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Abstract

The reuse distance (LRU stack distance) is an essential
metric for performance prediction and optimization of
storage and CPU cache. Over the last four decades, there
have been steady improvements in the algorithmic effi-
ciency of reuse distance measurement. This progress is
accelerating in recent years both in theory and practical
implementation.

In this paper, we present a kinetic model of LRU cache
memory, based on the average eviction time (AET) of
the cached data. The AET model enables fast measure-
ment and low-cost sampling. It can produce the miss ra-
tio curve (MRC) in linear time with extremely low space
costs. On both CPU and storage benchmarks, AET re-
duces the time and space costs compare to former tech-
niques. Furthermore, AET is a composable model that
can characterize shared cache behavior through model-
ing individual programs.

1 Introduction

A memory system is a multi-level structure where the
upper level of memory often plays the role of cache for
the lower level of storage. This design is motivated by a
simple fact of program locality: in any time period, only
a small fraction of data in a program will be frequently
used. This behavior used to be modeled by the working
set locality theory [1] where data locality is characterized
by working set size (WSS) [2, 3]. Locality characteriza-
tion techniques have been developed for decades. They
are widely used for management and optimization at dif-
ferent levels of memory hierarchy.

Much progress has been made to model locality
through reuse distance analyses and the result miss ra-
tio curves (MRCs), as shown in Figure 1. From the ref-
erence trace of a program, accurate MRC can be calcu-
lated by measuring reuse distance (LRU stack distance
as defined by Mattson et al. [4]). Reuse distance is the

number of distinct data accesses between two consecu-
tive accesses to the same location. Precise reuse distance
tracking requires O(NlogM) time and O(M) space for a
trace of N accesses to M distinct elements [5].

For CPU workloads, the recent footprint theory [6],
StatStack [7] and time-to-locality conversion [8, 9] use
reuse time instead of reuse distance to model the work-
loads. Reuse time is the time between an access and its
next reuse. The footprint approach reduces the run-time
overhead of MRC measurement to O(N).! However, the
space overhead of the footprint algorithm is still O(M).

As for storage workloads, their sizes are usually much
larger than CPU workloads and their life span may last
for weeks or more. Therefore, techniques like the foot-
print analysis may require too much space. Counter
Stacks [11] and SHARDS [12] are recent breakthroughs
to reduce space cost in asymptotic complexity [11] and in
practice [12]. Counter Stacks uses probabilistic counters
and for the first time can measure reuse distances in sub-
linear space with a guaranteed accuracy [13]. SHARDS

IThe working-set theory has a similar effect and same time and
space complexity [10, 3]. See Sec. 2.8 of [6] for a comparison.
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Figure 1: Time and space cost of MRC profiling algo-
rithms.
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uses a splay tree to track the reuse distances of sam-
pled data. The time and space consumption is reduced
to an extremely low level. However, Counter Stacks
and SHARDS cannot characterize shared cache behav-
ior through modeling individual programs.

This paper describes a new kinetic model for MRC
construction of LRU caches based on average eviction
time (AET). AET runs in linear time asymptotically and
uses sampling to minimize the space overhead. In evalu-
ation, AET has the lowest level space and run-time over-
head compared to past techniques, for both CPU work-
loads and storage workloads, while maintaining high
MRC accuracy. Although SHARDS is comparable to
AET in time and space overhead, AET is a composable
metric, i.e. the MRC of a multi-programmed workload
in shared cache can be computed directly from the AET
of its member programs.

2 AET Model

This section describes the kinetic model. Section 2.1
uses an example to introduce the basic concepts espe-
cially the eviction time. Section 2.2 formulates and com-
putes the average eviction time (AET) by solving the
distance integration equation. Section 2.3 discusses the
correctness of the model. Section 2.4 models the shared
cache and solves the eviction-time equalization equation.

2.1 LRU Stack and Eviction Time

LRU cache can be logically viewed as a stack [4]. Data
blocks are ranked by their recent access time from most
recent to least recent. Every access brings the accessed
data to the top of the stack. The bottom of the stack
stores the least recently used data and is evicted on a miss
(when the cache is full).

When a data block is loaded into cache on a miss, it
may be reused for several times (hits) before it is evicted.
The eviction time is the time between the last access and
the eviction. It is the duration that the block moves from
the top of the stack to the bottom for the /ast time. At an
eviction at time ¢, looking backwards to the most recent
time u when the evicted block was referenced, the time
interval r — u is the eviction time. Notice that # could
also be the time the data block was brought in (a miss).
In general, the eviction time is the last segment of the
residence time of the data block.

For example, block d in the cache in Figure 2 is loaded
at time 3, last accessed at time 5, and evicted at time 10.
The eviction time is 5, shown by the shaded area.?
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Figure 2: Example 4-block cache, viewed as a stack,
showing logical time, data referenced each time (ref),
reuse time (rt) of each access and whether the access is a
cache hit. The shaded area is the eviction time of d.

time T,, as the time it takes for a block to reach stack
position m (from its last access). For size ¢ cache, the ar-
rival time is a (subscripted) function 7,,, m =0,...,c—1.
Naturally, 75 = 0 and the eviction time is ¢, which is the
time the data block leaves position ¢ — 1. To illustrate,
Table 1 shows the arrival time 7,, of d for size 4 cache.
As m increments from O to 3, 7,, increases from O to 5.
The movement of block d depends on how other data
are accessed. At each access in the eviction process
(shaded area in Figure 2), d either stays at its current
position or steps down one position. The condition of
movement is simple: d moves down from a position m if
and only if the access is a miss, or if the stack position
of the accessed data m’ is greater than m, that is, lower
in the stack. We define 7j to be 0. Obviously, 77 is al-

Table 1: The kinetic model illustrated by d’s eviction in
the shaded area in Figure 2. The arrival time 7,, (third
row) depends on the movement condition: whether the
reuse time (last row) is greater than 7,,. The eviction
time is 74 = 5.

. . Logical time 5167|819 10
To model the eviction time, we need to model the pro- Pg — NEERIERE ted
gression that leads to the eviction. We define the arrival osition m evicte
Arrival time 7, o1 (22]4 5
2Eviction time is part of the residence time, which can be estimated C . sl a6l 27
using queuing theory (as “response time”, Chapter 9 [14]). urrent reuse time *®
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ways 1, since the access to any other block must bring it
to stack position 0 and dislodge d, as it happens at time
6 ford.

The condition of movement can be simplified, because
we do not need the exact location of the accessed data.
It suffices to know the relative location. For a simpler
test, we use the reuse time rather than the stack location.
When block z is accessed, and d is at stack position m, d
moves down if and only if the (backward) reuse time of
z is greater than d’s arrival time 7j,,.

The relation between the eviction time and the reuse
time is illustrated by our example. The last row of Ta-
ble 1 shows the reuse time of each access during d’s
movement. Block d moves its position (shown in the
second row) whenever the reuse time (the last row) is
greater than the arrival time (the third row).

We next model the average eviction time for all data
in cache. The arrival time 7,,, will be defined similarly as
the average for all data.

2.2 Average Eviction Time (AET)

AET(c) is the Average Eviction Time for all data evic-
tions in a fully associative LRU cache of size c¢. T, is
the average arrival time for a data block to reach posi-
tion m (in its eviction process). Obviously, 7o = 0 and
AET(c) = T,. The movement condition is no longer indi-
vidual but now collective and depends on the reuse times
of all data.

Let n be the total number of references and rz(t) be
the number of references with reuse time 7. f(¢) is the
proportion of reuses with reuse time ¢, defined as follows.

flt)=—+= (1)

For an access, P(r) is the probability that its reuse time
is greater than ¢:

P(1) =Y f(1) 2
i+1

The movement condition is now a probability. It is
actually P(r). This can be interpreted as follows: in a
unit time, a data block moves by P(t) position. To use a
familiar concept, we call it the travel speed. At position
m, the average arrival time is 7,,, and the travel speed

v(T,,) is the probability in logical time:

V(Tn) = P(Tn) 3

For a given block at each stack position, the moving
speed is easy to define: either moving one position at the
next access or stay in place (no movement). This travel
speed may slow down and then speed up. On average for

all evictions, however, the velocity is monotone and non-
increasing. By definition, P(7,,) is monotone and non-
increasing with 7;,. It follows from Eq. 3 that the travel
speed at position m is monotone and non-increasing with
m.

We now construct an equation to solve for 7, and then
AET(c). The equation connects three metrics: velocity
v(T,,), average arrival time 7,,, and cache size c¢. This
connection is shown pictorially in Figure 3.

A
V(To)

v(T,)
v(T,)-£(T,)

v(T ,.) |

m+1

Figure 3: As the average arrival time (7,,) increases along
the x-axis, the y-axis shows the travel speed v(7,,) at each
T,n. The integral of of v over T gives the movement dis-
tance, which is the area under the curve. The shaded area
shows the increment of stack position (which is 1).

In Figure 3, the x-axis shows the average arrival time
(T,,) as it increases. At each T;,, we use Eq. 3 to compute
the travel speed v(7,), shown in the y-axis. The figure
shows an example curve, which is monotonically non-
increasing. The integral of v over T gives the movement
distance, i.e. the stack position it travels to. It is the area
under the curve. The shaded area shows the increment of
the stack position (which is 1).

The three metrics are discrete functions. The subtle
but critical problem is the difference in their discrete
units. When we measure the cache size and the data
movement in cache, a single step is a stack position.
When we measure the reuse time, a single step is an ac-
cess. We may call the former the spatial unit and the
latter the temporal unit. The two units are not the same.
Figure 3 shows that from the same base 7,,, the tempo-
ral increment 7, + 1 is less than or equal to the spatial
increment 75,4 1.

We use the temporal-unit function of reuse time to
derive the spatial-unit function of AET. Let’s consider
how the speed changes as a data block travels. From the
monotonicity mentioned earlier, the change must be a de-
celeration. Based on the velocity formula (Eq. 3), the fol-
lowing gives the exact deceleration from T, to 7,, + AT .

Ty +AT—1

f), “4)

=T

v(Tn+AT) =v(T,) —
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where AT stands for the time increase over 7,,. The unit
is temporal, so the minimal AT is one, i.e. one access.

Now we are ready to formulate the first kinetic equa-
tion, Distance Integration (DI). It combines the tem-
poral and spatial increments to compute the complete
movements. First, let’s consider the spatial increment.
From T,, to T,,+1, the data travels one stack position (the
shaded area in Figure 3). Second, we add the temporal
increment as follows. For each spatial increment (1), we
compute the deceleration by integrating in the temporal
unit (dx), given in Eq. 4. Finally, we sum over the spatial
increment from O to cache size ¢. The result is the total
distance traveled, e.g. the area below the example curve
in Figure 3, which is the cache size ¢ when the arrival
time reaches 7.

c—1 m+1 x—1
Z/ ~ Y f)d=c )

m=0 t=Tp
DI is an implicit equation. Its solution, as it turns out,
is AET(c). Consider the speed at each time step x from 0
to AET(c), and the time it takes at each step, we have:

AET (c)
/0 P(x)dx=c (6)

This equation is in fact the same as Eq. 5. The equiva-
lence is proved as follows.

c—1

771+1 x=1
Tn) — t))dx
X[ o t:szﬂ )
c—1 m+1 x—1
=Y [ em) - ¥ r)as
m=0"4m =Ty
el m+1
_ Z/
el m+1
_mZO/
— [ part
To T

Te
A+ P(x)dx

L
AET (c)
= / P(x)dx
Jo

— (P(Tn) — P(x))) dx

P( )dx

From AET to MRC Eq. 6 shows that AET calculation
takes linear time. The only information it needs is the
reuse time histogram (RTH), which gives P(x), and can
be measured in linear time. The miss ratio mr(c) at cache
size c is the probability that a reuse time is greater than
the average eviction time AET (c):

mr(c) = P(AET(c)) 7

During the integration of Eq. 6 from 0 to maximal reuse
time, the miss ratios of all cache sizes can be computed
in linear time at once.

=
J

=

[os)

log,(number of reference)

% 20000 40000 60000 C
reuse time distance

80000 100000 )

Figure 4: RTH and cold miss example

Impact of Cold Misses In a program execution, the
first access to any data block should be a cold miss. Be-
cause every cold miss will insert a new data block at the
head of the LRU priority list, it will push down all the
data in the list by one position. In the kinetic equation,
no matter where the data is, the cold misses always con-
tribute a fixed share of probability that moves the data.
Therefore, in AET model, we define the reuse time of
every cold miss to be infinite, and we count the number
of cold misses in the oo bin of the reuse time histogram
(RTH), as in the example shown in Figure 4.

2.3 Correctness

The conversion from AET to miss ratio is not always cor-
rect. The correct miss ratio for cache size c is the propor-
tion of reuse distances d > c.

The inverse of the AET function is in fact an estima-
tion of reuse distance. For a reuse time ¢, the reuse dis-
tance d is the distance the data block traveled down the
cache stack, sor = AET(d) and:

d=AET (1) ®)

AET conversion is equivalent to first estimating the reuse
distance and then using the estimated reuse distance:

Yooerd(x)

n
. Zt>AET(c) rd(AETfl (1))
- n
YT 1(1)
n

— P(AET(c)),

mr(c) =
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where rd(x) is the number of references with reuse dis-
tance x. Therefore, AET is correct if its estimation of
reuse distance is correct. Hence:

Correctness Condition. The AET-based conversions
are accurate if the number of reuse times rt(t) of time t is
the same as the number of reuse distances rd(AET (1))
of distance AET~\(t), for all t > 0.

When the two are equal, using the AET conversion is
the same as using reuse distance for all cache size ¢ >
0. The condition is a reiteration of Eq. 8 but shows the
connection mathematically as a function composition.

2.4 AET in Shared Cache

When sharing the cache, a set of co-run programs inter-
act. We want a composable model to derive the com-
posite effect from individual solo-run locality. Ding et
al. [15] define the composability as follows: a locality
metric is composable if the metric of a co-run can be
computed from the metric of solo-runs. AET is compos-
able: given the solo-run AETs of individual programs,
we can derive the co-run AETs in the shared cache.
There are n+ 1 co-run AETS for n co-run programs: one
for each program and one for the group. We derive them
by solving another AET equation. Equation solving has
two basic questions: does a solution exist, and if so, is
the solution unique?

Cache sharing means that all co-run programs have
the same average eviction time (AET). For any data block
in the shared cache, once it is no longer accessed, its
eviction time is the same regardless which program the
data block belongs to. Hence we have the equation of
eviction-time equalization: when n programs share the
cache of size ¢, all n+ 1 co-run AETs, AET;(c) for each
program i and AET(c) for the group, are the same:

AET,(c) = AET»(c) = --- = AET,(c) = AET(c) (9)

We now show that this equation has one and only one
solution.

To explain the derivation we start with the symmet-
rical case, where n co-run programs are identical. Let
Fsolo De the access rate, rty,,(t) be the reuse-time his-
togram, Py, (f) be the probability function, defined as
in Section 2.2 for each program. The aggregate access
rate is naturally r., = nry,,. We define the co-run log-
ical clock. The co-run clock runs n times faster, with
one out of every n ticks for each program. For each
program, the co-run reuse time rt.,(nt) = rtg,(t), or
equivalently rt.,(t) = rty,(t/n). Because of the time
change, the probability function of each program be-

comes Pr,(t) = Pyy1o(t/n)/n. The aggregate probability
is the sum of the group, P(t) = Y| Peo(t) = nPeo(t).

-

P) =Y Poolt) = " Puo(t/n)/n = Prso(t/n)  (10)
i=1

i=1

From P(t), we use the distance-integration equation
(Eq. 6) to derive the co-run AET:

"AET(c)
/0 P(x)dx=c (11)
The equation looks the same as Eq. 6, but P(x) is the
aggregate probability, x is the co-run time, and AET(c) is
average eviction time of the shared cache.

In the shared cache, any access by any program is a
miss if and only if its reuse time is greater than AET(c).
The group miss ratio is therefore mr(c) = P(AET(c)),
and the portion of this miss ratio contributed from each
program is mr,(c) = P.o(AET(c)). This contribution is
the same from every program, so mrq,(c) = mr(c)/n.
The solutions of the co-run AET and miss ratio for this
symmetric case are unique.

Note that the co-run miss ratio mrg,(c) is the ratio of
the miss count of each program divided by the number
of accesses of all programs. In other words, it is the miss
ratio defined on the co-run clock. This definition enables
us to add miss ratios of different programs directly. It can
also be easily converted to the conventional miss ratio.

We now consider the general case. It differs from the
previous, symmetric case in two ways: each program i
may have a different access rate ryy,,; and a different
reuse time histogram and hence the probability function
Pii0,i(t). Let the total access rate be r = Y| 75010,;- The
aggregate P(r) is:

P(t) =

n
Fsolo.i\T. lo,i
Pco,i(t):ZPsolo(t soro,t) Sor(” (12)
1 i=1

™

L

The shared-cache distance-integration equation
(Eq. 11) can now compute AET(c) for the general case.
The group miss ratio is mr(c) = P(AET(c)), and the
portion of the miss ratio contributed from program i
is mreoi(c) = Pei(AET(c)). The contribution is now
individualized and differs depending on the individual
access rate rg,,; and reuse time histogram rtg, ;(t).
Below is the co-run miss ratio of the group as the sum of
the co-run miss ratio of each individual. These solutions
are unique for each program group.

n

mr(c) = P(AET(c)) = imrw,i(c) = Z;Pw,j(AET(c))
i=1 -
(13)
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Composition Invariance The aggregated miss ratio
can be computed using AET in two ways: directly us-
ing the group P(¢) or indirectly as the sum of individual
miss ratios. Mathematically, the two results are the same,
as shown by Eq. 13. We call this mathematical equiva-
lence the composition invariance. A composable model
has this invariance if the group miss ratio is the same
whether it is composed from the individual (solo-run) lo-
cality or added together from the individual (co-run) miss
ratio. Early composable models used reuse distance and
footprint and had only one way to compute the group
miss ratio [16, 17, 18, 19]. Recent models used foot-
print and the higher order theory of locality (HOTL) to
obtain composition invariance [6, 20, 21]. The model
by Brock et al. treated the shared cache as the parti-
tioned cache, where each program is “imagined” to oc-
cupy a natural partition [21]. AET obtains composition
invariance using eviction-time equalization. Unlike the
“imagined” natural partition, eviction-time equalization
is a real property of the shared cache.

3 Reuse Time Histogram (RTH) Sampling

For efficiency, AET-based MRC profiling can use sam-
pled RTH instead of real RTH. Since it is only the prob-
ability distribution that it cares about, if the sampled
RTH maintains the same distribution as the real RTH,
the estimated AET will be accurate. By sampling a small
fraction of references, the space overhead can be largely
eliminated. This section presents efficient MRC analysis
through AET sampling.

3.1 Sampling Techniques

In order to capture the distribution of the real RTH, all
the references have to be sampled with equal probability.
This seems to be an easy target, but it is not the case in
real applications. Next, we list four sampling techniques
and discuss their strength and weakness.

Address Sampling The address sampling requires
monitoring a fixed subset of the address space. It is
known as hold-and-sample and has been used in mea-
suring reuse distance [22, 23, 24, 25] or reuse time [26].
During sampling phase, all the references to the subset
will be recorded in sampled RTH. This technique is sim-
ple and easy to implement, and only a fixed hash table is
required. However, in a real program, references are not
evenly distributed on every data object. Large portion of
accesses may focus on a small subset. In this case, the
RTH collected from a small portion of working set may
not reflect the real reference pattern. This will lead to
imprecise estimation of AET.

Fixed Interval Sampling To avoid the bias of address
sampling, the fixed interval sampling collects a subset
of references instead of a subset of the address space.
After every m references, it places the current accessed
data into the monitoring set. At the next reference of the
data, the reuse time is recorded into RTH, and the data
is deleted from the monitoring set. By this design, the
reuses are sampled by the same probability, which pro-
vides a better RTH approximation than address sampling.
However, the accuracy of fixed interval sampling may be
influenced by another problem. Since the sampling rate
m is a fixed value, if the reference pattern of some data
shows a different distribution at the chosen interval, the
sampled RTH cannot reflect the actual distribution of this
pattern.

Random Sampling The random sampling can over-
came the problem we mentioned in fixed interval sam-
pling and address sampling. Instead of using fixed sam-
pling rate m, the distance between two adjacent monitor-
ing points is a random value. In a real application, we
can set the random value to a certain range to control the
number of references sampled for RTH. We have tested
the above three sampling techniques and found that the
random sampling achieved the highest stability and ac-
curacy. This form of random sampling for MRC analysis
is pioneered by StatStack [7].

Reservoir Sampling The space used to store sampled
data grows linearly. To bound the space cost, reser-
voir sampling technique [27] was used by Beyls and
D’Hollander [26] for locality analysis. Let the number
of entries in the monitoring set (reservoir) be k. When
the i-th sampled data arrives, reservoir sampling keeps
the new data (tagged as “unsampled”) in set with prob-
ability min(1, k/i) and randomly discards an old data
block when the set is full. Every time a monitored data
block is reused, its reuse time will be recorded. This data
block will be tagged as “sampled” and all of its follow-
ing reuses will not be recorded. This design ensures even
sampling and avoids the access distribution problem we
have in address sampling. When the sampling is over,
the RTH is updated based on the “sampled” data entries
remaining in set. The “unsampled” entries are those data
objects with no reuse after being inserted. They are cold
misses which we will discuss in Section 3.3. Reservoir
sampling reduces the space complexity of RTH sampling
from O(M) to O(1).

3.2 Phase Sampling

For programs that have an unstable reference pattern, we
evenly divide its execution into phases. For each phase,
we use random sampling to construct the RTH and MRC
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for this phase. Then we construct the MRC of the entire
program. The miss ratio at any cache size is average miss
ratio of all MRCs at this size. We call this technique
phase sampling.

Phase sampling is used by StatStack [7]. To adapt it
for AET sampling, there is one important design change.
Not every sampled data in the monitoring set will see its
reuse in the same phase. Before entering the next phase,
the monitoring set will not be cleaned, the next phase still
keeps track of these data until they are reused and then
deleted from the monitoring set. We use the backward
reuse time, so the inter-phase reuse time is added to the
RTH of the current phase. In contrast, StatStack uses
the forward reuse time. A second and more significant
difference with StatStack is the handling of cold misses.

3.3 Cold Miss Handling

As we mentioned in Section 2.2, the o bin of RTH counts
the number of cold misses. Therefore, we should set the
infinite reuse-time bin of the sampled RTH to the num-
ber of cold misses in all sampled references. However, in
random sampling, we cannot tell if a sampled access is
the first reference to an address. As we know, in a trace
of finite length, any referenced address has its first ac-
cess and last access. It means the number of cold misses
is equal to the number of the references that have no
reuse (last access). Because the chances to meet these
two kinds of access are equal, we use the number of ref-
erences with no reuse in all sampled references to revise
the number of cold misses in the sampled RTH. In ran-
dom sampling, they are the data objects that are still in
the monitoring set after sampling is complete. In reser-
voir sampling, they are the data objects that are tagged
“unsampled”.

4 Evaluation

In this section, we evaluate the AET model by compar-
ing it with four recent techniques: Counter Stacks [11],
SHARDS [12], StatStack [7] and adaptive bursty foot-
print (ABF) sampling [20]. The first two are for storage
workloads, while the last two are for CPU workloads.
We use a Dell PowerEdge R720 with ten-core
2.50GHz Intel Xeon E5-2670 v2 processors and 256 GB
of RAM. Benchmark traces are read from RAMDisk
to avoid the IO bandwidth delay. We have imple-
mented these techniques in C++. To save memory and
make a fair comparison, we record the reuse time his-
togram (AET, StatStack, ABF sampling) and reuse dis-
tance histogram (Counter Stacks, SHARDS) using the
compressed representation by Xiang et al. [19] Each his-
togram is an array which is binned in logarithmic ranges.
Each (large enough) power-of-two range is divided into

(up to) 256 equal-size increments. This representation
requires less than 100KB for all our workloads.

4.1 AET vs Counter Stacks

Counter Stacks is a recent algorithmic breakthrough by
Wires et al. to finally solve the open problem of re-
ducing the asymptotic space complexity of MRC anal-
ysis to below M, the size of data [11]. It uses proba-
bilistic counters to estimate the reuse distances. While
other reuse distance measurement techniques consume
linear space overhead, the HyperLoglog counter [28]
used by Counter Stacks only requires extremely small
space while maintaining an acceptable accuracy. Ev-
ery d references and every s seconds, Counter Stacks
starts a new counter to record the number of distinct data
accessed from the current time. During the execution,
the number of active counters keeps growing. Counter
Stacks periodically writes the results of active counters to
the disk. The data in the disk is used to compute the reuse
distance distribution and construct MRC. To reduce the
number of live counters, Counter Stacks uses a pruning
strategy to delete a younger counter whenever its value is
as least (1 — 0) times the older counter’s value. By con-
trolling &, Counter Stacks can balance between accuracy
and number of counters.

We compare AET model with Counter Stacks using
the same storage traces released by Microsoft Research
Cambridge (MSR) [29], as used by Counter Stacks. The
traces are configured with only read requests of 4KB
cache blocks. We test Counter Stacks under two dif-
ferent fidelities. The experimental parameters follow
those used in [11], with high fidelity (d = 1M, s = 60,
6 = 0.02) and low fidelity (d = 1M, s = 3600, § = 0.1).
For AET, we use random sampling at the rate 10~*, and
reservoir sampling where the number of entries in the
hash table (32-bit address) is limited to 16K. Figure 5
shows the MRCs profiled by AET random sampling and
high fidelity Counter Stacks (CS-high) as well as the real
MRCs calculated using precise reuse distances. As we
can observe, AET sampling and CS-high both approxi-
mate the real MRCs well. As for CS-low and AET reser-
voir sampling, we only list their absolute prediction error
in Table 2 for comparison.

Table 2 shows two types of averages, arithmetic and
weighted. The ones marked with a “** are weighted by
the working set size, which is the length of MRC. The
weighted average prediction errors of AET random sam-
pling (RAN, 0.96%) and AET reservoir sampling (RES,
1.12%) are in between of high fidelity Counter Stacks
(0.77%) and low fidelity Counter Stacks (1.26%) but they
show much higher throughput (arithmetic average) and
much lower space overhead (weighted average) than both
methods of Counter Stacks.
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Figure 5: The predicted miss ratio (y-axis) over cache size (GB, x-axis) by AET sampling and Counter Stacks

AET uses reuse time histograms while Counter Stacks
uses reuse distance histograms. No matter what com-
pression technique is used for the histogram, the size of
both histogram structures should be comparable. Con-
sequently, the key difference in space between the two
techniques is the hash table used by the AET algorithm
and the Hyperloglog counters used by Counter Stacks. In
AET random sampling, the number of hash table entries
is the number of data blocks being monitored at this time.
The theoretical upper bound is the working set size times
the sampling rate. In AET reservoir sampling, the space
is constant, i.e. a hash table of a fixed size. In Counter
Stacks, the space used by probabilistic counters grows
when more counters are used. Therefore, the space over-
head of Counter Stacks is not constant. In Table 2, we
also list the memory consumed by the hash table and Hy-
perloglog counters for the MSR traces. The results show
that the actual memory usage of AET random sampling
is much lower than Counter Stacks. In fact, the total
space consumption (not including the histogram array) of
all 13 traces by AET random sampling is 2.2MB, while
low and high fidelity Counter Stacks require 11MB and
56MB for Hyperloglog counters, respectively. In AET
reservoir sampling, the space overhead is fixed at 384KB
for each trace. Although the overall space consumption
(5MB) is larger than random sampling, its weighted aver-
age space overhead is less than random sampling. Reser-
voir sampling reduces the space cost of random sampling
only in proj and usr. They are the traces with the largest
working set sizes. The remaining traces have smaller
working sets. For these traces, reservoir sampling incurs
a higher error even when it uses more space than ran-
dom sampling. As we mentioned in Section 3.1, reser-

voir sampling only uses the remaining entries in hash ta-
ble to update RTH and does not delete the data entry after
the reuse is sampled (in order to measure the cold miss
ratio). The actual number of reuses in RTH of reservoir
sampling is less than random sampling under the same
sampling rate.

It takes Counter Stacks O(logM) time to update the
counters at each reference and O(NlogM) for the en-
tire trace. AET is linear time in O(N). Table 2 shows
that in our implementation, the throughput of AET ran-
dom sampling is 37 and 11 times of the throughput of
high and low fidelity Counter Stacks, respectively. AET
reservoir sampling shows a similar throughput as AET
random sampling does.

The correctness of AET-based MRC is based on the
assumption of stable distribution reuse distances. This
brings inaccuracies to those data that violate the assump-
tion. As we can observe in Figure 5 the AET-based MRC
of web mispredicts the knee at around 50GB, but Counter
Stacks perfectly models every details of the curve, since
it makes no assumption about the data at all. Now we can
clarify the trade-off between the two techniques: AET
makes a statistical assumption, offering good accuracy in
most cases in O(N) time. Counter Stacks makes no sta-
tistical assumption, delivering good accuracy in all cases
in O(Nlog M) time.

4.2 AET vs SHARDS

SHARDS (Spatially Hashed Approximate Reuse Dis-
tance Sampling) is recently developed by Waldspurber et
al. [12]. It uses hash-based spatial sampling and a splay
tree to track the reuse distances of the sampled data. It
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Table 2: The comparison between Counter Stacks (CS) and AET

WSS Prediction Error (%) Memory (KB) Throughput (Mreqs/sec)
(GB) AET CS AET CS AET CS
RES | RAN | high | low | RES | RAN | high [ low | RES [ RAN | high | low
proj | 12389 | 0.76 0.74 093 1.04 | 384 584 8384 1376 | 31.01 26.10 1.32 394
usr | 1035.1 | 0.79 037 024 031 384 501 7744 1376 | 30.22 30.67 136 3.87
srcl 3127 | 3.09 290 154 478 | 384 176 5408 1088 | 30.17 44.88 1.86 4.88
mds 86.9 0.85 070 1.81 1.82 | 384 114 2848 832 | 79.82 77.08 3.16 6.17
stg 85.7 0.09 1.01 1.11 1.11 384 114 4256 928 | 7890 5199 223 6.30
web 78.3 381 365 100 292 | 384 111 6464 1120 | 56.00 70.67 1.50 5.60
prn 77.5 228 208 031 057 | 384 110 4960 960 | 60.81 71.17 1.28 5.79
src2 39.9 1.09 1.02 057 219 | 384 94 4704 960 | 84.49 7144 248 6.66
hm 2.0 090 077 1.01 1.31 384 79 3680 608 | 65.74 67.62 033 6.87
prxy 2.0 020 004 1.62 1.69 | 384 79 2112 576 | 3143 76.77 3.40 7.23
rsrch 0.7 290 092 030 2.84 | 384 78 2720 416 | 82.55 8255 122 7.26
ts 0.5 1.51 204 041 078 | 384 78 1920 640 | 88.02 74.12 1.08 5.80
wdev 0.2 262 121 020 0.11 384 78 864 352 | 86.81 86.81 1.28 5.75
avg* - 1.12* 096" 0.77 1.26* | 384* 452* 7363* 1292* | 6199 63.99 1.73 5.86
sum 2960 - - - - 4992 2196 56066 11232 - - - -
limits the space overhead to a constant by adaptively low-
ering the sampling rate. SHARDS outperforms Counter 9 — Real
Stacks in both memory consumption and throughput for o8 .-+ SHARDS
the merged “master” MSR trace (created by Wires et mn AET
al [11]), which is a 2.4 billion-access trace combining Sos6
all 13 MSR traces by ranking the time stamps of all o
accesses. Following them, we use the master trace for é 04
evaluation. For fairness comparison, we let AET and
SHARDS both use 8K buckets hash table (64-bit ad- 0.2
dress) for sampling. The pointers and variables in our
implementation are all 64-bit sizes. Figure 6 shows the 0.0 5130012003650 3555— 3000
MRC profiled by AET random sampling with sampling cache size(GB)
rate 1 % 107°. The Mean Absolute Error (MAE) is 0.01. . . .
Figure 6: MRCs predicted by AET sampling and

SHARDS gives a lower MAE of 0.006 with 8K samples.
We check the peak resident memory usage at run time,
AET random sampling consumes 1.7MB memory while
SHARDS consumes 2.3MB memory. The throughput
of AET and SHARDS are 79.0M blocks/sec and 81.4M
blocks/sec respectively. For the same trace, Counter
Stacks is most accurate, with an MAE of 0.003. How-
ever, it consumes 80MB memory, and the throughput
is relatively low, 2.3M blocks/sec [11]. AET reservoir
sampling (8K) uses 1.4MB resident memory with 66.6M
blocks/sec and an MAE of 0.01, same as AET random.

SHARDS and AET sampling have same time and
space complexity, and their run time and memory us-
age are close in our test. However, the applicability
of SHARDS is not limited to miss ratio prediction of
LRU caches. Waldspurber et al. [12] showed that the
hash-based spatial sampling technique of SHARDS can
be used to perform efficient scaled-down simulations for
non-LRU caching algorithms such as ARC [30]. Since

SHARDS for the master trace

AET sampling is tied with LRU caches, cache simula-
tions for non-LRU algorithms cannot be done by the cur-
rent AET model. The strength of AET model is compos-
ability, which can be used to model shared cache as we
will show in Section 4.6. But this is not a property of
current SHARDS and Counter Stacks.

4.3 AET vs StatStack

StatStack is one of the most efficient and accurate meth-
ods to approximate MRC for CPU workloads. It samples
cache blocks and measures their reuse time using hard-
ware and operating system support such as performance
counters and watchpoints [31, 32]. From the reuse time
distribution, StatStack estimates the capacity miss ratio
and predicts the real miss ratio by adding the estimated
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cold miss ratio. We use the SPEC CPU2006 bench-
mark suite [33] to compare AET and StatStack. For each
benchmark, we intercept 1 billion references from their
execution using the instrumentation tool Pin [34].

In Figure 7, we show the cumulative distribution func-
tion (CDF) of the absolute error for both techniques as
well as AET random sampling technique under two sam-
pling rate of 1072 and 10~* (1% and 0.01%). Clearly,
the prediction error of full-trace AET is much smaller
than StatStack. 90% of the absolute prediction errors are
smaller than 0.17%, while only 55% of StatStack’s pre-
diction can reach the same level. The average accuracy
improvement of full-trace AET against StatStack in this
test is 35.8%. Sampling AET is less accurate than full-
trace AET but more accurate than full-trace StatStack.
90% of their prediction errors are smaller than 0.21% and
the curves are very close to the full-trace AET curve af-
ter 90%. AET sampling is repeated 10 times, and its two
CDFs record all the errors, not their average. Figure 7
shows that AET sampling produces stable and accurate
results.

100%
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80%

(]
2 60%r
=
[J]
I
9 40%f
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20% StatStack | |
1%
" 0.01%
[T A A . . n n
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prediction error

Figure 7: The cumulative distribution function of abso-
lute prediction error

Unlike the AET model using backward reuse time,
StatStack uses forward reuse time. It assumes that every
reference will have a next reuse. But this is not the case
for a trace of a finite length. Every data in the trace has
its last reference, and the reuse time of these references
are not defined in StatStack. StatStack ignores the im-
pact of these references in its statistical model and char-
acterizes them separately as cold misses. The number of
references with no reuse is the same as the working set
size. The accuracy of their model is thus influenced by
the ratio of the working set size to the trace length.

4.4 Phase Sampling

As mentioned in Section 3.2, phase sampling improves
the analysis accuracy for programs with phase behav-
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Figure 8: The miss ratio (%) versus cache size (MB)
shown for non-phase AET and phase AET

ior. We divide each SPEC CPU2006 benchmark trace
into 10 phases of equal length and then use the AET al-
gorithm (full-trace) to profile each phase. Finally, the
overall MRC is the average of phase MRCs. In most
benchmarks, phase AET sampling is more accurate than
non-phase AET sampling. We select four representative
benchmarks (gcc, milc, wrf, hmmer) and compare
phase sampling and non-phase sampling in Figure 8. In
these benchmarks, phase analysis leads to significant im-
provements. The AET models the average eviction time,
so it is more accurate when a program shows a steady ac-
cess behavior. If a program has different phase behavior,
we should apply AET analysis on each phase separately
as we have done here. More accurate phase analysis may
be used to further improve the accuracy of our analysis.

4.5 AET vs ABF Sampling

The footprint-based MRC profiling technique needs
recording every access during the monitoring window.
The space overhead may be not acceptable for some ap-
plications. Wang et al [20]. developed adaptive bursty
footprint (ABF) sampling to efficiently measure the foot-
print of an execution. Extending the design of bursty
sampling [35, 36], it approximates the footprint of the
entire program by the footprint of small portions. The
length of a sampled trace (a burst interval) is bounded by
the cache size and minimal miss ratio of interest. The
ratio of hibernation and bursty interval is 1000. The
miss ratio lower bound is 1%. Therefore, the length of
a burst interval was 107 to measure 8MB shared cache
(131072 cache lines). ABF sampling has several limita-
tions. First, the size of cache is limited by the length of
a burst interval. It does not show the MRC for all cache
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Figure 9: The predicted miss ratio (%) versus cache size
(MB) shown for AET sampling and ABF sampling

sizes, unless it measures the complete trace, i.e. no sam-
pling. In comparison, the range of MRC from AET is not
influenced by the number of sampled references. Sec-
ond, an ABF sample is a consecutive portion of a trace.
Its result is accurate only if the locality of burst intervals
is the same as the locality of the rest (hibernation inter-
vals). In comparison, AET samples cover the entire trace
with equal probability.

To evaluate ABF and AET random sampling, we
use SPEC CPU2006 benchmarks whose miss ratios are
higher than 1%. Due to limitation of space, we only show
4 MRCs (Figure 9) profiled by both techniques with the
same sampling rate (1:100). The MRCs of ABF sam-
pling are much shorter than AET sampling, because us-
ing bursty interval to represent the entire trace will lose
the reference pattern in the hibernation interval. The ap-
proximate MRCs of ABF sampling are not as accurate as
AET sampling.

4.6 Shared Cache AET

As discussed in Section 2.4, AET is a composable met-
ric and can model shared cache. With the individual
AETs of co-run programs, we can predict the MRC of
the shared cache they are running on. This technique
is essential in task scheduling in a system where shared
cache (CPU or storage cache) is deployed. To verify our
shared AET modeling technique, we choose four MSR
storage traces {prn, src2, web, stg} as a co-run group.
They are the traces with the same order of magnitude on
length and show totally different patterns in cache usage
(see individual MRCs in Figure 10). We assume sym-
metrical speeds, i.e. equal access rates, to simplify the

evaluation, but the extension to asymmetrical cases are
straightforward as we showed in Equation 12.

We set the execution length of each trace to be 1.6
107, which is the shortest length in the group. With
the equal-speed assumption, we generate a combined
trace from the four traces. Figure 10 shows the shared
cache MRC composed by individual AET modeling of
each trace, as well as the real MRC calculated by accu-
rate reuse distance tracking for the combined trace. The
shared AET MRC gives a MAE of 0.002, indicating that
the shared cache modeling by AET is accurate. The com-
posability of AET is a key advantage over SHARDS and
Counter Stacks since these techniques cannot character-
ize shared cache without co-run testing.
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Figure 10: Shared cache MRCs for the combined trace

of {prn, src2, web, stg}, as well as the MRCs of four
individual traces.

5 Related Work

In 1972, Denning and Schwartz [10] gave a linear-time,
iterative formula to compute the average working-set
size from reuse times (inter-reference intervals). Math-
ematically the AET calculation is the same as the aver-
age working-set size computed by the Denning-Schwartz
formula. In their formulation, Denning and Schwartz as-
sumed infinite traces generated by a stationary process.
Later work applied the Denning-Schwartz formula on
finite-length traces to compute the average working-set
size [37] and LRU stack distance [3]. AET is a new for-
mulation showing that the Denning-Schwartz formula is
the solution to AET equations, which are the properties
of cache eviction time of all program traces, finite or infi-
nite. Previous work did not address shared cache, which
AET can easily model based on eviction-time equaliza-
tion. Finally, AET is used in sampling analysis of MRC.
Sampling was not studied in previous work. However,
the previous work modeled arbitrary data size [37, 3] and
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Table 3: The space and time complexity of MRC analysis techniques as well as their memory and time consumption
measured in master trace

Time complexity | Space complexity | Memory | Runtime | Composability | Correctness

Stack Processing O(NM) O(N) 10GB > 1 day No accurate

Search Tree O(NlogM) oM) 21GB 482 secs No accurate
Scale Tree O(NloglogM) oM) 17GB 333 secs No bounded err
Footprint O(N) O(M) 17GB 50 secs Yes conditional
Counter Stacks O(NlogM) O(logM) 80MB | 1034 secs No bounded err
SHARDS O(N) o(1) 23MB | 29.6 secs No conditional
AET model O(N) o(1) 1.7MB | 30.5 secs Yes conditional

optimal caching policies [3], which we do not consider
in this work.

We have started this paper by reviewing the progress
of MRC analysis over the last four and half decades.
We now give a more comprehensive comparison in Ta-
ble 3, including the asymptotic complexities, the actual
space and time cost (when measuring the merged MSR
trace, Section 4.2), the composability (Section 2.4) and
correctness properties. AET uses random and reservoir
sampling to reduce space cost in practice. In Table 3, the
runtime and space overhead of AET for the merged MSR
trace is the lowest among all these techniques.

In terms of correctness, Stack Processing [4] and
search tree [5, 38] measure reuse distance accurately, and
scale tree [39] guarantees the relative precision. Counter
Stacks also guarantee an error based on the correctness
of Hyperloglog counters. SHARDS uses sampling, and
the result is correct if the sampled accesses are represen-
tative. The correctness of footprint-based MRC is con-
ditional based on the reuse-window hypothesis [6]. The
correctness of AET is conditional as discussed in Sec-
tion 2.3.

MRC Applications MRC profiling techniques are
widely used in different applications. Several studies
use on-line MRC analysis for cache partitioning [40, 41],
page size selection [25], and memory management [42,
43]. The memory cache prediction [44] also uses on-line
MRC detection for storage workload. In high-throughput
storage systems, fast MRC tracking is always beneficial.

Our earlier work used footprint-based MRC to opti-
mize memory allocation in the key-value store called
Memcached [45]. Previous solutions, e.g. those of Face-
book and Twitter, were based on heuristics. We showed
that MRC-based optimization was superior in steady-
state performance, the speed of convergence, and the
ability to adapt to request pattern changes. It achieved
over 98% of the theoretical potential. The fast MRC
analysis was important since it affects the throughput of
Memcached. We used footprint, which was time efficient
but consumes a large amount of space (as it is also evi-

dent in Table 3). AET sampling should solve the space
problem, and it is even faster than footprint.

Fast MRC helps CPU cache optimization. We have
developed and evaluated shared cache program symbio-
sis, which used ABF sampling and footprint composition
to co-locate co-run applications to minimize their inter-
ference in shared cache [20]. The reuse-distance based
techniques in Table 3 are not composable, so they cannot
be used in symbiotic optimization. AET is composable,
and it can drastically reduce the time and space overhead
of shared-cache optimization.

6 Summary

In this work, we present the AET theory, a kinetic model
for workload modeling of LRU caches. Using average
eviction time (AET) measured by sampling, the AET
model consumes liner time and extremely low space
for MRC profiling. In our storage workload evalua-
tion AET outperforms Counter Stacks in throughput and
space overhead and achieves a comparable performance
as SHARDS. At last, We show how AET model can be
used to characterize shared cache without co-run testing
and with composition invariance.
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