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Abstract
There is a rising interest in accelerating stream processing
through modern parallel hardware, yet it remains a challenge
as how to exploit the available resources to achieve higher
throughput without sacrificing latency due to the increased
length of processing pipeline and communication path and
the need for central coordination. To achieve these objectives,
we introduce a novel top-down data flow model for stream
join processing (arguably, one of the most resource-intensive
operators in stream processing), called SplitJoin, that operates
by splitting the join operation into independent storing and
processing steps that gracefully scale with respect to the
number of cores. Furthermore, SplitJoin eliminates the need
for global coordination while preserving the order of input
streams by re-thinking how streams are channeled into dis-
tributed join computation cores and maintaining the order of
output streams by proposing a novel distributed punctuation
technique. Throughout our experimental analysis, SplitJoin
offered up to 60% improvement in throughput while reducing
latency by up to 3.3X compared to state-of-the-art solutions.

1 Introduction
Scalable stream processing is an integral part of a growing
number of data management applications such as real-time
data analytics [1], algorithmic trading [2], intrusion detec-
tion [3], and targeted advertising [4]. These latency-sensitive
and throughput-intensive applications have motivated
database research to seek new avenues for accelerating
data management operations in general and stream pro-
cessing in particular. These new approaches have adopted
heterogeneous architectures (e.g., GPUs and Cell proces-
sors) [5, 6, 7, 8], multi-core architectures [9, 10, 11, 12, 13],
and Field Programmable Gate Arrays (FPGAs) [2, 14, 15,
16, 17, 18, 19, 20] for stream processing acceleration.

Besides leveraging hardware acceleration, coping with
the high-velocity of unbounded incoming streams has forced
the stream operation model to shift away from the traditional
“store and process” model that has been prevalent in database
systems for decades. However, the mindset of sequential

stream join processing (or constructing lengthy processing
pipelines) and, essentially, thinking of a stream as a sliding
window (or a long chain of sequentially incoming tuples to
resemble database relations) has continued to shape the way
stream processing is carried out today, even on low-latency
and high-throughput stream processing platforms.

Stream Join Challenges: To mitigate the challenges
imposed by unbounded streams, with respect to both pro-
cessing and space constraints, data streams are conceptually
seen as bounded sliding windows of tuples (i.e., simulating a
relation). Sliding windows are defined as a function of time
or as a fixed number of tuples. Once the sliding window
abstraction is set (i.e., tuples are admitted for processing),
the stream join semantics over the windows are identical to
the traditional join semantics in relational database systems.

Although the sliding window provides a robust
abstraction to deal with the unboundedness of data
streams [6, 9, 10, 11, 12, 13, 16, 19], it remains a challenge
to improve parallelism within stream join processing,
especially, when leveraging many-core systems. For
example, a single sliding window could conceptually
be divided into many smaller sub-windows, where each
sub-window could be assigned to a different join core.1

However, distributing a single logical stream into many
independent cores introduces a new coordination challenge:
to guarantee that each incoming tuple in one stream is
compared exactly once with all tuples in the other stream.

The coordination challenge is addressed by handshake
join [9] that transforms the stream join into a bi-directional
data flow problem: tuples flow from left-to-right (for S
stream) and from right-to-left (for R stream)2 and pass
through each join core. The bi-directional data flow ensures
that every tuple is compared exactly once by design (shown
in Figure 1). This new data flow model offers greater

1A join core is an abstraction that could apply to a processor’s core, a
compute node in a cluster or a custom-hardware core on FPGAs (e.g., [9,
19, 16, 10].)

2The join operator is performed on two streams which we refer to as S
and R streams.
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Figure 1: Stream join data flow models (JC stands for join
core): (a) bi-directional and (b) top-down.

processing throughput by increasing parallelism, yet suffers
from latency increase since the processing of a single
incoming tuple requires a sequential flow through the entire
processing pipeline. To improve latency, yet another central
coordination is introduced to fast-forward tuples through
the linear chain of join cores in the low-latency handshake
join [10] (the coordination module is depicted in Figure 1).
For each stream, in order to reduce latency, once a tuple
reaches a join core, the tuple is replicated and forwarded to
the next core before the join computation is carried out [10].

Generally speaking, any central coordination prohibitively
limits the scalability of processing as the degree of
parallelism is increased (cf. Amdahl’s Law); and, central
coordination is required in [6, 9, 10, 19]. For example,
the coordinator must explicitly send expiration messages
to each join core as new tuples enter and old tuples leave
each sub-window assigned to a join core. Furthermore,
the flow of new and expired tuples in and out of cores is
further complicated if tuples are additionally replicated and
fast-forwarded [6, 10]. Consequently, the neighboring cores
must explicitly communicate (in addition to communicating
with the global coordinator) and, in fact, all tuples from
both streams actually pass through this communication
channel [9, 10]. Moreover, an explicit knowledge of the
underlying hardware is required (that may not even be
available in virtual machine settings), and one must rely on
a complex optimal assignment of the join cores to physical
cores to reduce the NUMA-effect by reducing the size of
communication paths between neighboring cores [9, 10].

Problem Statement: In this paper, we tackle two main
shortcomings of existing stream join processing architectures:
the sequential operation model (i.e., “store” and “process”)
and the linear data flow model (i.e., “left-to-right” and
“right-to-left” flows). We propose SplitJoin, the first step in
re-thinking the stream join operation model, which is built on
the implicit assumption that storage of newly incoming data,
whether stored in a relation or a memory buffer, must always
precede processing. Instead, we abstract the computation
steps as two independent and concurrent steps, namely,
(i) “storage” and (ii) “processing”.3 This new splitting

3In relational databases, tuples are first stored in relations prior to being
processed (e.g., performing a join) while in a stream join, the incoming
tuples are first processed and subsequently stored in sliding windows [21].

abstraction of join cores enables unprecedented scalability by
allowing the system to distribute the execution across many
independent storage cores4 and processing cores. Second, we
change the way tuples enter and leave the sliding windows,
namely, by dropping the need to have separate left and right
data flows (i.e., bi-directional flow). SplitJoin introduces
a novel top-down data flow (i.e., a single flow), where
incoming tuples (from both streams) are simply arriving via
the same path downstream (preserving input stream order),
while the join results are further pushed and merged down-
stream using a novel relaxed adjustable punctuation (RAP)
technique (preserving the output stream order). Unlike recent
advances in stream join processing [6, 9, 19, 10], SplitJoin
does not rely on central coordination for propagating and
ordering the input/output streams.

SplitJoin’s top-down data flow trivially satisfies the or-
dering of incoming tuples and eliminates the in-flight race
condition between the left and right streams as tuples travel
from one core to the next. Unlike existing approaches [9, 10],
the top-down flow also eliminates the need for communi-
cation between the join cores. In SplitJoin, the top-down
flow is realized using a distribution tree for routing incoming
tuples into their corresponding sub-window that addresses
the scaling issues of adding new join cores. The adopted
distribution mechanism nicely fits into the coordination-free
protocol of SplitJoin for distributing new tuples to both stor-
age and processing cores. For example, all join cores receive
the newly incoming tuples (achieving the desired expedited
delivery, without the linear forwarding used in [10]), while
only one storage core stores the new tuple. Both the stor-
age and eviction of tuples to and from cores are done in a
round-robin fashion; thus, naturally, in the same order that
cores store a new tuple, they evict their oldest tuple (again,
without any explicit coordination). This can be generalized
to batches of tuples instead of a single tuple as well.

SplitJoin has provably lower runtime complexity as
compared to state-of-the-art parallel distributed join algo-
rithms [9, 10]. SplitJoin exhibits an overall system latency
of O(logbk), where k is the number of join cores and b is
the branching factor of the distribution tree. In contrast, the
state-of-the-art handshake join has O(k), while the original
version resulted in an O(n) latency, where n is the number of
tuples a window can hold (k�n) [9, 10].

SplitJoin’s coordination-free distribution also lends itself
to a simpler resiliency against failures; for example, core
failures do not halt or disrupt the entire join computation and
affect only the failed nodes (the loss is limited to only failed
nodes). In contrast, in a linear left-to-right data flow, if any
cores fails, then, on average, half of the cores may not receive
any data.

SplitJoin is comprised of the following core components:
a distribution network, a set of independent join cores, and a

4A storage core is an abstraction for an in-memory sliding window,
tightly coupled with a join core.

2
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Figure 2: Sliding window concept in stream join.

result gathering network. The distribution network broadcasts
incoming tuples to the set of join cores in a scalable way.
The actual join computation is carried out by each join core
independently, and subsequently, the joined tuples are pushed
down to the result gathering network. The result gathering
network is further responsible to ensure the correct ordering
of the joined tuples by using the punctuation marks produced
by the join cores.

In this paper, we make the following contributions:
(1) we propose SplitJoin, a novel scalable stream join

architecture that is highly parallelizable and removes
inter-core communications and dependencies,

(2) we introduce a new splitting abstraction in SplitJoin

to “process” and “store” incoming data streams concurrently
and independently,

(3) we propose a top-down data flow model to achieve
a coordination-free protocol for distributing and parallelizing
stream join processing,

(4) we develop a distribution tree with logarithmic access-
latency for routing of incoming data to storage and processing
cores, while preserving the ordering of incoming tuples,

(5) we design a coordination-free protocol that does not
rely on global knowledge to produce ordered join output
streams by proposing a relaxed adjustable punctuation (RAP)
technique with tunable precision, and

(6) we conduct an extensive analytical and experimental
study of SplitJoin as compared to existing state-of-the-art
solutions.

2 Preliminaries
The relational join (theta join) between two non-stream
relations R and S, defined as R ��θ S, produces the set of
all resulting pairs (r, s), which satisfy the join condition
θ(r,s) and r∈R, s∈S. Extending this definition to stream
join implies the same join processing semantics with the
exception that streams, unlike relations, are unbounded. To
mitigate the challenge of unbounded streams, with respect
to both processing and storage limitations, streams are
conceptually seen as bounded sliding windows of tuples, as
shown in Figure 2. The size of these windows are defined
as a function of time or number of tuples, referred to as
time-based or count-based windows, respectively.

Figure 3 shows the traditional architecture of a join

Join Core
Window-R

Window-S

JC

Tuple-S

Time

Tuple-R

Figure 3: Traditional stream join architecture.

operator that receives Tuple-R and Tuple-S from streams R
and S, respectively. JC stands for join core, which performs
the join operation. To process the tuples shown in the figure,
Tuple-R is inserted into Window-R, then it is evaluated
against all existing tuples in Window-S and the join results
are returned. Similarly, Tuple-S is inserted into Window-S
and the same join procedure is applied.

3 Related Work
Work related to our approach can be broadly classified into
stream join algorithms [6, 9, 10, 16, 21, 22], or more gen-
erally speaking, stream processing in software [23, 24, 25],
approaches to performance-optimize stream processing
through emerging hardware mechanisms [26], in particular,
through FPGA-based acceleration [15, 17], but also, through
GPUs and processor-based I/O processing innovations [8].
The survey [27] covers other related work and topics
including concepts such as ordering in stream join. SplitJoin
can be incorporated in any of the existing streaming engines
(i.e., [28, 29, 30]).

Stream Join Algorithms — An early stream join
was formalized by Kang’s three-step procedure [21].
Subsequently, Gedik et al. [6] introduced the parallel
CellJoin, designed for a heterogeneous architecture, aiming
to substantially improve stream join processing performance.
However, CellJoin requires a re-partitioning task for each
newly incoming tuple, which limits its scalability [6]. The
problem of distributed stream join processing has also been
studied with respect to elasticity and reduction of memory
footprint, applicable to cloud computing [22].

Teubner et al. introduced a bi-direction data flow-oriented
stream join processing approach, called the handshake
join [9]. To reduce delay in the linear chaining, Teubner et
al. [10] introduced a low-latency handshake join that uses
a fast forwarding mechanism to expedite tuple delivery to
all sub-windows by replicating every tuple k times, where
the stream is split over k join cores. This mechanism is
illustrated in Figure 10. Furthermore, the bi-directional flow
complicates the logic for serializing the two pipes connecting
consecutive join cores that is necessary in order to avoid
race conditions due to concurrent in-flight tuples (i.e., tuples
traveling between neighboring processing cores).

Stream Processing Acceleration — Stream processing
has received much attention over the past few years.
Many viable research prototypes and products have been

3
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Figure 4: SplitJoin concept.

developed, such as NiagaraCQ [24], TelegraphCQ [23], and
Borealis [25], to just name a few. Most existing systems are
fully software-based and support a rich query language, but
stream join acceleration has not been the main focus of these
approaches.

Since the inception of stream processing, the develop-
ment of optimizations both at the query-level and at the
engine-level have been widely explored. For example,
co-processor-based solutions utilizing GPUs [8, 6] and more
recently hardware-based solutions employing FPGAs have
received attention [14, 15, 17, 18, 31]. For example, Tumeo
et al. demonstrated how to use GPUs to accelerate regular
expression-based stream processing language constructs [8].
The challenge in utilizing GPUs lies in transforming a given
algorithm to use the highly parallel GPU architecture that has
primarily been designed to perform high-throughput matrix
computations and not, foremost, low latency processing.

Past work showed that FPGAs are a viable option for accel-
erating certain data management tasks in general and stream
processing in particular [14, 15, 17, 18, 31, 32, 33]. For ex-
ample, Hagiescu et al. [15] identify compute-intensive nodes
in the query plan of a streaming computation. To increase
performance in the hardware design that realizes the stream-
ing computation, these nodes are replicated, which, due to
the stateless nature of the query language considered, poses
few issues. A main difference from our work is the restriction
to stateless operations and the lack of a capability to flexi-
bly update the streaming computation. Similarly, Mueller
et al. [17] present Glacier, a component library and com-
piler, that compiles streaming queries into logic circuits on
an operator-level basis. Both approaches are characterized by
the goal of hardware-aware acceleration of streams, yet our
solution is also applicable to non-FPGA parallel hardware.

4 SplitJoin

In this section, we describe SplitJoin and highlight two of
its key properties, namely, the top-down data flow and the
splitting of the join computation into independent storage
and processing steps. Together, these properties remove any
need for coordination and dependencies among join cores,
which enables a high-degree of parallelism for SplitJoin

without sacrificing latency.

Tuple-S

Process Tuple-R, Store Tuple-S 

Process Tuple-S, Store Tuple-R

Split

JC

Window-S

Tuple-R

left-region

Window-RTuple-RTuple-R

right-region

Time
Tuple-R

Figure 5: SplitJoin storing and processing steps.

4.1 SplitJoin Overview
SplitJoin diverts from the bi-directional data flow-oriented
processing of existing approaches [9, 10]. As illustrated in
Figure 1, SplitJoin introduces a single top-down data flow
that fundamentally changes the overall tuple processing ar-
chitecture. First, the join cores are no longer chained linearly
(i.e., avoiding linear latency overhead). In fact, they are now
completely independent (i.e., also avoiding inter-core com-
munication overhead). Second, both streams travel through a
single path entering each join core; thus, eliminating all com-
plexity due to potential race conditions caused by in-flight
tuples and complexity due to ensuring the correct tuple-arrival
order, namely, the FIFO property is trivially satisfied by using
a single (logical) path. Third, the communication path can be
fully utilized to sustain the maximum throughput and each
tuple no longer needs to pass every join core.

Another important aspect of SplitJoin is the simplification
and decomposition of join processing itself. SplitJoin splits
the dominant join abstraction that enforces the “storing” and
“processing” steps to be coupled and done in a serial order.
SplitJoin views these steps as two independent steps, namely,
(i) “storing” and (ii) “processing”. In fact, SplitJoin goes one
step further and shows that not only these steps could be done
in parallel, they can also be distributed to independent join
cores. Therefore, unlike traditional parallel join processing
that divides a single window into a set of sub-windows,
where each is assigned to a core, SplitJoin introduces separate
storage and processing cores that operate independently
of each other as shown in Figure 4. The storage core is
responsible for storing new tuples, while the processing core
is responsible for the actual join operation of a new tuple
in one stream with the existing tuples in the other stream.

Distributor

Split

Buffer

Window-S /2 Buffer

Window-R /2

JC

Split

Buffer

Window-S /2 Buffer

Window-R /2

JC

1 2

1 2

Figure 6: SplitJoin parallel architecture.
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The splitting line in Figure 4 conceptually divides our join
processing architecture into two separate parts, in which
a region represents a stream’s window and the associated
buffer. We use the term right-region when referring to
Window-R and left-region for Window-S. For each incoming
tuple, a region either does processing or storing.

The split mechanism is illustrated in Figure 5, where
the incoming tuples are fed to SplitJoin one after another.
In the first step, Tuple-R is inserted into both regions.
The right-region is responsible for storing Tuple-R in its
sliding window, while the left-region is responsible for the
processing of the replicated copy of Tuple-R (i.e., the join
comparison). The temporary tuple replication eliminates all
inter-region communication among storage and processing
cores. The replicated tuples are simply discarded once the
processing is completed.

4.2 SplitJoin Parallelism
In SplitJoin, we parallelize the stream join computation
by dividing each sliding window into a set of disjoint
sub-windows. Each sub-window is assigned independently
to a join core as shown in Figure 6 (i.e., acting as a local
buffer for each core). Each join core (JC) consists of a
left- and a right-region. The division of the sliding window
among join cores is accompanied by a Distributor unit to
transmit incoming tuples to the join cores.

In the parallelized version of SplitJoin, all join cores
receive the new incoming tuple. In each join core, depending
on the tuple origin i.e., whether R or S stream, the processing
and storage steps are orchestrated. For example, if the
incoming tuple belongs to the R stream, Tuple-R, then
all processing cores dedicated to the left-region compare
Tuple-R against all the tuples in the S stream sub-windows.
Simultaneously, Tuple-R is also stored in the storage core
of exactly one right-region. The assignment of Tuple-R

follows an arbitration of the tuple to a storage core based on
a round-robin selection. In other words, each region, based
on its position number 5 and the number of seen tuples, inde-
pendently determines its turn to store an incoming tuple. The
proposed assignment model eliminates the need for a central
coordinator for tuple assignment, which is a key contributor
for achieving scalability in SplitJoin architecture. Notably,
transmitting an incoming tuple to each join core translates
into writing a tuple to the join core’s local buffer (independent
of any other join cores) that resembles a simple queue with a
single producer and a single consumer, in which the producer
is the Distributor and the consumer is join core itself.

4.3 Scalable Distribution Tree
The decoupling of storage and processing in SplitJoin

simplifies parallelization by distributing sub-windows among
many independent join cores. To fully leverage potential

5Position number refers to the logical location of a join core among other
join cores.

parallelism, we also need an efficient tuple distribution and
routing mechanism.

In SplitJoin, to distribute the stream’s transmission load
in a balanced and scalable manner, we use a k-ary tree as
the distribution network. As the network grows in size, the
Distributor is replicated and its replicas are placed in the
tree’s inner nodes to achieve the desired scalability. As the
number of SplitJoin join cores increases, we increase the
fanout of each Distributor before increasing the depth of the
distribution tree.

By applying replication recursively, we scale the distribu-
tion network as well as the number of join cores for SplitJoin.
The resulting system, including the input data distribution
network, SplitJoin’s join cores, and the output data gathering
network (similar in structure to the input network), is shown
in Figure 11, where the horizontal bars illustrate the input
distribution and output gathering networks.

The distribution network is the same for both count-based
and time-based sliding window joins. However, in the
time-based version each tuple carries an extra field for its
timestamp. This field is to keep track of the lifespan of each
tuple to realize the time-based sliding window semantic.

4.4 Expiration & Replacement Policies
Tuple expiration is a crucial step to ensure the correctness of
the stream join semantic. In the count-based sliding window,
the number of tuples in each window is specified explicitly
while in the time-based sliding window a lifespan l (e.g.,
l=10 minutes) defines when a tuple must be expired.

SplitJoin supports both passive and active expiration tech-
niques. The passive approach is primarily intended for the
count-based sliding window, in which the incoming tuples
simply overwrite the oldest tuples in the window. The expi-
ration is done implicitly and mimics the functionality of a
FIFO buffer. Once a window is full, the stored tuples are ex-
pired in order of their arrival. In the active expiration, geared
towards the time-based sliding window, each join core locally
manages the expiration of tuples from its sub-window. The
expiration task for each sub-window is postponed until a tu-
ple from the opposing stream with timestamp of t is received
for processing. Then, in the region responsible for process-
ing, just prior to the join computation, for each tuple with a
timestamp ti, if (t−ti)> l, then the tuple is expired. Basically,
tuples are expired when they fall off the user-defined lifespan
(l) of the time-based window size.

Note the expiration is a local operation within a region
and does not involve global coordination because tuples
arrive with monotonically increasing timestamps and order is
preserved when they are added and stored in a sub-window.
The expiration task starts from the end (with the oldest tuple)
of each sub-window and ends when a tuple younger than
the user-defined lifespan is found. In other words, instead of
sending explicit expiry messages with a timestamp, we rely
on the timestamp of tuples in the input streams that must

5
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Figure 7: SplitJoin data distribution and processing example.
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Algorithm 1: SplitJoin distribution network.
1 SplitJoin() begin
2 while still a tuple to consume do
3 broadcast tuple t to all Join Cores begin
4 forall join cores do
5 Join Core(t, source);

be routed to all nodes anyway. Therefore, the expiration
messages are implicitly piggybacked on the incoming tuples
as a way to broadcast the synchronized time without the
need for global coordination.

In Figure 7, we illustrate how tuples are stored and
processed in SplitJoin join cores. Assuming that we have
a sequence of tuples as shown in the upper part of the
figure, each tuple is transferred by the distribution tree
to all join cores. Each Tuple-R is stored in exactly one
right-region while processed by the left-region of all join
cores. Likewise, for tuples from the S stream, they are stored
in the left-regions and are processed by the right-regions.

As we can see in Figure 7, the tuples are distributed
in-order. The tuples reach the storage cores through the same
path (i.e., the top-down flow), and the expiration procedure
is preformed based on the order of incoming tuples (for
both count-based and time-based sliding windows). Thus,
unlike the bi-directional model used in [9, 10], neither the
concurrency nor the race condition issues arise.

During processing, each region emits resulting tuples to be
collected by the result gathering network (cf. Section 5). The
processing step for each tuple in each region is completed
by emitting an end notice from that region, referred to as
a star punctuation mark. These marks serve to preserve the
order of join results as we describe in detail in Section 5.

4.5 SplitJoin Algorithms
Tuple distribution in SplitJoin is specified in Algorithm 1.
Upon arrival of a new tuple, regardless of its source stream,
the tuple is broadcast to all join cores (Line 3).

In each join core, as presented in Algorithm 2, depending
on the tuple’s source (Lines 2 and 11), from R or S stream,
the tuple is sent to the right-region for storage and to the
left-region for processing or vice versa.

Finally, in the expiration process specified in Algorithm 4,
the tuples that are too old to be considered for the join are
expired from the end of the sub-window by computing their
lifespan using their timestamp and the timestamp of the new
tuple.

The pseudo code for the processing core (i.e., the join
comparison) is specified in Algorithm 3. An incoming tuple
is compared with all tuples in the opposite sub-window
(Lines 2-4). More importantly, this step is executed
concurrently for each sub-window in every region. After
processing (Lines 5-6), based on the chosen ordering
precision, the star marker is produced and emitted. Also
note that the goal of SplitJoin is to provide an efficient and
coordination-free architecture for performing stream joins,
and the particular choice of join algorithm is orthogonal.
In this work, we adopted a simple variation of nested-loop
join; however, within each core, one may choose any join
algorithms such as hash- or index-based join.

5 Punctuated Result Collection
In SplitJoin, we employ a result gathering network (similar
to our data distribution network) and a punctuation technique
to preserve the ordering for the join result output. The
full architecture of SplitJoin, that includes the distribution
network, join cores (JCs), and the collection network, is
illustrated in Figure 11.

In SplitJoin, we utilized a 2-ary collection tree to gather
and merge join results as depicted in Figure 8. The result

Algorithm 2: A join core in SplitJoin.
1 Join Core(t, source) begin
2 if source = Stream R then // right-region

3 Expiration Process(t, sub-window S);
4 Processing Core(t, sub-window S);
5 if R store counter = node id then
6 Storage Core(t, sub-window R);

7 if R store counter = number of join cores then
8 R store counter←0;

9 else
10 R store counter←R store counter+1;

11 else // left-region

6
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Algorithm 3: Matches between t and sub-window X.
1 Processing Core(t, sub-window X) begin
2 forall ti-tuple in sub-window X do
3 compare ti-tuple with t; if match then
4 emit the matched result;

5 if i≡0 (mod ordering precision) then
6 emit punctuation star;

tuples of each processing core are gathered from the leaves
of the collection tree. Each core has its own dedicated FIFO
buffer. The collection tree employs a Merger unit and a FIFO
buffer in each of its intermediate nodes (except in the root).
Moving toward the tree’s root (from top to bottom), at each
node, the data in the two input buffers is merged into the
buffer of that node. Merging continues up to the root, which
contains the last buffer emitting the gathered join results.

5.1 Punctuation-based Ordering
SplitJoin architecture preserves the ordering of result tuples.
The precision of the output order can be determined by a
tunable system parameter, without significant changes in
the processing architecture. To realize this flexibility in our
design, we developed a relaxed adjustable punctuation (RAP)
strategy. We define two levels of ordering guarantees for join
results: the outer and inner ordering.

Definition 1 The outer ordering of join results ensures that
for any two consecutive incoming tuples, join results of the
first tuple always precede the join results of the second tuple.

Definition 2 The inner ordering of join results ensures
that for a single incoming tuple in one stream, join results
are ordered in ascending order from the oldest to the most
recently inserted tuple in the other stream.

Our proposed relaxation enables us to maintain strict outer
ordering while adjusting the precision of the inner ordering
(essentially, not maintaining the inner ordering) in order to
substantially reduce the overall cost of ordering. Furthermore,
our technique supports strict outer and inner ordering as well.

In RAP, we define a simple punctuation emission rule for
each core (the same simple rule applies to all cores), that
is, the emission of a punctuation at the end of the processing
of every newly inserted tuple (preserving the outer ordering
and relaxing the inner ordering). In other words, each
join core emits a punctuation after the end of processing a
newly inserted tuple with all tuples in the other window. We

Algorithm 4: Expiring old tuples for time-based version.
1 Expiration Process(t, sub-window X) begin
2 i← the end of sub-window X;
3 while ti.timestamp - t.timestamp > Time Window Size do
4 omit ti from sub-window X;
5 i← i−1;
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Figure 9: Punctuated resulting stream.

differentiate this punctuation from result tuples by a star, as
shown in Figure 8.

SplitJoin cores insert both the join results and punctuation
marks to collection tree leaves. The punctuation acts as a
border between the join results of two consecutively inserted
tuples (outer order). As join results and punctuations are
pushed down the collection tree towards the root, at each
node of the tree, the join results and their corresponding
punctuation marker (stars) from the two buffers are merged
into the FIFO buffer of their parent node. When the Merger
in the parent node receives a star from one of its inputs, it
disables that input and continues to receive resulting tuples
from the other buffer until it receives a star from that buffer
as well. The Merger merges two punctuations (stars) into
one and pushes it to its FIFO buffer. This scenario repeats
until the star reaches the output of the collection tree.

Since join results are pushed down in the order in which
the newly inserted tuple arrives, the outer ordering for each
core is trivially satisfied due to the single top-down FIFO flow
of SplitJoin that starts from the root of the distribution tree (for
inserting new tuples) and ends at the root of the collection tree
(for merging the join results). This flow is shown in Figure 9.

The final step in the result gathering network employs a
Combiner rather than a Merger. On the right side of the split
are the punctuated results, ordered by the tuples from the
S stream, while on the left side, the punctuation is based on
the arrival sequences of tuples from the R stream. These two
sets of punctuated result tuples are consumable as separate
streams. However, to emit only one stream as output, we
use a Combiner which simply fetches the resulting tuples
and punctuations from their input and puts them into the
output buffer. The Combiner keeps track of the origin of
punctuations (whether from the right- or left-regions) by
flagging the stars with R and S, as shown in Figure 9.

In Figure 9, the upper flow is the result stream from
the right-regions, punctuated by the order of S stream
tuples, while the middle one is the result stream from the
left-regions, punctuated by the order of R stream tuples.
The lower flow demonstrates the combined result stream
that includes all result tuples in addition to punctuations.
For example, R1-X is specified by two R punctuations and
includes the result tuples which start with R1.

Adjusting the punctuation interval is straightforward and

7
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Algorithm 5: Punctuation-based N-ary merger.
1 N-ary Merger(t) begin
2 foreach right(or left)-region of core1..N in sequence do
3 while a resulting tuple (t) is available in output buffer till

the first star do
4 pop t from join core’s output buffer;
5 push t to Merger’s output buffer;

6 push out the end of result star;

only requires us to tune the punctuation emission rate in
SplitJoin’s cores. Each core can simply change the frequency
at which a punctuation is generated. For example, each
core can be tuned to produce a punctuation after joining
one newly inserted tuple (strict outer ordering) or after every
five tuples (relaxed outer ordering). We could also adjust
the precision of inner ordering by increasing the frequency
of punctuation generation. For example, to produce a strict
inner ordering, each incoming tuple is compared with tuples
in the opposite window (starting from the oldest to the most
recently inserted one), followed by outputs for both the join
result and the punctuation marker for every comparison.
Therefore, if each core has a window size of w, then up to
w punctuation markers (i.e., stars) are produced for every
newly inserted tuple. For a relaxed inner ordering, only one
punctuation is produced after joining the incoming tuples
with all the tuples in the opposite window. At the other
extreme, when no ordering is required, we could simply
disable the punctuation generation altogether.

5.2 Ordering Algorithm
For the result gathering network, we utilized a k-ary tree.
Algorithm 5 specifies the pseudo-code for an N-ary (e.g.,
2-ary) Merger given an N-ary result gathering tree. The
Merger is connected to the output FIFO buffer of N regions
and collects the resulting tuples and punctuations into its own
output FIFO buffer, which is subsequently fed to the next
intermediate node (its parent) in the tree. This is repeated up
to the root of the tree, where result tuples are punctuated by
tuple arrival order from the two stream types (either R or S).

The Merger connects to the output buffers of the same
source, either left or right regions (cf. Line 2 of Algorithm 5).
Each Merger collects the results in the same order as the
join cores store the new incoming tuples. For example,
assuming that the first Tuple-R is stored in the left most
join core in its right-region, as shown in Figure 7. The
Merger then begins the collection of results from the
comparison of Tuple-S with the R sub-window in the left
most right-region as well.

In the result gathering, the Merger fetches tuples from the
first region’s buffer and stores them in its own output buffer
until it reaches the first star in (Line 3∼Line 5). Then it
repeats the same procedure for the next region’s buffer until
it receives a star from there too.

After receiving a punctuation mark from the last region,

Window-R /N
R

S

Join Core 1 Join Core 2 Join Core N

TMLT P TCL α 
= Window-S/N

|w|

N

Figure 10: Low-latency handshake join overview [10].

the Merger forwards the punctuation to its output buffer (cf.
Line 6). Note that each Merger emits only one punctuation
mark for every pair of punctuation (i.e., one punctuation
mark from each join core).

Using a higher ordering precision increases the number
of punctuation marks between result tuples of each region.
For example, instead of having one punctuation mark after
comparison of a tuple with the whole sub-window, we can
have one punctuation after each 10 comparisons. Since
tuples in the sub-window are already stored in the order of
their arrival, the intermediate punctuations preserve the result
ordering while gathering the results from all the join cores.
For obtaining a higher precisions, Mergers follow the same
procedure as before.

6 Runtime Complexity
In this section, we present a brief analytical model to
study the runtime complexity of SplitJoin relative to related
techniques [9, 10]. In the analysis, we use the following
definitions.

Definition 3 We define the processing latency (PL) as the
time from when a tuple arrives at the join operator until
the tuple is compared and joined with all tuples in the other
window and all the matching results are produced.

Definition 4 We define the visiting latency (VL) as the time
required for two tuples from both streams to be compared
with each other.

6.1 Low-latency Handshake Join Analysis
The processing latency for low-latency handshake join (cf.
Figure 10) is given as follows:

PL=TCL+((k−1)×(TCL+TML))+(w×TP)+TCol (1)
where TCL represents the communication time between cores
and k the number of processing cores. TML accounts for the
tuple monitoring time in both streams, required to prevent
missing results between tuples in the fast-forwarding buffers
(i.e., race conditions). Therefore, the cost of propagating a
single tuple to all cores by replication and fast-forwarding
is captured by ((k− 1)× (TCL +TML)). The size of each
sub-window in each core is denoted by w. TP represents the
processing time to perform the join operation between each
pair of tuples. To simplify the analysis, we assume that all
join cores are working in parallel. Finally, TCol presents the

8
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time required to collect all the matching results. In [10] the
authors rely on a linear collector method for gathering the
results that has the potential to break the strict neighbor-to-
neighbor communication model of handshake join.

In theory, assuming a fixed-size sub-window, we can
increase the number of processing cores to support larger
windows. Therefore, the join’s latency scales linearly in the
number of processing cores, i.e., as O(k), — optimistically
assuming that central coordination would not become a bottle-
neck while ignoring the effect of the result collection method.

To calculate the visiting latency, we assume that the
number of in-flight tuples from the two streams that must
be compared (i.e., the monitoring time TML) is negligible.
While this assumption renders the model less realistic (which
was also implicitly assumed in [10]), it simplifies the visiting
latency analysis.

Any pair of tuples from both streams meet each other
in, at most, one location; let this location be α as shown in
Figure 10. α could be in any core. If α happens to be on the
first core, then the latency is lower, while if it is on the last
core, then the latency is higher. Thus, we define the average
visiting latency as follows:

VLavg=TCL+(�(k−1)
2

�×(TCL+TML))+((
w
2
)×TP) (2)

(� (k−1)
2 � × (TCL + TML)) determines the average time to

reach location α (essentially, reaching the mid-point of core
chain) and (w

2 )×TP captures the processing time for half
the tuples at α. The visiting latency scales linearly with the
number of processing cores O(k), assuming (TCL+TML) is
constant, irrespective of the number of cores.

To simplify the analysis, we ignore the overhead of
central coordination in low-latency handshake join [10]. The
coordinator requires sending an explicit expiry message for
every tuple [10]. On average, these messages double the
communication traffic between the central coordinator and
each join core, significantly affecting the performance as
observed in our experimental evaluation.

6.2 SplitJoin Analysis
SplitJoin utilizes a distribution tree to deliver incoming tuples
to each join core in O(logbk) time, where k is the number
of join cores and b is the branching factor of the distribution
tree. We define Path1···k as a distribution route that a tuple
must travel to reach the join cores 1···k, respectively. Let
TCPathi,Depth j

be the communication cost (duration) of trans-

ferring a tuple to the ith path at depth j. We define the
processing latency for SplitJoin as follows:

PL= max
i=1···k

( ∑
j=1···logbk

TCPathi,Depth j
+(w×TPi))+TCol (3)

where TPi is the processing time to perform the join operation
between each pair of tuples for the ith core. Assuming the
communication times, TCPathi,Depth j

, are roughly equal, then it
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Figure 11: SplitJoin complete system.

follows that:
PL= max

i=1···k
(TCPathi

×logbk)+(w×TPi))+TCol (4)

If we further assume homogeneous join cores and homoge-
neous distribution routes within the tree and also decompose
TCol into smaller units of work, then it follows that:

PL=(TCL×logbk)+(w×TP)+(TCL×logck) (5)
where logck defines the depth of the result gathering tree with
the branching factor of c (from root to leaves). Assuming
a fixed-size sub-window, as we increase the number of join
cores, latency increases logarithmically, O(logbk) (assuming
b<c), for SplitJoin as opposed to the linear increase (O(k))
observed in [10].

Supposing two consecutive tuples from both streams
meet at the point α, as shown in Figure 11, then their
communication times in the distribution tree mostly overlap
with each other because they are pushed to the distribution
tree one after another. They travel together (using the FIFO
strategy) to reach the targeted join core. As above, here, we
also assume homogeneous join cores and communication
costs within the distribution tree. Then, the average visiting
latency of SplitJoin is given by:

VLavg=(TCL×logbk)+(
w
2
×TP) (6)

Thus, the average visiting latency is also logarithmic in the
number of join cores, compared to the linear order in [10].

7 Experimental Results
In this section, we experimentally evaluate our SplitJoin

implementation. All experiments are performed on a
32-core system. Our system is a Dell PowerEdge R820
featuring 4 × Intel E5-4650 processors and 32 × 16GB
DDR3 memory (RDIMM, 1600 MHz, Low Volt, Dual
Rank, x4). We ran our benchmarks on Ubuntu 14.04.2
LTS (GNU/Linux 3.13.0-57-generic x86 64) installed on
a Docker container [34] running on the same host OS.

9
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7.1 Experimental Setup
We adopted the benchmark used in recent stream join
approaches [6, 9, 10]. In this benchmark two streams R=
(x:int, y:float, z:char[20]) and S = (a:int,

b:float, c:double, d:bool) are joined via the
two-dimensional band join, as follows:
WHERE r.x BETWEEN s.a-10 AND s.a+10

AND r.y BETWEEN s.b-10 AND s.b+10

In our evaluations, we used the low-latency (referred to
as LH vs. SplitJoin (SJ)) and the original handshake join
libraries that were kindly provided by the authors of [9, 10].
Also in line with related approaches, integers and floats were
generated following a uniform distribution in the range of
1−104, unless otherwise stated.

The results cover the end-to-end evaluation, including
data distribution network, SplitJoin storage and processing
cores, the result gathering network, and also the proposed
punctuated ordering mechanism. The punctuation precision
is based on the outer tuple ordering as shown in Figure 9,
unless otherwise stated.

In our time-based window realization, we generated times-
tamps on-the-fly using the system call clock gettime().
Using a synthetic timing mechanism, as we experimented,
further improves the overall performance by about 15% by
relieving the overhead incurred by system calls.

7.2 Performance & Scalability
We evaluate SplitJoin performance by measuring latency
and throughput metrics as we scale the level of parallelism.
In general, key factors that influence the stream join
performance are how the input streams are flowing through
the join cores and how the joined results are collected and
flow to the output.

In Figure 12, we demonstrate throughput results of
SplitJoin in comparison with [10]. As we scale the
number of join cores, we observe that both solutions scale
gracefully; however, SplitJoin outperforms the low-latency
handshake join by up to 60% (comparison between 15-min
sliding windows). Theoretically, the performance of both
approaches should be similar, as both utilize all join cores

in parallel to process incoming tuples. However, the
core-to-core communication and mandatory expiry messages
in low-latency handshake join (necessary for both time-based
and count-based join versions) impose a noticeable penalty.

In Figure 12, we also observe how the two approaches per-
form for different time-based window sizes. When the join
core count is 32, we observe a drop in performance in both of
the approaches. This is due to the existence of extra threads
to perform other (non-processing) tasks such as stream dis-
tribution and result gathering in case of SplitJoin, and tuple
assignment, expiry message generation, and result gathering
in case of the low-latency handshake join. Since our system
has only 32 processing cores, by instantiating 32 join cores,
the operating system is forced to perform context switches,
resulting in system saturation and performance drop.

7.3 Latency Evaluations
In Figure 14, we present an abstract model of our end-to-end
processing pipeline stages. The grayed parts show inter-
mediate and pipeline buffers. In the measurements, we are
reporting the latency of the distribution stage (dis), which
also includes the time that tuples are waiting in the pipeline
stage between the distribution and execution stages. The
latency of the execution stage (exe) is the latency attributed
to the time that it takes a tuple to pass through the processing
and storage steps in the join core, which also includes the
tuple expiration process for the time-based sliding window.
The latency for the last stage includes the time that resulting
tuples are waiting in the pipeline stage between the execution
and result gathering stages and also the time for the Merger
and the Collector units to bring them to the output of
SplitJoin. Latency reports for these measurements plus the
processing, end-to-end (ete), and latency of SplitJoin, for the
time-based sliding window, are presented in Figure 15.

Processing Pipeline Stage Latency: In the distribution
network, as we increase the number of join cores, incoming
tuples are distributed between larger number of join cores
instead of having to pile up in the pipeline buffer for fewer
join cores. Therefore, increasing the number of join cores,
inherently reduces the waiting time in the distribution stage

10
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as shown in Figure 15.
Since our evaluation system has only four processor

sockets, the increase in the size of the distribution network
has no significant effect on the performance except when the
size of the sliding window is small. In the execution stage,
the increase in the number of join cores for a given window
size translates into smaller sub-windows for each join core
and the latency also proportionally decreases.

Among our three pipeline stages, the result gathering
network with punctuation ordering had the highest latency
impact. This latency was mainly due to the waiting times of
the Mergers on one of their input ports to receive a punctu-
ation mark (star) before starting to read from their next port.

Visiting Latency: In Figure 13, we observe the average
visiting latency (Tmatch−max(tr,ts)) for SplitJoin with 5, 10,
and 15 minutes sliding windows, and low-latency handshake

join with a 15 minutes sliding window for varying number
of join cores. The tr and ts stand for initial timestamp of r
and s tuples, respectively.

As we evaluated the average visiting latency (cf. Section 6),
the latency increases logarithmically, O(logbk), for SplitJoin
as opposed to linearly, O(k), for the low-latency handshake
join [10]. By comparing the average visiting latency for the
15-min version of SplitJoin and low-latency handshake join,
when we use four join cores, the latency is quite similar;
however, once the number of join cores increases, the gap
between SplitJoin and low-latency handshake join widens
drastically by a factor of up to 3.3X (8.1ms vs. 26.8ms for
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Figure 16: Count-based SplitJoin throughput.

28 join cores).
We observe an increase in latency while reaching 32 join

cores which is again due to the lack of enough resources
for the other (non-processing) tasks. Since low-latency

handshake join requires to perform additional costly tasks,
such as emitting individual expiry message for each tuple,
the resource contention shows a more significant impact on
latency as seen when instantiating 32 join cores.

7.4 Count-based Sliding Window
Although the count-based and time-based versions of
SplitJoin behave similarly, there are two key differences:
(1) having no space allocated for timestamp values and no
on-the-fly generation of timestamps through a costly system
call and (2) having a fixed window size for count-based
semantics as opposed to the time-based semantics where
the window size varies depending on the incoming tuple
rate. These differences result in roughly 20% improvement
in performance for SplitJoin using a count-based instead
of time-based sliding window. For example, SplitJoin

instantiated with 28 join cores over a 15-min sliding
window (shown in Figure 12) sustains an input rate of 4400
tuples/second, which roughly translates to window sizes
of 221 for each stream. But for the count-based window, if
we set the window size to (221), SplitJoin can process up to
5200 tuples/second, as shown in Figure 16.

In the count-based results shown in Figure 16, we
observe two effects: (1) larger window sizes result in fewer
punctuation marks, assuming the same input throughput,
since in the outer tuple ordering each join core produces
one punctuation mark at the end of each tuple processing
and (2) a larger sub-window per join core additionally
increases the processing efficiency by reducing the impact
of other (non-processing) pipeline stages. Based on these
observations, doubling the window size while fixing the
number of join cores reduces the processing throughput.

For each window size, by increasing the number of join
cores (JCs), we observe a relative improvement in the
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throughput except when using 32 join cores. Over-utilizing
system resources (i.e., using 32 join cores) has more impact
on the throughput for smaller window sizes. Larger windows
keep join cores busier, thus, new tuples are processed after
longer waits. This relieves other tasks (i.e., distribution),
reducing the effect of resource contention.

In Figure 18, we present the latency of the processing
pipeline stages, the average processing latency (ete), and
visiting (vis) latency for SplitJoin for the count-based sliding
window. SplitJoin scales gracefully as we increase the
number of join cores; in particular, using 28 join cores, the
visiting latency is improved by more than 2.5X and 8.3X
as compared to the time-based version of SplitJoin and the
low-latency handshake join, respectively.

7.5 Effect of Selectivity
The selectivity (also called match probability) is one of
the major factors affecting join performance. Often a
low selectivity is assumed in most related work [6, 9, 10].
However, it is important to analyze the sensitivity of a join
algorithm with respect to the selectivity in order to assess
the generality of the approach.

The effect of varying the selectivity on the input
throughput is illustrated in Figure 17. The key observation
is that SplitJoin’s latency scales reasonably, and it is robust
to changes of selectivity, even for sliding windows as large
as 28×215 tuples.

7.6 Effect of Punctuation Precision
Figure 19 demonstrates the effect of the ordering precision
on the processing performance. In this diagram, we utilize
28 join cores with varying sub-window sizes (212−215) per
join core. The ordering precision starts from one punctuation
per sub-window processing, referred to as relaxed inner
ordering, and progressively increases the precision until one
punctuation mark (star) is produced after each comparison
(represented as 21 on the x-axis) within each sub-window,

referred to as strict inner ordering.
The relaxed inner ordering is the same as the strict outer

ordering. Therefore, the highest punctuation interval for
each window size in Figure 19 represents the effect of strict
outer ordering on the throughput for that window size.

As we increase the precision (e.g., focusing on a sub-
window size of 215), from 211−215, its effect on the overall
performance is negligible, since the number of punctuations
produced per each incoming tuple in each join core is rel-
atively low (i.e., 1, 2, 4, 8, and 16 punctuations, respectively)
compared to the sub-window size which is 215. However,
as we continue to increase the precision from the interval 210

down to 21, the number of punctuations becomes comparable
to the sub-window size for each join core, and as expected,
negatively affects the performance of SplitJoin. This high-
lights the importance of balancing ordering precision versus
overall performance. In fact, since the precision is adjustable,
to achieve a desired throughput, SplitJoin could adaptively
adjust the precision interval to achieve a sweet spot between
the ordering precision and the sustainable input throughput.

8 Conclusions
We present SplitJoin, a novel stream join that introduces two
unique properties that distinguish it from existing work. First,
SplitJoin exhibits a scalable architecture that splits the join
computation into two independent “storing” and “processing”
steps that can be parallelized using a coordination-free proto-
col to achieve low-latency join processing. Second, SplitJoin
introduces a simplified top-down, flow-oriented join process-
ing that eliminates complex concurrency logic for avoiding
race conditions while satisfying input stream ordering seman-
tics. We further propose scalable distribution- and collection-
trees for input stream propagation and output join result gath-
ering, respectively. Lastly, we propose a relaxed adjustable
punctuation to guarantee join result ordering and to provide
an effective mechanism to balance the trade-offs between the
ordering precision and the overall join throughput.
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