gets, both systems scale up to 16 YCSB threads.
At this point CPU utilization for H-Tucana on the server
side is 52% and for HBase is 79%, while H-Tucana
achieves higher throughput. In both cases there is a sin-
gle thread that reaches 100% CPU utilization. We find
that this server thread performs HBase network process-
ing. For inserts, H-Tucana scales up to 16 YCSB threads
and HBase scales up to 8 YCSB threads. In H-Tucana,
server CPU utilization is 53%, whereas in HBase 63%.
Similar to gets, a single server thread in the HBase front-
end limits further scalability.

5 Related Work

B-trees are a prominent structure [4, 40, 41] with good
asymptotic behavior for searches and range queries.
However, B-trees do not amortize I/Os for inserts and
exhibit performance degradation for range queries when
they age [17]. This has led to the design of write opti-
mized structures, such as LSM-trees [43], Bε –trees [7],
Fractal trees [44], binomial lists [5], and Fibonacci Ar-
rays [46]. Most of these structures introduce some
type of I/O amplification due to compactions. LSM-
trees in particular are broadly used today by key-value
stores, including LevelDB, RocksDB, HBase, and Cas-
sandra [2, 10, 18, 22, 29]. We categorize related work as
follows.
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Reducing I/O amplification: WiscKey [32] is based
on an LSM-tree and does not require indexes but rather
relies on sorted containers and compactions. WiscKey
removes the values from the LSM-tree and stores them
in an external log. Each key contains a pointer to the cor-
responding value. This technique improves compactions,
because it eliminates the need to sort values. Addition-
ally, it reduces the number of levels in the tree and there-
fore, the total number of compactions required. Tucana
is based on a Bε –tree, which has better inherent behavior
with respect to amplification. Furthermore, WiscKey in-
herits explicit I/Os and WAL-based recovery from Lev-
elDB, while Tucana was designed to use mmap for I/O
and CoW for persistency. WiscKey improves perfor-
mance when values are large compared to keys. Tucana
on the other hand is designed without particular require-
ments on sizes of values and keys.

bLSM [47] improves read amplification in LSM-trees
with two additional techniques, enhanced use of Bloom
filters and efficient scheduling of compactions. VT-
Tree [48] tries to reduce I/O amplification by merging
efficiently sorted segments of non-overlapping levels of
the tree. LSM-trie [53] constructs a trie structure of
LSM-trees, and uses a hash-based key-value item orga-
nization. BetrFS [26], which is based on Fractal Tree
Indexes [44], introduces heuristics to reduce write ampli-
fication and uses indexes at the buffer level for efficient
lookups. Another approach, typically used in distributed
NoSQL stores, is to offload compaction to servers man-
aging replicas [1, 21]. Tucana starts from a structure that
does not require compactions at the expense of more ran-
dom I/Os. In addition, Tucana tries to improve CPU ef-
ficiency, which has not been the target of these systems.

SSDs and NVM: FlashStore [14] is a key-value store
which builds a storage hierarchy with memory, flash, and
disk to provide efficient lookups. NVMKV [35, 36] ex-
ploits native FTL capabilities to eliminate write amplifi-
cation. SkimpyStash [15] stores the key-value pairs in a
log-structured manner on flash SSD, to reduce memory
footprint. SILT [30] combines three basic structures, a
hash, a log, and a sorted store to achieve low memory
footprint and reduce read and write amplification. These
systems are mainly based on hash structures so they are
not able to support efficient prefix and range queries
found in analytics. Mercury [20] is an in-memory key-
value store that uses a chained hash table and targets real-
time applications without scan operations. Masstree [34]
uses a trie-like concatenation of B+-trees to handle vari-
able size keys. Masstree does not amortize I/Os for insert
operations and scans are challenging to support and in-
herently expensive with the proposed structure.

At the device level, Wang et al. [51] leverage the paral-
lelism in SDF [42], an open-channel SSD whose internal

channels can be directly accessed, by providing multi-
threaded I/O accesses in the write traffic control policy
of LevelDB. They examine the ability to support new op-
erations and interface as is the case with Open Channel
SSD [51]. Tucana uses the storage device as a black box
and it works with off-the-shelf SSDs.

In-memory operation: Silo [49] is inspired by
Masstree and it is an in-memory store that does not of-
fer persistence and targets efficient network behavior.
HERD [28] is an in-memory key-value cache that lever-
ages RDMA features to deliver low latency and high
throughput. Its design is based on MICA [31], an in-
memory key-value store that uses a lossy associative in-
dex to map keys to pointers and stores the values in a
circular log. Tucana supports persistence and sits below
the network layer.

6 Conclusions

In this work we present Tucana, a key-value store that
is designed for fast storage devices, such as SSDs, that
reduces the gap between sequential and random I/O per-
formance, especially under high degree of concurrency
and relatively large I/Os (a few tens of KB). Unlike most
key-value stores that use LSM-trees to optimize writes
over slow HDDs, Tucana starts from a Bε –tree approach
to maintain the desired asymptotic properties for inserts.
It is a full-feature key-value store that supports variable
size keys and values, versions, arbitrary data set sizes,
and persistence. The design of Tucana centers around
three techniques to reduce overheads: copy-on-write,
private allocation, and direct device management.

Our results show that Tucana is up to 9.2× more ef-
ficient in terms of CPU cycles/op for in-memory work-
loads and up to 7× for workloads that do not fit in mem-
ory. In addition, Tucana outperforms RocksDB for in
memory workloads up to 7×, whereas for workloads that
do not fit in memory both systems are limited by device
I/O throughput. Also, H-Tucana is able to improve up
to 8× the efficiency of HBase and on average 22× the
efficiency of Cassandra.
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