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Abstract

Video transcoding plays a critical role in a video stream-
ing service. Content owners and publishers need video
transcoders to adapt their videos to different formats, bi-
trates, and qualities before streaming them to end users
with the best quality of service. In this paper, we report
our experience to develop and deploy VideoCoreClus-
ter, a low-cost, highly efficient video transcoder clus-
ter for live video streaming services. We implemented
the video transcoder cluster with low-cost single board
computers, specifically the Raspberry Pi Model B. The
quality of the transcoded video delivered by our clus-
ter is comparable with the best open source software-
based video transcoder, and our video transcoders con-
sume much less energy. We designed a scheduling algo-
rithm based on priority and capacity so that the cluster
manager can leverage the characteristics of adaptive bi-
trate video streaming technologies to provide a reliable
and scalable service for the video streaming infrastruc-
ture. We have replaced the software-based transcoders
for some TV channels in a live TV streaming service de-
ployment on our university campus with this cluster.

1 Introduction

Video streaming service is one of the most popular In-
ternet services in recent years. In particular, multime-
dia usage over HTTP accounts for an increasing portion
of today’s Internet traffic [47]. For instance, video traf-
fic is expected to be 80 percent of all consumer Internet
traffic in 2019, up from 64 percent in 2014 [5]. In or-
der to provide high and robust quality of video streaming
services to end users with various devices with diverse
network connectivities, content owners and distributors
need to encode the video to different formats, bitrates,
and qualities. It is redundant to encode and store a source
video to different variants for archiving purposes. The
broad spectrum of varieties of bitrates, codecs and for-

mats make it difficult for some video service providers to
prepare all media content in advance. Therefore, video
transcoding has been widely used for optimizing video
data. For example, Netflix encodes a movie as many
as 120 times before they stream the video to users [37].
Transcoders are also commonly used in the area of mo-
bile device content adaptation, where a target device does
not support the format or has a limited storage capacity
and computational resource that mandate a reduced file
size.

However, video transcoding is a very expensive pro-
cess, requiring high computational power and resources.
Thus, it is critical to have an energy efficient and low-
cost video transcoding solution. In addition, video
transcoders’ performance is important to enhance the
overall quality of video streaming services. Regarding
the performance of transcoder, two metrics are impor-
tant: quality and speed. Video quality with a given bi-
trate determines the amount of data needed to be trans-
mitted in the network for a video. Transcoding speed
determines the time to finish the transcoding. Thus, it
is critical for live video streaming services. Other met-
rics, e.g., cost and power consumption, are also need to
be considered in video transcoding system deployment.

Various video transcoding technologies are proposed
and used, including cloud transcoding, software-based
transcoding on local servers, and hardware transcoding
with specialized processors. In this paper, we intro-
duce VideoCoreCluster – a low-cost, energy efficient
hardware-assisted video transcoder cluster to provide
transcoding services for a live video streaming service.
The cluster is composed of a manager and a number of
cheap single board computers (Raspberry Pi Model B).
We use the hardware video decoder and encoder mod-
ules embedded in the System on Chip (SoC) of a Rasp-
berry Pi to facilitate video transcoding. With an opti-
mized transcoding software implementation on the Rasp-
berry Pi, each Raspberry Pi is able to transcode up to
3 Standard Definition (SD, 720x480) videos or 1 High
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Definition (HD, 1280x720) and 1 SD videos in real time
with very low power consumption. We also developed
the cluster manager based on an IoT machine-to-machine
protocol - MQTT [42] to coordinate the transcoding
tasks and hardware transcoders in order to provide re-
liable transcoding service for video streaming services.
Compared to software-based video transcoders, Video-
CoreCluster has lower cost and higher energy efficiency.

Adaptive bitrate (ABR) video streaming over HTTP
is a popular technology to provide robust quality of ser-
vice to end users whose mobile devices have dynamic
network connectivities. Multiple ABR technologies are
used in the industry, but they share a similar idea. Media
servers cut source videos into small segments and en-
code every segment to multiple variants with different
bitrates. During playback, a video player selects the best
variants for these segments base on the video player’s
performance, network connectivity, or user’s preference.
Streaming video over HTTP has many advantages [60],
we chose it for our live video streaming service because it
is easy to deploy a video player on web browsers of mo-
bile devices with different operating systems, and we do
not need to reconfigure middle-boxes (firewalls, NATs,
etc.) in current campus network deployment for our ser-
vice. We design VideoCoreCluster according to the re-
quirements of ABR live video streaming so that it can
provide robust transcoding service.

Contributions: The most important contribution of
this paper is a practical implementation of real-time
transcoding system based on energy efficient hardware-
assisted video transcoders. Our contributions are multi-
fold:

• We design and implement a cost-effective transcod-
ing solution on a low-cost device, Raspberry Pi
Model B.

• Our system is based on hardware video decoder and
encoder, which is significantly more energy effi-
cient than software-based transcoding system.

• We leverage characteristics of adaptive bitrate video
streaming over HTTP to design a reliable and scal-
able system for live video streaming service. The
system is easily deployable. We currently employ
our VideoCoreCluster into an IP-based TV stream-
ing service in the University of Wisconsin-Madison.

The paper is organized as follows. In Section 2, we
introduce the background of our video transcoding sys-
tem and the possible approaches to building it. Then we
describe the architecture of VideoCoreCluster in Section
3. We evaluate the system in Section 4 and discuss the
related work in Section 5. Section 6 concludes the paper.

Source Video 
Server

Video
Player

Source Video 
Server

S Media ServerMedia Server Web ServerWeb ServerS

Figure 1: TV Streaming Service Architecture.

2 Background and Setup

We worked with the IT department of the University of
Wisconsin-Madison to provide a free TV service for stu-
dents on campus. Students can watch 27 (currently) TV
channels with their mobile devices. Six of these channels
are HD channels with a resolution 1280x720, 30fps. The
other 21 channels are SD with resolutions up to 720x480,
30fps. In the most recent month (April 2016), there were
more than 4000 view sessions and about total 480 watch-
ing hours. ABR video streaming techniques are used to
provide high-quality video streaming service to mobile
devices with diverse link capabilities and network dy-
namics. The system supports both Apple’s HTTP Live
Streaming (HLS) [13] and MPEG-DASH [60] to provide
service to heterogeneous devices. Figure 1 shows the ar-
chitecture of the system. Specifically, a TV frontend re-
ceives the TV signal and encodes the video stream into
H.264 + AAC format, then the video stream is pushed to
source video server. The transcoder cluster pulls videos
from the source video server and pushes the transcoded
results to media server in order to provide multiple vari-
ants of the video streams for every TV channel. The
source video server and media server can be combined
in deployment, so we will not discuss them separately in
the following sections. The web server hosts web pages
and video players for different web browsers.

2.1 Challenges of ABR Techniques on Live
Video Streaming

Low latency is critical for a live video streaming service,
in which a media server has to generate video data on-
the-fly to provide continuous streaming service to the
end user. A media server supporting ABR needs to guar-
antee all the variants of a video segment are available
when a client requests one of them. Due to the strict re-
quirement on low-latency transcoding, several optimiza-
tion techniques (e.g., high throughput video transcoding,
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multi-pass encoding for enhancing video quality) are not
applicable for live streaming. Moreover, an index file
containing a list of the available video variants should
be generated in real-time, and it has to be updated on
time and be consistent with the availability of these vari-
ants. We also need to make sure the variants of a video
segment are generated synchronously to simplify the im-
plementation of ABR algorithms on the video players.
Furthermore, an efficient video transcoding system is de-
sired and high reliability is required to provide 24/7 video
streaming services to users without interruptions.

2.2 Video Transcoding

A video transcoder is composed of a video decoder and
an encoder. Some researchers have discussed possi-
ble video transcoding designs, which mingle the mod-
ules of a video decoder and an encoder [40]. How-
ever, having separate video decoders and encoders pro-
vides more flexibility because we can easily have various
decoder/encoder combinations to create different video
transcoders for various purposes. In this work, we only
discuss the video transcoder built by a separate video de-
coder and an encoder.

Most popular video codecs have well-defined stan-
dards. These standards strictly define the compliant bit-
streams and decoder’s behaviors. For many video cod-
ing techniques, including H.264 [46], different video de-
coder implementations are required to generate the iden-
tical video frames (output) with respect to the same input
by their standards. This makes the selection of video de-
coder easy, and hence, hardware video decoders would
be the best choice in most cases as long as it is available
at low cost due to its high efficiency.

On the other hand, developers are free to design a
video encoder’s implementation as long as the generated
bitstream can be decoded by the reference decoder im-
plementation. Therefore, different encoder implementa-
tions can generate different bitstreams with various qual-
ities for the same video frames. In this way, the interop-
erability is guaranteed while innovations on the encoder
design are encouraged. As a result, we need to evaluate
an encoder’s performance on video quality in addition
to the encoding speed when we select an encoder for a
transcoder. Software video encoders are well known for
their low efficiency. Hameed et al. [48] point out that
application-specific integrated circuit (ASIC) implemen-
tation of the video encoder is 500 times more energy effi-
cient than the software video encoder running on general
purpose processors. They assume that both hardware and
software implementations use the same algorithms for
the corresponding procedures, e.g., motion estimation,
intra-prediction, etc.. The high efficiency is only from
the advantage of specialized hardware implementation.

However, software video encoders are more flexible than
hardware video encoders. It is much easier to try new al-
gorithms on a software video encoder to improve video
quality than a hardware video encoder. Video encoders
on FPGA platform make a good trade-off on efficiency
and flexibility, so they are also widely used in industry.

Different video applications have different require-
ments on video encoder. For mobile devices, the en-
ergy efficiency is crucial for battery life. Therefore,
most of the SoCs for mobile phones include video de-
coder/encoder IPs [7, 36]. For broadcast applications,
high video quality is desired while real-time encoding
and flexibility are critical. Toward this, video encoders
on the FPGA platform are widely used. For on-demand
streaming applications, the low energy efficiency of soft-
ware video encoders can be amortized by streaming one
encoded result to many users. High latency is not a
big concern because the service provider can encode
video offline. Slow encoding speed can be overcome by
launching a large number of instances in a cloud plat-
form to run the video encoders in parallel to achieve
very high throughput video encoding. The advantages
of video quality and flexibility are the main reason that
software video encoder is widely used to prepare video
contents for on-demand streaming service. For instance,
Netflix adapts the software-based transcoder because of
its flexibility, after an unsuccessful deployment of a spe-
cialized hardware video transcoding system [23].

H.264 is a popular video standard widely used in di-
verse video applications. Since H.264 is the video cod-
ing standard that our system supports, we only discuss
the available H.264 encoder implementations in this pa-
per as shown in Table 1. The authors in [6] com-
pared different H.264 encoder implementations, which
includes software implementations (x264, DivX H.264,
etc.), GPU-accelerated implementation (MainConcept
CUDA), and hardware implementation (Intel QuickSync
Video). Their conclusions include (i) x264 is one of
the best codecs regarding video quality, and (ii) Intel
QuickSync is the fastest encoder of those considered.
Even though x264 is the best software H.264 encoder
for our project, its low efficiency hinders its deployment.
Given that we need to keep the system running 24/7
for continuous TV service in the campus network, it is
not economical to rent cloud computing resource (e.g.,
Amazon EC2 instances) to execute the transcoding tasks.
Building in-house transcoding system with highly effi-
cient hardware video decoders and encoders is the best
choice while keeping the cost low in our system.

We use the hardware H.264 decoder and encoder in
a low-cost SoC – Broadcom BCM2835, which is the
chip of a popular single board computer - Raspberry Pi
Model B. VideoCoreCluster leverages its powerful GPU
- VideoCore IV, which embeds hardware multimedia de-
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Encoder Type Explanations
Software JM: The reference H.264 implementation from JVT[11]. It is widely used for research purpose

and conformance test. It is too slow to be used in practical projects.
x264: The most popular open source software H.264 encoder implementation. Compared to
JM, it is about 50 times faster and provides bitrates within 5% of the JM reference encoder for
the same PSNR[38, 57].
OpenH264: An open source H.264 implementation from Cisco[28]. It is optimized and the
encoder runs much faster than JM, but it is slower and has fewer features than x264.
Other proprietary implementations: MainConcept[17], Intel’s IPP H.264 encoder[15], etc.

GPU-based Three GPU vendors: Intel, NVIDIA, and AMD, all integrate hardware video codecs in their
GPUs. They also provide GPU-accelerated video encoders, which leverage GPU’s high
throughput graphics engine to accelerate video encoding[27, 16]. For example, NVIDIA has
two different versions of video encoder implementations: NVCUVENC and NVENC. NVCU-
VENC is a CUDA software-based implementation while NVENC is based on dedicated en-
coding hardware engine. NVCUVENC will not be available in the future because NVENC’s
improved performance and quality.

FPGA-based Xilinx and its partners have professional solutions for broadcast applications[10]. They provide
H.264 decoder and encoder IP for Xilinx’s FPGA platforms. FPGA-based implementation is
more flexible than ASIC implementation and more efficient than the software implementation.
But it is more expensive than both of them.

Encoder IP in SoC Many SoCs for mobile devices or other embedded devices have dedicated hardware decoders
and encoders. For example, Qualcomm’s chips for mobile phones [7]; Ambarella’s chips for
different video applications [2]; Broadcom’s chip for TV set-top boxes.

Table 1: Different type of H.264 encoders

coders and encoders. The primary computation power
of the cluster is from the VideoCore co-processors. The
Raspberry Pi is a low cost (under $35) single board
computer with very good software support [31, 33, 35].
Therefore, it is adequate to build a cost-effective video
transcoder cluster.

3 VideoCoreCluster Architecture

The VideoCoreCluster is composed of a cluster man-
ager and a number of transcoders. We use the MQTT
protocol to transfer control signals between the clus-
ter manager and the transcoders. MQTT is based on
a publish/subscribe messaging pattern rather than a tra-
ditional client-server model, where a client communi-
cates directly with a server. The cluster manager and the
transcoders connect to an MQTT message broker. They
exchange information by subscribing to topics and pub-
lishing messages to topics. The message payload is en-
coded with Google Protocol Buffer for minimal overhead
[32]. RTMP [34] is used in the data path. Figure 2 shows
the architecture of the VideoCoreCluster.

3.1 Media Server

The media server supports HLS, MPEG-DASH, and
RTMP. HLS and DASH are for the video players,
whereas RTMP is for the transcoders. HLS and DASH
are two popular adaptive bitrate streaming standards

to stream video over HTTP and they are widely sup-
ported by mobile operating systems and web browsers.
RTMP is designed to transmit real-time multimedia data,
and thus, it guarantees to transfer source video to the
transcoders and the transcoded video to the media server
with minimum latency. RTMP’s session control features
for media applications are used to implement the interac-
tions between media server and transcoders in our con-
figuration.

Figure 3 shows the responsibilities of the media server
in our system. For every TV channel, there are multi-
ple transcoded video streams (variants) with different bi-
trates and qualities. Each video stream is split to chunks
with the same duration on the media server. It is impor-
tant to align the boundaries of those chunks from differ-
ent variants even different workers may not be exactly
synchronized. To ensure synchronization, we set the In-
stantaneous Decoder Refresh (IDR) interval of a source
video and the transcoded video to 2 seconds. Then the
media server uses the IDR frame as the boundary to split
the streams. It uses the timestamp of the IDR frame with
2 seconds (IDR interval) granularity to define the seg-
ment number. So that we can keep the chunks to be
synchronized from a video player’s view as long as the
progress offset of different workers for the same source
video is under 2 seconds (IDR interval). We can set the
IDR interval to a larger value to obtain higher tolerance
on transcoding speed variation. The index file for a chan-
nel has the information about all variants of the video. It
is dynamically updated by the media server based on the
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Figure 2: The components and connections between the
components in the VideoCoreCluster. Every transcoder
node maintains two separate network connections for
the control flow and data flow respectively. Administra-
tor monitors the status of VideoCoreCluster and updates
transcoding tasks through the dashboard of the cluster
manager.

availability of the video streams. One worker may tem-
porarily fail to generate the corresponding stream, and
the transcoder cluster can migrate the failed task from
one worker to another within a second. RTMP specifi-
cation requires the initial timestamp of a stream to be 0
[34]. To ensure all other RTMP streams for the same
channel as the failed stream have the same timestamp,
we need to reset their RTMP connections as well. And
the media server can always generate a consistent index
file so that we can guarantee the reliability of the video
streaming service.

Figure 3: Overview of the Media Server’s responsibili-
ties: (i) Splitting video streams to chunks with the same
duration (IDR interval). (ii) Refreshing the index file ac-
cording to the status of the transcoded streams.

3.2 Transcoder Design
The Raspberry Pi Model B has a weak ARM CPU but
a powerful GPU (VideoCore IV). Given that, our de-
sign strategy is to run simple tasks on the CPU, and
offload compute-intensive tasks to the GPU. There are
two types of processes in a transcoder: cluster agent and
transcoding worker. There is one cluster agent on the
board, and from 0 to 3 transcoder workers depending on
the transcoding task’s requirement on the computing re-
source. Figure 4 shows the relationship between these
two types of processes.

Figure 4: Two types of processes on a transcoder. A
transcoding worker is the child process of the cluster
agent process.

A cluster agent executes on the ARM processor only.
It has two responsibilities: (i) Reporting the status of the
board and workers to the cluster manager. (ii) Accept-
ing commands from the cluster manager and launching
or killing transcoding worker processes. A cluster agent
will report the available resource to the cluster manager
when it registers to the cluster manager. The cluster man-
ager dispatches transcoding tasks to a transcoder based
on the available resources of the transcoder. A clus-
ter agent maintains an MQTT connection to the MQTT
message broker by sending keep-alive packets if no in-
formation flows between the transcoder and the MQTT
message broker for a predefined interval. If a cluster
agent is disconnected from the broker or the cluster man-
ager is offline, the transcoder will stop all transcoding
workers. The cluster manager can revoke a transcoding
task from a transcoder if it wants to assign the task to
another transcoder. Failed transcoding tasks will be re-
ported to the cluster manager, which can assign them to
other transcoders.

A transcoding worker is a process to transcode a video
stream. It only transcodes video data but passes audio
data. Video transcoding tasks primarily execute on the
VideoCore IV co-processor. The ARM processor is re-
sponsible for executing the networking protocol stack,
video streams demuxing/muxing, and audio data pass

5
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Figure 5: Software architecture of a transcoding worker.
Compute-intensive video transcoding task executes on
VideoCore IV GPU, whereas ARM processor is respon-
sible for coordination and data parsing/movement.

Figure 6: GStreamer pipeline of the transcoding worker
process. Some trivial plugins, e.g., buffering, synchro-
nization, etc. are not shown here.

through. In BCM2835, an application layer software can
access the hardware video decoder and encoder through
the OpenMAX IL interfaces [31, 29]. Rather than call-
ing the OpenMAX IL interfaces directly, we built the
program with the GStreamer framework [9]. GStreamer
is an open source multimedia framework widely used
to build media processing applications. It has a well-
designed filter (plugin) system. The gst-omx is the
GStreamer OpenMAX IL wrapper plugin that we use
to access the hardware video decoder and encoder re-
sources. Figure 5 shows the software architecture of a
transcoding worker.

A transcoding worker creates a pipeline of GStreamer
plugins. Video data are processed by the plugins one
by one, sequentially. Figure 6 shows the structure of a
pipeline. All plugins except H.264 decoder and H.264

encoder plugins fully execute on the ARM processor.

The default behavior of a GStreamer plugin can be
summarized as 3 steps: (i) Read data from the source
pad. (ii) Process the data. (iii) Write data to the sink
pad. The GStreamer pipeline moves data and signals be-
tween the connected source pad and sink pad. Plugins
work separately and process the data sequentially. This
means both the H.264 decoder and H.264 encoder need
to move a large amount of data back and forth between
the memories for the ARM processor and the VideoCore
IV GPU, which wastes CPU cycles. We modified the gst-
omx implementation to enable hardware tunneling be-
tween the decoder and encoder, which significantly re-
duce the CPU load [8]. Without the hardware tunneling,
a transcoder worker cannot support real-time transcod-
ing of a 1280x720, 30fps video. Whereas after we en-
able it, a transcoder worker can simultaneously transcode
one 1280x720 video and one 720x480 video in real-time.
Figure 7 illustrates the data movement in the pipeline
without hardware tunneling. Figure 8 illustrates the data
movement in the pipeline with hardware tunneling.

Figure 7: The decoder and encoder plugins work in-
dependently. YUV frames need to be moved from the
VideoCore IV memory to the ARM memory by the de-
coder plugin, then they need to be moved from the ARM
memory to the VideoCore IV memory by the encoder
plugin.

Figure 8: A hardware tunnel is created between the de-
coder and encoder. Plugins do not need to touch the YUV
frames. Therefore, the workload of the ARM processor
is reduced.
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3.3 Cluster Manager Design

The cluster manager maintains a task pool and a
transcoder pool. Its major responsibilities are assign-
ing the transcoding tasks to the transcoders, and mi-
grating the failed tasks from one transcoder to another.
Both transcoding tasks and transcoders have priorities,
which need to be considered when the cluster manager
schedules the tasks. The cluster manager maintains a
series of lists of tasks with different priorities. Every
transcoding task has the following information: { ID,
channel name, command, bitrate, resource, priority, state
}. The resource is an integer representing the required
computational resource for the task. Its value depends
on the source video type (SD or HD) and target bitrate.
Each task has four possible states: idle, assigning, re-
voking, and running. The cluster manager employs an
event-driven design. When anything happens to the tasks
or transcoders, e.g., task failure, a new worker joining,
a worker leaving, etc., the cluster manager will check
whether rescheduling is necessary and do so if it is.

When a new worker sends a register message to the
cluster manager, the cluster manager will add a record to
the worker list and keep tracking its status with a prede-
fined interval. Transcoders will send the status of them-
selves and tasks running on them to the cluster man-
ager periodically. The transcoder status includes CPU
load, VideoCore IV load, temperature, and free memory.
MQTTs last will message mechanism is used to imple-
ment the online status tracking of the transcoders. The
cluster manager also embeds a web server to provide a
dashboard for administrators to monitor the cluster’s sta-
tus and change the configurations. We have three design
goals for the cluster manager: scalability, reliability, and
elasticity.

Scalability: Scalability is ensured by an event-driven
design and minimum control flow information. The clus-
ter manager only maintains critical information about
the transcoders. The information that frequently ex-
changes between the cluster manager and transcoders is
only about the status. Media servers manage the source
videos and transcoded videos. We can replicate the me-
dia server if its workload is too high. The separation of
data flow and control flow ensures the cluster manager’s
scalability.

Reliability: We ensure the reliability of the system
by real-time status monitoring coupled with low la-
tency scheduling to migrate the failed tasks to working
transcoders. The media server updates the index file
on-the-fly to consistently list correctly transcoded video
streams. A temporary failure will not affect the video
players.

Elasticity: We define priorities for tasks and
transcoders. An important characteristic of adaptive bi-

trate video streaming is that every video program has
multiple versions of encoded videos. The more vari-
ants of a video available, the more flexible the players
can optimize the user experience. Our system leverages
that characteristic to implement an elastic transcoding
service. When the available transcoders have more re-
sources to run all the transcoding tasks, all the tasks will
be assigned to transcoders. But if not, only the high pri-
ority tasks will be scheduled and executed. We can easily
extend the transcoder cluster by adding more transcoders
with this elastic design to support more TV channels.

Figure 9: Overview of the cluster manager. The sched-
uler is an event-driven design.

Figure 9 shows the internal data structures of the clus-
ter manager. The scheduler makes decisions based on
the capacities of the transcoders and the resource re-
quirements of the transcoding tasks. The capacity and
resource requirement are both positive integers. Their
values determine what kind of tasks and how many tasks
can run on a transcoder in real-time.

Table 2 presents several task examples. A Raspberry
Pi Model B’s capacity is 20, so it can run one HD
transcoding task, e.g., 4 or 5, or two SD transcoding tasks
(1 and 2), or three SD transcoding tasks (2, 3, and 7), or
one HD transcoding task and 1 SD transcoding task (3
and 6). When a new transcoder registers to the cluster
manager, the idle task in the highest priority task list will
be assigned to it. When a task fails and returns to the
cluster manager, the task manager will try to assign it
to another transcoder. If the cluster manager can find a
transcoder that has enough capacity for it, it will assign
the failed task to that transcoder. If not, the cluster man-
ager will try to revoke tasks with lower priorities from
a transcoder and then assign this task to that transcoder.
If the cluster manager can not find a running task which
has lower priority than the failed task, the cluster man-
ager will not do anything. As discussed in section 3.1, if
we successfully reschedule a failed task, we need to send
messages to transcoders to reset the RTMP connections
of those streams corresponding to the same channel as

7
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ID Channel Command Resource Priority
1 A transcode rtmp://192.168.1.172:1935/live/A src

rtmp://192.168.1.172:1935/live/A 800k 800
10 0

2 A transcode rtmp://192.168.1.172:1935/live/A src
rtmp://192.168.1.172:1935/live/A 600k 600

8 1

3 A transcode rtmp://192.168.1.172:1935/live/A src
rtmp://192.168.1.172:1935/live/A 400k 400

6 0

4 B transcode rtmp://192.168.1.172:1935/live/B src
rtmp://192.168.1.172:1935/live/B 2400k 2400

20 0

5 B transcode rtmp://192.168.1.172:1935/live/B src
rtmp://192.168.1.172:1935/live/B 1600k 1600

16 1

6 B transcode rtmp://192.168.1.172:1935/live/B src
rtmp://192.168.1.172:1935/live/B 800k 800

14 0

7 C transcode rtmp://192.168.1.172:1935/live/C src
rtmp://192.168.1.172:1935/live/C 400k 400

6 0

Table 2: Transcoding task examples

the failed task.

3.4 Implementation

We implemented both the cluster manager and
transcoders on the Linux operating system. We ex-
tensively used open source software in this project,
including Apache [3], Nginx [24], node.js + Express
[26], mqtt.js [22], paho MQTT client library [21],
GStreamer, and Google protobuf. We used Mosquitto
[20] as the MQTT message broker.

Media Server: We built the media server with Nginx
+ Nginx RTMP module [25] and Apache. The RTMP
protocol is implemented by Nginx, whereas the HTTP
interface is provided by Apache. The media server is
installed on a server with Ubuntu 14.04 LTS.

Cluster Manager: The cluster manager is written in
Javascript, and built on node.js + Express. We use mqtt.js
to develop the MQTT client module that subscribes and
publishes messages related to the transcoders. The clus-
ter manager is also installed on a server with Ubuntu
14.04 LTS.

Transcoder: The transcoder’s two components –
transcoder worker and cluster agent are implemented in
C/C++. They depend on GStreamer, paho MQTT client
library, and Google protobuf. We built the SDK, root
disk and Linux kernel for Raspberry Pi with buildroot
[4], then we built the two components with the cus-
tomized SDK.

3.5 Deployment

We deploy VideoCoreCluster in an incremental way.
Currently, we leverage a hybrid approach to provide
transcoding service for the live video streaming service.
The deployment has a small scale VideoCoreCluster with
8 Raspberry Pi Model Bs and a transcoder cluster com-

posed of five powerful servers with Intel Xeon proces-
sors. We plan to extend the size of VideoCoreCluster
and eventually replace all the servers in the deployment.

4 Evaluations

We evaluate VideoCoreCluster on video quality and
transcoding speed with benchmark tests. We also an-
alyze the power consumption of VideoCoreCluster and
compare it with a transcoder cluster built with general-
purpose processors.

4.1 Video Quality Test
The H.264 decoder module of VideoCore IV can sup-
port real-time decoding of H.264 high profile, level 4.0
video with resolutions up to 1920x1080 with very low
power consumption. In addition, the decoding result is
exactly same as the reference H.264 decoders. So the
quality loss of our transcoding system is only from the
encoder. Many hardware video encoders have some op-
timizations to simplify the hardware design while sac-
rificing video quality, especially for the video encoder
modules in SoCs for mobile devices, because of the strin-
gent restriction on power consumption. In order to have
a clear idea about the video quality of the VideoCore’s
H.264 video encoder, we conducted benchmark tests on
it and compared its performance with x264.

Both subjective and objective metrics are available for
evaluating the video quality. Subjective metrics are de-
sired because they reflect the video quality from users’
perspective. However, their measurement procedures are
complicated [18, 30]. In contrast, objective metrics are
easy to measure; therefore, they are widely used in video
encoder developments, even though there are arguments
about them. Two metrics, Peak Signal to Noise Ra-
tio (PSNR) and Structural Similarity (SSIM) Index, are
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Figure 10: Video quality test result of VideoCore IV and x264 with different presets. We used foreman(352x288,
25fps) YUV sequence to test the encoders, set IDR to 2 seconds, and disabled B-frame support of x264.

widely used to compare video encoders. PSNR is the
traditional method, which attempts to measure the visi-
bility of errors introduced by lossy video coding. Huynh-
Thu et al. showed that as long as the video content and
the codec type are not changed, PSNR is a valid qual-
ity measure [50]. SSIM is a complementary framework
for quality assessment based on the degradation of struc-
tural information [63]. We evaluated the hardware video
encoder’s performance with both the PSNR and SSIM.

The x264 has broad parameters to tune, which are cor-
related and it is hard to achieve the optimal configura-
tion. Rather than trying different parameter settings, we
used the presets provided by x264 developers to optimize
the parameters related to video encoding speed and video
quality. The x264 has ten presets: ultrafast, superfast,
veryfast, faster, fast, medium, slow, slower, veryslow,
and placebo (the default preset is medium). They are in
descending order of speed and ascending order of video
quality. As the video quality increases, encoding speed
decreases exponentially.

We used two sets of video sequences for evaluat-
ing the encoders. The first one is the YUV sequences
commonly used in video coding research [39], so the
results can be easily reproduced and compared with
other researcher’s results. The second one is captured
from our deployment that reflects the encoder’s perfor-
mance in practical deployment. We natively compiled
the x264-snapshot-20150917-2245 on a desktop with
Ubuntu 14.04 LTS. We also cross-compiled the libraries,
drivers and firmware for Raspberry Pi from [33, 35] on
the same machine. One thing we notice is that the H.264
encoder of VideoCore IV does not support B-frames.
The reason is that the target applications of the SoC are
real-time communication applications, e.g., video chat-
ting and conference, where low latency is a strict require-
ment. B-frame leads to high encoding/decoding latency.

Thus, the H.264 encoder of VideoCore IV does not sup-
port it. For a fair comparison, we test x264 with and
without B-frame support to check the impact of B-frame
support on video quality vs. bitrate.

For all the video sequences we tested in the first set,
we obtained similar results, though the exact numbers
vary. We also found that the VideoCore’s video en-
coder generated very low-quality video when the target
bitrate was very low. That could be a bug in the video
encoder’s implementation. For brevity, we only show
the results for foreman cif here. We omit the results of
x264 with B-frame because B-frame does not have a sig-
nificant impact on the quality in our encoding settings.
From figure 10, we can see VideoCore IV has similar
or better performance regarding video quality compar-
ing to the x264 with preset superfast. Since the purpose
of the second test set is to evaluate the video encoder’s
performance in practical deployment, we only evaluated
the encoder’s performance with the typical bitrates. Fig-
ures 11a and 11c indicate that the VideoCore has poor
performance on low bitrate settings. However, we be-
lieve it is not a big concern for deployment. When the
players have to use that low bitrate version of the video
streams, the player’s network performance must be very
low. We do not expect that will be a common condition.
As shown in Figures 11b and 11d, VideoCore’s video
quality is good for high bitrate settings. Its quality is
close to x264 with preset medium.

4.2 Transcoding Speed Test

We measured the transcoder’s performance under stress.
We transcoded the video streams captured from an SD
channel and an HD channel offline and recorded the time
for transcoding. There are overheads on demuxing and
muxing in the process, but because of the high complex-
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(a) PSNR values of an SD channel (720x480, 30fps)
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(b) PSNR values of an HD channel (1280x720, 30fps)
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(c) SSIM values of an SD channel (720x480, 30fps)
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(d) SSIM values of an HD channel (1280x720, 30fps)

Figure 11: Video quality test result of VideoCore IV and x264 with different presets. We maintained the same config-
urations (IDR is 2 seconds, B-frame support of x264 is disabled).

ity of transcoding (decoding + encoding), the bottleneck
of the process is on video transcoding. The detail speci-
fications of the test videos are (1) SD channel: 720x480,
30fps, H.264 high profile, level 4.0, 1.2 Mbps. (2) HD
channel: 1280x720, 30fps, H.264 high profile, level 4.0,
4Mbps. For some SD channels with lower resolutions
in our deployment, the transcoding speed is higher than
the results shown here. We transcoded the SD and HD
videos to 800kbps and 2.4Mbps respectively and kept
other parameters the same.

The hardware video encoder in VideoCore IV can
support encoding 1920x1080, 30fps, H.264 high profile
video in real-time. But when we run the decoder and en-
coder at the same time, the performance is not sufficient
to support such high-resolution transcoding in real-time
because the video decoder and encoder share some hard-
ware resources. Even with the optimization described
in section 3, the transcoder can only support transcoding
video with resolution up to 1280x720 in real-time.

We also measured software transcoder’s speed for

comparison. The software video transcoder we used is
FFmpeg, which has built-in H.264 video decoder. We
linked it with libx264 to provide H.264 video encoding.
The desktop we used to run FFmpeg has Intel Core i5-
4570 CPU @ 3.20GHz and 16GB RAM. We built FFm-
peg and libx264 with all the CPU capabilities (MMX2,
SSE2Fast, SSSE3, SSE4.2, AVX, etc.) to accelerate the
video transcoding. We tested superfast (similar quality
as the video encoder of VideoCore IV) and medium (de-
fault) presets of x264. Figure 12 shows that when the
output video qualities are similar, software transcoder ex-
ecuting on powerful Intel i5 CPU runs about 5.5x and 4x
faster than the video transcoder running on Raspberry Pi
for SD and HD channel respectively. For our transcoding
system, which transcodes video in real-time, that means
we can run 5.5x (SD) or 4x (HD) more transcoding tasks
on a desktop than a Raspberry Pi. However, a Raspberry
Pi is much cheaper and consumes much less power than
a desktop with an Intel i5 CPU.
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Figure 12: Transcoding speed of VideoCore IV and
x264.

4.3 Power Consumption Analysis
We can see the superiority of Raspberry Pi regarding
power efficiency from the transcoding speed test. An
Intel Core i5-4570 processor has an average power con-
sumption of 84W [14]. If we include the power con-
sumption of other components, e.g., RAM and Hard
Disk, the power consumption of a server would be
higher than 100W. Raspberry Pi Model B in a configura-
tion without any peripherals except Ethernet has typical
power consumption about 2.1W [45]. The desktop con-
sumes more than 40 times power than the Raspberry Pi
Model B while it can do about 5.5x SD video transcod-
ing or 4x HD video transcoding. We can see the Video-
CoreCluster is more energy efficient than a transcoder
cluster built with general-purpose processors to provide
the same transcoding capacity. We omit the power con-
sumption analysis on the network switches in our system
deployment because we can use the same switches for
the different video transcoders.

5 Related Work

Video Transcoding: Video transcoding is critical for
video streaming service deployment. Different ap-
proaches and architectures have been proposed to im-
plement it for various use cases. Vetro et al. discussed
the transcoding of block-based video coding schemes
that use hybrid discrete cosine transform (DCT) and mo-
tion compensation (MC) [62]. Xin et al. discussed sev-
eral techniques for reducing the complexity and improv-
ing video quality by exploiting the information extracted
from the input video bit stream [65]. Unlike their re-
search, we believe that the cascaded decoder and encoder
approach is much more straightforward and flexible. As
the hardware video encoder improving quality and effi-

ciency and reducing the cost, a cascaded pixel-domain
approach is more suitable for practical deployments. For
a particular scenario, Youn et al. showed that for point-
to-multipoint transcoding, a cascaded video transcoder is
more efficient since some parts of the transcoder can be
shared [67].

Cloud Transcoding: Li et al. introduced a system us-
ing cloud transcoding to optimize video streaming ser-
vice for mobile devices [54]. Video transcoding on a
cloud platform is a good solution to transcode a large
volume of video data because of its high throughput. For
instance, Amazon, Microsoft, and Telestream Cloud pro-
vide cloud transcoding service for users [19, 1, 12]. Net-
flix also deployed their video transcoding platform on
Amazon’s cloud [23].

Specialized Hardware for Video Applications: Ef-
ficiency issue of general-purpose processors on multi-
media applications, including video decoding and en-
coding, has attracted a lot of research efforts. Various
approaches have been studied to improve the hardware
efficiency, including specialized instructions [58, 44],
specialized architectures [52, 59, 64], GPU offloading
[55, 43], application-specific integrated circuit(ASIC)
[56], and FPGA-based accelerators [53].

Adaptive Bitrate Video Streaming: Adaptive bi-
trate video streaming is a widely used technique by
video streaming service providers to provide high-
quality video streaming services. Designing a robust
and reliable algorithm to switch bitrate is challenging.
Many researchers have proposed adaptation algorithms
to achieve a better video quality in dynamic network en-
vironments [51, 49, 66]. These works focus on the client
side implementation, whereas our paper concentrates on
the server side.

Computer Cluster: Computer cluster is a well-
known scheme of distributed system used to provide high
throughput computing. For example, Condor is a dis-
tributed system for scientific applications [61]. Our sys-
tem is unique in the sense that the target application is
real-time computing, and the computing nodes are spe-
cialized, low cost and highly efficient hardware. FAWN
is also a cluster built with low-power embedded CPUs.
However, it is a system only for the data-intensive com-
puting [41]. Our system is both the data-intensive and
computation-intensive.

6 Conclusion and Future Work

High-quality video transcoding is critical to ensure high-
quality video streaming service. We implemented Video-
CoreCluster, a low-cost, highly efficient video transcoder
system for live video streaming service. We built the
system with commodity available, low-cost single board
computers embedding high performance and low power
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video encoder hardware module. We implemented the
cluster based on a network protocol for IoT for the con-
trol path and RTMP for the data path. This separation
design can get low latency in video transcoding and data
delivery. Our system has much higher energy efficiency
than the transcode cluster built with general-purpose pro-
cessors, and it does not sacrifice quality, reliability, or
scalability. We can use VideoCoreCluster on other live
video streaming services, and we can further improve the
system on capability and energy efficiency by upgrading
the transcoders.

7 Acknowledgements

We thank Derek Meyer for his help in the system de-
ployment. We are grateful to our shepherd, Anthony
Joseph, and the anonymous reviewers whose comments
helped bring the paper to its final form. All authors
are supported in part by the US National Science Foun-
dation through awards CNS-1555426, CNS-1525586,
CNS-1405667, CNS-1345293, and CNS-1343363.

References
[1] Amazon elastic transcoder. https://aws.amazon.com/

elastictranscoder/.

[2] Ambarellas broadcast infrastructure solutions. http://www.

ambarella.com/products/broadcast-infrastructure-

solutions#S3.

[3] Apache http server project. https://httpd.apache.org/.

[4] Buildroot - making embedded linux easy. https://

buildroot.org/.

[5] Cisco visual networking index: Forecast and methodology,
2014-2019 white paper. http://www.cisco.com/c/en/

us/solutions/collateral/service-provider/ip-

ngn-ip-next-generation-network/white_paper_c11-

481360.html.

[6] Eighth mpeg-4 avc/h.264 video codecs comparison - stan-
dard version. http://www.compression.ru/video/codec_

comparison/h264_2012/.

[7] Enabling the full 4k mobile experience: System leader-
ship. https://www.qualcomm.com/documents/enabling-

full-4k-mobile-experience-system-leadership.

[8] gst-omx. https://github.com/pliu6/gst-omx.

[9] Gstreamer: open source multimedia framework. http://

gstreamer.freedesktop.org/.

[10] H.264 4k video encoder. http://www.xilinx.com/

products/intellectual-property/1-4iso3h.html.

[11] H.264/avc reference software. http://iphome.hhi.de/

suehring/tml/download/.

[12] High quality video transcoding in the cloud. https://cloud.

telestream.net/.

[13] Http live streaming. https://developer.apple.com/

streaming/.

[14] Intel core i5-4570 processor. http://ark.intel.com/

products/75043/Intel-Core-i5-4570-Processor-6M-

Cache-up-to-3_60-GHz.

[15] Intel integrated performance primitives. https://software.

intel.com/en-us/intel-ipp.

[16] Introducing the video coding engine (vce). http:

//developer.amd.com/community/blog/2014/02/19/

introducing-video-coding-engine-vce/.

[17] Mainconcept. http://www.mainconcept.com/.

[18] Methodology for the subjective assessment of the quality of tele-
vision pictures. https://www.itu.int/dms_pubrec/itu-

r/rec/bt/R-REC-BT.500-13-201201-I!!PDF-E.pdf.

[19] Microsoft azure media services. https://azure.microsoft.
com/en-us/services/media-services/encoding/.

[20] Mosquitto - an open source mqtt v3.1/v3.1.1 broker. http://

mosquitto.org/.

[21] Mqtt c++ client for posix and windows. https://eclipse.

org/paho/clients/cpp/.

[22] Mqtt.js. https://github.com/mqttjs.

[23] Netflix’s encoding transformation. http://www.

slideshare.net/AmazonWebServices/med202-

netflixtranscodingtransformation.

[24] Nginx. https://www.nginx.com/.

[25] nginx-rtmp-module. https://github.com/pliu6/nginx-

rtmp-module.

[26] Node.js. https://nodejs.org/en/.

[27] Nvidia video codec sdk. https://developer.nvidia.com/

nvidia-video-codec-sdk.

[28] Openh264. http://www.openh264.org/.

[29] Openmax integration layer application programming inter-
face specification. https://www.khronos.org/registry/

omxil/specs/OpenMAX_IL_1_1_2_Specification.pdf.

[30] P.910 : Subjective video quality assessment methods for mul-
timedia applications. https://www.itu.int/rec/T-REC-P.
910/en.

[31] Programming audiovideo on the raspberry pi gpu. https://

jan.newmarch.name/RPi/.

[32] Protocol buffers. https://developers.google.com/

protocol-buffers/?hl=en.

[33] Raspberry pi firmware. https://github.com/raspberrypi/
firmware.

[34] Real-time messaging protocol (rtmp) specification. http://

www.adobe.com/devnet/rtmp.html.

[35] Source code for arm side libraries for interfacing to raspberry pi
gpu. https://github.com/raspberrypi/userland.

[36] State of the art of video on smartphone. http:

//ngcodec.com/news/2014/3/13/state-of-the-art-

of-video-on-smartphone.

[37] To stream everywhere, Netflix encodes each movie 120 times.
https://gigaom.com/2012/12/18/netflix-encoding/.

[38] x264. http://www.videolan.org/developers/x264.

html.

[39] Yuv video sequences. http://trace.eas.asu.edu/yuv/.

[40] AHMAD, I., WEI, X., SUN, Y., AND ZHANG, Y.-Q. Video
transcoding: an overview of various techniques and research is-
sues. Multimedia, IEEE Transactions on 7, 5 (2005), 793–804.

[41] ANDERSEN, D. G., FRANKLIN, J., KAMINSKY, M., PHAN-
ISHAYEE, A., TAN, L., AND VASUDEVAN, V. Fawn: A fast
array of wimpy nodes. In Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles (2009), ACM, pp. 1–
14.

12



USENIX Association  2016 USENIX Annual Technical Conference 419

[42] BANKS, A., AND GUPTA, R. Mqtt version 3.1. 1. OASIS Stan-
dard (2014).

[43] CHEN, W.-N., AND HANG, H.-M. H. 264/avc motion es-
timation implmentation on compute unified device architecture
(cuda). In Multimedia and Expo, 2008 IEEE International Con-
ference on (2008), IEEE, pp. 697–700.

[44] DAIGNEAULT, M.-A., LANGLOIS, J. P., AND DAVID, J. P. Ap-
plication specific instruction set processor specialized for block
motion estimation. In Computer Design, 2008. ICCD 2008. IEEE
International Conference on (2008), IEEE, pp. 266–271.

[45] DICOLA, T. Embedded linux board comparison. https:

//learn.adafruit.com/downloads/pdf/embedded-

linux-board-comparison.pdf.

[46] DRAFT, I. recommendation and final draft international stan-
dard of joint video specification (itu-t rec. h. 264— iso/iec 14496-
10 avc). Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T
VCEG, JVTG050 33 (2003).

[47] GEBERT, S., PRIES, R., SCHLOSSER, D., AND HECK, K. Inter-
net Access Traffic Measurement and Analysis. In Proc. of ACM
TMA (2012).

[48] HAMEED, R., QADEER, W., WACHS, M., AZIZI, O., SOLO-
MATNIKOV, A., LEE, B. C., RICHARDSON, S., KOZYRAKIS,
C., AND HOROWITZ, M. Understanding sources of inefficiency
in general-purpose chips. In ACM SIGARCH Computer Architec-
ture News (2010), vol. 38, ACM, pp. 37–47.

[49] HUANG, T.-Y., JOHARI, R., MCKEOWN, N., TRUNNELL, M.,
AND WATSON, M. A buffer-based approach to rate adaptation:
Evidence from a large video streaming service. In Proceedings of
the 2014 ACM conference on SIGCOMM (2014), ACM, pp. 187–
198.

[50] HUYNH-THU, Q., AND GHANBARI, M. Scope of validity of
psnr in image/video quality assessment. Electronics letters 44,
13 (2008), 800–801.

[51] JIANG, J., SEKAR, V., AND ZHANG, H. Improving fairness,
efficiency, and stability in http-based adaptive video streaming
with festive. In Proceedings of the 8th international conference
on Emerging networking experiments and technologies (2012),
ACM, pp. 97–108.

[52] KIM, S. D., AND SUNWOO, M. H. Asip approach for imple-
mentation of h.264/avc. Journal of Signal Processing Systems
50, 1 (2008), 53–67.

[53] LEHTORANTA, O., SALMINEN, E., KULMALA, A.,
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