
This paper is included in the Proceedings of the
2016 USENIX Annual Technical Conference (USENIX ATC ’16).

June 22–24, 2016 • Denver, CO, USA

978-1-931971-30-0

Open access to the Proceedings of the
2016 USENIX Annual Technical Conference
(USENIX ATC ’16) is sponsored by USENIX.

Subversive-C: Abusing and Protecting
Dynamic Message Dispatch

Julian Lettner, University of California, Irvine; Benjamin Kollenda, Ruhr-Universität Bochum;
Andrei Homescu, Immunant, Inc.; Per Larsen, University of California, Irvine, and

Immunant, Inc.; Felix Schuster, Microsoft Research; Lucas Davi and Ahmad-Reza Sadeghi,
Technische Universität Darmstadt; Thorsten Holz, Ruhr-Universität Bochum;

Michael Franz, University of California, Irvine

https://www.usenix.org/conference/atc16/technical-sessions/presentation/lettner

USENIX Association 2016 USENIX Annual Technical Conference 209

Subversive-C: Abusing and Protecting Dynamic Message Dispatch

Julian Lettner∗ Benjamin Kollenda† Andrei Homescu§ Per Larsen∗§ Felix Schuster¶

Lucas Davi‡ Ahmad-Reza Sadeghi‡ Thorsten Holz† Michael Franz∗

∗UC Irvine †Ruhr-Universität Bochum
§Immunant, Inc. ¶Microsoft Research

‡Technische Universität Darmstadt

Abstract
The lower layers in the modern computing infrastruc-
ture are written in languages threatened by exploitation
of memory management errors. Recently deployed ex-
ploit mitigations such as control-flow integrity (CFI) can
prevent traditional return-oriented programming (ROP)
exploits but are much less effective against newer tech-
niques such as Counterfeit Object-Oriented Program-
ming (COOP) that execute a chain of C++ virtual methods.
Since these methods are valid control-flow targets, COOP
attacks are hard to distinguish from benign computations.
Code randomization is likewise ineffective against COOP.
Until now, however, COOP attacks have been limited
to vulnerable C++ applications which makes it unclear
whether COOP is as general and portable a threat as ROP.

This paper demonstrates the first COOP-style exploit
for Objective-C, the predominant programming language
on Apple’s OS X and iOS platforms. We also retrofit the
Objective-C runtime with the first practical and efficient
defense against our novel attack. Our defense is able
to protect complex, real-world software such as iTunes
without recompilation. Our performance experiments
show that the overhead of our defense is low in practice.

1 Introduction

The primary programming environment on Apple’s OS
X and iOS platforms uses a language called Objective-C,
which extends the C language with object-oriented con-
structs. Many of the main application programs on Ap-
ple’s platforms, such as Safari, iTunes, etc. are built using
Objective-C, which differs from C++ in the way that dy-
namic dispatch of function calls is implemented. In spite
of its importance to commercial software platforms, it has
attracted little scrutiny from systems security researchers.

The latest code-reuse mitigation being deployed—
CFI—makes traditional ROP [30] attacks harder to con-
struct. CFI computes an approximation of an applica-
tion’s control-flow graph (CFG) and verifies that all in-

direct branches follow valid CFG edges at run time [1].
In contrast to randomization-based defenses [26], CFI is
secretless and cannot be bypassed via information leak-
age. Like other mitigations, CFI must trade off security
(precision) for performance. Coarse-grained CFI poli-
cies [43, 44] leave a small fraction of code locations avail-
able for reuse by adversaries—enough to mount ROP
attacks [16, 22, 32]. The deficiencies of coarse-grained
CFI renewed interest in more precise policies. Devis-
ing such CFI policies typically requires source code ac-
cess, because structural information required to compute
a complete and precise CFG is lost during compilation.
The recent COOP [31] code-reuse technique exploits the
imprecision of non-C++ aware CFI implementations on
Windows and Linux. Specifically, the attacker manipu-
lates the virtual method tables (vtables) of C++ objects in
memory such that a sequence of attacker-chosen regular
virtual methods is executed via likewise regular virtual
method call sites. Unlike ROP, COOP does not violate
the integrity of return addresses or produce corrupted call
stacks and therefore remains undetected by generic CFI
policies [17, 20]. Moreover, the high-level structure of
C++ code (e. g., class hierarchy and dynamic object types)
cannot be fully recovered without source code, so ma-
licious COOP control flows are difficult to distinguish
from benign ones even for C++-aware CFI policies com-
puted by binary analysis. In terms of expressiveness and
flexibility, COOP is comparable to ROP in C++ environ-
ments [14, 31]. Still, it remains unclear whether COOP is
limited to C++ code on Windows and Linux or whether it
is a generic threat on par with ROP.

This paper shows that programs written in Objective-C
suffer from a systematic vulnerability that enables COOP-
style exploits against Objective-C on OS X and iOS. Like
C++, Objective-C extends the C programming language
with object-oriented constructs. Although both languages
add dynamic dispatch of function calls to C, the imple-
mentation of this feature differs greatly between C++ and
Objective-C. Whereas C++ fixes the vtable for each class

1

210 2016 USENIX Annual Technical Conference USENIX Association

at compile time, Objective-C enables full late binding
by (re)mapping literal method names to actual functions
dynamically at run time. We dub our new class of attacks
Subversive-C and demonstrate its viability against appli-
cations using AppKit, a commonly used framework on
Mac OS X, by constructing a proof-of-concept exploit.

We also show how Subversive-C exploits can be mit-
igated. Our mitigation strategy can be retrofitted onto
existing systems without requiring recompilation of the
programs being protected and has very little overhead.

An important insight is that in many cases, an attacker
can use COOP, Subversive-C, or a combination of both,
because non-trivial OS X and iOS applications like Safari
or MS Office typically contain both Objective-C and C++

(standard libraries or ported code from other platforms)
components. In fact, it is even valid (and common) to
tightly interweave Objective-C and C++ semantics. Such
“Objective-C++” code is accepted by the GCC and Clang
compilers. Hence, effective code-reuse defenses for OS X
and iOS need not only to consider high-level semantics
of Objective-C, but also those of C++.

In summary, our main contributions are as follows:

• Novel Offensive Technique We present
Subversive-C, a new offensive technique that
reuses entire Objective-C methods by carefully
arranging the metadata used to dispatch messages
in the Objective-C runtime. The dynamic nature
of Objective-C coupled with whole-function reuse
renders existing integrity and randomization-based
defenses ineffective against Subversive-C exploits.

• Hardened Objective-C Runtime Because existing
defenses cannot protect against Subversive-C with
low overheads, we developed a new defensive tech-
nique to prevent adversaries from manipulating and
corrupting metadata used by the Objective-C run-
time. Specifically, we retrofit the Objective-C run-
time with integrity checks in the lookup processes
that handle Objective-C message dispatch. Our hard-
ened runtime is fully compatible with the runtime
shipped with OS X and can protect complex, real-
world applications such as iTunes.

• Realistic and Extensive Evaluation We demon-
strate a fully-fledged Subversive-C attack targeting
the AppKit library. We also provide a careful and
detailed evaluation of our hardened Objective-C run-
time. We report a 1.54 % aggregate overhead for
complex, real-world applications.

2 Technical Background

In the following, we provide a brief overview of the tech-
nical concepts we use in the rest of this paper. We discuss
dynamic message dispatch in Objective-C and present an

call impl
cache
lookup

class
lookup

miss

hit

cache impl
hit

has
super
class?

go to
super

yes

fa
st

 p
a
th

sl
o

w
 p

a
th

tried
method

resolver?

call user
forwarder

call impl or
forwarder

no

no
call method resolver

has user
forwarder?

yes

yes

no

cache class
forwardermiss

Figure 1: Fast and slow paths when dispatching messages.

overview of resarch on code-reuse attacks with a specific
focus on COOP.

2.1 Dynamic Message Dispatch
Objective-C is an object-oriented programming language
that extends the C language with dynamically dispatched
Smalltalk-style messaging. Where C++ programmers in-
voke (virtual) methods of objects, Objective-C program-
mers send messages to objects. Each message has three
components: i) the receiver object; ii) the selector, an
identifier naming the method that receives the message;
and iii) zero or more arguments.

Although Objective-C is a statically compiled lan-
guage, the targets of message dispatches are resolved
at run time. At every message dispatch location, the com-
piler simply emits a call to the msgSend function (or one
of its variants) in the Objective-C runtime. The purpose of
the msgSend function is to locate the appropriate method
for a given (receiver, selector) pair and subsequently exe-
cute it.

Figure 1 illustrates the message dispatch algorithm as
implemented in Apple’s Objective-C runtime. It consists
of a fast path and a slow path. The slow path retrieves the
method implementation corresponding to a given selector
by searching through all methods defined by the class
of the receiver object and all its ancestors. The search
operates on compiler-generated metadata attached to each
object as shown in Figure 2.

The lookup algorithm starts with the class of the re-
ceiver and checks the selector against all methods defined
by the receiver’s class. If no method is found, the methods
of the parent class is searched until a method implementa-
tion is found or the root of the class hierarchy is reached.
If neither the class itself nor any of its ancestors contain a
method implementation, the runtime allows the class to

2

USENIX Association 2016 USENIX Annual Technical Conference 211

class

var 1

var n

object
class

super

cache

 methods

super class
isa

flags

nil nil

sel impl

cache

methodsuser forwarder
fwd

nil nil

sel impl

Figure 2: Layout of objects, classes, and lookup caches.

dynamically add an implementation for the given selector.
If the class provides a “method resolver” function, the
runtime calls it. The resolver (depending on its implemen-
tation) may add a new method to the class. The runtime
then repeats the entire lookup process, in case the method
added by the resolver corresponds to the input selector.

The fast path speeds up message dispatch by storing
the results of each lookup in a per-class cache, and reuses
previous results if available. At the beginning of each
message dispatch, the runtime queries this cache for a
method pointer as shown near the top of Figure 1.

The cache entries are stored in memory as a linear array
of (selector, method pointer) pairs. The class metadata
includes a pointer to its corresponding cache. The runtime
performs the lookup using a linear probing algorithm. The
lookup starts from a location computed by hashing the
selector itself and proceeds linearly through the array until
either a match is found—a cache hit—or an empty entry
is reached—a cache miss.

In case neither the cache lookup nor the slow class hi-
erarchy walk find the method for a selector, the runtime
performs one last step before exiting with an error. If the
class provides a “forwarder” function, the runtime calls
this function with the selector, allowing classes to dynam-
ically respond to new messages at run time or forward
messages to other objects. Additionally, the Objective-C
runtime allows the application to install a “user forwarder”
that overrides all per-class forwarders. If this handler
is installed, the runtime calls it at the end of the method
lookup process. The handler pointer is stored in a writable
global variable, which can be manipulated by adversaries.

2.2 Exploitation and Code-Reuse
C/C++/Objective-C eschew memory and type safety fea-
tures of modern languages and require manual memory
allocation and deallocation. This leads to a steady stream

of memory management errors.1 Attackers exploit the
presence of these errors to craft malicious inputs that hi-
jack the control flow of the application. The classic stack
smashing attack injects code and redirects execution to it
by overwriting the return address stored past the end of
an overflowed buffer [2]. Thanks to modern mitigations
such as data execution prevention (DEP), which disallows
memory regions that are both writable and executable,
code injection is all but obsolete. Therefore, modern ex-
ploits reuse legitimate code to bypass DEP. There are
many known variants of code-reuse attacks. The main
differences are the granularity at which legitimate code is
reused. ROP reuses short instruction sequences ending in
returns called gadgets [30,34]. Other variants reuse whole
functions, including Return-into-libc (RILC), COOP,
and our novel Subversive-C technique. Another key dif-
ference is the dispatching mechanism used to transfer
control between the code snippets being reused. ROP and
RILC use return instructions or indirect jump/call instruc-
tions [11]. COOP-style attacks use special “main-loop
gadgets” to iteratively or recursively dispatch a sequence
of method calls controlled by a malicious payload.

An important prerequisite of a code-reuse attack is
knowledge of the target’s memory layout, because the
payload in a code-reuse attack necessarily (directly or in-
directly) references existing code locations. Thus, address
space layout randomization (ASLR) complicates code-
reuse attacks because it randomizes the base address of
linked libraries at load time. However, this is only a small
hurdle for a practical code-reuse attack since informa-
tion leakage or memory disclosure attacks often enable
attackers to undermine ASLR [33, 35, 36, 38].

2.3 Counterfeit Object-oriented Programming

COOP is a code-reuse technique targeting C++ soft-
ware [31]. In COOP, a sequence of attacker-chosen
C++ virtual methods (also called vfgadgets) is executed
on attacker-injected objects (also called counterfeit ob-
jects). Each vfgadget in such a sequence fulfills a specific
task, such as reading a value into a register and may
have certain side-effects. Executed one after another, the
vfgadgets implement the malicious functionality desired
by the attacker, e. g., the execution of a shell command.
Put simply, (short) virtual methods are to COOP attacks
what gadgets are to ROP attacks. Whereas a ROP attack
is initiated by injecting a “fake stack” (containing fake
return addresses) into the target address space, a COOP at-
tack injects a collection of “counterfeit objects”, typically
using a single attacker-controlled write. Each counterfeit

1 For new code, disciplined use of modern coding techniques like
smart pointers for C++ and automatic reference counting (ARC) for
Objective-C alleviate this problem.

3

212 2016 USENIX Annual Technical Conference USENIX Association

object corresponds to exactly one vfgadget and carries a
corresponding pointer to a vtable.2

In ROP and related techniques, data primarily flows
through registers and the stack from one gadget to an-
other. In contrast, data may flow in three different ways
between COOP vfgadgets: (i) through method arguments,
(ii) through global variables, and (iii) through member
fields of overlapping counterfeit objects. The latter is
a pattern specific to COOP, which can greatly facilitate
the creation of meaningful vfgadget chains. For example,
vfgadget 1 may read a value from memory and store it in
the field x of counterfeit object A and vfgadget 2 may in-
crement field y of counterfeit object B. By making objects
A and B overlap such that A.x and B.y map to the same
address, the methods 1 and 2 can be used in conjunction
to read and increment a value.

Different techniques for chaining the execution of
vfgadgets in a COOP attack have been described in pre-
vious work [14, 31]. Using one of these techniques, the
attacker initially corrupts a C++ object used by the target
application such that a subsequent virtual method call is
maliciously diverted to a central dispatcher vfgadget. (In
a ROP attack, the control flow would instead be diverted
to the first gadget, which usually pivots the stack pointer.)
In the simplest case, a so called main loop (ML-G) vf-
gadget is used. Briefly, an ML-G is a virtual method that
invokes virtual methods on a collection of C++ objects.
By making an ML-G operate on a collection of counter-
feit objects, the chained execution of vfgadgets becomes
possible. An example ML-G is discussed in Section 4.2.

3 Threat Model and Assumptions

The assumptions underpinning this research are:

• Data The attacker can arbitrarily read and write data
pages as allowed by the page permissions. Specifi-
cally, the internal data structures of the Objective-C
runtime can be read, written, and corrupted. How-
ever, we assume that ASLR is in place to randomize
the locations of program and runtime data structures.

• Code We assume that DEP prevents code injection
by disallowing the execution of writable pages.

• Runtime We assume that the runtime is protected us-
ing fine-grained code randomization [26], as well as
an implementation of execute-only memory (XoM),
such as XnR [6], Readactor [13], or HideM [21], that
prevents attackers from using information leaks to re-
trieve the code of the runtime. We also rely on these
defenses to secure secret keys (see Section 5.4).

2In C++, every object of a class with virtual methods carries a pointer
to the class’s fixed vtable. Whenever a virtual method is to be exe-
cuted on a C++ object at run time, this pointer is dereferenced and the
respective method’s address is fetched from the table.

• Control flow Since Objective-C is a superset of C,
we assume the C parts of the application and runtime
are protected using appropriate mitigations (CFI, ran-
domization, or equivalent defenses). Defenses such
as Mobile CFI (MoCFI) [15] can be used to protect
Objective-C code from control-flow hijacking.

Note that these assumptions are realistic and match the
capabilities of a real-world attacker. They also match the
adversarial models used in closely related work [13, 14].

4 Subversive-C

In this section, we demonstrate that the principles of the
COOP attack are not only applicable to C++ but also to
Objective-C. Conceptually, a Subversive-C attack pro-
ceeds analogously to a COOP attack: the attacker di-
verts an application’s control flow such that a sequence
of attacker-chosen Objective-C methods (vfgadgets) is
executed on injected counterfeit objects. The first method
executed in such a sequence is necessarily a dispatcher
vfgadget, e. g., a main loop vfgadget (ML-G) as described
in Section 2.3. COOP and Subversive-C are closely re-
lated in the way they rely on counterfeit objects and
vfgadgets. However, as they target different programming
languages, COOP and Subversive-C counterfeit objects
differ in their layouts. For COOP it is sufficient to create
objects that reference a vtable, whereas the Objective-C
runtime features a more involved class layout. Therefore,
an attacker must forge multiple data structures to launch
a Subversive-C attack. The exact procedure is described
next in Section 4.1. Section 4.2 then presents a concrete
Subversive-C attack against applications that use the App-
Kit library.

For brevity, we limit the discussions in this section to
Apple’s OS X operating system and the x86-64 archi-
tecture. However, all techniques and concepts extend to
Objective-C code running on iOS and ARM.

4.1 Exploiting the Objective-C Message
Dispatch Mechanism

The Objective-C runtime implements two different ways
(slow and fast, see Section 2.1) to resolve a class-selector
pair to a function address. We now describe how the
attacker can exploit the Objective-C runtime’s slow path
and fast path lookup mechanisms in order to control the
methods invoked on counterfeit objects in a Subversive-C
attack. These techniques are specific to Subversive-C and
are the key differentiators with respect to COOP.

Slow Path As described in Section 2.1, when a cache
lookup for a selector fails, the msgSend function does a
slow search through all methods available for the receiver
object. The corresponding data structures are partly stored
in read-only memory and cannot be modified by the at-
tacker at run time. Hence, in order to freely choose the

4

USENIX Association 2016 USENIX Annual Technical Conference 213

vfgadgets executed in a Subversive-C attack, the attacker
needs to inject new fake data structures alongside each
counterfeit object. Concretely, each counterfeit object
needs to reference its own fake class struct3 which in turn
references its own fake method list (cf. Figure 2).

Each entry in a class’s method list links a function
pointer to a selector. It is thus sufficient to inject fake
method lists with a single entry. This entry must link the
fixed selector used in the dispatcher gadget to the vfgadget
that is to be executed on the corresponding counterfeit ob-
ject. In turn, the injected fake class struct must be shaped
in such a way that msgSend actually takes the slow path
and evaluates the given method list as desired. A straight-
forward way to ensure this is to null-out the cache-related
fields in the class struct (i.e., invalidate the cache) and to
mark the class as initialized by setting the corresponding
bit in the flags field (not shown in Figure 2).

Instead of creating valid class structs from scratch, for
increased stealthiness and simplicity, an existing class
struct that is compatible with the given dispatcher can be
copied and modified as needed.

Fast Path Instead of invalidating the cache of coun-
terfeit objects, the attacker can also opt to exploit the
fast path look-up by injecting fake class structs with
valid cache entries linking the dispatcher’s selector to
vfgadgets. Doing so is simple, as the caching mechanism
does not use a secure hashing function and, in any case, its
parameters can also be directly rewritten by the attacker.
Hence, the attacker can arbitrarily precompute valid cache
entries offline and incorporate them into fake class structs.

Forward Handlers In addition to forging method lists
and caches, a third option for the attacker to execute arbi-
trary methods from a dispatcher is to abuse forwarders,
which are introduced in Section 2.1: existing forwarders
structs (cf. Figure 2) could be manipulated or fake ones
could be injected such that vfgadgets are executed instead
of actual forwarder handlers. In this approach, the attacker
needs to make sure that both the slow and the fast path fail
for all counterfeit objects for the given dispatcher—e.g.,
by injecting fake class structs with an invalid cache and
an empty method list.

4.2 Proof-of-Concept Exploit
To demonstrate the general applicability of our technique,
we constructed a Subversive-C attack for the x86-64 ver-
sion of the AppKit library. AppKit is part of the Cocoa
framework which encompasses Foundation, AppKit and
Core Data. AppKit in particular is used to create graphical
user interfaces. As such it is included in most graphical
Objective-C programs, including iTunes, Safari, Pages,
Keynote, and many other widely used applications from

3In practice, the class struct is oftentimes split into a read/write and a
read-only part by the compiler. For brevity, we do not make a distinction
between the two here and consider them as one coherent data structure.

Apple and third parties. The Objective-C methods used
in the attack are given in Table 1. We extended the frame-
work that Schuster et al. [31] used to create the COOP
chains to account for the differences between C++ and
Objective-C. The framework uses the SMT solver Z3 [18]
to construct a buffer with the constraints defined by the
layout of the objects and their required relative offsets to
each other. (Recall that typically at least some counterfeit
objects overlap.)

For our proof-of-concept exploit, we require a program
that contains a memory corruption vulnerability allow-
ing an attacker to place data in the target process as well
as overwrite a pointer to an Objective-C instance used
during execution. To reliably bypass ASLR, we further
require an information leak to disclose the position of the
data injected and the location of the instance pointer we
override with our own counterfeit object. Since our gad-
gets are sourced from the AppKit library, this library must
also be loaded by the target process. We simulate a suit-
able vulnerable application by creating an Objective-C
program that requires the AppKit library and lets us inject
attacker-controlled data in the address space. This data is
then interpreted as an Objective-C object, more precisely
as our initial object, which will start our chain. After
this first dispatch the execution is driven entirely by our
counterfeit objects.

High Level Overview For our proof of concept we
opted to construct a chain that leads to the use of an
invoke gadget to call an arbitrary function, in this case
we chose system(). The other gadgets are used to pre-
pare the call by calculating the function address based
on import address table (IAT) entries and arranging ar-
guments in memory correctly. After injecting the coun-
terfeit objects into the target process, the chain is started
by dispatching a message on the initial object, which
directs the control flow to the main loop gadget. This
ML-G dispatches calls to all other gadgets that perform
the necessary computations. The chain reads the address
of libsystem!strlen() from the IAT and adds a pre-
computed offset to it. The result is then used as the target
for the invocation gadget (INV-G in COOP parlance [31]).
The argument for this call is also located in the attacker-
controlled memory and is passed as well. Any precom-
puted data is passed via fields in the injected counterfeit
objects. In Objective-C, an object’s fields are also referred
to as its instance variables.

Initial Object The initial object is the first counterfeit
object and is not part of the actual chain. It is designed
such that dispatching the corresponding selector on it
will enter the ML-G instead of the intended function.
Additionally we pass required arguments, in this case the
address of the gadgets, as instance variables.

Main Loop At the core of our attack lies the main loop
gadget. We use an array-based ML-G (entry 1 in table 1)

5

214 2016 USENIX Annual Technical Conference USENIX Association

Method name (AppKit) Type Description
1 [NSTextReplacementNode dealloc]() ML-G main loop
2 [NSUndoTextOperation affectedRange]() LOAD-R64-G load rdx from instance var.
3 [NSPersistentUIRecord setEncryptionKey:](uint8 t[16]) R-G load rdx from address rdx+8
4 [NSPanelController stringValue]() LOAD-R64-G load rcx from instance var.
5 [NSMatrix cellAtRow:column:](int64 t, int64 t) ARITH-G rdx= rdx ·[self+0xf8]+rcx
6 [NSScrollingScoreKeeper setHoldCount:](int64 t) W-G write rdx to instance var.
7 [NSCustomReleaseData dealloc]() INV-G invoke instance var. as function ptr.

Table 1: Our Subversive-C chain in the standard OS X AppKit library (x86-64) calculates the address of system() in
libsystem and invokes system("/bin/sh"). Gadget type names are according to previous work [31].

which iterates over an array of objects and dispatches a
constant selector on every entry. Each counterfeit object is
an entry in this array. The pseudo code representation of
our ML-G is shown in Listing 1; line 5 invokes the selector
release on every counterfeit object in the injected array.
While this particular ML-G is limited to 28 entries in a
single array, inserting the ML-G itself again as the 28th
entry allows the chaining of more gadgets.

Listing 1: ML-G in NSTextReplacementNode dealloc.
1 children = self->children;
2 counter = 0;
3 while (children[counter] != NULL
4 && counter < 28) {
5 [children[counter] release];
6 counter++;}

Read Gadget We use two read gadgets (#2 and #4)
to load rcx and rdx from instance variables. As these
are argument registers, they are guaranteed to remain
unaltered by msgSend. We load rdx with the address
of the IAT entry of strlen() and rcx with the offset
between strlen() and system() in libsystem.

Read Gadget with Dereference As we only assume
the address of the AppKit module to be given, the address
of system() in libsystem needs to be calculated dy-
namically. To this end, we read a pointer to libsystem

from the IAT of the AppKit module and, in the next step,
add a constant offset to it. The gadget we use (entry 3)
loads rdx with the 64-bit value pointed to by rdx+8. As
we control the value of rdx with gadget #2, we can read
from a chosen address here. We use this to load rdx with
the address of strlen() from AppKit’s IAT.

Arithmetic Gadget At this point rdx and rcx contain
attacker-controlled values and can be used to calculate
the actual address of system(). Gadget #5 adds both
registers and stores the result to rdx.

Store Gadget Due to the semantics of our invocation
gadget (INV-G) (see next step) we need to store the calcu-
lated address of system() in a specific instance variable
of counterfeit object #7. Thus, the two counterfeit objects
corresponding to gadgets #6 and #7 need to overlap: gad-
get #6 stores the function pointer in rdx in an instance
variable of its counterfeit object; gadget #7 reads this

pointer from an instance variable in its counterfeit object
(which maps to the same address) and invokes it.

Invocation Gadget The original purpose of our INV-G
(#7) is the invocation of a custom deallocator specified
via an instance variable. The argument that is passed is
also read from an instance variable. This means we both
control the function called and its argument. Here, we use
this to execute system("/bin/sh").

5 Mitigating Subversive-C

A key insight of our attack is that it targets data structures
specific to the Objective-C runtime, much like COOP
targets the C++ specific vtable. Therefore, we build our
defense around protecting the integrity of these data struc-
tures. Unlike C++ vtables, the data structures used by
msgSend are mutable which means COOP defenses such
as vtable randomization [14] are not suitable to protect
the Objective-C runtime against Subversive-C. Instead,
we choose to base our defense on message authentication
to detect malicious tampering.

We add a message authentication code (MAC) to every
sensitive field or data structure in the runtime as shown in
Figure 3, and use this MAC to verify the integrity of the
data structures before sensitive control flow transfers, i.e.,
those that indirectly use the contents of the data structures.
Every time the runtime changes the contents of one of its
structures, it also updates the MAC. Thus, an attacker can
no longer alter data structures without needing to update
the associated MAC. However, each MAC computation
has two inputs: the message (data) to authenticate and a
secret key. Without both inputs, a correct MAC cannot be
computed. Knowing the secret keys would allow attackers
to tamper with runtime data structures, so we store them
in a key store which attackers cannot read. We describe
the key store in detail in Section 5.4.

In the following, we first describe our different ap-
proaches to the stages of method lookup, as they have
different requirements (most notably the tolerable over-
head). Subsequently, we explain the implementation of
our secure key store which protects keys from attackers.

6

USENIX Association 2016 USENIX Annual Technical Conference 215

no slow path attack no fast path attack

class

var 1

var n

object
class

super

cache

 methods

super class
isa

flags

nil nil

sel impl

class hmac

hmac

nil

cache

methodsuser forwarder
fwd

fwd hmac

no forwarder attack

nil nil

sel impl

Figure 3: HMACs are used to ensure the integrity of class
metadata and caches.

5.1 Securing the Slow Path
To protect the slow path lookup, we repurpose an unused
field in the class structure to store a MAC (or more
precisely a HMAC) as depicted in Figure 3. The hash is
populated during class initialization and checked before
any class metadata is used for method lookup. If a dis-
crepancy is detected, program execution is aborted with
an error message. To compute the hash, we chose the
HMAC-MD5 function with the following inputs:

• The method list consisting of flags, entry count and
an array of method structures.

• The superclass field to prevent the attacker from
modifying the class hierarchy.

• The flags field to prevent the attacker from removing
the initialized bit. An unset initialized bit forces the
runtime to rebuild the method list (a process which
the attacker could tamper with).

• The isa field which points to the meta-class of the
current class.

• The address of the class object to uniquely iden-
tify the class. A unique identifier is needed to dis-
tinguish between similar classes, such as siblings,
preventing the attacker from copying the method
lists and hash values between them (in such cases,
the superclass pointer and flags match).

• A secret key—Kclass—retrieved from a secure key
store, which we discuss in more detail in Section 5.4.
We use a single global Kclass for all classes in the
application.

Let X be the concatenation of all the elements in the
above list except the secret key. We use the following
HMAC:

Hclass(X ,Kclass) = HMACMD5(X ,Kclass) (1)

Our choice of the HMAC function is a pragmatic one:
HMAC-MD5 is relatively fast, still considered secure [7]
(in contrast to MD5), and is available through a library
already linked by the Objective-C runtime. Note that the
choice of HMAC is a security parameter in our defense;
we can replace HMAC-MD5 with any stronger (but likely
also slower) MAC in case attacks against HMAC-MD5
appear.

The core assumption of our protection scheme is that
the attacker does not know the secret key and hence can-
not modify the method list or other metadata used during
method lookup without being detected. However, meta-
data may also change for legitimate reasons. Objective-C
is a dynamic language which provides APIs for, e.g.,
adding classes and methods at run time. We support legit-
imate changes to metadata via provided APIs by making
the change, followed by recomputing the HMAC field.

Note that computing the MAC adds considerable over-
head to the slow path lookup (see Section 6.2 for empirical
evaluation results). However, lookup results are cached
so the slow path is only executed once per (class, selector)
pair. Therefore, the steady state program performance
remains unaffected. This is also reflected in the imple-
mentation of the runtime: the fast path consists of highly-
optimized assembly code while the slow path is simply
written in C.

5.2 Securing the Fast Path
We protect the fast path in a manner similar to the way
we secure the slow path. We implement an authentication
mechanism for cache entries that detects any tampering.
However, in our practical experiments, we have encoun-
tered applications, e.g., iTunes, that modify cache entries
directly, i.e., writing to the entries in memory instead of
using the runtime API, in much the same way an attacker
could tamper with the cache. Therefore, we must allow
changes to the cache originating outside the runtime and
make sure we detect them and fall back to the slow path.

We implement this by extending the fast path lookup
algorithm with an additional authentication step for cache
hits, as shown in Figure 4. This additional step computes
the MAC of the cache entry and checks it against the
MAC stored inside the entry. If the hash matches, the
algorithm continues normally. Otherwise, the algorithm
considers the authentication failure as a cache miss. We
also modified the runtime to update the stored MAC on
changes to a cache entry.

Each cache entry contains two pointers: the selector
and the method implementation pointer, as shown in Fig-
ure 3. Using these pointers as the MAC input ensures that
the attacker cannot modify existing cache entries or add
new ones. However, the attacker could still copy entries
between caches for different classes, and we wouldn’t
be able to detect this. Therefore, we add a third pointer
to the MAC input: the pointer to the class that owns the

7

216 2016 USENIX Annual Technical Conference USENIX Association

call implcache
lookup

miss

hit

sl
ow

 |
fa

st
 p

at
h

check
HMAC

fail

pass

Figure 4: Fast path secured with MAC integrity check.

cache. This prevents the attacker from copying valid
cache entries between classes, as each cache entry is now
associated with a class.

Unlike the slow path, performance is critical on the fast
path and every additional instruction can have a signifi-
cant impact. Therefore we selected a MAC that we can
implement in as few assembly instructions as possible,
and easily integrate into the existing cache lookup algo-
rithm. The NH hash function family used in UMAC [8]
meets our performance requirements, so we use a modi-
fied version of NH as part of our MAC:

H1(X ,K) =
i≤2

∑
i=0

(XL[i]+KL[i])∗ (XH [i]+KH [i]) (2)

where:

• X = (class,sel, imp) is the 192-bit concatenation of
the three pointers to hash: the class pointer, the se-
lector and the method implementation.

• K = (K0,K1,K2) is the 192-bit secret key retrieved
from the key store.

• XL[i], KL[i], XH [i], and KH [i] are the low and high 32-
bit words of the ith element of X and K, respectively.

The H1 function has very low collision probability, but
is vulnerable to known plaintext attacks (given a large
enough sample of H1(X ,K) outputs and their correspond-
ing X inputs, the attacker can compute the K), and there-
fore insufficient to use as a MAC. UMAC strengthens
NH against these attacks by XORing its result with a
random number produced by applying a pseudo-random
function (PRF) to a nonce.

Using a strong PRF in this case would take too many
processor cycles, however, so we use a faster alternative in
the form of a fixed-size table T of random 64-bit numbers.
We generate this table at program load time, and store it in
memory securely as described in Section 5.4. To compute
the 64-bit HMAC of a cache entry, we compute H1, use its
output to index into T , and use the resulting value as the
output. To simplify indexing, we always allocate T as a
table of size |T |= 2N . To compute the index we truncate
the output of H1 to 32 bits and then use the highest N bits.
The final form of the HMAC becomes:

Hcache(X ,Kcache) = T [H1[31:(31−N)](X ,Kcache)] (3)

5.3 Securing the Forward Handlers
There is another attack vector that the attacker can use
during message dispatch: the user forwarder pointers (one
for regular message dispatch and one for calls that return
structures). The application can legitimately set these
pointers using an API call, and many applications use this
feature. We prevent attackers from modifying the two
pointers by associating a HMAC with each pointer. The
runtime updates the HMAC whenever it changes one of
the pointers, and checks the HMAC before calling any of
the handlers. We once again use a helper function:

H2(f wd,K) = (f wdL +KL)∗ (f wdH +KH) (4)

that combined with the table T gives us the HMAC:

Hfwd(f wd,Kfwd) = T [H2[31:(31−N)](f wd,Kfwd)] (5)

5.4 Secure Key Store
Our defense must keep several pieces of information se-
cret to attackers: the HMAC keys—Kclass, Kcache, and
Kfwd—and the random table T . Discovering these values
would allow the attacker to forge the HMAC values and
bypass our defenses. It is therefore critical that we prevent
attackers from disclosing or guessing these values.

To hide secrets from attackers, we rely on a security
primitive known as XoM. This construct allows us to map
virtual memory pages in memory so that they will gener-
ate a segmentation violation if accessed by anything other
than the CPUs instruction fetch unit. Embedding secret
values inside such pages allows the runtime to retrieve
the values using function calls, while at the same time
preventing attackers from reading the pages using direct
information leaks. As outlined in Section 3, our threat
model assume that one of the available XoM implementa-
tions [6, 9, 13, 21] has been deployed on the Objective-C
runtime.

We store every secret value inside an execute-only ac-
cessor function that returns that secret value when called
(the value itself is embedded in the body of the acces-
sor). Additionally, the attacker cannot call the accessor,
since that would require hijacking the control flow of the
program.

Using one accessor per 64-bit secret value would in-
crease memory usage significantly (we would need an 11-
byte accessor for every 8-byte secret, producing a memory
overhead of 37.5%), so we take another approach. We
store the keys along with T inside a read-only memory
region allocated at a random memory address (chosen
randomly when calling mmap), then store a pointer to this
region inside an accessor. To access the table, the runtime
calls the accessor to get the pointer, then accesses T using
a regular memory read.

To simplify our implementation and reduce the number
of accessor calls, we store the HMAC keys as extra cells

8

USENIX Association 2016 USENIX Annual Technical Conference 217

(one per every 64 bits of key) inside the table T and
perform a single accessor call to get the keys and table
pointer. This lets the runtime retrieve all secret values
using a single accessor call on the fast path, as opposed
to one or more per key and then one for the table.

6 Evaluation

In the following, we discuss evaluation results related to
the security and performance of our proposed defense.

6.1 Security
We evaluated the effectiveness of our defense using the
proof-of-concept Subversive-C exploit described in Sec-
tion 4. Our hardened runtime is a drop-in replacement
which lets us keep all other parameters the same. Thus
we can be confident that any differences during program
execution are caused by our defense. When running our
original attack without any adaptations, the program ter-
minates either due to failing pointer checks (in most cases)
or integrity checks. The reason for this is that our original
attack does not generate all data structures touched by the
integrity checks, but rather the bare minimum necessary
to exploit message dispatch. Therefore some dereferenced
pointers stay uninitialized. Even if an “accidental pointer”
references valid memory, the actual integrity check fails
due to the mismatch between computed and stored values.

Next, we extended our attack to generate all data struc-
tures that are needed for metadata verification, i.e., all
structures that act as input for the HMAC. The easiest
way to do so is to copy and then modify existing class
structures. However, we were unable to compute the cor-
rect HMAC values used to secure the contents of both the
cache and the method list. This left us with guessing the
right value as the only remaining choice, which is difficult
since we need to guess correctly for every counterfeit ob-
ject in the chain. An incorrect guess for any object leads
to detection and program termination.

In both cases Subversive-C is detected before any
attacker-controlled code is executed. More specifically,
program execution is aborted on the first message that is
dispatched to a counterfeit object. As expected, we can
create (valid) empty caches, or use the fallback mecha-
nism of the cache protection which triggers a slow path
lookup whenever the cache integrity check fails. Creating
valid cache entries is difficult due to the keys used in the
HMAC being inaccessible to the attacker. With the cache
secured, we can try to forge the HMAC for the method
list. Here we face even stronger security guarantees since
we need to forge HMAC-MD5. Again the attacker lacks
the knowledge of the input keys which are protected by
the secure key store.

The third way to gain code execution would be to over-
write the forward handlers. However, even with an ar-

bitrary write primitive to allow modifications of these
handlers, this will not work. They are protected and the
attacker again lacks the secret keys to generate valid han-
dler entries.

We therefore conclude that our hardened runtime prob-
abilistically detects and prevents Subversive-C exploits.

6.2 Performance
Since there is no standard set of Objective-C benchmarks,
we compiled the following list of programs to evaluate
the performance of our hardened runtime:

• Dispatch (micro) invokes a dynamically dispatched
(and empty) method in a tight loop. The empty
method is invoked 108 times.

• Fibonacci (micro) computes the 35th Fibonacci
number using naive recursion.

• Sorts4 (micro) uses different sorting algorithms
(merge, quick, bubble, heap, insertion, selection, and
the Objective-C library sort) to sort integer arrays
of size 104. We combine the running times of all
algorithms for our purpose.

• XML parser5 (application) parses and creates song
objects from XML data (100 or 1000 entries) using
the NSXMLParser class [4] from the Objective-C
standard library.

• iTunes play (application) plays a 5 second audio
clip and closes iTunes.

• iTunes encode (application) converts a 4 minute
song in MP3 format (7 MB) to M4A (7.6 MB) using
the AAC encoder provided by iTunes.

• Pages PDF (application) exports a 100 page docu-
ment (270 KB) to PDF (327 KB) in Pages (Apple’s
word processor).

When reporting results we average over 100 and 10
runs for micro benchmarks and application benchmarks,
respectively. We automate the application benchmarks us-
ing AppleScript [3] which increases the consistency of our
results and allows us to interact with real-world applica-
tions. Our hardened runtime is based on the Objective-C
runtime version 532.2 (x86-64), which we use as the
baseline for performance comparison. Experiments were
conducted on an iMac 2.8 GHz Intel Core i7 with 8 GB
memory running OS X Yosemite (10.10.5) and the latest
versions of iTunes and Pages. In addition, we ran each
benchmark with an instrumented version of our runtime
to count the number of times the general dispatch function
msgSend is invoked. Table 2 reports the results of our ex-
periments. Note that the reported numbers do not include
the overhead for the defenses assumed in Section 3.

The goal of the Dispatch benchmark is to give us an
upper bound for the overhead incurred by our hardened

4 The Sorts benchmark [24] was developed by Jesse Squires.
5 XML parser is an adaptation of a benchmark from Apple [5] that

compares the performance of XML parsing libraries on iOS.

9

218 2016 USENIX Annual Technical Conference USENIX Association

Benchmark msgSend calls Calls/ms Overhead
Dispatch 10,000,000,215 190583 106.46 %
Fibonacci 2,986,070,515 173527 88.66 %
Sorts 13,329,480,611 82597 34.54 %
Average (micro) 148902 76.55 %
XML-100 7,940,898 6475 2.81 %
XML-1000 78,119,698 6386 1.97 %
iTunes play 8,592,257 1667 0.37 %
iTunes enc. 114,948 29 1.82 %
Pages PDF 78,691 46 0.75 %
Average (application) 2921 1.54 %

Table 2: msgSend invocation counts and overheads.

runtime. This is realistic since the benchmark does no
real work and just calls an empty method repeatedly. This
puts maximum pressure onto the message dispatch mech-
anism which is the only part of the runtime affected by
our protection scheme. Using the data from Table 2 we
conclude that the maximum slowdown is bounded by 2x.

The Fibonacci benchmark mainly executes recursive
method calls plus an add operation and some control
flow to terminate recursion. Note that we mean dynami-
cally dispatched call, i.e., calls dispatched via msgSend,
whenever we write method call in this section. Standard
C function calls are valid in Objective-C, but do not go
through msgSend. Therefore our defense does not reduce
the performance of regular calls to C functions.

The Sorts benchmark is implemented in a way that
leads to a high number of msgSend calls. Rather than
using plain integer arrays, it uses Objective-C collections
that require boxing of the integer numbers they store.
So what normally is a simple array access becomes two
method calls: one to index the collection and one to un-
box the integer for comparison. The benchmark results
reflect this accordingly. To back our claim we modi-
fied the benchmark to use plain integer arrays, replacing
NSMutableArray with (int arr[],int len). As ex-
pected, the difference in running times then falls into the
range of measurement noise (< 1%).

At this point we want to draw attention to the relation
between msgSend calls per millisecond and the reported
overhead. For compute-intensive programs it is directly
proportional. In other words: the more real work a pro-
gram does, the smaller the overhead.

With the second set of benchmarks we want to demon-
strate that although overhead for individual micro bench-
marks is considerable, it is insignificant in practice. Espe-
cially for interactive applications like iTunes and Pages
there is no perceivable slowdown during normal use. For
the benchmarks iTunes play and Pages PDF the reported
overhead is in the range of measurement noise. Our ex-
planation is that Objective-C is mostly used to implement
an application’s logic and user interface while core func-

tionality (playing and encoding music files, exporting to
PDF) is provided by C libraries. Hence, we incur little to
no overhead on those activities. The only time an end user
experiences additional delay is during program startup.
Table 3 quantifies this delay.

Benchmark HelloWorld iTunes

Startup Base 35 1020
Hardened 107 1478

Overhead
Total 72 458
Random table 43 43
Integrity checks 29 415

Table 3: Startup times and overhead in milliseconds.

We measured the running time of a simple HelloWorld
program and the startup time of iTunes both with our
baseline and hardened runtime. The total startup overhead
for HelloWorld is 72 ms, whereof 43 ms are attributed to
seeding the random table which aids the implementation
of the secure key store. The remaining 29 ms are spent
to populate and check hashes of 280 core classes, e.g.,
NSObject, which are eagerly initialized by the runtime.
The time needed to seed the random table depends linearly
on the size of the table. In our implementation the table
holds 1 million keys resulting in 8 MB total size. The size
of the table can be adjusted to adhere to an application’s
security and memory constraints.

For iTunes the total startup overhead is about half a
second. This is due to iTunes being a complex applica-
tion initializing roughly 2000 Objective-C classes during
startup. Considering typical application usage patterns
we argue that this is acceptable since there is no further
perceived slowdown during continued use.

7 Discussion

In Section 5.4, we presented our approach to securing
the key store against leaks: we store its contents at a
random address in memory, then store the address as a
pointer inside XoM. Since the pointer is stored in a single
non-readable location in memory, attackers cannot use an
information leak attack to locate the table. However, this
approach could expose the table to attackers in some other
way, e.g., probing all memory pages one by one to find
the table. However, probing attacks would be difficult
for two reasons. First, locating all readable virtual mem-
ory pages is difficult, assuming attackers cannot install a
signal handler or obtain a virtual memory map for the pro-
gram. Second, to identify the table T in memory, attackers
would need to distinguish between randomly-generated
bytes and proper program data. Therefore, the barriers to
attackers locating T are high. Choosing whether to store
the random table in execute-only or readable memory

10

USENIX Association 2016 USENIX Annual Technical Conference 219

presents a potential security vs. memory usage trade-off.
Storing T directly in XoM provides guaranteed secrecy,
at the cost of an extra 37.5% memory usage for the table.
We therefore leave this decision to system developers.

Side-channel attacks are another potential class of at-
tacks against the key store, or more specifically against
the table T . For example, attackers could derive the in-
dices used to access the table, and therefore the values of
H1, by measuring the externally-visible metrics (such as
cache misses or CPU cycles) while the runtime performs
its integrity checks (similar attacks have been demon-
strated on cryptographic functions [41]). If such attacks
prove feasible and likely, the same defenses that protect
cryptographic algorithms can also be applied to our key
store [12].

One other interesting mitigation is object layout ran-
domization. In the runtime, the offsets of instance vari-
ables from the start of an object are dynamically defined
when its class is loaded. The Objective-C language puts
no constraints on the order of variables inside an object,
i.e., there is no requirement that they be in the same order
that they appear in the source code. Therefore, it would be
possible to randomize the object layout. This would not
defend against an attacker who can read all of memory,
but would make it harder to inject counterfeit objects.

8 Related Work

The work on exploitation and exploit mitigations is exten-
sive. Due to the page limitation, we refer the interested
reader to Szekeres et al. [39] and focus on recent, closely
related work on attacks and defenses.

Attacks Our work is inspired by the recently published
COOP technique [14, 31]. COOP itself is but one of a
series of exploitation techniques that are able to bypass
coarse-grained CFI policies [10, 16, 23, 32]. By virtue
of exploiting the dynamic dispatching mechanisms, both
Subversive-C and COOP-style attacks are not stopped
by randomization-based defenses that have been widely
studied in the last years [26]. RILC is another related ex-
ploitation technique [28, 40]. Whereas Subversive-C and
COOP reuse dynamically bound methods, RILC reuses
dynamically linked functions in the procedure linkage
table such as those in the C standard library. Despite the
name, RILC applies to other libraries than libc [37].

Defenses MoCFI [15] was designed to protect
Objective-C code running on iOS for ARM.6 MoCFI
maintains a shadow stack to enforce that a return tar-
gets its original caller. Further, forward indirect branches
must follow a valid CFG path calculated by means of
static analysis. However, Subversive-C circumvents these
protections: (1) it never violates call-return matching, and

6Our research uses but is not specific to x86-64 hardware.

(2) it dispatches all malicious function calls via msgSend
which resembles a valid CFG path. Further, MoCFI’s
protection of the msgSend selector and class metadata
do not prevent Subversive-C since we do not corrupt se-
lectors and avoid changing class structures in ways that
MoCFI would detect. Specifically, MoCFI ensures that
the class or superclass pointer for each object is known
and prevents creation of entirely new classes at run time.
However, MoCFI must allow new class structs, where
only the superclass pointer is known to MoCFI. As a re-
sult, we can construct Subversive-C attacks that use valid
superclass pointers or alter the method lists of existing
classes. We stress that MoCFI and our novel defense
complement each other and can prevent a broader range
of attacks when used in concert.

CFR [29] is a compiler-based CFI implementation for
Objective-C code on iOS. Unlike MoCFI, which pro-
tects returns using a shadow stack, Control-Flow Restric-
tor (CFR) enforces a purely static policy for all indirect
branches. Since CFR does not place any particular restric-
tion on calls dispatched via msgSend, CFR does not stop
Subversive-C attacks but could complement our defense
just like MoCFI. CFR does support programmer-inserted
annotations to further constrain the CFG which could
potentially prevent our attack; doing so requires manual
effort and may lead to errors that prevent programs from
running correctly.

Readactor++ [14] is the first randomization-based de-
fense which thwarts COOP attacks by randomizing and
booby trapping C++ vtables. Due to the differences in dis-
patching mechanisms, the concepts behind Readactor++

does not generalize to prevent Subversive-C exploits. For
example, vtables are immutable and can be hidden us-
ing XoM whereas Objective-C class metadata is mutable
which is why we opted to use HMACs instead.

CPI [25] separates regular data from control data which
thwarts Subversive-C exploits. CPI relies on static analy-
sis to identify sensitive data which is more challenging for
Objective-C code than C and C++ code. It also requires
software-fault isolation or hardware segmentation to resist
memory probing attacks [19].

Recently, van der Veen et al. [42] presented a purely
binary-based defense against COOP, which breaks data
flows between vfgadgets through argument registers.
Their method enforces a CFI policy derived via static
code analysis that limits the vfgadget space available to
an attacker, thus making attacks harder. As our example
exploit relies on data flows through argument registers, it
would be thwarted by this defense. However, we note that
Subversive-C—and also COOP in general—does not in-
herently require register-based data flows, as attackers can
potentially fall back to leveraging overlapping counterfeit
objects only or passing data via scratch areas.

11

220 2016 USENIX Annual Technical Conference USENIX Association

Similar to our defense, CryptoCFI [27] uses HMACs
to protect sensitive pointers. CryptoCFI computes cryp-
tographically secure HMACs using special AES instruc-
tions on the latest Intel x86 processors. Although a direct
comparison is not possible, the overheads of using this
defense is likely far higher than ours and requires that part
of the SIMD register file be reserved for CryptoCFI.

9 Conclusion

This paper presented Subversive-C which is the first
whole-function reuse attacks abusing the msgSend fea-
ture of Objective-C. Our attack shows that COOP-style
attacks which are far harder to prevent than ROP-style
code-reuse, are not limited to C++ code. We discuss the
intricacies of Objective-C message dispatch and how to
utilize them for our attack. Specifically, we describe an
attack targeting the AppKit (x86-64) library for OS X,
which is a core building block for many popular appli-
cations. Finally, we present a practical defense against
Subversive-C and show that it imposes a negligible perfor-
mance overhead when protecting real-world applications.

Acknowledgments

We would like to thank David Chisnall, our shepherd Ran-
dal Burns, and the anonymous reviewers for their valuable
input. Fabian Kammel helped with the implementation of
the attack outlined in Section 4.

This material is based upon work partially supported
by the Defense Advanced Research Projects Agency
(DARPA) under contracts FA8750-15-C-0124, FA8750-
15-C-0085, and FA8750-10-C-0237, by the National Sci-
ence Foundation under award number CNS-1513837, by
the ERC Starting Grant No. 640110 (BASTION) as well
as gifts from Mozilla, Oracle and Qualcomm. In addition,
this work was supported in part by the German Science
Foundation (project S2, CRC 1119 CROSSING), the Eu-
ropean Union’s Seventh Framework Programme (609611,
PRACTICE), and the German Federal Ministry of Educa-
tion and Research within CRISP.

Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the authors
and do not necessarily reflect the views of the Defense
Advanced Research Projects Agency (DARPA), its Con-
tracting Agents, the National Science Foundation, or any
other agency of the U.S. Government.

References

[1] ABADI, M., BUDIU, M., ERLINGSSON, Ú., AND LIGATTI, J.
Control-flow integrity principles, implementations, and applica-
tions. ACM Transactions on Information System Security 13
(2009).

[2] ALEPH ONE. Smashing the stack for fun and profit. Phrack
Magazine 7 (1996).

[3] APPLE INC. AppleScript language guide.
https://developer.apple.com/library/mac/
documentation/AppleScript/Conceptual/
AppleScriptLangGuide/introduction/ASLR_
intro.html, 2015.

[4] APPLE INC. NSXMLParser class reference.
https://developer.apple.com/library/ios/
documentation/Cocoa/Reference/Foundation/
Classes/NSXMLParser_Class, 2015.

[5] APPLE INC. XMLPerformance on iOS.
https://developer.apple.com/library/ios/
samplecode/XMLPerformance/Introduction/
Intro.html, 2015.

[6] BACKES, M., HOLZ, T., KOLLENDA, B., KOPPE, P.,
NÜRNBERGER, S., AND PEWNY, J. You can run but you can’t
read: Preventing disclosure exploits in executable code. In ACM
Conference on Computer and Communications Security (CCS)
(2014).

[7] BELLARE, M. New proofs for NMAC and HMAC: Security
without collision-resistance. In Advances in Cryptology - CRYPTO
2006, C. Dwork, Ed., vol. 4117 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2006, pp. 602–619.

[8] BLACK, J., HALEVI, S., KRAWCZYK, H., KROVETZ, T., AND
ROGAWAY, P. UMAC: Fast and secure message authentication.
In Advances in Cryptology—CRYPTO (1999).

[9] BRADEN, K., CRANE, S., DAVI, L., FRANZ, M., LARSEN, P.,
LIEBCHEN, C., AND SADEGHI, A.-R. Leakage-resilient layout
randomization for mobile devices. In Symposium on Network and
Distributed System Security (NDSS) (2016), NDSS.

[10] CARLINI, N., AND WAGNER, D. ROP is still dangerous: Break-
ing modern defenses. In USENIX Security Symposium (2014).

[11] CHECKOWAY, S., DAVI, L., DMITRIENKO, A., SADEGHI, A.,
SHACHAM, H., AND WINANDY, M. Return-oriented program-
ming without returns. In ACM Conference on Computer and
Communications Security (CCS) (2010).

[12] CRANE, S., HOMESCU, A., BRUNTHALER, S., LARSEN, P.,
AND FRANZ, M. Thwarting cache side-channel attacks through
dynamic software diversity. In Symposium on Network and Dis-
tributed System Security (NDSS) (2015).

[13] CRANE, S., LIEBCHEN, C., HOMESCU, A., DAVI, L., LARSEN,
P., SADEGHI, A.-R., BRUNTHALER, S., AND FRANZ, M.
Readactor: Practical code randomization resilient to memory dis-
closure. In IEEE Symposium on Security and Privacy (S&P)
(2015).

[14] CRANE, S., VOLCKAERT, S., SCHUSTER, F., LIEBCHEN, C.,
LARSEN, P., DAVI, L., SADEGHI, A.-R., HOLZ, T., SUTTER,
B. D., AND FRANZ, M. It’s a TRAP: Table randomization and
protection against function reuse attacks. In ACM Conference on
Computer and Communications Security (CCS) (2015).

[15] DAVI, L., DMITRIENKO, A., EGELE, M., FISCHER, T., HOLZ,
T., HUND, R., NÜRNBERGER, S., AND SADEGHI, A.-R. MoCFI:
A framework to mitigate control-flow attacks on smartphones. In
NDSS (2012).

[16] DAVI, L., LEHMANN, D., SADEGHI, A.-R., AND MONROSE,
F. Stitching the gadgets: On the ineffectiveness of coarse-grained
control-flow integrity protection. In USENIX Security Symposium
(2014).

[17] DAVI, L., SADEGHI, A.-R., AND WINANDY, M. ROPdefender:
A detection tool to defend against return-oriented programming
attacks. In ACM Symposium on Information, Computer and Com-
munications Security (ASIACCS) (2011).

12

USENIX Association 2016 USENIX Annual Technical Conference 221

[18] DE MOURA, L., AND BJØRNER, N. Z3: An efficient SMT solver.
In Tools and Algorithms for the Construction and Analysis of
Systems (TACAS) (2008).

[19] EVANS, I., FINGERET, S., GONZALEZ, J., OTGONBAATAR, U.,
TANG, T., SHROBE, H., SIDIROGLOU-DOUSKOS, S., RINARD,
M., AND OKHRAVI, H. Missing the point: On the effectiveness
of code pointer integrity. In IEEE Symposium on Security and
Privacy (S&P) (2015).

[20] FRANTZEN, M., AND SHUEY, M. StackGhost: Hardware facili-
tated stack protection. In USENIX Security Symposium (2001).

[21] GIONTA, J., ENCK, W., AND NING, P. HideM: Protecting the
contents of userspace memory in the face of disclosure vulnerabil-
ities. In ACM Conference on Data and Application Security and
Privacy (CODASPY) (2015).

[22] GÖKTAS, E., ATHANASOPOULOS, E., BOS, H., AND PORTOKA-
LIDIS, G. Out of control: Overcoming control-flow integrity. In
IEEE Symposium on Security and Privacy (S&P) (2014).

[23] GÖKTAS, E., ATHANASOPOULOS, E., POLYCHRONAKIS, M.,
BOS, H., AND PORTOKALIDIS, G. Size does matter: Why using
gadget-chain length to prevent code-reuse attacks is hard. In
USENIX Security Symposium (2014).

[24] JESSE SQUIRES. Objective-c sorts.
https://github.com/jessesquires/objc-sorts,
2014.

[25] KUZNETSOV, V., SZEKERES, L., PAYER, M., CANDEA, G.,
SEKAR, R., AND SONG, D. Code-pointer integrity. In USENIX
Security Symposium (2014).

[26] LARSEN, P., HOMESCU, A., BRUNTHALER, S., AND FRANZ,
M. SoK: Automated software diversity. In IEEE Symposium on
Security and Privacy (S&P) (2014).

[27] MASHTIZADEH, A. J., BITTAU, A., BONEH, D., AND
MAZIÈRES, D. CCFI: Cryptographically enforced control flow
integrity. In ACM Conference on Computer and Communications
Security (CCS) (2015).

[28] NERGAL. The advanced return-into-lib(c) exploits: PaX case
study. Phrack Magazine 11 (2001).

[29] PEWNY, J., AND HOLZ, T. Control-flow Restrictor: Compiler-
based CFI for iOS. In Annual Computer Security Applications
Conference (ACSAC) (2013).

[30] ROEMER, R., BUCHANAN, E., SHACHAM, H., AND SAVAGE,
S. Return-oriented programming: Systems, languages, and ap-
plications. ACM Transactions on Information System Security 15
(2012).

[31] SCHUSTER, F., TENDYCK, T., LIEBCHEN, C., DAVI, L.,
SADEGHI, A.-R., AND HOLZ, T. Counterfeit object-oriented
programming: On the difficulty of preventing code reuse attacks
in C++ applications. In IEEE Symposium on Security and Privacy
(S&P) (2015).

[32] SCHUSTER, F., TENDYCK, T., PEWNY, J., MAASS, A., STEEG-
MANNS, M., CONTAG, M., AND HOLZ, T. Evaluating the effec-
tiveness of current anti-ROP defenses. In International Symposium
on Research in Attacks, Intrusions and Defenses (RAID) (2014).

[33] SERNA, F. J. The info leak era on software exploitation. In
BlackHat USA (2012).

[34] SHACHAM, H. The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86). In ACM
Conference on Computer and Communications Security (CCS)
(2007).

[35] SHACHAM, H., PAGE, M., PFAFF, B., GOH, E., MODADUGU,
N., AND BONEH, D. On the effectiveness of address-space ran-
domization. In ACM Conference on Computer and Communica-
tions Security (CCS) (2004).

[36] SIEBERT, J., OKHRAVI, H., AND SÖDERSTRÖM, E. Information
leaks without memory disclosures: Remote side channel attacks
on diversified code. In ACM Conference on Computer and Com-
munications Security (CCS) (2014).

[37] SKOWYRA, R., CASTEEL, K., OKHRAVI, H., AND ZELDOVICH,
N. Systematic analysis of defenses against return-oriented pro-
gramming. In International Symposium on Research in Attacks,
Intrusions and Defenses (RAID) (2013).

[38] SNOW, K. Z., MONROSE, F., DAVI, L., DMITRIENKO, A.,
LIEBCHEN, C., AND SADEGHI, A. Just-in-time code reuse:
On the effectiveness of fine-grained address space layout ran-
domization. In IEEE Symposium on Security and Privacy (S&P)
(2013).

[39] SZEKERES, L., PAYER, M., WEI, T., AND SONG, D. SoK:
Eternal war in memory. In IEEE Symposium on Security and
Privacy (S&P) (2013).

[40] TRAN, M., ETHERIDGE, M., BLETSCH, T., JIANG, X., FREEH,
V. W., AND NING, P. On the expressiveness of return-into-libc
attacks. In International Symposium on Research in Attacks, In-
trusions and Defenses (RAID) (2011).

[41] TROMER, E., OSVIK, D. A., AND SHAMIR, A. Efficient cache
attacks on AES, and countermeasures. Journal of Cryptology
(2010).

[42] VAN DER VEEN, V., GÖKTAS, E., CONTAG, M., PAWLOWSKI,
A., CHEN, X., RAWAT, S., BOS, H., HOLZ, T., ATHANASOPOU-
LOS, E., AND GIUFFRIDA, C. A tough call: Mitigating advanced
code-reuse attacks at the binary level. In IEEE Symposium on
Security and Privacy (S&P) (2016).

[43] ZHANG, C., WEI, T., CHEN, Z., DUAN, L., SZEKERES, L.,
MCCAMANT, S., SONG, D., AND ZOU, W. Practical control
flow integrity & randomization for binary executables. In IEEE
Symposium on Security and Privacy (S&P) (2013).

[44] ZHANG, M., AND SEKAR, R. Control flow integrity for COTS
binaries. In USENIX Security Symposium (2013).

13

