
This paper is included in the Proceedings of the
2016 USENIX Annual Technical Conference (USENIX ATC ’16).

June 22–24, 2016 • Denver, CO, USA

978-1-931971-30-0

Open access to the Proceedings of the
2016 USENIX Annual Technical Conference
(USENIX ATC ’16) is sponsored by USENIX.

Unsafe Time Handling in Smartphones
Abhilash Jindal, Prahlad Joshi, Y. Charlie Hu, and Samuel Midkiff, Purdue University

https://www.usenix.org/conference/atc16/technical-sessions/presentation/jindal

USENIX Association 2016 USENIX Annual Technical Conference 115

Unsafe Time Handling in Smartphones

Abhilash Jindal
Purdue University

Prahlad Joshi
Purdue University

Y. Charlie Hu
Purdue University

Samuel Midkiff
Purdue University

Abstract
Time manipulation, typically done using gettime() and

settime(), happens extensively across all software lay-
ers in smartphones, from the kernel, to the framework,
to millions of apps. This paper presents the first study
of a new class of software bugs on smartphones called
sleep-induced time bugs (SITB). SITB happens when the
phone is suspended, due to the aggressive sleeping pol-
icy adopted in smartphones, in the middle of a time crit-
ical section where time is being manipulated and delay
caused by unexpected phone suspension alters the in-
tended program behavior.

We first characterize time usages in the Android ker-
nel, framework, and 978 apps into four categories and
study their vulnerabilities to system suspension. Our
study shows time manipulation happens extensively in
all three software layers, totaling 1047, 1737 and 7798
times, respectively, and all four usage patterns are vul-
nerable to SITBs. We then present a tool called KLOCK,
that makes use of a set of static analyses to systemati-
cally identify sleep-induced time bugs in three of the four
time usage categories. When applied to five different An-
droid Linux kernels, KLOCK correctly flagged 63 SITB-
vulnerable time manipulation instances as time bugs.

1 Introduction

Smartphones designs are increasingly subject to three di-
ametrically opposed constraints: phones must have in-
creasing software and hardware functionality which can
increase power requirements; phones have limited form
factor and weight which bounds the size of their battery
and therefore their power supply; and phones must have
ever increasing battery life to meet user expectations and
be competitive in the market place. The push for maxi-
mal energy savings under these constraints quickly drove
their OSes, such as Android, to pursue an aggressive sys-
tem sleeping policy. After some set period of user in-
activity, i.e., the user has not touched the screen or any

peripheral buttons on the device, the OS power manage-
ment triggers the phone’s system on chip (SOC) to enter
its default state, system suspend, where all components
on the SOC are suspended, RAM is put in a self-refresh
mode, and the SOC drains close-to-zero battery power.

The difficulty with this approach is that applications,
the application framework (supplied by the OS vendor
and providing low-level services to the apps) and the ker-
nel (which implements many of the low-level services
provided by the framework) often have time critical sec-
tions that are not part of interactive code. A time criti-
cal section is a dynamic code region (i.e., code that may
not be textually contiguous but is logically related) over
which the system should not suspend.

To prevent the system from suspending when perform-
ing time critical work, smartphone OSes have exported
mechanisms to allow programmers to prevent system
suspension in selected parts of the program. Primary
among these mechanisms is the wakelock, which, when
acquired, prevents the system from suspending and when
released allows it to suspend if nothing else is preventing
the suspension.

However, mobile phone kernels and apps are complex.
They utilize an event driven programming model and
are often concurrent. Combining this complicated pro-
gramming model with explicitly managing the SOC sus-
pend/awake cycle unavoidably results in sleep disorder
bugs, i.e., programming mistakes in system suspension
management that result in unintended app or hardware
device behavior.

Pathak et al. [25] presented the first study of sleep dis-
order bugs, focusing on a class of bugs that result from
not releasing wakelocks in apps, preventing the phone
from going to sleep and draining energy. Jindal et al. [16]
studied sleep conflicts, another class of sleep bugs that
happen in device drivers where a phone’s component
(e.g., WiFi) is left in a high power state wasting bat-
tery. Sleep conflicts occur when a component in high
power state is unable to transition back to its base power

1

116 2016 USENIX Annual Technical Conference USENIX Association

state because the system got suspended before the device
driver responsible for driving the power transition could
run. In both studies, the sleep bugs targeted do not lead
to incorrect program behavior; instead they cause exces-
sive battery drain due to preventing the SOC/CPU or I/O
devices from going to sleep.

This paper studies a new class of sleep-related bugs,
called sleep-induced time bugs. Sleep-induced time bugs
can occur at all levels of the mobile phone ecosystem –
in apps, the framework and the OS code. Unlike pre-
viously studied sleep bugs which lead to energy leaks,
sleep-induced time bugs manifest as logical errors result-
ing from time values becoming “stale” because the CPU
sleeps during the manipulation of time related values.
The manipulations occur via gettime(), settime(),
time arithmetic APIs, and simple arithmetic operations,
and the new class of bugs manifest themselves as incor-
rect values in program variables rather than an incorrect
power state of the device hardware.

Sleep-induced time bugs are difficult to reproduce and
debug since they only arise during some particular, intri-
cate timing between time-critical section execution and
CPU suspension. Indeed when we submitted a patch to
the bug we found in the DHT11 humidity and temper-
ature sensor driver, the kernel maintainer responded [8]
by saying:

“I think it will fix an odd issue I have seen in a
log file (apparently was completely off track
debugging it). As this very likely is a real
world issue, I’d recommend applying the patch
to the fixes branch [sic].”

In this paper, we make three contributions towards un-
derstanding and treating sleep-induced time bugs.

First, we characterize time manipulation usages and
their vulnerabilities to system suspension in the Android
kernel, framework, and 978 apps. We find time manip-
ulation happens extensively in all three software layers,
totaling 1047, 1737 and 7798 times, respectively. We fur-
ther classify all time usages into four categories: timed
callbacks, setting the time, time arithmetic, and timed
logging. The categorization uncovers the time critical
sections in each category, their vulnerability to sleep-
induced time bugs, as well their syntactic characteristics
which give hints for detecting them.

Second, to allow programmers to isolate and fix sleep-
induced time bugs, we present a tool called KLOCK that
detects all instances of the first three categories of time
manipulations in the Linux kernel. KLOCK exploits a key
observation that the start and/or end of time critical sec-
tions due to time usage in the three categories are marked
with a handful of APIs that get/set time or register timer
callbacks in the Linux kernel. KLOCK makes use of a
collection of sophisticated compiler analyses – Use-Def

and Def-Use chains, points-to analysis and reaching def-
initions analysis as building blocks, and customizes their
integration to detect time bugs in each of the three cate-
gories of time usages.

Third, we have implemented KLOCK and applied it
to five Android Linux kernel versions. KLOCK aided in
detecting 63 time bugs, out of which, we found 14 have
been fixed and 7 files with bugs have been removed from
later versions of the kernel. We reported the remaining
42 bugs to the corresponding Linux kernel mailing lists,
and out of the 7 developers who have replied so far, all
confirmed the reported bugs and accepted our patches.

Although we focus on the Android Linux kernel in this
paper, we believe KLOCK is quite general and its design
can be applied to detect sleep-induced time bugs in the
framework, the apps, and other software systems that are
vulnerable to system suspension, the de facto technique
for energy saving on mobile systems.

2 Background

We start with a brief overview of the system suspension
process aggressively triggered on modern smartphones
and the complex set of clock options provided by the
Linux kernel.

2.1 System Suspension in Smartphones
A modern smartphone consists of the SOC and numerous
hardware I/O devices such as LCD, SD Card, WiFi NIC,
cellular, GPS, cameras, and accelerometer. The SOC
consists of the CPU, RAM, ROM, and micro-controller
circuits for various phone devices such as GPS, graphics,
video and audio. The default SOC power state is sus-
pend, where all components on the SOC are suspended,
RAM is put in a self-refresh mode, and the SOC drains
close-to-zero battery power.

Wakelocks are a type of explicit power control APIs
with two associated API calls, acquire and release.
Wakelocks are also exported to the user space to sup-
port background services as well as non-interactive fore-
ground jobs. The Android framework, apps, and device
drivers extensively use wakelocks to ensure continuous
execution of code sections.

When the last wakelock is released, the wakelock ker-
nel module immediately attempts system suspension, by
calling pm suspend() to perform four tasks serially.
First, the filesystem is synced by moving the buffered
data from RAM to NAND. Second, all the user processes
and kernel threads are frozen. Third, it attempts to sus-
pend devices by calling the list of suspend callbacks reg-
istered by device drivers which power down their respec-
tive devices. Note that any suspend callback may return
failure because it is waiting on a condition variable which

2

USENIX Association 2016 USENIX Annual Technical Conference 117

is set to false elsewhere in the kernel, which would abort
the entire suspend process. Finally, all the CPU cores
are disabled by calling the architecture specific code to
complete the suspension.

Note that system suspension is only attempted when
the last wakelock is released. If interrupts in the sys-
tem are disabled, the running process cannot be con-
text switched to another process that might release the
wakelock or get interrupted by wakelock timer expira-
tion. Thus disabling interrupts in a code section effec-
tively prevents suspension.

In summary, system suspension will not succeed while
a piece of code is executing if it (1) holds a wakelock; (2)
disables interrupts indirectly preventing the last wake-
lock from getting released; or (3) sets a condition vari-
able that causes a suspend callback to return failure and
hence abort any suspension attempt.

2.2 Timekeeping in Linux
The Linux timekeeping subsystem is responsible for
maintaining and providing current time to the rest of
the kernel. The POSIX standard requires the timekeep-
ing subsystem to maintain CLOCK REALTIME which is
the time elapsed since the midnight of January 1, 1970.
CLOCK REALTIME is first read from the real time clock
during the kernel initialization phase and then later up-
dated at every tick.

However, CLOCK REALTIME is susceptible to sudden
changes due to the user setting the time or from ntpd,
making it particularly unsuitable to measure elapsed time
of a code section. To overcome this, the POSIX stan-
dard mandates the timekeeping subsystem to provide
CLOCK BOOTTIMEwhich gives the time elapsed since the
boot time. CLOCK BOOTTIME can not be set by the user
or by ntpd and hence does not suffer from sudden dis-
continuities like CLOCK REALTIME.

But CLOCK BOOTTIME is not quite suitable for mea-
suring code execution time, because it includes the time
elapsed even while the SOC is suspended. For this rea-
son, the POSIX standard introduced CLOCK MONOTONIC
which works like CLOCK BOOTTIME but pauses during
SOC suspension making it suitable for measuring pro-
gram execution time.

Although CLOCK BOOTTIME and CLOCK MONOTONIC
will not be reset to suddenly jump backward or for-
ward, their rate is still adjusted slightly to fix clock drifts
which is done autonomously by the timekeeping sub-
system. For this reason, in addition to POSIX stan-
dards, the Linux timekeeping subsystem also provides
CLOCK MONOTONIC RAW which is simply the local oscil-
lator not disciplined by NTP, for use in cases where more
accurate time is needed over very short intervals.

In summary, the myriad of clocks available in the

Listing 1: Sleep induced time bug in Linux kernel memcpy
benchmark: system suspend can alter the time arithmetic
result.

1 double do_memcpy_gettimeofday(memcpy_t fn, size_t
len...) {

2 struct timeval tv_start, tv_end, tv_diff;
3 alloc_mem(&src, &dst, len);
4 gettimeofday(&tv_start, NULL);
5 fn(dst, src, len);
6 gettimeofday(&tv_end, NULL);
7 timersub(&tv_end, &tv_start, &tv_diff);
8 return len / timeval2double(&tv_diff);
9 }

Linux kernel and their subtle semantics pose a signifi-
cant challenge to the developers, and using the wrong
clock leads to vulnerabilities to unexpected events such
as system suspension.

3 Sleep-Induced Time Bugs

Time manipulation occurs frequently across all layers of
smartphone software, from the kernel, to the framework,
to the apps. Two factors together give rise to sleep-
induced time bugs (SITB). First, the smartphone OS em-
ploys an aggressive system suspend policy. Second, time
manipulation in smartphone software forms a time crit-
ical section (TICS) whose start and end are marked by
time manipulation APIs or operations involving values
obtained from the time manipulation APIs. Any delay
within the TICS caused by the smartphone suspension
will alter the intended program behavior and give rise
to an SITB. More formally, an SITB happens when the
smartphone CPU/SOC is suspended in the middle of a
TICS that alters the intended program behavior. We dis-
cuss the impact of these bugs in Section 4.

We now illustrate a sleep-induced time
bug in the Linux kernel memcpy benchmark,
/tools/perf/bench/mem-memcpy.c. The bench-
mark code measures how much time each of the various
memcpy functions takes to copy a single byte. A code
snippet is shown in Listing 1. The function accepts a
pointer to the function fn being benchmarked and the
length of the memory block to be copied. Before calling
fn to start copying in Line 5, the current time is read into
variable tv start. After fn returns, the current time is
read in variable tv end in Line 6. Line 7 computes the
time taken by fn by computing the difference between
tv start and tv end. Line 8 then calculates the rate of
copying by dividing len by time diff.

Consider the scenario where the CPU sleeps in be-
tween the two calls of gettimeofday, in or outside fn,
tv start is set to T1 and tv end is set to T4, but the
system was suspended from T2 until T3. The code will
incorrectly compute the time taken by fn as (T4 - T1),
while the actual time taken is (T2 - T1) + (T4 - T3), and
return an erroneous copying rate.

3

118 2016 USENIX Annual Technical Conference USENIX Association

Table 1: Time usage in the Anroid kernel, framework, and
978 apps.

Usage Static Use Count Example
Pattern Kernel Android App Usage in Kernel

Timer 477 215 352 kernel/time/alarmtimer,
Callback fs/timerfd.c
Time 17 8 1 kernel/time.c,
Setting drivers/rtc/alarm.c
Time 125 522 236 net/ipv4/tcp probe.c,
Arithmetic kernel/time/tick-sched.c
(lower drivers/cpuidle/cpuidle.c
bound) fs/jbd/transaction.c
Logging 453 992 7209 fs/dlm/ast.c, net/
(upper wireless/mwifiex/cmdevt.c
bound) net/sunrpc/svcsock.c
Total 1072 1737 7798

4 Characterizing Time Usage and Vulner-
ability to Sleep-induced Time Bugs

To understand the prevalence of time usage, typical time
usage patterns, and their vulnerability to sleep-induced
time bugs in smartphones, we examined and classified
all the time usage in the Android kernel, the framework,
and a set of 978 apps. The classification gave us many
insights into the root causes of SITBs and hints on how
to detect them.

4.1 Time Usage in the Android Ecosystem
As discussed in §2.2, the Linux timekeeping subsys-
tem provides a myriad of different clocks and exports
the APIs (except for clock monotonic raw) at every
software layer, from device drivers all the way up to
apps. We first read the API documentation to collect
the list of such time APIs exposed at each software
layer [6, 5, 4, 1, 2]. We then grepped for all the us-
ages of respective APIs in the source code of the kernel,
the Android framework, and a set of 978 apps which in-
cluded the 100 most popular apps on Google Play which
we manually downloaded and 878 apps we crawled the
day before Android Market was switched to Google play.
The app source code were obtained by decompiling the
apk files using ded [3].

Table 1 shows that time manipulation is prevalent in
the Android ecosystem, totalling 1072, 1737 and 7798
times in the Android kernel, framework, and 978 apps.

4.2 Categorizing Time Usage and Vulnera-
bility

To understand the purposes of time manipulation widely
used in the smartphone software layers, we manually in-
spected 50 time usages found in each software layer and
found them to fall into the following four categories. Un-
derstanding the usage of each category in turn allows us

Listing 2: Code that generates waveform using timed call-
back.

1 // Generates a sawtooth wave on channel 0,
square wave on channel 1

2 static void waveform_ai_interrupt(unsigned long
arg) {

3 do_gettimeofday(&now);
4 elapsed_time = USEC_PER_SEC*(now.tv_sec-

devpriv->last.tv_sec)+(now.tv_usec-
devpriv->last.tv_usec);

5 devpriv->last = now;
6 num_scans = (devpriv->usec_remainder +

elapsed_time) / devpriv->scan_period;
7 for (i = 0; i < num_scans; i++) {
8 sample = fake_waveform(dev, ...);
9 cfc_write_to_buffer(dev->read_subdev,sample

);
10 }
11 devpriv->usec_current += elapsed_time;
12 mod_timer(&devpriv->timer, jiffies + 1);
13 }
14 static int waveform_attach(struct comedi_device

*dev, struct comedi_devconfig *it) {
15 ..
16 init_timer(&(devpriv->timer));
17 devpriv->timer.function =

waveform_ai_interrupt;
18 }

to automatically search for all the instances of each us-
age, as explained below.

4.2.1 Case 1: Timed Callback

Usage Pattern. In this category, the code wishes to per-
form a certain task at a future time. The code registers an
alarm with the system specifying the function that should
be called and the time interval after which the callback
should happen.

Listing 2 shows an example of how timed callbacks
are set up and used in the kernel. The code gen-
erates waveforms of preconfigured shape. At driver
initialization, function waveform attach (line 14) is
called which sets the pointer of the timed callback
function devpriv->timer.function. The function
waveform ai interrupt generates one period wide wave
(lines 7-10) then recursively invokes itself via a timer
callback (line 12).
Vulnerability. In this category of time usage, the du-
ration from timer registration till the timeout (i.e., when
callback is supposed to be invoked) forms a time critical
section. A time bug can arise when the CPU suspension
happens in the middle of the TICS which delays the call-
back until the next time the CPU wakes up.

The waveform generation code in listing 2 contains a
time bug. Since the driver does not protect against SOC
suspension, the SOC might suspend after the timer is set
at line 12 and cause large gaps in the waveform distorting
its shape.

However, we observed not all such delays give rise to
time bugs: time bugs arise only when the callback exe-
cution interacts with a peripheral I/O components. For

4

USENIX Association 2016 USENIX Annual Technical Conference 119

Listing 3: Clock synchronization in GsmServiceState-
Tracker.java class in Android (simplified for illustration).

1 wakelock.acquire(); //Keep the CPU on
2 x = gettime(); //Obtain external time
3 if (a condition){ //not based on x
4 /* lots of code */
5 x = f(x, z); //Fix x using z
6 /* more code */
7 } else {
8 /* some code */
9 wakelock.release(); //Release wakelock

10 /* lots of code */
11 wakelock.acquire(); //Re-acquire wakelock
12 }
13 settime(x); //Set hardware time
14 wakelock.release(); //Release wakelock

example, an alarm app that wishes to ring an alarm at a
user-specified time must ensure that the callback is pro-
cessed at the intended time. On the other hand, the pro-
cess scheduler in the kernel also registers a timer callback
in order to schedule a new process at the end of a time
slice, but even if the CPU suspends in the middle, the
delay in callback execution will have no impact on the
scheduler semantics.
Occurrences. To count the occurrences of this type of
time usage, we compiled a list of all callback registration
APIs that are exported at each software layer by read-
ing the documentation [6, 2], and counted the number of
occurrences of those APIs in the source code. Table 1
shows that the time callback is widely used, for a total of
477, 215, and 352 times in the Linux kernel, the frame-
work, and the 978 apps, respectively.

4.2.2 Case 2: Time Setting

Usage Pattern. In this category, the subject code updates
the current system time. For example, code listing 3
shows an excerpt from GsmServiceStateTracker in the
Android framework that obtains the external time (line
2), performs manipulation over it (lines 3-12), and sets
the local time (line 13).
Vulnerability. In this category, the duration from get-
time() to settime() forms a time critical section. A time
bug will arise when the CPU suspends in the middle of
the TICS which causes the new hardware time set to be
incorrect. For example, code listing 3 sets the time (line
13) obtained from the network (line 2). But at line 9, the
programmer mistakenly releases the wakelock, giving an
opportunity for the CPU to suspend between line 9 and
line 11. When this happens, line 13 will run after the next
CPU wakeup, setting a stale time.
Occurrences. To count the occurrences of this type of
time usage, we compiled a list of exported APIs at the
three software layers for setting the current system time
and searched for them in the source code. We found 17,
8, and 1 instances of this type of time usage in the kernel,

Listing 4: Speed calculation in SpeedTest.net which mea-
sures the network connection speed.

1 protected Integer doInBackground(URL[] r1) {
2 mStartTime = SystemClock.uptimeMillis();
3 //upload data
4 }
5 protected int getProgress(int i0) {
6 //compute speed
7 i33 = i0 / (SystemClock.uptimeMillis() -

mStartTime) / 1000;
8 }

framework and the 978 apps, respectively, as shown in
Table 1.

4.2.3 Case 3: Time Arithmetic

Usage Pattern. Another common time usage pattern is
to collect two timestamps and perform arithmetic over
them. The arithmetic is performed either directly via in-
teger or long arithmetic, or using Linux provided helper
functions dedicated to performing time arithmetic, e.g.,
timespec sub.

Code listing 4 is extracted from the SpeedTest.net
app [9] which measures the speed of network connec-
tion by registering two callback functions with the frame-
work. The first callback takes a timestamp and saves it in
mStartTime (line 2), and uploads data to the test server
(line 3). The second callback then computes the speed
by finding the elapsed time by subtracting mStartTime
from the current time (line 7).
Vulnerability. In this category, the duration between the
actions of getting two timestamps forms a time critical
section. Time arithmetic programs are vulnerable to two
kinds of vulnerability.

(a) Due to system suspension. A time bug will arise
when the CPU suspends in the middle of the TICS and
the time arithmetic will output an incorrect value. For
example, in code listing 4, the TICS which starts at line
2 and ends at line 7 is not protected by any wakelock.
As a result, the CPU may suspend before line 7, and the
computed speed will be much lower than the actual one.

(b) Due to resetting the time. Time bugs will also
arise in time arithmetic when the user or ntpd resets the
current time between the actions of obtaining two times-
tamps.1 In addition to causing elongated elapsed time (as
in system suspension vulnerability (a)), this vulnerability
can cause elapsed time to elongate or shrink or even be-
come negative since the time can be set to either future
or past timestamps.

We note using CLOCK MONOTONIC which ignores sys-
tem sleep time and cannot be set by ntpd or user, as dis-
cussed in §2.2, would have avoided time bugs in such
time arithmetic. However, due to their subtle semantics,

1We note this bug scenario can also arise in desktop/server plat-
forms.

5

120 2016 USENIX Annual Technical Conference USENIX Association

many kernel and app programmers make mistakes in us-
ing the gettime APIs.
Occurrences. To count the occurrences of this type of
time usage, we searched for all the helper APIs that per-
form time arithmetic at the three software layers. Since
time values may also be manipulated with direct integer/-
long arithmetic, the number of occurrences counted this
way will be an underestimate. Table 1 shows that time
arithmetic is extensively performed, with lower bounds
of 125, 522, and 236 occurrences in the kernel, frame-
work, and 978 apps, respectively. We note the SITB de-
tection tool we present in §5, however, will capture all
Case 3 bugs, whether the time is manipulated using arith-
metic APIs or direct arithmetic.

4.2.4 Case 4: Logging

Usage Pattern. In this category, the code obtains the
current time and logs it in conjunction with some event,
usually for postmortem debugging.
Vulnerability. For such usages, the code between an
event and its timestamping forms a time-critical section,
as a CPU suspension in between will result in an in-
correct timestamp being logged for the event. However,
automatically detecting this category of TICSes is chal-
lenging, since in general there is no syntactic clue corre-
lating the event and logging. We leave detecting SITBs
in this category as future work.
Occurrences. Since it is difficult to count all such usages
by searching any APIs, we heuristically assume that if a
timestamp call, i.e., gettime(), is not used in one of the
above three categories, it belongs to this category. Hence
the numbers for Case 4 time usage pattern in Table 1 are
overestimates. Table 1 shows timed logging occur 453,
992, and 7209 times in the three software layers.

5 Design

Sleep-induced time bugs occur when a part of a time crit-
ical section (TICS) is unprotected. In this section, we
explore the design space and present a detection system
called KLOCK that automatically finds SITBs in the first
three categories of time usages using static analysis.

5.1 Design Space
We explored the use of both software model checking
and dataflow analysis, two primary techniques that have
been extensively applied to finding software bugs [12,
21, 14, 28, 13, 19]. Both techniques attempt to discover
properties that hold for the program or at certain points
in the program.

Figure 1: The KLOCK architecture.

Roughly speaking, model checking is well suited to
analyses that explore dynamic properties of the system,
and data flow analyses are typically used in situations
where conservative approximations can be made regard-
ing paths or inter-thread ordering. Which kind of anal-
ysis to choose depends on the implementation difficulty
and the analysis precision that can be achieved for the
property under consideration. As shown in [15], model
checking is not always more accurate than data flow anal-
ysis and can be more difficult to implement. In the cur-
rent work, the properties to be modeled (Use/Def infor-
mation, program paths that may not be covered by a
wakelock) corresponded well to what could be accom-
plished via traditional dataflow analysis. This, combined
with the relative ease of implementing these within the
LLVM framework led us to use dataflow analysis for our
debugging solution.

5.2 Design Overview
Figure 1 gives an overview of the KLOCK design, and
the overall detection algorithm. KLOCK takes as input
source code and performs two major tasks to detect time
bugs. First, it identifies each of the three types of time
critical sections of interest by identifying the statements
that delimit the TICS and the statements that are con-
tained in the TICS (§5.4). Next, it finds the set SAFE
of all safe statements, i.e., statements that are safe from
CPU suspension during their execution (§5.5). The state-
ments that belong to TICS and not to SAFE are in a TICS
that are subject to SOC/CPU suspension while they are
executing; they are marked as sleep-induced time bugs
and added to the set BUGS which are reported.

5.3 Compiler Analyses Used by KLOCK

Our system uses a number of well-known compiler anal-
ysis techniques [10]. These include (1) Points-to anal-

6

USENIX Association 2016 USENIX Annual Technical Conference 121

ysis determines what can be pointed-to by a pointer or
reference. Our techniques will use points-to analysis to
find the targets of function pointers. (2) Interprocedu-
ral reaching definitions analysis (RDA) finds all defi-
nitions of variable v that can reach a statement that uses
variable v. (3) Use-Def and Def-Use chain construction
links together definitions of variables and uses of those
definitions across functions within the program. Use-Def
and Def-Use chains are used to follow the flow of data
through the program and form the core of our analysis.

5.4 Identifying Time Critical Sections
Identifying time critical sections is, in general, impossi-
ble because whether or not a set of statements is a time
critical section depends on the intended semantics of the
code. We make a key observation that in all three cat-
egories of time usage that are vulnerable to time bugs,
the start and/or end of time critical sections are marked
with a handful of APIs that get/set time or register timer
callbacks in the Linux kernel. Therefore, by identifying
and informing the compiler of these APIs, e.g., by pro-
viding them in a table to the compiler, we can effectively
bootstrap the compiler analysis for precisely identifying
all such time-critical code sections.
Case 1: Timer Callback. Recall that in this case, the
program registers a timer callback for performing a time
critical task. The TICS contains the registration, the call-
back and the critical task performed by the callback.

Algorithm 1 TICS identification for Case 1: Callbacks
Require: Program P, Callgraph C, Timer registration APIs set

R
1: Time critical statements TICS ← /0
2: for all Statements SP ∈ P do
3: if SP calls function FR ∈ R then
4: TICS = TICS∪SP
5: Callback FC = getTarget(SP,C)
6: TICS = TICS∪FC
7: end if
8: end for
9: return TICS

Algorithm 1 gives the pseudo code for detecting call-
back based TICS. To identify the start of a TICS, we
identify the small number of callback registration func-
tions R, such as hrtimer start which registers a high-
resolution timer in the kernel. Identifying the start of a
TICS boils down to matching all calls in the source code
against the list of functions in R (line 3).

The next step is to correctly identify the callback func-
tion corresponding to every timer registration (line 5). In
the kernel, registration is done by passing a pre-defined
struct that contains the callback function pointer. For ex-

ample, in code listing 2, the struct devpriv->timer is
passed as an argument to mod timer in line 12, and its
member .function is set to waveform ai interrupt
in line 17. As shown in this example, the callback regis-
tration (line 12) and setting function pointer (or defining
argument object) can be in disconnected places. Hence,
identifying the correct callback function in the kernel
code requires pointer analysis.

The end of a TICS should, ideally, be marked by iden-
tifying the end of time critical processing inside the timer
callback. Since identifying this critical processing can
be highly context sensitive, we make a conservative as-
sumption that the TICS ends when the timer callback ex-
its. Hence, we add all the statements in the timer callback
to TICS, in Algorithm 1.
Case 2: Time Setting. Recall that in this case, the TICS
ends with a function call that sets the clock and begins at
the point when the time variable used to set the clock was
first obtained. Because there are only a small number of
APIs that set the clock (e.g., settimeofday), a list of
them can be maintained in the compiler, and a call to one
of these will mark the end of a TICS.

Algorithm 2 TICS identification for Case 2: Set time
Require: Program P, Callgraph C
Require: Statement-variable tuples (SST ,Vt) that set time

1: Time critical statements TICS ← /0
2: for all (SST ,Vt) do
3: TICS ← TICS∪DEFS+(SST ,Vt)
4: end for
5: return TICS

Identifying the start of TICS, however, is more com-
plicated. This is because the time value that is used to set
the clock can be read from the network (e.g., via NTP)
or can be directly obtained from the user, i.e., there is
no fixed API for obtaining this time value. We do know,
however, that the variable obtained from other sources
must affect the time variable used to set the clock. Hence,
to find the start of Case 2 TICS, we find the transitive clo-
sure DEFS+(SST ,Vt) of the use-def chain (DEFS set)
where SST is a statement with an API call to set time
and Vt is the variable containing the time for that call.
DEFS(S,V) is the set of statements that may have de-
fined V most recently before S. The closure, hence,
contains all variable definitions which directly affect the
variables containing time at set time API calls. We mark
all statements in the closure as part of the TICS.

For example in code listing 3, we first mark line 13
(S13), settime(x) as the end of a TICS pushing (S13,x)
to CST . DEFS(S13,x) will contain all the definitions of x
that reach line 13, i.e., lines 2 and 5 and they are marked
as part of the TICS.
Case 3: Time Arithmetic. Recall that timer arith-

7

122 2016 USENIX Annual Technical Conference USENIX Association

metic can be done using either fixed APIs (e.g.,
ktime sub(t1, t2)) or general integer arithmetic. This
case is challenging because it is not obvious which two
time variables are involved in that arithmetic. We make
a key observation that only the code between getting the
two timestamps used in the arithmetic expression forms
a TICS– the arithmetic itself is not a TICS. This obser-
vation motivates our detection scheme as follows.

Algorithm 3 TICS identification for Case 3: Time arith-
metic
Require: Program P, Callgraph C
Require: Statement-variable tuples (SGT ,Vt) that get time

1: Time critical statements TICS ← /0
2: for all (SGT ,Vt)(S′GT ,V

′
t);SGT �= S′GT do

3: if USES+(SGT ,Vt)∩USES+(S′GT ,V
′

t) �= /0 then
4: TICS = TICS ∪ all statements between SGT ,S′GT
5: end if
6: end for
7: return TICS

We first build USES(S,V) which is the set of state-
ments that may use the value of V computed at S, ∀S ∈ P.
Now, there are a few APIs to read the current system
time, e.g., getnstimeofday is used by the kernel to
get the time, and SystemClock.elapsedRealTime is
used by both the Android framework and apps. For
each use of these APIs in a statement SGT with the re-
turned time arguments Vt , we find the transitive closure
USES+(SGT ,Vt) of the def-use chain (USES set), i.e., we
find all statements that are directly or indirectly flow de-
pendent on statement SGT .

If timestamps are obtained at n locations, n closures
are computed, corresponding to the n timestamps read.
Now, if an arithmetic statement is contained in two dif-
ferent closures, we know that the arithmetic statement
contains, and is affected by, variables whose values are
either timestamps or a function of the timestamps of the
closures it is involved in. All such pairs of timestamps
are marked as the start and end of a TICS (lines 5-11).

Note that while three or more timestamps can poten-
tially be involved in some arithmetic (we have not seen
such cases), the algorithm requires no change as pairwise
set intersection will capture all statements in the critical
section resulting from such multiple timestamps.

5.5 Identifying Protected Statements

When a protection mechanism is enabled, e.g., a wake-
lock is held, or interrupts are disabled, all statements un-
til it is disabled are protected by it. Such statements can
be detected using a variation of the reaching definitions
dataflow analysis as in [25]. The key idea is that enabling
and disabling each mechanism can be transformed to as-

Table 2: Summary of the analyses in KLOCK.

Analysis LOC Time (s)
clang Compilation - 71
llvm-link Linking - 651
Alias analysis - 164
KLOCK CallGraph 552 2
KLOCK TICS Case 1: Callback 164 2
KLOCK TICS Case 2: Set time 1489 246
KLOCK TICS Case 3: Get time 1101 501
KLOCK SAFE: RD Analysis 717 11
KLOCK Other 1196 -
Total 5219 1648

signments of values “1” and “0” to a special mechanism
variable, which initially has a value of “0”. Afterwards,
the state of all protection mechanisms that reach a state-
ment can be easily observed via the reaching definitions
dataflow analysis, which determines if the statement is
protected. This analysis adds all of the protected state-
ments into the SAFE set, which are compared with TICS
statements to detect SITB as shown in Figure 1.

5.6 Limitation and Generality
KLOCK currently does not deal with wakelocks that take
timeout parameters; statically finding the end of such
protected regions is difficult. KLOCK can detect pro-
tected code regions due to the first two mechanisms in
§2.1, but not due to suspend callbacks via conditional
variable manipulation. Detecting such cases requires in-
volved range analysis (e.g., [27]). Finally, KLOCK does
not detect SITBs in timed logging. We leave these as
future work.

Although we focus on the Android Linux kernel, the
KLOCK design is quite general and can be applied to de-
tect SITBs in the framework, the apps, and other soft-
ware systems that are vulnerable to system suspension.
For example applying the KLOCK design to analyze apps
just requires building call graphs that can capture intri-
cate callbacks that cross apps and the framework.

6 Implementation

We implemented KLOCK by adding 5 custom passes on
top of the baseline LLVM compiler infrastructure version
3.3 [7], the 4 custom passes discussed in §5.4 cases 1,2,
3, and §5.5, and an additional pass for building call graph
of the complete kernel, as shown in Table 2. KLOCK also
runs a few standard passes such as alias analysis, control
flow graph simplification and a few peephole optimiza-
tions. Before running these passes, we manually exposed
the relevant APIs for bootstrapping the analyses by anno-
tating the Linux kernel.
LLVM Passes. KLOCK is implemented in C++ in a total
of 5.2 KLOC, broken down into implementing different

8

USENIX Association 2016 USENIX Annual Technical Conference 123

Table 3: Kernels used in KLOCK evaluation.

Phone CPU SoC Version
Nexus 1 Scorpion Qualcomm QSD8250 2.6.35.7
Nexus 7 ARM A9 Nvidia Tegra 3 T30L 3.1.10
Nexus 10 ARM A15 Samsung Exynos 5 3.4.5
Nexus S ARM A8 Samsung Hummingbird 2.6.35.7
x86 x86 64 – 4.1

Table 4: TICS (U)sage, SITB (R)eports generated by
KLOCK, and confirmed (B)ugs for each case in the Android
kernels. No double-counting of same bug in different ker-
nels.

Category Time Callback Time Setting Time Aritmetic
in kernel U R B U R B U R B
arch 4 2 1 0 0 0 2 1 1
block 4 4 0 0 0 0 0 0 0
drivers 41 23 3 3 1 0 60 50 48
fs 10 8 0 3 1 0 3 2 0
init 0 0 0 1 1 0 0 0 0
kernel 29 15 0 2 2 0 10 8 2
mm 2 1 0 0 0 0 0 0 0
net 29 29 0 0 0 0 32 9 1
security 0 0 0 0 0 0 2 0 0
sound 4 4 0 0 0 0 6 3 3
tools 1 0 0 0 0 0 4 4 4
Total 123 86 4 9 5 0 120 78 59

passes as shown in Table 2.

7 Evaluation

Our evaluation of KLOCK answers the following ques-
tions: (1) How long does it take KLOCK to analyze a
large system such as the Linux kernel? (2) Is KLOCK
effective in finding sleep-induced time bugs? (3) What
causes KLOCK to generate false positive reports? All ex-
periments were conducted on an Ubuntu Linux machine
with an Intel 8-Core 2.33 Ghz CPU and 16 GB memory.
Performance. The execution time of KLOCK in analyz-
ing the Linux kernel version 3.1.10 and the time break-
down into all the phases are shown in Table 2. The results
show that KLOCK can analyze a large system in a fairly
reasonable amount of time.

7.1 Finding Sleep-Induced Time Bugs
Since KLOCK analyzes the entire compiled kernel at
once, we apply KLOCK to 5 different kernels, i.e., with
different configuration options and/or kernel versions, to
increase the coverage of the entire Linux kernel. Ta-
ble 3 lists the five kernels used in the evaluation, for four
popular phones, Nexus 1, Nexus 7, Nexus 10, Nexus
S, with default configuration and an x86 kernel with
allyesconfig that has wakelocks enabled. All four
phones have ARM CPUs but have different SOCs.

Table 4 summarizes the bug finding results. Each file
containing time related API is counted as one time usage
instance, and is counted as an SITB bug if it contains at
least one statement in the BUG set output by KLOCK.2
Every number in the table shows the total number of
unique instances of usages/bugs across the five kernels.
The number of instances and bugs for each of the three
time usages is broken down according to the top level
directories in the kernel. The usage number for each us-
age excludes time usages using safe APIs. We observe
that time callback and time arithmetic occur 123 and 120
times in the five kernels, but time setting is used rarely,
only 9 times by a few kernel components.

After KLOCK generated bug reports, we manually an-
alyzed them and marked them as either false positives or
bugs. In total we found 63 bugs out of which we found
14 have been fixed and 7 files with bugs have been re-
moved from later versions of the kernel. We reported the
remaining 42 bugs to the Linux kernel mailing lists, and
out of the 7 developers who have replied so far, all con-
firmed the corresponding bugs and accepted our patches.
We now describe these 63 time bugs that KLOCK found.
Measuring pulse width. KLOCK found 6 similar bugs
in remote control receiver drivers – 4 in the LIRC subsys-
tem drivers/staging/media/lirc/ and 2 in drivers of
streamzap remote drivers/media/rc/streamzap.c

and DHT11 temperature and humidity sensor
drivers/iio/humidity/dht11.c which measure
the width of received pulse using time arithmetic. In
Listing 5, the data being received is encoded in the width
of the received pulse (lines 6, 7, 14-18). If the SOC
suspends or if the time is reset before line 3, the width
of the pulse deltv calculated at line 4 will be incorrect
resulting into wrong value to be saved in rx buf (line
18).
Measuring clock rate. KLOCK detected 5 bugs in radio,
IDE and sound drivers where the drivers calculate the
input clock rate using time arithmetic. Due to SITBs, the
resulting clock rate measured will be incorrect.
Measuring delay. KLOCK found 4 similar bugs in IrDA
chipset drivers, drivers/net/irda/, where the driver
measures the processing delay diff (line 9 in code list-
ing 6) and compares it against minimum turnaround time
mtt, (line 10). If mtt is larger than diff, then the frame is
transmitted after (mtt - diff) microseconds (lines 10-
12). If the time is set to a time before computing line 8,
then diff may become negative, causing unnecessarily
large delay in transmitting the frame.

The SASEM USB IR remote control driver
drivers/staging/media/lirc/lirc sasem.c ig-

2We conservatively use file as a unit in counting bugs to avoid in-
flating the bug count. In time arithmetic, one start time is often used
in arithmetic with many other timestamps, and each could have been
counted as a separate bug.

9

124 2016 USENIX Annual Technical Conference USENIX Association

Listing 5: drivers/staging/media/lirc/lirc sir.c: Using wall-
clock to measure pulse width.

1 static irqreturn_t sir_interrupt(int irq, void *
dev_id) {

2 if (status & (UTSR0_RFS | UTSR0_RID)) {
3 do_gettimeofday(&curr_tv);
4 deltv = delta(&last_tv, &curr_tv);
5 if (status&UTSR0_RID) {
6 add_read_queue(0, deltv-n*TIME_CONST);//

space
7 add_read_queue(1, n*TIME_CONST); //pulse
8 n = 0;
9 last_tv = curr_tv;

10 }
11 }
12 return IRQ_RETVAL(IRQ_HANDLED);
13 }
14 static void add_read_queue(int flag, unsigned

long val) {
15 int newval;
16 newval = val & PULSE_MASK;
17 ..
18 rx_buf[rx_tail] = newval;
19 }

Listing 6: drivers/net/irda/nsc-ircc.c: Using wallclock to
measure processing delay.

1 static netdev_tx_t nsc_ircc_hard_xmit_fir(struct
2 sk_buff *skb, struct net_device *dev) {
3 ..
4 // Start transmit only if there is currently no

transmit going on
5 if (self->tx_fifo.len == 1) {
6 mtt = irda_get_mtt(skb);
7 if (mtt) {
8 do_gettimeofday(&self->now);
9 diff = (self->now.tv_sec-self->stamp.tv_sec

)*USEC_PER_SEC + (self->now.tv_usec -
self->stamp.tv_usec);

10 if (mtt > diff) {
11 mtt -= diff;
12 udelay(mtt);
13 }
14 }
15 // Transmit frame
16 nsc_ircc_dma_xmit(self, iobase);
17 }
18 }

nores an input if it arrives in 250 ms since the last input.
Because of unexpected discontinuities in wall clock
time, the driver may end up ignoring inputs not in the
250 ms range. A similar bug was found in input driver
for SoundGraph iMON IR, drivers/media/rc/imon.c.

Poll and wait until timeout. Linux con-
trol and measurement device interface driver
drivers/staging/comedi/drivers/serial2002.c,
shown in Listing 7, polls serial connected hardware
at line 9. If there is no new data, it takes the current
timestamp now at line 13, calculates elapsed at line
14 relative to start, obtained at line 4, and breaks the
loop if elapsed is larger than the timeout (lines 15-16).
KLOCK correctly flagged time arithmetic at line 14 as a
bug since before reading now at line 13, if the time is set
to a past time stamp, the driver will get stuck spinning in
the while loop much longer than the intended timeout

(typically 1 ms, not shown in Listing 7).

Listing 7: drivers/staging/comedi/drivers/serial2002.c: Us-
ing wallclock to poll and wait until timeout.

1 static void serial2002_tty_read_poll_wait(struct
file *f, int timeout) {

2 struct poll_wqueues table;
3 struct timeval start, now;
4 do_gettimeofday(&start);
5 poll_initwait(&table);
6 while (1) {
7 long elapsed;
8 int mask;
9 mask = f->f_op->poll(f, &table.pt);

10 if (mask & (POLLRDNORM | POLLRDBAND | POLLIN
| POLLHUP | POLLERR)) {

11 break;
12 }
13 do_gettimeofday(&now);
14 elapsed = 1000000 * (now.tv_sec - start.

tv_sec) + now.tv_usec - start.tv_usec;
15 if (elapsed > timeout)
16 break;
17 set_current_state(TASK_INTERRUPTIBLE);
18 schedule_timeout(((timeout - elapsed)*HZ)

/10000);
19 }
20 poll_freewait(&table);
21 }

The accepted patch for the bug uses CLOCK MONOTONIC

which ignores system suspend and cannot be reset by
user setting the time or by NTP as discussed in §2.2.

Similar bugs were found in 7 other drivers.
Generating waveform. KLOCK detected both
case 1 and case 3 time bugs in the Linux con-
trol and measurement device interface driver
drivers/staging/comedi/drivers/comedi test.c

in code listing 2 which was already discussed in §4.2.1.
Msm, vibrator, and timed gpio drivers. The code snip-
pet in Listing 8, from the msm7k serial device and con-
sole driver, is responsible for turning off the UART clock
once the transmit buffer is empty. This function first ver-
ifies if the clock is on (line 4) and then sets the clock state
to MSM CLK REQUEST OFF signifying that it is requested to
be turned off (line 5). It then registers a timer callback
function msm serial clock off that must be called after
clock off delay seconds (line 6). This callback func-
tion verifies the state of clock to be MSM CLK REQUEST OFF

(line 12), and checks if the transmit buffer is empty (line
13). If so, the clock is disabled and its state is set to
off (lines 14 and 15), otherwise the callback function is
rescheduled to get called again in clk off delay seconds
(line 17).

SITB occurs if the CPU suspends before the timer fires
and the callback function is executed. In that case, even
if the transmit buffer is empty, the UART clock would
unnecessarily remain turned on.

The Android kernel exposes a special timer API
android alarm which uses high-resolution timer to trig-
ger an event when the CPU is active and addition-
ally also sets an RTC wakeup alarm when the CPU
is about to suspend. Switching to Android timer API
android alarm init from hrtimer start (at line 6)

10

USENIX Association 2016 USENIX Annual Technical Conference 125

Listing 8: drivers/serial/msm serial.c: Unprotected use of
timer callback wastes energy.

1 //request turning off clock once TX is flushed
2 void msm_serial_clock_request_off(struct

uart_port *port) {
3 clk_off_timer.function = msm_serial_clock_off;
4 if (msm_port->clk_state == MSM_CLK_ON) {
5 msm_port->clk_state = MSM_CLK_REQUEST_OFF;
6 hrtimer_start(clk_off_timer,clk_off_delay,

HRTIMER_MODE_REL);
7 }
8 }
9 //clock off if TX buffer is empty, else

reschedule
10 static enum hrtimer_restart msm_serial_clock_off(

struct hrtimer *timer) {
11 int ret = HRTIMER_NORESTART;
12 if (msm_port->clk_state==MSM_CLK_REQUEST_OFF) {
13 if (uart_circ_empty(xmit)) {
14 clk_disable(msm_port->clk);
15 msm_port->clk_state = MSM_CLK_OFF;
16 } else { //reschedule
17 hrtimer_forward_now(timer, clk_off_delay);
18 ret = HRTIMER_RESTART;
19 }
20 }
21 return HRTIMER_NORESTART;
22 }

fixes the SITB since the CPU will be woken up just in
time to turn off the UART clock.

Similar bugs were found in vibrator driver
arch/arm/mach-msm/msm vibrator.c and timed
gpio driver drivers/staging/android/timed gpio.c.

Leaky bucket. The driver for Beeceem
WIMAX chipset used by Sprint 4G,
drivers/staging/bcm/LeakyBucket.c, implements
a routine related to the Leaky Bucket algorithm. As
shown in the code snippet in Listing 9, function
UpdateTokenCount() controls the number of packets
that can be transmitted in a fixed time period. Line 3
reads the current time in tv and line 4 computes the
number of seconds passed since the token count was last
updated and stores it in currentTime. If currentTime

is non-zero, the current token count is incremented
by the number of packets that can be transmitted in
currentTime, and the last update time is set to current
time (line 7).

If the token accounting semantics is to include CPU
sleep time, then if the CPU sleeps after line 5, line 6 will
be executed after the CPU wakes up and under-calculates
the tokens accumulated. If the token accounting seman-
tics is to exclude the CPU sleep time, then the token ac-
counting is correct in the current invocation of the func-
tion if the CPU does not sleep before line 3. But if the
CPU sleeps after line 3, in the next invocation of function
UpdateTokenCount(), currentTime calculation (line 4)
would include the sleep time, again resulting in incorrect
token calculation.

Benchmarking and stats reporting. KLOCK detected
the sleep bug in the the memcpy benchmark discussed in
§3. Similar bugs were detected in 29 other places.

Listing 9: drivers/staging/bcm/LeakyBucket.c: Incorrect
token accounting due to SITB

1 //Called every time before transmitting packets.
2 static void UpdateTokenCount() {
3 do_gettimeofday(&tv);
4 currTime = tv.tv_sec-pcktInfo.lastUpdate.tv_sec

;
5 if(currTime!=0) {
6 pcktInfo.tokens+= pcktInfo.maxRate*currTime;
7 memcpy(pcktInfo.lastUpdate,&tv,sizeof(struct

timeval));
8 if(pcktInfo.tokens>=pcktInfo.maxBucketSize)
9 pcktInfo.tokens=pcktInfo.maxBucketSize;

10 }
11 }

Miscellaneous. 2 other time arithmetic
bugs were found in infiniband driver
drivers/infiniband/hw/mlx4/alias GUID.c, and
storage controller driver drivers/scsi/3w-9xxx.c. We
skip their details due to page limit.

7.2 False Positives
KLOCK reported 106 time manipulation instances to
contain SITBs, which upon manual analysis, turned out
to be false positives. We note the false positive rate of
63% is a reasonable tradeoff for the high coverage of
static analysis (e.g., [27] reports finding 11 bugs out of
741 reports, [20] reports finding 252 bugs out of 955 re-
ports). We found three reasons that cause KLOCK to gen-
erate false error reports:
System suspension does not affect program seman-
tics. We found false positives in cases where the pro-
gram semantics are not impacted by system suspension
during time manipulation. Marvell wireless LAN device
driver drivers/net/wireless/mwifiex/wmm.c, for ex-
ample, just calculates a random number by performing
time arithmetic. Similarly, the kernel process scheduler
registers a timer callback for scheduling a new process at
the end of a time slice, but even if the CPU suspends in
the middle, the delay in callback execution will have no
impact on the scheduler semantics. Reducing such false
positives requires understanding program semantics.
System calls. KLOCK flags system calls such as
sys settime, sys utimes as bugs. This is because
KLOCK only analyzes the entire Linux kernel, and these
system calls are effectively wrappers to the actual time
setting APIs and are meant to be invoked by user-space
programs; by themselves they do not enable any sus-
pension prevention mechanism. Such system call usages
can cause sleep-induced time bugs in the user-space pro-
grams calling them if they do not use proper suspension
prevention mechanisms.
Dependence on system suspension code. Requesting
firmware drivers/base/firmware class.c, for exam-
ple, holds a semaphore shared with the code that disables
usermodehelper which lies on the suspension code path.

11

126 2016 USENIX Annual Technical Conference USENIX Association

Reducing such false positives requires tracking the state
of all global conditional variables and semaphores shared
with all the code on suspension code path. We leave it as
future work.

7.3 The Significance of SITBs
SITBs occur in all software layers in the mobile ecosys-
tem. They can impact both performance and program
correctness. In particular, out of the 63 bugs KLOCK
found, 30 are benchmarking bugs, and the remaining
33 bugs either impact performance (including energy) or
correctness of device drivers.
Correctness related. (i) 6 drivers under “Measuring
pulse width” decode a received signal by measuring the
width of a pulse. SITBs make them measure the width
incorrectly, hence reading the received data incorrectly.
(ii) 2 drivers under “Measuring delay” incorrectly ignore
user input. (iii) 5 drivers under “Measuring clock rate”
measure the clock rate incorrectly. These are mostly ra-
dio drivers needed to detect the incoming clock rate to
decode data. The data decoded will be wrong if the mea-
sured clock rate is incorrect.
Performance related. (i) 8 drivers under “Poll and wait
until timeout” category cause the driver to spin for a long
time, making the device unusable. (ii) 4 drivers under the
“Measuring delay” category cause the driver to sleep for
a long time, making the device unusable. (iii) 3 drivers,
msm, vibrator and timed gpio, keep the device on longer
than necessary, wasting energy.

In summary, none of these bugs crash the kernel, but
they are serious bugs affecting the correctness or perfor-
mance of the kernel.

8 Related Work

Hunting bugs in Linux is a topic almost as old as Linux
itself [23]. Sleep-related bugs (in Linux) on smartphones
is a relatively new and exciting area. Previous work has
focused on sleep bugs that result in energy leaks, or en-
ergy bugs. Pathak et al. were the first to discuss the
significance of energy bugs in smartphones [24] and de-
veloped a taxonomy of smartphone energy bugs. In [25],
Pathak et al. studied no-sleep energy bugs, a class of
sleep bugs caused by not releasing wakelocks in apps
which causes SOC/CPU to stay awake, and developed
a detection tool based on reaching definitions dataflow
analysis. In [16], Jindal et al. studied sleep conflicts,
a class of sleep bugs in device driver code that cause
phone devices to stay in an active power state till indef-
inite due to unexpected SOC/CPU suspension, and pro-
posed a system to perform runtime avoidance of sleep
conflict. In [17], Jindal et al. developed a taxonomy of

sleep disorder bugs, which includes no-sleep, over-sleep
and under-sleep bugs. SITBs are first class of over-sleep
bugs studied.

Carat [22] treats apps as blackboxes and performs col-
laborative debugging to identify “energy hog” apps based
on observed behavior of an app running on many phones.

In contrast to these previous work, we study a new
class of sleep-related bugs, sleep-induced time bugs, that
manifest as logical errors and alter the intended program
behavior.

Our work relies in part on finding ordering relation-
ships between actions on time-related system calls, vari-
ables that are a function of time values, and wakelock
acquires and releases. Engler’s MC language [11] builds
upon the Metal state-machine language and allows writ-
ing compiler extensions for static checking of temporal
relationships between program actions. As described in
§5.4, Algorithms 2 and 3, our techniques require finding
transitive closures of use-def chains and, in Algorithm 3,
additionally finding the pair-wise intersections of the clo-
sures which are beyond statically defined state machines
created when compiling MC checks.

We note that [26] and [18], among others, perform
static race detection, and in the course of doing this iden-
tify the sets of locks held at a location. While it might be
possible to take their analysis and adapt it to our needs,
we find our simple data flow based algorithm to be suffi-
cient and efficient.

9 Conclusion

This paper presents the first study of a new class of sleep-
related bugs on smartphones, sleep-induced time bugs,
that can occur in all layers of smartphone software, i.e.,
the kernel, framework, and apps. A SITB happens when
the phone is suspended in the middle of a time critical
section that manipulates time and as a result alters the in-
tended program behavior. We characterize the pervasive
usage of time usage in smartphone software layers, clas-
sify them into four usage patterns, and show their vulner-
ability to SITBs. We present the design and implemen-
tation of KLOCK, a tool that detects SITBs in large sys-
tems. KLOCK has aided in finding 63 SITBs in the Linux
kernel. We have released KLOCK at http://github.
com/klock-android for use by smartphone OS devel-
opers to test for sleep-induced time bugs.
Acknowledgment. We thank the anonymous reviewers
and our shepherd Anthony D. Joseph for their construc-
tive comments which helped to improve this paper. This
work was supported in part by NSF grant CCF-1320764
and by Intel.

12

USENIX Association 2016 USENIX Annual Technical Conference 127

References
[1] Android time api. http://developer.android.

com/reference/android/text/format/
Time.html,http://developer.android.
com/reference/android/os/SystemClock.
html.

[2] Android timer api. http://developer.android.
com/reference/java/util/Timer.html.

[3] Decompiling apps. http://siis.cse.psu.edu/
ded/.

[4] Kernel manipulating time. http://linux.
die.net/man/3/timersub,http://lxr.
free-electrons.com/source/include/
linux/ktime.h.

[5] Kernel querying time. http://www.cs.fsu.edu/
˜baker/devices/lxr/http/source/linux/
include/linux/time.h.

[6] Kernel timer api. http://www.ibm.com/
developerworks/library/l-timers-list/,
https://lwn.net/Articles/429925/.

[7] Llvm compiler infrastructure. https://llvm.org.

[8] [patch] iio: dht11: Use boottime. http://www.
spinics.net/lists/linux-iio/msg22706.
html.

[9] Speedtest.net. https://play.google.com/
store/apps/details?id=org.zwanoo.
android.speedtest.

[10] A.V. Aho, M.S. Lam, R. Sethi, and J.D. Ullman. Compilers:
principles, techniques, and tools. Pearson/Addison Wesley, 2007.

[11] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system
rules using system-specific, programmer-written compiler exten-
sions. In Proc. of OSDI. USENIX Association, 2000.

[12] D. Engler, D.Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs
as deviant behavior: A general approach to inferring errors in
systems code. In Proc. of ACM SOSP, 2001.

[13] Dawson Engler and Ken Ashcraft. Racerx: Effective, static de-
tection of race conditions and deadlocks. SOSP, 2003.

[14] Dawson Engler and Madanlal Musuvath. Model-checking large
network protocol implementations. In Proc. of USENIX NSDI,
2004.

[15] Dawson Engler and Madanlal Musuvathi. Static analysis versus
software model checking for bug finding. In Proc. of VMCAI,
2004.

[16] Abhilash Jindal, Abhinav Pathak, Y. Charlie Hu, and Samuel
Midkiff. Hypnos: Understanding and Treating Sleep Conflicts
in Smartphones. In Proc. of EuroSys, 2013.

[17] Abhilash Jindal, Abhinav Pathak, Y Charlie Hu, and Samuel
Midkiff. On death, taxes, and sleep disorder bugs in smartphones.
In Proceedings of the Workshop on Power-Aware Computing and
Systems, page 1. ACM, 2013.

[18] Vineet Kahlon, Nishant Sinha, Erik Kruus, and Yun Zhang. Static
data race detection for concurrent programs with asynchronous
calls. In Proceedings of the the 7th joint meeting of the European
software engineering conference and the ACM SIGSOFT sympo-
sium on The foundations of software engineering, pages 13–22.
ACM, 2009.

[19] Ted Kremenek, Paul Twohey, Godmar Back, Andrew Ng, and
Dawson Engler. From uncertainty to belief: Inferring the specifi-
cation within. In Proc. of USENIX OSDI, 2006.

[20] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. Cp-miner: Finding copy-
paste and related bugs in large-scale software code. Software En-
gineering, IEEE Transactions on, 32(3):176–192, 2006.

[21] Madanlal Musuvathi, David Y.W. Park, Andy Chou, Dawson R.
Engler, and David L. Dill. Cmc: A pragmatic approach to model
checking real code. In Proc. of USENIX OSDI, 2002.

[22] Adam J. Oliner, Anand Iyer, Eemil Lagerspetz, Sasu Tarkoma,
and Ion Stoica. Collaborative energy debugging for mobile de-
vices. In Proc. of USENIX HotDep, 2012.

[23] Nicolas Palix, Gaēl Thomas, Suman Saha, Christophe Calves,
Gilles Muller, and Julia Lawall. Faults in linux 2.6. ACM Trans-
actions on Computer Systems (TOCS), 32(2):4, 2014.

[24] Abhinav Pathak, Y. Charlie Hu, and Ming Zhang. Bootstrapping
energy debugging for smartphones: A first look at energy bugs in
mobile devices. In Proc. of Hotnets, 2011.

[25] Abhinav Pathak, Abhilash Jindal, Y. Charlie Hu, and Samuel
Midkiff. What is keeping my phone awake? Characterizing and
detecting no-sleep energy bugs in smartphone apps. In Proc. of
Mobisys, 2012.

[26] Polyvios Pratikakis, Jeffrey S Foster, and Michael Hicks. Lock-
smith: Practical static race detection for c. ACM Transactions on
Programming Languages and Systems (TOPLAS), 33(1):3, 2011.

[27] Xi Wang, Haogang Chen, Zhihao Jia, Nickolai Zeldovich, and
M. Frans Kaashoek. Improving integer security for systems with
KINT. In Proc. of USENIX OSDI, 2012.

[28] Junfeng Yang, Paul Twohey, Dawson Engler, and Madanlal
Musuvathi. Using model checking to find serious file system er-
rors. In Proc. of USENIX OSDI, 2004.

13

