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Abstract
Many large-scale key-value storage systems sacrifice
features like secondary indexing and/or consistency in
favor of scalability or performance. This limits the ease
and efficiency of application development on such sys-
tems. Implementing secondary indexing in a large-scale
memory based system is challenging because the goals
for low latency, high scalability, consistency and high
availability often conflict with each other. This paper
shows how a large-scale key-value storage system can
be extended to provide secondary indexes while meeting
those goals. The architecture, called SLIK, enables mul-
tiple secondary indexes for each table. SLIK represents
index B+ trees using objects in the underlying key-value
store. It allows indexes to be partitioned and distributed
independently of the data in tables while providing
reasonable consistency guarantees using a lightweight
ordered write approach. Our implementation of this
design on RAMCloud (a main memory key-value store)
performs indexed reads in 11 μs and writes in 30 μs.
The architecture supports indexes spanning thousands
of nodes, and provides linear scalability for throughput.

1 Introduction
Over the last decade, a new class of storage systems has
arisen to meet the needs of large-scale web applications.
Various main-memory-based data storage systems such
as Aerospike [1], H-Store [19], RAMCloud [24] and
Redis [8] have scaled to span hundreds or thousands of
servers, with unprecedented overall performance. How-
ever, in order to achieve their scalability, most large-
scale storage systems have accepted compromises in
their feature sets and consistency models. In particular,
many of these systems are simple key-value stores with
no secondary indexes. The lack of secondary indexes
makes it difficult to implement applications that need to
make range queries and/or retrieve data by keys other
than the primary key.

Indexing has been studied extensively in the con-
text of traditional databases. However, its design for
a low-latency large-scale main-memory storage system
presents several unique design issues (given below).
These are further challenging due to the inherent tension
between some of them.

• Low latency: The system should harness low la-
tency networks, store index data in DRAM, and
leave out complex mechanisms wherever possible
in favor of lightweight methods that add minimal
overhead.

• Scalability: A large-scale data store must support
tables so large that their objects and indexes need to
span many servers. The total throughput of an index
should increase linearly with the number of servers
it spans. This objective is at odds with low latency,
as contacting more servers (even if done in parallel)
increases latency. Ideally, a system should provide
nearly constant latency irrespective of the number
of servers an index spans.

• Consistency: The system should provide clients
with the same strong consistency as a centralized
system. For instance, when an indexed object is
written, the update to that object and all of its
indexes must appear atomic, even in the face of
concurrent accesses and server crashes. However,
providing consistency when information is dis-
tributed, traditionally requires locks or algorithms
that impact latency or scalability. Further, as data
and indexes become sharded over more and more
nodes, it becomes increasingly complex and expen-
sive to manage metadata and maintain consistency
between data and the corresponding indexes.

• Availability: The system must also be continu-
ously available; this creates challenges around crash
recovery and requires that schema changes such
as adding and removing indexes be accomplished
without taking the system offline.

In this paper, we show how to overcome these chal-
lenges and how a large-scale key-value store can be
extended to provide secondary indexes. The resulting
architecture, SLIK (Scalable, Low-latency Indexes for
a Key-value store), combines several attractive features.
First, it scales to provide high performance even with
indexes that span hundreds of servers while providing
strong consistency guarantees. Second, its mechanisms
are simple enough to provide extraordinarily low latency
when used with a low-latency key-value store. Third,
it provides fast crash recovery, live index split and mi-
gration and other features that ensure a high level of
availability. Finally, it uses main memory judiciously

1



58 2016 USENIX Annual Technical Conference USENIX Association

while storing secondary index structures.
SLIK uses several interesting approaches to achieve

the desired properties:
• Its data model is a multi-key-value store, where

each object can have multiple secondary keys in
addition to the primary key and an uninterpreted
data blob. This approach reduces parsing overheads
for both clients and servers to improve latency.

• SLIK achieves high scalability by distributing index
entries independently from their objects rather than
colocating them (which is the more commonly used
approach today).

• However, the resulting indexed operations are now
distributed, which creates potential consistency
problems between indexes and objects. SLIK pro-
vides clients with a consistent behavior using a
novel lightweight mechanism that avoids the com-
plexity and overhead of distributed transactions. It
uses an ordered-write approach for updating in-
dexed objects and uses objects as ground truth to
determine liveness of index entries.

• SLIK performs long-running bulk operations such
as index creation/deletion and migration in the
background, without blocking normal operations.
For example, SLIK uses a logging approach for
index migration, which allows updates to an index
as it is being migrated.

• Finally, SLIK implements secondary indexes using
an efficient B+ Tree algorithm. Each tree node is
kept compact by mapping secondary keys to the
primary key hashes of the corresponding objects.
SLIK further uses objects of the underlying key-
value store to represent these nodes, and leverages
the existing recovery mechanisms of the key-value
store to recover indexes.

To demonstrate the practicality of SLIK, we imple-
mented it in RAMCloud [24], a low-latency distributed
key-value store. The resulting system provides extremely
low latency indexing and is highly scalable:
• SLIK performs index lookups in 11–13 μs, which is

only 2x the base latency of non-indexed reads.
• SLIK performs durable updates of indexed objects

in 30–36 μs, which is also about 2x the base latency
of non-indexed durable updates.

• The throughput of an index increases linearly as it
is partitioned among more and more servers.

• SLIK’s latency is 5–90x lower than H-Store, a state-
of-the-art in-memory database.

Overall, SLIK demonstrates that large-scale storage sys-
tems need not forgo the benefits of secondary indexes.

2 The SLIK Design
In this section we describe the general architecture of
SLIK, which could be used with any underlying key-

value store. In the next section we will discuss features
that are specific to our implementation in RAMCloud.

2.1 Data Model
In order to have secondary indexes, clients and servers
must agree on where the secondary keys are located in
the object. A traditional key-value store does not provide
this information, as each object only contains a single
key and a value. One commonly used approach is to
store the keys as part of the object’s value. In this case,
the servers and clients must agree on a specific format for
object values, such as JSON. Here, each index is associ-
ated with a particular named field, and the server parses
the object value to find the secondary keys. Several stor-
age systems use this approach, including CouchDB [2]
and MongoDB [5]. However, this approach introduces
additional overhead for the server to parse objects.

Given our objective of lowest possible latency in
SLIK, we chose an object structure that directly identifies
all the secondary keys. Consequently, there is no parsing
required to carry out index operations. We call this a
multi-key-value format: an object consists of one or more
variable-length keys, plus a variable-length uninterpreted
value blob. The first key is the primary key: along with
the table identifier, this uniquely identifies an object. The
rest of the keys are for secondary indexes: these need not
be unique within the table. Each of the secondary keys
can have an index corresponding to it. Each key can be of
a different type with a corresponding ordering function
(for example, numerical or lexicographic).

The object format can be managed automatically by
client side libraries, so that applications do not have to be
aware of how the information is stored in object values
and secondary keys.

2.2 Index Partitioning
To be usable in any large-scale storage system, a sec-
ondary indexing system must support tables so large that
neither their objects nor their indexes fit on a single
server. In an extreme case, an application might have
a single table whose data and indexes span thousands of
servers. Thus, it must be possible to split indexes into
multiple index partitions, or indexlets, each of which can
be stored on a different server.

A scalable index performs well even if it spans many
servers. The index should provide nearly constant and
low latency irrespective of the number of servers it spans.
Additionally, the total throughput of an index should
increase linearly with the number of partitions. To design
an indexing architecture that achieves these goals, we
considered three alternative approaches to index parti-
tioning.

One approach is to colocate index entries and objects,
so that all of the indexing information for a given object
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(a) Indexlet/Tablet Colocation (b) Independent Partitioning
Figure 1: Two approaches to index partitioning assuming that a table is partitioned by its primary key. In (a) indexes for the table
are partitioned so that the index entry for each object is on the same server as the object. In (b) indexes for the table are partitioned
so that each indexlet contains all the keys in a particular range. Rectangles represent objects, and the number in each rectangle is the
value of the secondary key for that object (primary keys and object values are omitted). Circles represent index nodes; the number
in each circle is the value of the secondary key. Colors distinguish objects (and secondary index keys) that belong to different
tablets.

is stored on the same server as that object. In this
approach, one of the keys (either the primary key or a
specified secondary key) is used to partition the table’s
objects among servers, as shown in Figure 1(a). We call
this Colocation Approach, in which each server stores
a table partition (or tablet) plus one indexlet for each
of that table’s indexes. The indexlet stores only index
entries for the tablet on the same server. This approach is
used widely by many modern storage systems, including
Cassandra [20] and H-Store [19], and the local indexes
in Espresso [26] and Megastore [11].

To perform a lookup using an index, a client issues
parallel Remote Procedure Calls (RPCs) to all the servers
holding partitions for this table. Each server scans its
local indexlet, then returns the matching objects from its
local tablet.

A second approach is to partition each index and table
independently, so that index entries are not necessarily
located on the same servers as the corresponding objects.
This allows each index to be partitioned according to the
sort order for that index, as shown in Figure 1(b). We
call this Independent Partitioning. With this approach,
a small index range query can be processed entirely by a
single index server.

With independent partitioning, a client performs index
lookups in two steps. In the first step, the client issues an
RPC to the server holding the relevant indexlet. This can
typically be processed entirely by a single index server. If
the queried range spans multiple indexlets, then each of
the corresponding servers is contacted. This RPC returns
information to identify the matching objects. The client
then contacts the relevant data servers to retrieve these
objects.

At small scale, the colocation approach provides lower
latency. For example, in the limit of a single server, it
requires only a single RPC, whereas independent par-
titioning requires two RPCs. However, as the number
of servers increases, the performance of the colocation
approach degrades. Each request must contact more
and more servers, so the lookup cost increases linearly

with the number of servers across which a table is
sharded. On the other hand, independent partitioning
provides dramatically better performance. Executing
two sequential RPCs results in a constant latency (even
as the number of partitions is increased), and this la-
tency is lower than executing a large number of parallel
RPCs. Moreover, with independent partitioning, the total
lookup throughput increases with the addition of servers.
This is not the case with the colocation approach, as each
server must be involved in every index lookup. While
many modern datastores use the colocation approach,
our experiments in Section 4 show that the independent
partitioning scheme provides better scalability.

A third approach is to use independent partitioning,
but also replicate part or all of the table’s data with each
index. Any data that may be accessed via the index needs
to be duplicated in this index. This approach is used by
the global indexes in DynamoDB [3] and Phoenix [7] on
HBase [4].

Global indexes combine some important benefits of
the two approaches above. They enable low latency
lookups as a lookup requires only a single RPC for small
range queries. They are also scalable as the indexes are
partitioned independently of the data table.

These benefits are at the cost of increased memory
footprint: an index lookup can return only those at-
tributes of the object that have been duplicated and
stored with that index. This results in substantial data
duplication, which might be acceptable for disk-based
systems, but not for a memory-based system like SLIK.

We use the independent partitioning approach in
SLIK. This enables high scalability while using memory
efficiently.

2.3 Consistency during normal operations
As discussed in the previous section, indexed object
writes and index lookups are distributed operations be-
cause objects and corresponding index entries may be
stored on different servers. This creates potential con-
sistency problems between the indexes and objects.
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Figure 2: The ordered write approach ensures that if an object
exists, then the corresponding index entries exist. Each object
provides the ground truth to determine the liveness of its index
entires. Writing an object serves as the commit point. The box
at the bottom shows an object as it is created, modified and
removed (Foo is the objects primary key; the secondary key is
changed from Bob to Foo when the object is modified). The
boxes above show corresponding index entries, where the solid
portion indicates a live entry. At point x, there are two index
entries pointing to the object, but the stale entry (for Bob) will
be filtered out during lookups.

Existing storage systems have generally dealt with
index consistency in two ways. Many large scale stor-
age systems simply permit inconsistencies, in order to
simplify their implementations or improve performance.
For example, CouchDB [2], PNUTS [13], the global
indexes for Espresso [26] and Megastore [11], and
Tao [12] use relaxed consistency. This forces application
programmers to build their own mechanisms to ensure
consistency. The second approach, typical of smaller-
scale systems, is to wrap updates in transactions that
ensure atomicity. However, we were concerned about
the implementation complexity and potential scalability
problems of using transactions for this purpose.

Our goal is to build a scalable distributed system
with the consistency expected from a centralized system.
SLIK provides clients with the same behavior as if in-
dexes and objects were on the same server with locks to
control access. More concretely, SLIK guarantees the
following consistency properties:

1. If an object contains a given secondary key, then an
index lookup with that key will return the object.

2. If an object is returned by an index lookup, then
this object contains a secondary key for that index
within the specified range.

We want to provide this consistency while imposing
miminal performance overheads. We designed a sim-
ple lighweight mechanism that ensures the consistency
properties stated above without requiring transactions. It
guarantees the first property by using an ordered write
approach. It guarantees the second property by treating
index entries as hints and using objects as ground truth to
determine the liveness of index entries. This mechanism
is explained in detail below, and illustrated in Figure 2.

SLIK uses an ordered write approach to ensure that
the lifespan of each index entry spans that of the cor-

responding object. Specifically, when a data server
receives a write request, it first issues requests (to the
server(s) with relevant indexlets) for creating index en-
tries corresponding to each of the secondary keys in
the new object’s data. Then it writes the object and
replicates it durably. Finally, it asynchronously issues
requests (again, to the server(s) with relevant indexlets)
for removing old index entries, if this was an overwrite.
This means that if an object exists, then the index entries
corresponding to it are guaranteed to exist – thus ensur-
ing the first of the two consistency properties.

However, now it is possible for a client to find index
entries that refer to objects that have not yet been writ-
ten or no longer exist – this would violate the second
consistency property. To solve this, we observe that the
information in an object is the truth and index entries
pointing to it can be viewed as hints. During index range
queries, the client first queries the indexlet server(s) re-
sponsible for the requested range. These servers identify
the matching objects by returning a hash of the primary
key for each matching object (Section 2.6 discusses the
use of primary key hashes in detail). The client then uses
these primary key hashes to fetch all of the corresponding
objects. Some of these objects may not exist, or they
may be inconsistent with the index (see Figure 2, point
x). The SLIK client library detects these inappropriate
objects by rechecking the actual index key present in
each object. Only objects with keys in the desired range
are returned to the application.

Writing an object effectively serves as a commit point
– any index entries corresponding to the current data
are now live, and any old entries pointing to it are now
dead. This ensures the second of the two consistency
properties.

The SLIK approach permits temporary inconsistencies
in internal data structures but masks them to provide
the client applications with a consistent view of data.
This results in a relatively simple and efficient imple-
mentation, while giving client applications the consistent
behavior defined by the two properties above.

2.4 Metadata and Coordination
The metadata about the mapping from indexlets to their
host servers needs to be managed using a persistent
coordination service. This metadata is updated when a
new index is created or dropped, an index server crashes
or recovers data from another crashed server, and when
an indexlet is split or migrated to another node. The
co-ordination service only stores and disseminates the
metadata: it does not take part in any lookup or write
operations.

2.5 SLIK API
Tables 1 and 2 summarize the API of SLIK: Table 1
shows the operations visible to client applications, and
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Table 2 shows the internal RPCs used to implement them.
A client invokes createIndex and dropIndex to

create or delete an index on an existing data table (iden-
tified by tableId). The index is identified by indexId,
such that the nth key in the object is indexed by index
with indexId n.

When a client starts an index lookup, the SLIK
API library acts as overall manager. It first issues
lookupKeys to the appropriate index servers. Each
index server identifies the primary key hashes for the
objects in the secondary key range and returns them in
index order. Then the client issues readHashes in par-
allel to the relevant data servers to fetch the actual objects
using the primary key hashes. The objects returned from
each data server are also in index order (as the order
was specified by the key hashes in the query). For large
range queries, SLIK uses a concurrent and pipelined
approach with multiple RPCs in flight simultaneously.
It is implemented using a rules-based approach [29]. As
it receives the responses from various servers, it prunes
extraneous entries (as per the consistency algorithm in
Section 2.3) and collates results from different RPCs, so
that the objects are returned to the client in index order.

We used a streaming approach (with an iterator API)
rather than an approach that collects and returns all the
objects at once. This allows index range queries to
return very large result sets, which might not all fit in
client memory at once.

To write an indexed object, a client sends a write

request to the data server that stores the object. The
data server synchronously issues entryInsert requests
to relevant index servers to add new index entries, then
modifies the object locally and durably replicates it. At
this point, the data server returns a response to the client,
then asynchronously issues entryRemove requests to
relevant index servers. If the object is new (it did not
previously exist), then the index removal step is skipped.

2.6 Index Storage and Durability
SLIK uses a B+ tree to represent each indexlet, so that
range queries can be supported. The B+ tree nodes map
secondary keys to the corresponding objects. However,
as SLIK uses the independent partitioning approach,
index entries need a way to identify the objects they refer
to. A straightforward way is for an index entry to map its
secondary key to the primary key of the corresponding
object. However, primary keys are variable length
byte arrays, which can potentially be large (many KBs),
so SLIK indexes identify an object instead with a 64-
bit hash value computed from its primary key. Primary
key hashes have the advantage of being shorter and
fixed in size. A compressed form of the key, such as
a hash, works just as well as using the entire key, as
it finds the right server and does not miss any objects.

createIndex(tableId, indexId, indexType)

Create a new index for an existing table.
dropIndex(tableId, indexId)

Delete the specified index. Secondary keys in existing objects are
not affected.
IndexLookup(tableId, indexId,

firstKey, lastKey, flags)

Initiate the process of fetching objects whose keys (for index
indexId) fall in the given range. flags provide additional pa-
rameters (for example, whether the end points of the range should
be included in the search). This constructs an iterator object.
IndexLookup::getNext()

Get the next object in index order as per parameters specified earlier
in IndexLookup, or wait until such an object is available.
write(tableId, keys, value)

Create or overwrite the object. Update secondary indexes both to
insert new secondary keys and to remove old ones (if this was an
overwrite).

Table 1: A summary of the core API provided by SLIK to
client applications for managing indexes and secondary keys.

lookupKeys(tableId, indexId,

firstKey, lastKey, flags)

Returns primary key hashes for all entries in the given index in the
given range. flags provide additional parameters (for example,
whether the end points of the range should be included in the
search).
readHashes(tableId, pKHashes)

Returns objects in table (tableId) whose primary key hash
matches one of the hashes in pKHashes.
entryInsert(tableId, indexId, key, pKHash)

Adds a new entry to the given index. This entry maps the secondary
key (key) to a primary key hash (pKHash). Replicates the update
durably before returning.
entryRemove(tableId, indexId, key, pKHash)

Removes the given entry in the given index. Replicates the update
durably before returning.

Table 2: A summary of the core RPCs used internally by SLIK
to implement the IndexLookup and write operations in Ta-
ble 1. Additional operations for managing indexlet ownership
are omitted here.

It may occasionally select extra objects, but these extra
objects get pruned out as a by-product of the consistency
algorithm.

SLIK keeps these B+ trees entirely in DRAM in order
to provide the lowest possible latency. However, index
information must be as durable and available as the
objects in the key-value store (for example, it must
survive server crashes).

One approach for achieving index durability is to
rebuild indexlets from table data. To recover an in-
dexlet with the rebuild approach, each server storing
objects of the corresponding table reads all the objects
in its memory to find keys that belong to the crashed
indexlet. Then the server that is the new owner of this
indexlet reconstructs the indexlet using the table data.
This approach is attractive for two reasons. First, it
is simple: indexlets can be managed without worrying
about durability. Second, it offers high performance:
there is no need to replicate index entries or copy them
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to nonvolatile storage such as disk or flash. However, the
rebuild approach does not allow fast crash recovery: our
tests show that it will take 25 seconds or more to recover
a 500 MB partition, and the time (for the same sized
partition) will increase as server memory sizes increase.

Our goal for crash recovery is to recover lost index
data in about the same amount of time that the underlying
storage system needs to recover lost table data. To
achieve this, SLIK represents each indexlet B+ tree with
a backing table in the underlying key-value store; the
backing table is just like any other table, except that it
is not visible to clients and has a single tablet. Each
node in the B+ tree is represented with one object in the
backing table. This backup approach allows indexlets to
leverage the persistence and replication mechanisms the
underlying key-value store uses for its object data.

With this approach, index crash recovery consists
primarily of recovering the corresponding backing table.
This is handled by the underlying key-value store. Once
the backing table becomes available, the indexlet is fully
functional; there is no need to reconstruct a B+ tree or to
scan objects to extract index keys. Thus, this approach
allows indexes to be recovered just as quickly as objects
in the underlying key-value store.

The backup approach to index recovery does have two
disadvantages. First, since each node in the B+ tree is a
separate object in the key-value store, traversing a pointer
from a node to one of its children requires a lookup in the
key-value store (pointers between nodes are represented
as keys in the key-value store). This is slightly more
expensive than dereferencing a virtual memory address,
which would be the case if the B+ tree nodes were
not stored using objects. Second, the backup approach
requires an object to be written durably during each index
update, whereas the rebuild approach would not require
this step. This durable write affects the performance
of index updates (as shown by the measurements in
Section 4).

However, the backup approach has another major
advantage of permitting variable-size nodes in index
B+ trees. Many B+ tree implementations (such as
MySQL/InnoDB [6]) allocate fixed size B+ tree nodes.
This results in internal fragmentation when the in-
dex keys are of variable length (as with commonly
used strings). Since key-value stores naturally permit
variable-size objects, the nodes in SLIK’s B+ trees can
also be of variable size, which eliminates internal frag-
mentation and simplifies allocation.

2.7 Consistency after Crashes

SLIK must handle additional consistency issues that may
arise due to server or client crashes.

2.7.1 Server Crash
A server crash can create two consistency issues. First,
if a server crashes after inserting an index entry but
before updating the object (or after updating an object but
before removing old index entries), the crash may leave
behind extraneous index entries that will not be deleted
by normal operations.

These entries can be garbage collected by a back-
ground process. Occassionally, this process scans the
indexes and sends the entries to relevant data servers. For
each index entry, the data server acquires a lock that pre-
vents concurrent accesses to the corresponding object. It
then checks whether the object exists. If the object does
not exist, the data server sends an entryRemove request
to the index server. If the table partition corresponding
to an entry is being recovered, the collector simply skips
that entry: it will be removed during the next scan.

We chose to exclude this garbage collector from our
implementation as it would have added complexity for
little benefit. The orphan entries do not affect correctness
as they get filtered out during lookups by the consistency
algorithm in the previous section. Further, the wasted
space from these entries would be negligible. Assuming
conservatively a mean time to failure for servers of about
4 months [18], 10 indexed object writes (or overwrites) in
progress at the time of a crash, and 100 B for each index
entry, the total amount of garbage accumulated will be
less than 3 KB per server per year.

The second consistency issues arises if an indexlet
server crashes while inserting or removing an entry, it
can cause consistency issues in the internal B+ tree struc-
ture. Index insertions and deletions may cause nodes of
the B+ tree to be split or joined, which requires updates
to multiple nodes (and the objects that encapsulate each
node). In order to maintain the consistency of the index
across server crashes, multi-object updates must occur
atomically. SLIK uses a multi-object update mecha-
nism implemented using the log-structured memory or
transaction log of the underlying key-value store. This
ensures that after a crash, either all or none of the updates
will be visible.

2.7.2 Client Crash
SLIK has been designed such that a client crash does not
affect consistency: all operations that have consistency
issues (like write) are managed by servers. Conse-
quently, a client crash does not require any recovery
actions other than closing network connections.

2.8 Large Scale Operations vs. Scalability
To maximize scalability, large-scale long-running oper-
ations must not block other operations. The number of
other operations blocked by a given operation is likely
to be proportional to the size of the data set blocked.
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This means that an operation may hold a lock on a small
amount of data for a comparatively long amount of time
while a lock on a larger set of data needs to be held for
a short amount of time. Hence, SLIK performs long-
running bulk operations such as index creation/deletion
and migration in the background, without blocking nor-
mal operations.

2.8.1 Index Creation

When a new index is created for an existing table in
SLIK, it needs to be populated with the index key infor-
mation from the table’s objects. This requires a scan of
the entire table, which could take a considerable amount
of time for a large table. Furthermore, objects in the table
may need to be reformatted to include the corresponding
secondary keys, which requires rewriting the objects in
the table.

One approach is to lock the table for the duration of
table scanning and object rewriting. However, this is not
scalable: as tables get larger and larger, the lock must be
held for a longer and longer time period, during which
period normal requests cannot be serviced.

In order to allow the system to function normally even
during schema changes, SLIK populates a new index
in the background, without locking the table. The new
index should not be used for lookups until index creation
is complete. However, the table is locked only long
enough to create an empty indexlet. Once the lock is
released, other operations on the table can be serviced
while the index is being populated. For example, lookups
on other indexes (or the primary key) can be serviced.
Additionally, objects can be written into the table. These
writes will update the new index as well as existing ones.

To populate the new index with entries corresponding
to the objects already in the underlying table, client-
level code scans this table, reading each object and then
rewriting it. Before rewriting the object, the client can
restructure the object if the schema has changed. The
act of rewriting the object creates an entry in the new
index corresponding to this object. So, once all of the
objects have been scanned and rewritten, the index is
complete. The index population operation is idempotent;
if it is interrupted by a crash, it can be restarted from the
beginning.

Index deletion behaves similarly to index creation.
The index can be deleted while leaving all of the sec-
ondary keys present in objects. Then, the objects can be
scanned and a follow-up step can remove the keys.

Index creation and deletion represent additional situ-
ations where SLIK permits temporary inconsistencies in
its implementation, but those internal inconsistencies do
not result in inconsistent behavior for applications.

2.8.2 Live Index Split and Migration
Indexlets need to be reconfigurable – we should be able
to split one if it gets too large, or migrate one from
one server to another. This requires moving index data
in bulk from one server to another, which could take a
significant amount of time. In the case of migration,
the entire indexlet is moved; for splitting, a part of the
indexlet is moved.

A straightforward approach would be to lock the in-
dexlet, copy the relevant part to another server, and then
unlock. However, this blocks out users from accessing
this indexlet and any objects in the data table indexed by
it, for the entire duration of this operation.

SLIK uses a different approach: it allows other op-
erations to proceed concurrently on an indexlet that is
being copied to another server. SLIK keeps track of the
mutations that have occured since the copying started (in
a log), and transfers these over as well. A lock is then
required only for a short duration of time, while copying
over the last mutation. This is similar to approaches
used in the past for applications such as virtual machine
migration [22] and process migration [30].

3 Implementation
To help us better understand SLIK’s design decisions,
we implemented it on RAMCloud [24]. RAMCloud is
a distributed in-memory key-value storage system and
has some important properties that make it a good plat-
form for implementing SLIK. RAMCloud is designed
for large-scale applications: this helps us understand if
SLIK’s architecture can be used for such applications
as well. Further, RAMCloud is designed to operate at
lowest possible latency by keeping all data in DRAM
and using high performance networking: this allows to
see whether SLIK’s design is efficient enough to operate
in ultra-low latency environments. Finally, RAMCloud
is open-source and available freely [9]. This has allowed
us to make SLIK available freely in open-source format
since the inception of the project.

In the previous section, we described the
implementation-independent design and architecture
of SLIK. In this section, we describe how SLIK was
implemented in the context of RAMCloud.

3.1 Overview of RAMCloud
RAMCloud [24] is a storage system that aggregates the
memories of thousands of servers into a single coherent
key-value store (Figure 3). It offers remote read times of
4.7 μs and write times of 13.5 μs for small objects.

Each storage server contains two components. A
master module handles read and write requests from the
clients. It manages the main memory of the server in a
log-structured fashion to store the objects in tables [27].
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Figure 3: RAMCloud cluster architecture.

A backup module uses local disk or flash memory to
store backup copies of log information for crash re-
covery [23]. Each master’s log is divided into small
segments, and the master scatters multiple replicas of
each segment across the available backups. This allows
a master’s data to be reconstructed within 1-2 s after a
crash. RAMCloud uses a small amount of non-volatile
memory on each backup, which allows it to declare
writes durable as soon as updates have been received by
backups, without waiting for disk I/O.

The masters and backups are managed by a central co-
ordinator that handles configuration-related issues. The
coordinator is a highly reliable and available system
(with active and standby instances), but is not normally
involved in operations other than those querying or mod-
ifying configuration information.

3.2 Implementing Coordination Service
for Secondary Indexing

We modified the RAMCloud coordinator to also store
and disseminate the metadata about index structures and
the servers on which indexlets are stored. When a client
starts, it queries the coordinator for the configuration
and caches it locally. If this cached configuration
becomes stale, the client library discovers this when it
sends a query to a server that no longer stores the desired
infomation. The client then flushes the local configura-
tion for that table from its cache and fetches up-to-date
information from the coordinator (this is described in
further detail in [24]).

3.3 Recovering Indexes after Crashes
SLIK stores each indexlet in a RAMCloud table (Sec-
tion 2.6). Since RAMCloud can recover lost tablets
within 1-2 seconds after server crash [23], this ensures
that indexes can also be recovered quickly. However,
RAMCloud can achieve 1-2 s crash recovery only for
tablets that are smaller than 500 MB in size. For tablets
that are larger than this, RAMCloud will split the tablet
during recovery and assign each sub-tablet to a different
server, so all of the lost data can be recovered quickly.
However, such splitting cannot be used for indexlet
backing tables as the B+ tree structure requires all of
the objects in the backing table to be present on a single

CPU Xeon X3470 (4x2.93 GHz cores, 3.6 GHz Turbo)
RAM 24 GB DDR3 at 800 MHz
Flash 2x Crucial M4 SSDs
Disks CT128M4SSD2 (128 GB)
NIC Mellanox ConnectX-2 InfiniBand HCA

Switch Mellanox SX6036 (4X FDR)
Table 3: The server hardware configuration used for bench-
marking. All nodes ran Linux 3.16.0 and were connected to a
two-level InfiniBand switching fabric.

server. Thus, to ensure fast indexlet recovery, SLIK
ensures that indexlets are no larger than 500 MB in size.
It does this by carrying out live splitting and migration of
indexlets that grow beyond the threshold.

3.4 Using Log Structured Memory
Our implementation leverages RAMCloud’s log-
structured approach of storing data to simplify its
implementation. First, it uses this log to implement
atomicity for multi-node updates discussed in
Section 2.7. Second, it uses the log to keep track
of the mutations during an index split and/or migration
discussed in Section 2.8.2. More concretely, it migrates
the relevant data from an indexlet by scanning the log on
that server. When it reaches the head of the log, it locks
the log head to migrate the last changes (if any).

4 Evaluation
We evaluated the RAMCloud implementation of SLIK to
answer the following questions:
• Does SLIK provide low latency? Is it efficient

enough to perform index operations at latencies
comparable to other RAMCloud operations?

• Is SLIK scalable? Does its performance scale as the
number of servers increases?

• How does the scalability of independent partition-
ing compare to that of colocation?

• How does the performance of indexing with SLIK
compare to other state-of-the-art systems?

We chose H-Store [19] for comparison with SLIK
because H-Store and VoltDB (which is H-Store’s com-
mercial sibling) are in-memory database systems that are
becoming widely adopted. We tuned H-Store for each
test to get best performance with assistance from H-
Store developers [25]. H-Store uses the indexlet/tablet
colocation approach to partitioning, so a column can be
specified such that all data gets partitioned according to
that column. We evaluated H-Store with multiple data
partitioning schemes where applicable.

We ran all experiments on an 80-node cluster of iden-
tical commodity servers (see Table 3).

4.1 Latency
We first evaluate the latency of basic index operations
(lookups and overwrites) using a table with a single
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Figure 4: Latency of basic operations as index size increases:
(a) read a single object using a secondary key; (b) overwrite
an existing object. Each data point displays the 10th percentile,
median, and 90th percentile latencies over 1000 measurements.

secondary index. We then evaluate the latency of object
overwrites as the number of secondary indexes increases.
We don’t evaluate the latency of lookups in this case as
it is independent of the number of indexes.

4.1.1 Basic Latency
Figure 4 graphs the latency for single-object index op-
erations on a log scale. The measurements were done
with a single client accessing a single table, where each
object has a 30 B primary key, 30 B secondary key and
a 100 B value. The secondary key has an index (with a
single indexlet) corresponding to it.

SLIK lookup: The median time for an index lookup
that returns a single object is about 11 μs for a small
index and 13.1 μs for an index with a million entries. An
index lookup issues two RPCs that read data sequentially
(as discussed in Section 2.2) – the time for a non-indexed
read in RAMCloud is about 5 μs, making the minimum
time required for an index lookup to be 10 μs. The rest
of the time is accounted for by the B+ tree lookup time.

SLIK overwrite: The median time for overwrite

Figure 5: Latency of overwrites as a function of the number
of secondary indexes. Each data point displays the 10th
percentile, median, and 90th percentile latencies over 1000
measurements. For H-Store’s line via Pk, it was partitioned
by the primary key and for the line via Sk, it was partitioned by
the first secondary key. In both the cases, overwrites were done
by querying via the primary key. The y axis uses a log scale.

ranges from 31.4 μs to 37 μs depending on index size.
This is the total cost for doing two sequential durable
writes: the first to the index and the second to the object
(as discussed in Section 2.3). The removal of old index
entries is handled in the background after the overwrite
RPC returns to the client.

Comparison: In this benchmark, H-Store is run on a
single server so that it uses a single partition for its data
and index. It executes all reads and writes locally and
no data needs to be transferred to other servers. SLIK
provides 3-way distributed replication of objects and
index entries to durable backups, whereas H-Store does
not perform replication and the durability is disabled.
SLIK is about 10x faster than H-Store for lookups and
about 4x faster for overwrites.

SLIK is designed to introduce minimal overheads so
that it can harness the benefits of low-latency networks
and kernel bypass (via InfiniBand). However, we also
performed this benchmark by running SLIK with the
same network as H-Store: TCP over the InfiniBand net-
work (without kernel bypass). Even in this configuration,
SLIK is considerably faster than H-Store for lookups.
For overwrites, SLIK provides similar latency as H-
Store, but it does so while providing 3-way distributed
replication of all data.

4.1.2 Impact of Multiple Secondary Indexes on
Overwrite Latency

Figure 5 graphs the latency for overwriting an object
as the number of secondary indexes increases. The
measurements were done with a single client accessing
a single table with 1M objects, where each object has a

9



66 2016 USENIX Annual Technical Conference USENIX Association

Figure 6: Total index lookup throughput when a single index is
divided into multiple indexlets on different servers and queried
via multiple clients.

30 B primary key, a varying number of 30 B secondary
keys, and a 100 B value. For SLIK, each secondary
index has a single partition and is located on a different
server.

SLIK: The latency increases moderately for tables
with more secondary indexes: overwrites take 32.4 μs
with 1 secondary index and 49.8 μs with 10 secondary
indexes (about a 50% increase). There is an increase
because each of the indexes is stored on a separate server
and all the servers must be contacted during writes.

Comparison: SLIK performs better, out of the box
without any tuning, while providing durability and repli-
cation, than a tuned version of H-Store without durability
or replication. For each data point, SLIK and H-Store are
both allocated the same number of servers as the number
of indexes. H-Store partitions all the data and indexes
across these servers. For the line via PK, the partitioning
is done based on the primary key and for the line via Sk,
the partitioning is done via the first secondary key. The
performance while updating using the same key that is
used to partition all data (line via PK) is lower than the
latency for updates done using a key that was not used
for partitioning (line via Sk).

4.2 Scalability
One of our goals is to provide scalable performance
as the number of servers increases. Given our choice
of independent partitioning, we expect a linear increase
in throughput as the number of servers increases, since
there are no interactions or dependencies between in-
dexlet servers. We also expect minimal impact on la-
tencies as the number of indexlets increase.

To test this hypothesis, we evaluated scalability along
two parameters. The first measures the end-to-end
throughput of index lookup as the number of indexlets
increases. This experiment uses a single table where each
object has a 30 B primary key, 30 B secondary key and
100 B value. The index corresponding to the secondary

Figure 7: Latency for index lookup when a single index is
divided into multiple indexlets on different servers. The size
refers to the number of objects returned by a lookup.

Figure 8: Total index lookup throughput when a single index is
divided into multiple indexlets on different servers and queried
via multiple clients.

key is divided into a varying number of indexlets, and
the table is divided into the same number of tablets:
each is stored on a different server. For each data
point, the number of clients performing lookups and
the number of concurrent lookups per client is varied
to achieve the maximum throughput for each system.
Each request chooses a random key uniformly distributed
across indexlets and returns a matching object. H-Store
is partitioned based on the key used for lookups, which
is its best configuration for this use case.

The second measures the end-to-end latency of index
lookup as the number of indexlets increases. The setup
for this experiment is the same as the previous one,
except that a single client is used (instead of many),
which issues one request at a time in order to expose the
latency for each operation.

We first ran these experiments to compare the scal-
ability of the colocation and independent partitioning
approaches while keeping everything else the same (Fig-
ures 6, 7). We also ran these experiments to evaluate
the scalability of SLIK and compare performance with
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Figure 9: Latency for index lookup when a single index is
divided into multiple indexlets on different servers.

H-Store (Figures 8, 9).

4.2.1 Independent Partitioning vs Colocation
We first compare the scalability of independent parti-
tioning with the colocation approach using the setups
described earlier. For independent partitioning, we
used our implementation of SLIK in RAMCloud. For
colocation approach, we used the same implementation
and changed the partitioning code to use the colocation
approach instead.

These figures confirm that independent partitioning
performs better at scale. Figure 6 shows that with
independent partitioning, the total lookup throughput
increases with the addition of servers, whereas with
colocation it does not. Figure 7 shows that as the scale
gets larger, the cost of doing two sequential RPCs with
independent partitioning is lower than a large number of
parallel RPCs with colocation.

4.2.2 System Scalability
We then evaluate how SLIK performs at large scale
and also compare against H-Store. Figure 8 graphs
the end-to-end throughput of index lookup in SLIK and
shows that it scales linearly as the number of indexlets is
increased. The throughput for H-Store increases sublin-
early with the number of partitions. Figure 9 shows that
SLIK’s index lookup latency has minimal impact as the
number of indexlets is increased, while the latency for H-
Store increases because each index lookup must contact
all indexlet servers.

4.3 Miscellaneous Benchmarks
4.3.1 Tail Latency
Figure 10 graphs the reverse CDFs for single-object
lookup and write operations. A single client performed
100 million reads and overwrites on a table with a million
objects (where each object has a 30 B primary key, 30 B
secondary key and 100 B value) and there is an index

Figure 10: Tail latency distribution for index lookup and
write operations in SLIK, shown as a reverse CDF with a log
scale. A point (x,y) indicates that yth fraction of the 100 M
operations measured take at least xμs to complete.

Figure 11: Throughput of index lookup measured by a single
client as a function of the total number of objects returned for
that lookup.

corresponding to the secondary key. The index lookup
operations have a median latency of about 15 μs, and
write operations have a median latency of about 36 μs.

4.3.2 Range Lookups
Figure 11 graphs the throughput for index lookup as the
total number of objects returned in that lookup increases.
The experimental setup is the same as the previous
experiment. The total throughput increases as the size
of lookup is increased, it peaks at about 2M objects/s,
and stabilizes at around 1.7M objects/s.

5 Related Work
Data storage systems make tradeoffs between various
goals: providing higher level data models (like index-
ing), consistency, durability, scalability and low latency.

Some systems give up certain features in order to opti-
mize for others. For example, MICA [21] is a scalable in-
memory key-value store optimized for high throughput;
however it does not provide data durability. FaRM [16]
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is a main memory distributed computing platform that
provides low latency and high throughput by exploiting
RDMA; however it does not support secondary indexing.

Some systems support consistent and durable sec-
ondary indexes but have higher latency than SLIK.
Cassandra [20], DynamoDB [3] and Phoenix [7] on
HBase [4] provide local secondary indexes which are
partitioned using the colocation approach. While these
indexes provide high consistency, they also have higher
latency as each request needs to contact all the servers
(as described in Section 2.2). STI-BT [15] extends an ex-
isting key-value store to provide scalable and consistent
indexing, and F1 [28] extends Spanner [14] to provide
a distributed relational database; however they also have
similarly high latencies.

Some of the systems above like DynamoDB [3] and
Phoenix [7] on HBase [4] also provide global secondary
indexes, but they are only eventually consistent. More-
over, a query on an index can return only those attributes
of the object data that have been projected onto that index
by the developer and stored with it.

Many other systems provide weak consistency guar-
antees, while still having latencies comparable to sys-
tems above: CouchDB [2] is eventually consistent;
PNUTS [13], Espresso [26] and Tao [12] have weak
consistency guarantees.

RAMP [10] proposes a new consistency model for
transactions called Read Atomic Isolation which can be
used to enable strong consistency between object and
index updates in a distributed storage system. It proposes
three algorithms that offer different trade-offs between
speed and the amount of metadata required. The fastest
version of RAMP requires two serialized round-trips
for writes, which is the same as SLIK but requires a
comparatively large amount of metadata that needs to be
stored and transported over the network.

H-Store [19] is a main-memory distributed storage
system that also provides consistent indexing at a large
scale. It partitions data based on a specified attribute
(which can be a primary key or a secondary key), which
helps the queries based on the partitioning column ben-
efit from the data locality. However, all queries using
other attributes need to contact all the partitions to fetch
the result, which adversely impacts its performance.

HyperDex [17] is a disk-based large-scale storage sys-
tem that supports consistent indexing. It partitions data
using a novel hyperspace hashing scheme by mapping
objects’ attributes into a multidimentional space. As the
number of attributes increase, the number of hyperspaces
increases dramatically. HyperDex alleviates this by par-
titioning tables with many attributes into multiple lower-
dimensional hyperspaces called subspaces. HyperDex
also replicates the entire contents of objects in each
index. This means that while HyperDex provides an ef-

ficient mechanism for search, it uses more storage space
for the extra copies of objects. While this is acceptable
for disk based systems, it would be very expensive for
main-memory based systems.

We have compared approaches taken by other sys-
tems and discussed their tradeoffs with the approaches
adopted by SLIK in Section 2. Further, in Section 4
we compared SLIK performance with H-Store [19] and
found that SLIK outperformed it by a large factor. We
also benchmarked HyperDex [17]. However, we omit
these benchmarks due to space constraints and because it
was hard to quantify how much of its poorer performace
was due to its use of disk for storage.

SLIK’s most unique aspect is its combination of low
latency and consistency at large scale; other systems
sacrifice at least one of these.

6 Conclusion

We have shown that it is possible to have durable and
consistent secondary indexes in a key-value storage sys-
tem at extremely low latency and large scale. We made
design decisions by considering tradeoffs between vari-
ous approaches or by developing new algorithms where
acceptable solutions did not exist. This design provides
secondary indexing that provides better scalability and
latency than existing systems, without any tuning for
specific use cases.

Modern scalable storage systems need not sacrifice
the powerful programming model provided by tradi-
tional relational databases. Furthermore, when imple-
mented using DRAM-based storage and state-of-the-art
networking, storage systems can provide unprecedented
performance. SLIK is an important step on the path to a
high-function, low-latency, large-scale storage system.

7 Acknowledgments

This work was supported by C-FAR (one of six cen-
ters of STARnet, a Semiconductor Research Corporation
program, sponsored by MARCO and DARPA), and by
grants from Emulex, Facebook, Google, Huawei, Inven-
tec, NEC, NetApp, Samsung, and VMware.

We would like to thank Hector Garcia-Molina and
Keith Winstein for their guidance. We would also
like to thank Jonathan Ellithorpe, Greg Hill, Collin
Lee, Behnam Montazeri, Diego Ongaro, Seo Jin Park,
Mendel Rosenblum, Steve Rumble, William Sheu, Ryan
Stutsman, and Henry Qin for interesting discussions and
feedback at various points in the project. Finally, we
would like to thank the anonymous reviewers and our
shepherd, Sriram Rao, for their helpful comments.

12



USENIX Association  2016 USENIX Annual Technical Conference 69

References
[1] Aerospike. http://www.aerospike.com/.

[2] CouchDB. http://couchdb.apache.org/.

[3] DynamoDB. http://aws.amazon.com/

documentation/dynamodb/.

[4] HBase. http://hbase.apache.org/.

[5] MongoDB. http://www.mongodb.org/.

[6] MySQL InnoDB Storage Engine. http:

//dev.mysql.com/doc/refman/5.5/en/

innodb-storage-engine.html.

[7] Phoenix. http://phoenix.apache.org/.

[8] Redis. http://www.redis.io/.

[9] RAMCloud Git Repository, 2015. https://

github.com/PlatformLab/RAMCloud.git.

[10] BAILIS, P., FEKETE, A., HELLERSTEIN, J. M.,
GHODSI, A., AND STOICA, I. Scalable atomic vis-
ibility with RAMP transactions. In Proceedings of
the 2014 ACM SIGMOD international conference
on Management of data (2014), ACM, pp. 27–38.

[11] BAKER, J., BOND, C., CORBETT, J. C., FUR-
MAN, J., KHORLIN, A., LARSON, J., LEON, J.-
M., LI, Y., LLOYD, A., AND YUSHPRAKH, V.
Megastore: Providing scalable, highly available
storage for interactive services. In CIDR (2011),
vol. 11, pp. 223–234.

[12] BRONSON, N., AMSDEN, Z., CABRERA, G.,
CHAKKA, P., DIMOV, P., DING, H., FERRIS,
J., GIARDULLO, A., KULKARNI, S., LI, H. C.,
ET AL. TAO: Facebook’s distributed data store
for the social graph. In USENIX Annual Technical
Conference (2013), pp. 49–60.

[13] COOPER, B. F., RAMAKRISHNAN, R., SRIVAS-
TAVA, U., SILBERSTEIN, A., BOHANNON, P.,
JACOBSEN, H.-A., PUZ, N., WEAVER, D., AND
YERNENI, R. PNUTS: Yahoo!’s hosted data serv-
ing platform. Proceedings of the VLDB Endowment
1, 2 (2008), 1277–1288.

[14] CORBETT, J. C., DEAN, J., EPSTEIN, M., FIKES,
A., FROST, C., FURMAN, J., GHEMAWAT, S.,
GUBAREV, A., HEISER, C., HOCHSCHILD, P.,
ET AL. Spanner: Googles globally distributed
database. ACM Transactions on Computer Systems
(TOCS) 31, 3 (2013), 8.

[15] DIEGUES, N., AND ROMANO, P. Sti-bt: A scal-
able transactional index. In Distributed Computing
Systems (ICDCS), 2014 IEEE 34th International
Conference on (2014), IEEE, pp. 104–113.
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