usenix
.’ THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

Multicore Locks: The Case Is Not Closed Yet

Hugo Guiroux and Renaud Lachaize, Université Grenoble Alpes and Laboratoire
d’Informatique de Grenoble; Vivien Quéma, Université Grenoble Alpes, Grenoble Institute
of Technology, and Laboratoire d’Informatique de Grenoble

https://www.usenix.org/conference/atc16/technical-sessions/presentation/guiroux

This paper is included in the Proceedings of the

2016 USENIX Annual Technical Conference (USENIX ATC '16).
June 22-24, 2016 - Denver, CO, USA
978-1-931971-30-0

Open access to the Proceedings of the
2016 USENIX Annual Technical Conference
(USENIX ATC "16) is sponsored by USENIX.

\
\'.'

Multicore Locks: The Case is not Closed Yet

Hugo Guiroux ™

TUniversité Grenoble Alpes

Renaud Lachaize™

Vivien Quéma’#*
tGrenoble INP

*LIG (CNRS UMR 5217)

Abstract

NUMA multicore machines are pervasive and many
multithreaded applications are suffering from lock con-
tention. To mitigate this issue, application and library de-
velopers can choose from the plethora of optimized mu-
tex lock algorithms that have been designed over the past
25 years. Unfortunately, there is currently no broad study
of the behavior of these optimized lock algorithms on re-
alistic applications. In this paper, we attempt to fill this
gap. We perform a performance study of 27 state-of-the-
art mutex lock algorithms on 35 applications. Our study
shows that the case is not yet closed regarding locking on
multicore machines. Indeed, our conclusions include the
following findings: (i) at its optimized contention level,
no single lock is the best for more than 52% of the stud-
ied workloads; (ii) every lock is harmful for several ap-
plications, even if the application parallelism is properly
tuned; (iii) for several applications, the best lock changes
when varying the number of threads. These findings call
for further research on optimized lock algorithms and dy-
namic adaptation of contention management.

1 Introduction

Today, multicore machines are pervasive and many mul-
tithreaded applications are suffering from bottlenecks re-
lated to critical sections and their corresponding locks.
To mitigate these issues, application and library develop-
ers can choose from the plethora of optimized mutex lock
algorithms that have been designed over the past 25 years
but there is currently no clear study to guide this puzzling
choice for realistic applications. In particular, the most
recent and comprehensive empirical performance evalu-
ation on multicore synchronization [9], due to its breadth
(from hardware protocols to high-level data structures),
only provides a partial coverage of locking algorithms.
Indeed, the aforementioned study only considers 9 al-
gorithms, does not consider hybrid spinning/blocking

waiting policies, omits emerging approaches (e.g., load-
control algorithms described in §2) and provides a mod-
est coverage of hierarchical locks [14, 5, 6], a recent and
efficient approach. Furthermore, most of the observa-
tions are based on microbenchmarks. Besides, in the case
of papers that present a new lock algorithm, the empirical
observations are often focused on the specific workload
characteristics for which the lock was designed [21, 26],
or mostly based on microbenchmarks [14, 12].

The present paper provides a broad performance study
on Linux/x86 of 27 state-of-the-art mutex lock algo-
rithms on a set of 35 realistic and diverse applications
(the PARSEC, Phoenix, SPLASH2 suites, MySQL and
an SSL proxy). We make a number of observations, sev-
eral of which have not been previously mentioned: (i)
about 60% of the studied applications are significantly
impacted by lock performance; (ii) no single lock is sys-
tematically the best, even for a fixed number of contend-
ing cores; (iif) worse, at their optimized contention level
(individually tuned for each application), the best locks
never dominate for more than 52% of the lock-sensitive
applications; (iv) any of the locks is harmful (i.e., signif-
icantly inefficient compared to the best one) for at least
several workloads; (v) across all the lock-sensitive appli-
cations, there is no clear performance hierarchy among
the locks, even at a fixed number of contending cores;
(vi) for a given application, the best lock varies according
to both the number of contending cores and the machine;
(vii) unlike previous recommendations [9] advocating
that standard Pthread mutex locks should be avoided for
workloads using no more than one thread per core, we
find that, with our studied workloads, the current Linux
implementation of these locks actually yields good per-
formance for many applications with this pattern. More-
over, we show that all these results hold even when each
configuration, i.e., each (application, lock) pair, is tuned
to its optimal degree of parallelism. From our perfor-
mance study, we draw two main conclusions. First, spe-
cific lock algorithms should not be hardwired into the

USENIX Association

2016 USENIX Annual Technical Conference 649

code of applications. Second, the observed trends call
for further research both regarding lock algorithms and
runtime support for parallel performance and contention
management.

To conduct our study, manually modifying all the ap-
plications in order to retrofit the studied lock algorithms
would have been a daunting task. Moreover, using a
meta-library that allows plugging different lock algo-
rithms under a common API (such as liblock [26] or
libslock [9]) would not have solved the problem, as this
would still have required a substantial re-engineering ef-
fort for each application. In addition, such meta-libraries
provide no or limited support for important features
like Pthread condition variables, used within many ap-
plications. Therefore, we implemented LiTL!, a low-
overhead library that allows transparent interposition of
Pthread mutex lock operations and support for main-
stream features like condition variables, without any re-
striction on the application-level locking discipline.

The remainder of the paper is organized as follows:
§2 presents a taxonomy of existing lock designs and the
list of algorithms covered by our study. §3 describes our
experimental setup and the studied applications. §4 de-
scribes the LiTL library. §5 exposes the main results
from our empirical observations. §6 discusses related
works and §7 concludes the paper.

2 Lock algorithms

2.1 Background

The body of existing works on optimized lock algo-
rithms for multicore architectures is rich and diverse and
can be split into the following five categories:

1) Flat approaches correspond to simple algorithms
(typically based on one or a few shared variables ac-
cessed by atomic instructions) such as: simple spin-
lock [33], backoff spinlock [2, 30], test and test-and-set
(TTAS) lock [2], ticket lock [30], partitioned ticket lock
[11], and standard Pthread mutex lock.

2) Queue-based approaches correspond to locks based
on a waiting queue in order to improve fairness as well
as the memory traffic, such as: MCS [30, 33] and CLH
[7, 29, 33].

3) Hierarchical approaches are specifically aimed at
providing scalable performance on large-scale NUMA
machines, by attempting to reduce the rate of lock migra-
tions among NUMA nodes. This category includes HBO
[32], HCLH [28], FC-MCS [13], HMCS [5], AHMCS
[6] and the algorithms that stem from the lock cohorting
framework [14]. A cohort lock is based on a combination

'LiTL: Library for Transparent Lock interposition.

of two lock algorithms (similar or different): one used
for the global lock and one used for the local locks (there
is one local lock per NUMA node); in the usual C-L4-Lp
notation, L4 and Lp respectively correspond to the global
and the node-level lock algorithms. The list includes C-
BO-MCS, C-PTL-TKT and C-TKT-TKT (also known as
Hticket [9]). The BO, PTL and TKT acronyms respec-
tively correspond to backoff lock, partitioned ticket lock,
and standard ticket lock.

4) Load-control approaches correspond to algorithms
that aim at limiting the number of threads that con-
currently attempt to acquire a lock, in order to prevent
a performance collapse. These algorithms are derived
from queue-based locks. This category includes MCS-
TimePub? [19] and so-called Malthusian algorithms like
Malth_Spin and Malth_STP3 [12].

5) Delegation-based approaches correspond to algo-
rithms in which it is (sometimes or always) necessary
for a thread to delegate the execution of a critical section
to another thread. The typical benefits expected from
such approaches are improved cache locality and better
resilience under high lock contention. This category in-
cludes Oyama [31], Hendler [20], RCL [26], CC-Synch
[15] and DSM-Synch [15].

Another important design dimension is the waiting pol-
icy used when a thread cannot immediately obtain a re-
quested lock [12]. There are three main approaches: (i)
spinning on a memory address, (ii) immediate parking
(i.e., blocking the thread) either for a fixed amount of
time or until the thread gets a chance to obtain the lock,
and (iii) spinning-then-parking (STP), a hybrid strategy
using a fixed or adaptive threshold [22]. The choice
of the waiting policy is mostly orthogonal to the lock
design but, in practice, policies other than pure spin-
ning are only considered for certain types of locks: the
queue-based (from categories 2—4 above) and the stan-
dard Pthread mutex locks. Besides, note that the GNU C
library for Linux provides two versions of Pthread mu-
tex locks: the default one uses parking (via the futex
syscall) and the second one uses an adaptive spin-then-
park strategy. The latter version can be enabled with the
PTHREAD MUTEX_ADAPTIVE_NP option [23].

2.2 Studied algorithms

Our choice of studied locks is guided by the decision to
focus on portable lock algorithms. We therefore exclude
the following locks that require strong assumptions on

2MCS-TimePub is mostly known as MCS-TP but we use MC-
TimePub to avoid confusion with MCS_STP.

3Malth_Spin and Malth_ STP correspond to MCSCR-S and
MCSCR-STP, respectively, but we do not use the latter names to avoid
confusion with other MCS locks.

650 2016 USENIX Annual Technical Conference

USENIX Association

#NUMA nodes (#cores/node) 8 (8)

Name A-64 A-48 1-48

Total #cores 64 48 48 (no hyperthreading)

Server model Dell PE R815 Dell PE R815 SuperMicro SS 4048B-TR4FT
Processors 4x AMD Opteron 6272 4x AMD Opteron 6344 4x Intel Xeon E7-4830 v3
Microarchitecture Bulldozer / Interlagos Piledriver / Abu Dhabi Haswell-EX

Core clock 2.1 GHz 2.6 GHz 2.1 GHz

Last-level cache (per node) 8 MB 8 MB 30 MB

Interconnect HT3 - 6.4 GT/s per link HT3 - 6.4 GT/s per link QPI - 8 GT/s per link
Memory 256 GB DDR3 1600 MHz | 64 GB DDR3 1600 MHz | 256 GB DDR4 2133 MHz

8 (6) 4(12)

Network interfaces (10 GbE) 2x 2-port Intel 82599

2x 2-port Intel 82599 2-port Intel X540-AT2

Table 1: Hardware characteristics of the testbed platforms.

the application/OS behavior, code modifications, or frag-
ile performance tuning: HCLH, HBO, FC-MCS, and all
the delegation-based locks (see Dice et al. [14] for de-
tailed arguments).

Our study considers 27 mutex lock algorithms that
are representative of both well-established and state-of-
the-art approaches. We use the _Spin and _STP suf-
fixes to differentiate variants of the same algorithm that
only differ in their waiting policy. The -LS tag corre-
sponds to optimized algorithms borrowed from libslock
[9]. Our set includes ten flat locks (Backoff, Partitioned
ticket, Phtread, Pthread adaptive, Spinlock, Spinlock-LS,
Ticket, Ticket-LS, TTAS, TTAS-LS), seven queue-based
locks (Alock-LS, CLH-LS, CLH_Spin, CLH_STP, MCS-
LS, MCS_Spin, MCS_STP), seven hierarchical locks (C-
BO-MCS_Spin, C-BO-MCS_STP, C-PTL-TKT, C-TKT-
TKT, Hticket-LS, HMCS, AHMCS), and three load-
control locks (Malth_Spin, Malth_STP, MCS-TimePub).

3 Experimental setup and methodology

3.1 Testbed and studied applications

Our experimental testbed consists of three Linux-based
servers whose main characteristics are summarized in
Table 1. All the machines run the Ubuntu 12.04 OS
with a 3.17.6 Linux kernel (CFS scheduler), glibc 2.15
and gcc 4.6.3. For our comparative study of lock per-
formance, we consider (i) the applications from the
PARSEC benchmark suite (emerging workloads), (ii)
the applications from the Phoenix 2 MapReduce bench-
mark suite, (iii) the applications from the SPLASH2
high-performance computing benchmark suite*, (iv) the
MySQL database running the Cloudstone workload, and
(v) SSL proxy, an event-driven SSL endpoint that pro-
cesses small messages. In order to evaluate the impact of
workload changes on locking performance, we also con-
sider so called “long-lived” variants of four of the above
workloads denoted with a “_11” suffix. Note that six of

4We excluded the Cholesky application because of extremely short
completion times.

the applications cannot be evaluated on the two 48-core
machines because, by design, they only accept a number
of threads that correspond to a power of two: facesim,
fluidanimate (from PARSEC), fft, ocean_cp, ocean_ncp,
radix (from SPLASH?2).

Most of these applications use a number of threads
equal to the number of cores, except the three follow-
ing ones: dedup (3x threads), ferret (4x threads) and
MySQL (hundreds of threads). Two thirds of the appli-
cations use Pthread condition variables.

3.2 Tuning and experimental methodology

For the lock algorithms that rely on static thresholds, we
use the recommended values from the original papers
and implementations. The algorithms based on a spin-
then-park waiting policy (e.g., Malth_STP [12]) rely on a
fixed threshold for the spinning time that corresponds to
the duration of a round-trip context switch [22] — in this
case, we calibrate the duration using a microbenchmark
on the testbed platform.

All the applications are run with memory interleav-
ing (via the numact1 utility) in order to avoid NUMA
memory bottlenecks. Generally, in the experiments pre-
sented in this paper, we study the performance impact
of a lock for a given contention level, i.e., the number of
threads of the application. We vary the contention level at
the granularity of a NUMA node (i.e., 8 cores for the A-
64 machine, 6 cores for the A-48 machine, and 12 cores
for the I-48 machine). For most of the experiments de-
tailed in the paper, the application threads are not pinned
to specific cores. The impact of pinning is nonetheless
discussed in §5.3.

Finally, each experiment is run at least five times and
we compute the average value. Overall, we observe little
variability for most configurations. For all experiments,
the considered application-level performance metric is
the throughput (operations per time unit).

USENIX Association

2016 USENIX Annual Technical Conference 651

4 The LiTL lock interposition library

In order to carry out the lock comparison study, we have
developed LiTL, an interposition library for Linux/x86
allowing transparently replacing the lock algorithm used
for Pthread mutexes. We describe its design, implemen-
tation, and assess its performance.

4.1 Design

The design of LiTL does not impose any restriction on
the level of nested locking and is compatible with ar-
bitrary locking disciplines (e.g., hand-over-hand locking
[33]). The pseudo-code of the main wrapper functions of
the LiTL library is depicted in Figure 1.

// return values and error checks
// omitted for simplification

pthread_mutex_lock (pthread_mutex_t xm) {
optimized_mutex_t *om = get_optimized_mutex (m);
if (om == null) {
om = create_and_store_optimized_mutex (m);
}
optimized_mutex_lock (om) ;
real_pthread_mutex_lock (m);

}

pthread_mutex_unlock (pthread_mutex_t =xm) {
optimized _mutex_t *om = get_optmized_mutex (m);
optimized_mutex_unlock (om);
real_pthread_mutex_unlock (m);

}

pthread_cond_wait (pthread_cond_t xc,
pthread_mutex_t xm) {

optimized_mutex_t *om = get_optimized_mutex (m);
optimized_mutex_unlock (om) ;
real_pthread_cond_wait (c, m);
real_pthread_mutex_unlock (m);
optimized_mutex_lock (om) ;
real_pthread_mutex_lock (m);

}

// Note that the pthread_cond_signal and
// pthread_cond_broadcast primitives
// do not need to be interposed

Figure 1: Overview of the pseudocode for the main
wrapper functions of LiTL.

General principles The primary role of LiTL is
to maintain a mapping structure between an instance
of the standard Pthread lock (pthreadmutex_t) and
an instance of the chosen optimized lock type (e.g.,
MCS_Spin). This implies that LiTL must keep track
of the lifecycle of all the application’s locks through
interposition of the calls to pthread mutex_init ()
and pthread.mutex_destroy (), and that each inter-
posed call to pthread-mutex_lock () must trigger a
lookup for the instance of the optimized lock. In addi-
tion, lock instances that are statically initialized can only

be discovered and tracked upon the first invocation of
pthread.mutex_lock () on them (i.e., a failed lookup
leads to the creation of a new mapping).

The lock/unlock API of several lock algorithms re-
quires an additional parameter (called “struct” hereafter)
in addition to the lock pointer. For example, in the case
of an MCS lock, this parameter corresponds to the record
to be inserted in (or removed from) the lock’s waiting
queue. In the general case, a struct cannot be reused nor
freed before the corresponding lock has been released.
For instance, an application may rely on nested critical
sections (i.e., a thread T must acquire a lock L, while
holding another lock L;). In this case, T must use a dis-
tinct struct for L, in order to preserve the integrity of L;’s
struct. In order to gracefully support the most general
cases, LiTL systematically allocates exactly one struct
per lock instance and per thread.

Supporting condition variables Dealing with con-
dition variables inside each optimized lock algorithm
would be complex and tedious as most locks have
not been designed with condition variables in mind.
We therefore use the following strategy: our wrap-
per for pthread_cond_wait () internally calls the true
pthread_cond._wait () function. To issue this call,
we need to hold a real Pthread mutex lock (of type
pthread-mutex_t). This strategy (depicted in the pseu-
docode of Figure 1) does not introduce high contention
on the internal Pthread lock. Indeed, for workloads that
do not use condition variables, the Pthread lock is only
requested by the holder of the optimized lock associated
with the critical section. Furthermore, workloads that
use condition variables are unlikely to have more than
two threads competing for the Pthread lock: the holder
of the optimized lock and a notified thread. Note that
the latter claim also holds for workloads that rely on
pthread_cond_broadcast () because the Linux im-
plementation of this call only wakes up a single thread
from the wait queue of the condition variable and directly
transfers the remaining threads to the wait queue of the
Pthread lock.

Support for specific lock semantics The design of
LiTL is compatible with specific lock semantics when
the underlying lock algorithms offer the corresponding
properties. For example, LiTL supports non-blocking
lock requests (pthread.mutex_trylock ()) for all the
currently implemented locks except CLH-based locks
and Hticket-LS, which are not compatible with such se-
mantics. Although not yet implemented, LiTL could eas-
ily support blocking requests with timeouts for the so-
called “abortable” locks (e.g., MCS-Try [34] and MCS-
TimePub [19]). Moreover, support for optional Pthread

652 2016 USENIX Annual Technical Conference

USENIX Association

=3
.

o
o

I eod

> 9o
o o
.

o
o
.

| Ausolpes

= o

Normalized application throughput
(higher is better)
23

s o
o o
=
!

s

KeJ

IRCEEDY

2 ‘{\o & S o O
0*"{966662‘(\/\‘9%&}(5}(3&\6@
S & o ¢ T T ¥ T T
? 4 L ¥ & & &
o
D

e ~o ¥ L D)
\Q & X ?Q\ G"(}Q Q'Q\) %0{@ ‘Q\Q“b ,b&bQ \&0 c;{_/ \\ \(g’/\ ,&0 'b-%/\
I ET & FHF RS ® M
& F

Figure 2: Performance comparison (throughput) of manually implemented locks (black bars) vs. transparently inter-
posed locks using LiTL (white bars). The throughput is normalized with respect to the best performing configuration

for a given application (A-64 machine).

mutex behavior like reentrance and error checks® could
be easily integrated in the generic wrapper code by man-
aging fields for the current owner and the lock acquisition
counter.

4.2 Implementation

The library relies on a scalable concurrent hash table
(CLHT [10]) in order to store, for each Pthread mu-
tex instance used in the application, the correspond-
ing optimized lock instance, and the associated per-
thread structs. For well-established locking algorithms
like MCS, the code of LiTL borrows from other li-
braries [9, 1, 26]. Other algorithms are implemented
from scratch based on the description of the original pa-
pers. For algorithms that are based on a parking or on
a spinning-then-parking waiting policy, our implementa-
tion directly relies on the futex Linux system call.

Finally, the source code of LiTL relies on preprocessor
macros rather than function pointers. Indeed, we have
observed that the use of function pointers in the critical
path introduced a surprisingly high overhead. Moreover,
all data structures are cache-aligned in order to mitigate
the impact of false sharing.

4.3 Experimental validation

In this section, we assess the performance of LiTL using
the A-64 machine. To that end, we compare the perfor-
mance (throughput) of each lock on a set of applications
running in two distinct configurations: manually modi-
fied applications and unmodified applications using in-
terposition with LiTL. Clearly, one cannot expect to ob-

SUsing respectively the PTHREAD MUTEX RECURSIVE and
PTHREAD_MUTEX_ERRORCHECK attributes.

tain exactly the same results in both configurations, as the
setups differ in several ways, e.g., with respect to the ex-
ercised code paths, the process memory layout and the al-
location of the locks (e.g., stack- vs. heap-based). How-
ever, we show that between both configurations: (i) the
achieved performance is close and (ii) the general trends
for the different locks remain stable.

We selected three applications: pca_ll, radiosity_ll and
s_raytrace_ll. These three applications are particularly
lock-intensive and the last two use Pthread condition
variables. Therefore, all three represent an unfavorable
case for LiTL. Moreover, we focus the discussion on the
results under the highest contention level (i.e., when the
application uses all the cores of the target machine), as
this again represents an unfavorable case for LiTL.

Figure 2 shows the normalized performance (through-
put) of both configurations (manual/interposed) for each
(application, lock) pair: black bars correspond to manu-
ally implemented locks, whereas white bars correspond
to transparently interposed locks using LiTL. In addition,
Table 2 summarizes the performance differences for each
application: number of locks for which each version per-
forms better and, in each case, the average gain and the
relative standard deviation.

We observe that, for all of the three applications, the
results achieved by the two versions of the same lock are
very close: the average performance difference is below
5%. Besides, Figure 2 highlights that the general trends
observed with the manual versions are preserved with the
interposed versions. We thus conclude that using LiTL to
study the behavior of lock algorithms in an application
yields only very modest differences with respect to the
performance behavior of a manually modified version.

USENIX Association

2016 USENIX Annual Technical Conference 653

pca_ll radiosity 1l | s_raytrace_ll
= Winners 10 17 19
2 | Average Gain 2% 3% 4%
= Rel. Dev. 4% 4% 5%
Q Winners 17 10 8
= Average Gain 2% 3% 3%
= Rel. Dev. 2% 5% 3%

Table 2: Detailed statistics for the performance compar-
ison of manually implemented locks vs. transparently
interposed locks using LiTL (A-64 machine).

5 Performance study of lock algorithms

In this section, we use LiTL to compare the behavior
of the different lock algorithms on different workloads
and at different levels of contention. In the interest of
space, we do not systematically report the observed stan-
dard deviations. However, in order to mitigate the impact
of variability, when comparing the performance of two
locks, we consider a margin of 5%: lock A is considered
better than lock B if B’s achieved performance is below
95% of A’s. Besides, in order to make fair comparisons,
the results presented for the Pthread locks are obtained
using the same library interposition mechanism as with
the other locks.

Note that some configurations are not tested because
of specific restrictions. First, streamcluster, streamclus-
ter_11, and vips cannot use CLH-based locks or Hticket-
LS as they do not support trylocks semantics. Second,
we omit the results for most locks with MySQL: given
the extremely large ratio of threads to cores, most locks
yield performance close to zero. Third, some applica-
tions, e.g., dedup and fluidanimate, run out of memory
for some configurations.

Finally, for the sake of space, we do not report all the
results for the three studied machines. We rather focus on
the A-64 machine and provide summaries of the results
for the A-48 and I-48 machines. Nevertheless, the en-
tire set of results can be found in a companion technical
report [18].

The section is structured as follows. §5.1 provides pre-
liminary observations that drive the study. §5.2 answers
the main questions of the study regarding the observed
lock behavior. §5.3 discusses additional observations.

5.1 Preliminary observations

Before proceeding with the detailed study, we highlight
some important characteristics of the applications.

5.1.1 Selection of lock-sensitive applications

Table 3 shows two metrics for each application and for
different numbers of nodes on the A-64 machine: the per-
formance gain of the best lock over the worst one, as well

as the relative standard deviation for the performance of
the different locks. For the moment, we only focus on the
relative standard deviations at the maximum number of
nodes (max nodes—highest contention) given in the 5th
column (the detailed results from this table are discussed
in §5.2.1).

We consider that an application is lock-sensitive if the
relative standard deviation for the performance of the
different locks at max nodes is higher than 10% (high-
lighted in bold font). We observe that about 60% of the
applications are impacted by locks. We observe similar
trends on the three studied machines (see Table 4).

In the remainder of this study, we focus on lock-
sensitive applications.

Gain R.Dev.| Gain R.Dev.| Gain R.Dev.
1 1 max max opt opt

node node nodes nodes | nodes | nodes

barnes 10% 2% 36% 8% 31% 7%

blackscholes 11% 2% 2% 1% 2% 1%
bodytrack 1% 0% 9% 2% 4% 1%
canneal 5% 1% 7% 2% 7% 2%

dedup | 683% | 56% 970% 55% 683% | 56%
facesim | 10% 2% 771% 76 % 14% 3%
ferret 1% 0% 349% 58% 107% | 25%

fft 8% 2% 11% 3% 9% 2%
fluidanimate | 48% 11% 302% 28% 133% | 20%
fmm | 26% 7% 42% 12% 42% 11%

freqmine 7% 2% 6% 1% 6% 1%
histogram 7% 2% 20% 5% 12% 3%
kmeans 9% 3% 12% 2% 12% 2%
linear_regression 9% 2% 228% 22% 49 % 10%
lu_cb 11% 2% 5% 1% 5% 1%

lu_ncb 17% 5% 8% 2% 8% 2%

matrix_multiply 7% 3% 643% 51% 372% | 38%
mysqld | 30% 9% 174% 38% 122% | 34%
ocean_cp 17% 4% 129% 15% 22% 5%
ocean.ncp | 21% 5% 118% 14% 18% 4%

pca | 12% 3% 358% 31% 47 % 8%

pea_ll 19% 5% 665% 47 % 100% | 20%
p-raytrace 2% 0% 1% 0% 2% 0%
radiosity 3% 1% 91% 13% 13% 4%
radiosity_ll 8% 2% 2299% | 71% 180% | 29%
radix 2% 1% 8% 2% 8% 2%

s_raytrace 4% 1% 1929% | 62% 126% | 29%
s_raytrace_ll 4% 1% 3343% | 79% 157% | 26%
ssl_proxy 37% 6% 1309% | 63% 58% 11%
streamcluster 13% 3% 1087% | 56% 13% 3%
streamcluster_l1 23% 4% 1305% | 55% 56% 12%
string_match 5% 2% 11% 2% 11% 2%
swaptions 8% 2% 10% 2% 10% 2%

vips 2% 1% 334% 32% 8% 2%

volrend 7% 1% 161% 21% 24% 5%
water_nsquared 10% 2% 94% 14% 94% 14%
water_spatial 24% 5% 98% 15% 96 % 15%
word_count 4% 1% 17% 3% 12% 2%
X264 4% 1% 6% 2% 5% 2%

Table 3: For each application, performance gain of the
best vs. worst lock and relative standard deviation (A-64
machine).

| A-64 | A48 | 148 |
39 ‘ 3 ‘ 3 ‘

tested applications

lock-sensitive applications 23 19 17

Table 4: Number of tested applications and number of
lock-sensitive applications (all machines).

654 2016 USENIX Annual Technical Conference

USENIX Association

£ = 5 =
49 4 =] a 2] -
s e 88 =5 .z 3z 285 8. FF L343 4
Q = = =1 =i =i 7])
Applications = 'c%] 43 -3 'Eo % % g 3 .g E g g E E E E g g ':‘EL 2 % 2 2 £ £
dedup | - 252 129 89 95 229 200 204 125 117 75 96 119 119 106 110 113 80 136 120 126 147 118 141 121 145 197
facesim | 412 908 425 172 55 888 895 78 460 328 324 379 711 71 1k 948 87 26 895 91 67 726 35 919 462 489 530
ferret 170 108
fluidanimate - -
fmm
histogram 89 125 88 107 87 105 102 97 104
linear_regression 50 10 8 38 8 21 27
matrix_multiply 64 65 55
mysqld - - - - - - -
ocean_cp 103 72 73 234 49 136 60 106 173
oceanncp [93 99 90 73 69 90 93 79 76 90 81 73 84 85 73 92 95 61 98 97 85 206 56 89 57 93 186
pca | 77 79 163 42 370 69 44 148 40 34 68 49 37 49 55 134 19 50 97 36 229 80 116 35 160 130
pcall | 91 81 219 14 582 74 41 321 23 16 8 31 7 21 58 41 21 195 114 513 168 108 51 206 476
radiosity 21 10 53
radiosity_11 157 71 987 164 296 97 411 615
s_raytrace 88 14 269 50 134 149 195 154
s_raytrace_ll 110 107 118 178 371 185 1k 308 495 301 857 881
ssl_proxy 69 695 33 1k 107 61 1k 61 103 608 78 36 52 95 99 1k 73 87 268 195 2k 268 360 139 718 957
streamcluster | 2k 2k 4k 2k 2k - - - 1k 2k 1k - 4k 16k 4k 3k 16k 1k 1k 2k 3k 9k 2k 5k 4k 4k 7k
streamcluster_11 | 421 246 829 410 497 - - - 266 275 250 - 816 4k 774 590 4k 301 275 446 450 2k 585 1k 615 718 1k
vips - - - -
volrend | 52 88 97 62 99 72 82 123 50 62 52 59 69 128 79 86 109 82 83 131 162 222 114 74 70 108 154

water_nsquared
water_spatial

Table 5: For each (application, lock) pair, performance gain (in %) of the optimized configuration over the max-node
configuration. The background color of a cell indicates the number of nodes (1, 2, 4, 6, or 8 nodes) for the optimized
configuration: 1 |2 |4 [iGI8N. Dashes correspond to untested cases. (A-64 machine).

5.1.2 Selection of the number of nodes

In multicore applications, optimal performance is not
always achieved at the maximum number of available
nodes (abbreviated as max nodes) due to various kinds
of scalability bottlenecks. Therefore, for each (applica-
tion, lock) pair, we empirically determine the optimized
configuration (abbreviated as opt nodes), i.e., the num-
ber of nodes that yields the best performance. For the
A-64 and A-48 machines, we consider 1, 2, 4, 6, and 8
nodes. For the 1-48 machines, we consider 1, 2, 3, and 4
nodes. Note that 6 nodes on A-64 and A-48 correspond
to 3 nodes on I-48, i.e., 75% of the available cores.

The results for the A-64 machine are displayed in Ta-
ble 5. For each (application, lock) pair, the correspond-
ing cell indicates the performance gain of the optimized
configuration with respect to the max-node configura-
tion. The background color of a cell indicates the num-
ber of nodes for the optimized configuration. In addition,
Table 6 provides a breakdown of the (application, lock)
pairs according to their optimized number of nodes for
all machines.

We observe that, for many applications, the optimized
number of nodes is lower than the max number of nodes.
Moreover, we observe (Table 5) that the performance
gain of the optimized configuration is often extremely
large. This confirms that tuning the degree of parallelism
has frequently a very strong impact on performance. We
also notice that, for some applications, the optimized

number of nodes varies according to the chosen lock.

| A-64 | A-48 | | 148 |
1 Node 11% 9% 1 Node 33%
2 Nodes 28% 24% 2 Nodes 14%
4 Nodes 27% 21% 3 Nodes 8%
6 Nodes 7% 9% 4 Nodes 45%
8 Nodes 27% 37%

Table 6: Breakdown of the (application, lock) pairs ac-
cording to their optimized number of nodes (all ma-
chines).

In light of the above observations, the main questions
investigated in the study (§5.2) will be considered from
two complementary angles: (i) comparing locks at a
fixed number of nodes, and (ii) comparing locks at their
optimized configurations (i.e., with possibly a different
number of nodes for each). The first angle offers insight
for situations in which the degree of parallelism cannot
be adjusted, while the second is useful for scenarios in
which more advanced application tuning is possible.

5.2 Main questions
5.2.1 How much do locks impact applications?

Table 3 shows, for each application, the performance
gain of the best lock over the worst one at 1 node, max
nodes, and opt nodes for the A-64 machine. The table
also shows the relative standard deviation for the perfor-
mance of the different locks.

USENIX Association

2016 USENIX Annual Technical Conference 655

We observe that the impact of locks on the perfor-
mance of applications depends on the number of nodes.
At 1 node, the impact of locks on lock-sensitive appli-
cations is moderate. More precisely, most applications
exhibit a gain of the best lock over the worst one that is
lower than 30%. In contrast, at max nodes, the impact
of locks is very high for all lock-sensitive applications.
More precisely, the gain brought by the best lock over
the worst lock ranges from 42% to 3343%. Finally, at
the optimized number of nodes, the impact of locks is
high, but noticeably lower than at max nodes. We ex-
plain this difference by the fact that, at max nodes, some
of the locks trigger a performance collapse for certain
applications (as shown in Table 5), which considerably
increases the observed performance gaps between locks.
We observe the same trends on the A-48 and 1-48 ma-
chines (see the companion technical report [18]).

5.2.2 Are some locks always among the best?

Table 7 shows the coverage of each lock, i.e., how often
it stands as the best one (or is within 5% of the best)
over all the studied applications for the A-64 machine.
The results are shown for three configurations: 1 node,
max nodes, and opt nodes. Besides, Table 8 displays,
for each machine (at 1 node, max nodes and opt nodes)
the following metrics aggregated over the different locks:
the min and max coverage, the average coverage, and the
relative standard deviation of the coverage.

Number of nodes
Locks 1 Max Opt
ahmcs 67% 24% 52%
alock-Is 52% 4% 30%
backoff 83% 30% 26%
c-bo-mcs_spin 74% 22% 39%
c-bo-mes_stp 62% 12% 29%
clh-Is 63% 5% 37%
clh_spin 68% 5% 37%
clh_stp 63% 16% 21%
c-ptl-tkt 57% 22% 35%
c-tkt-tkt 74% 22% 39%
hmes 65% 22% 48%
hticket-1s 63% 16% 37%
malth_spin 61% 9% 26%
malth_stp 54% 29% 29%
mcs-1s 74% 4% 30%
mes_spin 70% 22% 48%
mcs_stp 79% 21% 29%
mcs-timepub 54% 38% 29%
partitioned 70% 22% 39%
pthread 50% 21% 29%
pthreadadapt 58% 33% 29%
spinlock 65% 26% 30%
spinlock-ls 57% 30% 35%
ticket 74% 22% 39%
ticket-1s 74% 13% 35%
ttas 83% 26% 43%
ttas-lIs 65% 0% 9%

Table 7: For each lock, fraction of the lock-sensitive ap-
plications for which the lock yields the best performance
for three configurations: 1 node, max nodes, and opt
nodes (A-64 machine).

nodes Coverage A-64 A-48 1-48
[min; max] [50%; 83%] [27%; 83%] [44%;, 89%]
1 Avg. 66% 66% 62%
Rel. Dev. 9% 15% 12%
[min; max] [0%; 38%] [0%; 42%] [5%; 50%]
Max Avg. 19% 17% 24%
Rel. Dev. 10% 12% 11%
[min; max] [9%; 52%] [0%; 47%] [5%; 50%]
Opt Avg. 34% 21% 28%
Rel. Dev. 9% 13% 12%

Table 8: Statistics on the coverage of locks for three con-
figurations: 1 node, max nodes, and opt nodes (all ma-
chines).

We make the following observations (Table 8). No
lock is among the best for more than 89% of the ap-
plications at 1 node and for more than 52% of the
applications both at max nodes and at the optimal
number of nodes. We also observe that the average cov-
erage is much higher at 1 node than at max nodes, and
slightly higher at the optimized number of nodes than at
max nodes. This is directly explained by the observa-
tions made in §5.2.1. First, at 1 node, locks have a much
lower impact on applications than in other configurations
and thus yield closer results, which increases their likeli-
hood to be among the best ones. Second, at max nodes,
all of the different locks cause, in turn, a performance
collapse, which reduces their likelihood to be among the
best locks. This latter phenomenon is not observed at the
optimized number of nodes. We observe the same trends
on the A-48 and [-48 machines (see the companion tech-
nical report [18]).

5.2.3 Is there a clear hierarchy between locks?

Table 9 shows pairwise comparisons for all locks, at
max nodes on the A-64 machine. In each table, cell
(rowA, colB) contains the score of lock A vs. lock B,
i.e., the percentage of applications for which lock A is at
least 5% better than lock B. For example, Table 9 shows
that for 38% of the applications, AHMCS performs at
least 5% better than Backoff at the optimized number
of nodes. Similarly, the table shows that Backoff is at
least 5% better than AHMCS for 29% of the applica-
tions. From these two values, we can conclude that the
two above mentioned locks perform very closely for 33%
of the applications. At the end of each line (resp. col-
umn), the table also shows the mean of the fraction of
applications for which a lock is better (resp. worse) than
others. Besides, the latter two metrics are summarized
for the three machines in Table 10.

We observe that there is no clear global performance
hierarchy between locks. More precisely, for most pairs
of locks (A, B), there are some applications for which
A is better than B, and vice-versa (Table 9). The only
marginal exceptions are the cells having 0% for value.
This corresponds to pairs of locks (A,B) for which A

656 2016 USENIX Annual Technical Conference

USENIX Association

=}
R . R £ .
1 1 < A
2 = 5 8 = = 2 B g £ o F 2 _ZF o4 P o
£ § E 3 05 5% &7 E 2 8 E E 2 E 2 EEE %822 B Bli
ahmces 19 38 48 29 22 17 61 19 48 5 33 33 43 38 38 48 52 24 38 43 57 48 33 33 43 38| 36
alock-1s 19 39 30 26 16 16 58 17 22 9 26 39 30 22 26 43 30 9 39 43 48 39 35 30 35 39| 30
backoff 29 35 30 26 37 37 58 26 26 35 32 35 26 35 30 52 30 17 35 39 30 26 4 22 0 39| 30
c-bo-mcs_spin 33 48 43 35 37 32 74 22 17 39 32 39 48 39 9 48 13 22 39 39 39 43 48 39 35 65| 38
c-bo-mes_stp 33 43 35 22 42 32 74 17 22 30 21 22 25 26 26 42 21 13 33 33 39 26 26 22 26 61| 31
clh-1s 22 21 37 42 32 16 47 26 26 16 26 37 37 16 32 47 26 16 42 47 53 47 47 42 42 47| 34
clh_spin 22 32 32 32 26 32 53 21 37 21 42 32 26 32 21 47 32 11 37 37 47 42 32 42 37 47| 33
clh_stp 33 32 5 16 11 37 16 26 16 26 26 16 11 21 16 11 5 11 11 21 21 11 26 11 32| 18
c-ptl-tkt 19 35 35 39 30 32 21 68 26 22 26 26 43 30 26 57 39 17 39 35 48 35 30 30 35 57| 35
c-tkt-tkt 24 39 35 26 39 32 26 74 26 30 32 48 65 43 17 57 229 39 43 39 43 39 43 35 65| 38
hmcs 14 30 39 35 22 42 32 74 17 39 32 39 35 35 26 52 39 26 39 39 48 39 30 30 30 52| 36
hticket-1s 17 16 47 32 26 21 32 74 11 21 5 32 42 11 26 53 32 11 42 42 53 42 37 26 47 58| 33
malth_spin 14 35 22 22 26 26 16 63 13 17 22 16 22 22 13 39 17 4 35 35 35 39 17 13 17 48| 25
malth_stp 24 35 22 35 21 32 37 58 17 17 26 21 22 17 33 25 9 33 29 35 22 17 17 17 48| 26
mcs-1s 24 17 35 35 35 21 26 63 13 17 17 16 35 26 17 39 17 4 39 43 43 35 30 17 35 48| 29
mes_spin 29 43 35 26 39 37 32 68 26 17 39 47 39 43 43 43 22 22 35 39 35 43 39 30 39 61| 37
mcs_stp 29 35 9 22 21 32 32 42 22 9 30 26 17 17 26 9 12 17 21 25 17 17 13 17 13 39| 22
mcs-timepub 33 39 35 22 33 42 37 68 17 9 30 32 39 29 22 9 38 13 29 33 30 35 30 30 30 57| 32
partitioned 24 39 26 39 43 32 32 68 26 22 39 53 52 43 35 35 61 35 43 48 48 43 26 43 35 65| 41
pthread 29 39 22 26 25 37 32 58 22 17 39 26 30 25 35 26 46 25 13 21 39 13 17 13 17 43| 28
pthreadadapt 29 43 22 35 21 37 37 53 30 26 35 26 26 25 35 30 42 25 17 21 22 22 17 17 17 43| 29
spinlock 29 39 9 26 17 37 32 53 35 13 39 32 43 35 35 22 39 17 22 26 30 26 13 30 9 35| 29
spinlock-Is 29 39 26 30 35 26 26 63 26 30 35 16 30 30 30 30 48 30 22 43 30 48 26 13 26 57| 33
ticket 29 35 9 26 26 32 32 63 26 22 35 32 30 26 30 26 48 22 13 26 39 30 26 22 0 39| 29
ticket-1s 19 22 30 26 39 26 32 68 26 26 22 11 35 39 22 26 52 26 26 35 48 43 39 30 30 52| 33
ttas 24 35 4 26 22 37 26 63 26 17 35 32 30 26 30 30 52 17 17 30 35 30 26 4 26 30| 28
ttas-1s 19 17 9 17 13 21 16 42 13 13 4 5 22 22 9 22 30 9 13 17 22 30 17 13 4 9 17
average 25 33 27 29 28 32 28 62 22 22 26 28 32 32 29 23 45 25 15 33 36 39 33 26 26 26 49

Table 9: For each pair of locks (rowA, colB) at the optimized number of nodes, score of lock A vs lock B: percentage
of applications for which lock A performs at least 5% better than B (A-64 machine).

Better Worse
Lock | A-64 | A48 [148 A-64 T A48 | I-48
ahmes | 36% 40% 52% | 25% 28% 25%
alock-1s | 30% 2% 37% | 33% 25% 32%
backoff | 30% 29% 23% | 27% 33% 45%
c-bo-mcs_spin 38% 47% 46% 29% 25% 15%
c-bo-messtp | 31% 25% 38% | 28% 44% 25%
clh-Is | 34% 46% 32% | 32% 32% 38%
clhospin | 33% 38% 33% | 28% 34% 37%
clh_stp 18% 11% 8% 62% 72% 71%
c-ptl-tkt | 35% 44% 54% | 22% 26% 13%
c-tkt-tkt | 38% 42% 51% | 22% 27% 15%
hmes | 36% 50% 52% | 26% 21% 17%
hticket-Is | 33% 45% 2% | 28% 25% 17%
malth_spin | 25% 36% 31% | 32% 37% 35%
malth_stp | 26% 20% 28% | 32% 53% 36%
mes-Is | 29% 43% 35% | 29% 22% 26%
mes_spin | 37% 38% 36% | 23% 33% 23%
mes_stp | 22% 23% 20% | 45% 59% 52%
mcs-timepub | 32% 38% 34% | 25% 34% 29%
partitioned | 41% 42% 38% 15% 32% 23%
pthread | 28% 33% 34% | 33% 43% 35%
pthreadadapt | 29% 34% 34% | 36% 38% 36%
spinlock | 29% 35% 20% | 39% 44% 49%
spinlock-Is | 33% 41% 38% | 33% 30% 31%
ticket | 29% 23% 17% | 26% 44% 53%
ticket-Is | 33% 40% 28% | 26% 24% 35%
ttas | 28% 28% 24% | 26% 34% 44%
ttas-1s 17% 27% 20% 49% 42% 52%

Table 10: For each lock, at the optimized number of
nodes, mean of the fraction of applications for which
the lock is better (resp. worse) than other locks (all ma-
chines).

never yields better performance than B. The results at
max nodes (not shown due to lack of space) exhibit simi-
lar trends as the ones at opt nodes. Besides, we make the
same observations (both at opt nodes and max nodes) on
the A-48 and I-48 machines (see the companion techni-
cal report [18]).

5.2.4 Are all locks potentially harmful?

Our goal is to determine, for each lock, if there are ap-
plications for which it yields substantially lower perfor-
mance than other locks and to quantify the magnitude of
such performance gaps. Table 11 displays, for the A-64
machine, the performance gain brought by the best lock
with respect to each of the other locks for each applica-
tion at max nodes (top part) and at the optimized num-
ber of nodes for each lock (bottom part). For example,
the top part of the table shows that for the dedup applica-
tion, the best lock (0%, here Spinlock-LS) is 598% better
than the Alock-LS lock. The gray cells highlight values
greater than 15%. Thus, for each lock in a column, the
number of grey cells corresponds to the number of ap-
plications for which the lock is beaten by a gap of 15%
or more by the best lock(s) for this application. In addi-
tion, Table 12 displays, for each machine, the fraction of
applications that are significantly hurt by a given lock.
On the three machines, we observe that, both at max

USENIX Association

2016 USENIX Annual Technical Conference 657

iz 2 R
2 2] T & 7] B=R- n i)
S - = 5 g £ .8 2] a
Applications | & % 8 -?z -3 'Eu c % ?; 3 E £ g g E E B E = g g & & &5 &8 £ £
dedup | - 1598 4 135 137 970 575 576 27 11 145 130 130 129 123 127 128 105 14 6 2 2 0 4 0 5 579
facesim | 298 701 323 107 25 680 687 52 333 224 234 273 531 40 771 710 52 0 685 56 44 572 6 719 340 368 409
ferret | 329 297 10 84 0 261 312 0 286 228 255 291 196 O (349 317 0 4 314 0 1 10 O 331 8 9 11
fluidanimate | - 301 O |57 65 - - - [35 14 72 - 36 95 50 40 94 50 14 5 12[26 0 17 15 9 201
fmm |41 37 15 3 26 38 39 33 30 0 35 32 16 14 32 2 0 0 1425 23 2 (25 15 27 17 34
histogram [1 2 8 3 4 3 3 12 2 0 2 0 0 I 5 1 14 1 419 218 3 11 5 8 12
linear_regression | 32 228 24 20 108 57 31 62 O 52 28 11 17 O 49 46 56 3 (39 15 0 8 15 32 9 19 49
matrix_multiply | 9 559 5 26 7 18 9 3 24 136 608 642 5 3 639 27 2 0 (33 3 3 5 637 3 [633 5 630
mysgd | - - - -3 - - - - - - - - 0 - - 7173 - 97 102 - - - - - -
ocean-cp | 31 18 37 22 16 27 38 38 24 29 20 15 23 27 27 43 32 0 24 1119 129 5 |55 5 38 8l |
oceanncp [27 28 29 30 9 25 27 28 12 28 16 10 20 22 14 36 37 11 29 31 27 118 0 25 2 [29 93 |g
pca | 65 69 155 46 357 61 48 220 40 38 59 39 38 0 43 S8 214 23 45 110 39 252 75 110 23 157 112|3
pecall | 47 38 251 24 664 25 51 511 30 24 41 0 18 36 17 50 526 15 27 206 68 584 128 128 17 241 338| %
radiosity |14 12 0 0 1 13 9 o0 8 1 7 9 9 12 10 1 9 0 1 O O 1 3 0 19 0 71|
radiosity 11 | O 47 801 9 2k 50 16 2k 35 45 3 28 59 63 62 12 2k 44 76 567 267 2k 396 614 193 825 1k
sraytrace | 2 24 536 17 2k 9 75 1k 8 27 18 38 26 64 16 0 1k 13 122 230 122 714 118 412 225 554 471
saaytracell | 6 82 1k 18 3k 96 87 3k 68 169 0 164 84 291 99 69 3k 111 157 639 335 2k 428 813 332 1k 1k
sslproxy | 0 18 532 1 1k 47 16 879 9 41 379 20 16 35 43 47 900 29 36 293 153 1k 249 271 85 539 735
streamcluster | 45 24 153 13 ' 63 - - - 7 13 3 - 210 1k 183 118 979 6 0 90 133 505 33 290 166 177 395
streamcluster 1 | 61 6 188 20 55 - - - 0 17 6 - 234 1k 202 133 1k 34 13 77 102 518 65 263 139 155 411
vips |41 38 4 333 17 - - - [267 145101 - 177 0 28 28 1 3 37 0 2 3 1 16 8 4 10
volrend | 2 28 41 9 34 16 25 58 1 9 0 6 17 63 22 26 47 24 24 78 104 161 58 24 16 51 92
waternsquared [94 48 2 2 9 58 35 3 7 0O 14 10 7 6 9 3 2 7 4 6 7 0 6 4 6 4 37
water_spatial |97 49 2 11 7 63 40 39 4 5 8 4 8 5 5 9 9 10 I 0 0 2 1 1 0 1 41
dedup | - 378 10 [199 193 682 443 436 36 23 237 183 153 152 161 160 158 174 16 16 9 0 10 3 10 3 451
facesm| 2 4 6 O 6 4 4 12 1 0 4 2 2 8 3 1 7 4 3 7 13 7 3 5 3 4 6
ferret |88 47 6 29 0 37 53 0 [89 106 82 92 93 0 |56 46 O 3 5 0 O 7 0 5 41 6 7
fluidanimate | - 133 0 50 51 - - - '35 1464 - 28 27 39 25 26 40 14 5 12 9 0 4 3 3 8
fmm |41 35 15 3 26 38 21 19 30 O 33 32 16 14 32 2 0 0 1425 23 1 [25 15 27 17 34
histogram | 0 5 9 1 2 6 3 11 6 6 1 1 1 3 6 4 4 5 6 2 3 9 5 3 0 4 5
linear_regression | 2 12 /24 11 0 5 1 [35 4 14 0 8 5 4 10 1139 14 4 [16 4 48 19 22 15 25 30
matrix_multiply | 9 '8 5 (22 7 (18 9 3 24 23 83 348 5 3 357 23 2 0 [24 3 3 5 349 3 (343 5 372
mysqld | - - - - 31 - - - - - - - -0 - - 8 121 - 9% 96 - - - - - -
oceancp| 5 O 7 12 13 4 2 4 10 12 10 11 9 21 O 11 20 14 2 7 15 14 18 9 9 12 10 o
oceanncp| 3 1 617 1 3 3 12 0 5 0 0O 2 3 3 10 10 8 2 4 7 11 0 4 2 5 5%
pcal| 2 4 6 13 6 4 12 41 10 12 4 3 11 7 5 1247 13 6 (17 12 17 7 7 0 8 1|2
pcall| 6 5 [51 49 54 0 [48 100 46 48 3 5 [53 55 3 [46 71 51 45 43 8 53 17 51 7 53 5 |&
radiosity [10 9 0 0 1 10 8 0 6 1 7 9 7 10 8 1 13 0 1 0 0 1 10 0 9 0 11]°7
radiosity 11 | 0 |31 75 9 (53 32 5 [180 1 22 3 28 49 59 42 1 [165 22 19 159 114 120 88 80 49 80 83
sraytrace | 2 5 123 16 74 9 5 123 5 11 5 19 26 53 14 0 117 12 10 75 94 120 45 119 30 121 125
sxaytracell | 2 6 79 16 74 7 4 157 5 10 0 1125 72 9 3 [150 11 6 (79 74 75 48 75 23 76 78
sslproxy | 3 4 17 1223 5 7 30 0 3 0 0 26 31 9 9 [23 11 7 57 27 20 40 19 15 15 16
streamcluster [11 9 6 O 4 - - - 8 1 7 - 10 10 9 1 2 5 7 12 7 2 2 8 8 7 9
streamcluster 11 | 30 29 31 0 9 - - - [15 31 28 - (54 47 46 42 39 41 27 36 55 46 2 (33 41 31 35
vips| 4 7 3 4 7 - - - 3 3 5 - 2 2 5 2 3 3 3 0 1 4 0 2 2 3 5
volrend | 2 4 9 2 2 3 4 8 3 2 0 1 5 8 4 3 7 4 317 18 23 12 8 4 10 15
waternsquared [94 48 2 2 9 '58 3 35 7 O 14 100 7 6 9 3 2 7 4 6 7 0 6 4 6 4 37
water_spatial [95 49 2 11 7 63 40 39 4 5 8 4 8 5 5 9 9 10 1 0 O 2 1 1 0 1 41

Table 11: For each application, at max nodes (top part) and at the optimized number of nodes (bottom part), perfor-
mance gain (in %) obtained by the best lock(s) with respect to each of the other locks. The grey background highlights
cells for which the performance gains are greater than 15%. A line with many gray cells corresponds to an application
whose performance is hurt by many locks. A column with many gray cells corresponds to a lock that is outperformed
by many other locks. Dashes correspond to untested cases. (A-64 machine).

nodes and at the optimal number of nodes, all locks
are potentially harmful, yielding sub-optimal perfor-
mance for a significant number of applications (Ta-
ble 12). We also notice that locks are significantly less
harmful at the optimized number of nodes than at max
nodes. This is explained by the fact that several of the
locks create performance collapses at max nodes, which
does not occur at the optimized number of nodes. More-
over, we observe that, for each lock, the performance gap
to the best lock can be significant (Table 11).

5.3 Additional observations

Impact of the number of nodes. Table 13 shows,
for each application on the A-64 machine, the number
of pairwise changes in the lock performance hierarchy
when the number of nodes is modified. For example, in
the case of the facesim application, there are 18% of the
pairwise performance comparisons between locks that
change when moving from a 1-node configuration to a 2-
node configuration. Similarly, there are 95% of pairwise
comparisons that change at least once when considering

658 2016 USENIX Annual Technical Conference

USENIX Association

A-64 A-48 1-48
Lock | Max Opt Max Opt Max Opt
ahmes | 62% | 24% | 56% | 39% | 39% | 33%
alock-Is | 87% | 39% | 61% | 39% | 58% | 58%
backoff | 61% | 35% | 68% | 53% | 58% | 53%
c-bo-mes_spin 61% 35% 53% 58% 47% 32%
c-bo-messtp | 71% | 38% | 80% | 65% | 55% | 45%
clh-Is | 84% | 37% | 73% | 40% | 69% | 62%
clhospin | 84% | 32% | 60% | 47% | 62% | 56%
clhstp | 79% | 58% | 871% | 81% | 81% | 75%
c-ptl-tkt | 52% | 30% | 53% | 42% | 47% | 26%
c-tkt-tkt | 61% | 26% | 58% | 42% | 53% | 26%
hmes | 61% | 26% | 37% | 37% | 37% 16%
hticket-Is | 58% | 32% | 44% | 38% | 50% | 50%
malth_spin | 78% | 43% | 63% | 53% | 53% | 53%
malthstp | 54% | 38% | 65% | 60% | 55% | 55%
mes-Is | 78% | 30% | 63% | 47% | 58% | 58%
mes_spin | 70% | 26% | 63% | 53% | 58% | 58%
messtp | 67% | 46% | 70% | 65% | 70% | 60%
mcs-timepub | 42% | 25% | 65% | 55% | 50% | 50%
partitioned | 61% | 26% | 68% | 47% 63% | 47%
pthread | 62% | 50% | 60% | 55% | 60% | 55%
pthreadadapt | 58% | 38% | 55% | 50% | 55% | 50%
spinlock | 65% | 39% | 68% | 58% | 63% | 53%
spinlock-Is | 57% | 39% | 58% | 42% | 58% | 47%
ticket | 74% | 39% | 79% | 63% | 74% | 63%
ticket-Is | 65% | 39% | 58% | 47% | 63% | 47%
ttas | 61% | 35% | 68% | 53% | 63% | 58%
ttas-Is | 87% | 57% | 78% | 61% | 74% | 68%

Table 12: For each lock, at max nodes and at the opti-
mized number of nodes, fraction of the applications for
which the lock is harmful (all machines).

the 1-node, 2-node, 4-node and 8-node configurations.

We observe that, for all applications, the lock per-
formance hierarchy changes significantly according
to the chosen number of nodes. Moreover, we observe
the same trends on the A-48 and I-48 machines (see the
companion technical report [18]).

% of pairwise changes between configurations

Applications 172 2/4 4/8 1727478
dedup 16% 6% 12% 19%
facesim 18% 38% 81% 95%
ferret 0% 74% 26% 87%
fluidanimate 5% 6% 24% 32%
fmm 33% 10% 19% 45%
histogram 19% 32% 24% 55%
linear_regression 58% 40% 57% 95%
matrix_multiply 16% 27% 45% 54%
mysqld 33% 20% 7% 40%
ocean_cp 54% 53% 72% 94%
ocean_ncp 52% 54% 56% 86%
pca 44% 60% 29% 89%
pea_ll 31% 38% 23% 73%
radiosity 11% 49% 65% 83%
radiosity_ll 66% 28% 14% 92%
s_raytrace 1% 70% 32% 96%
s_raytrace_ll 21% 69% 24% 99%
ssl_proxy 62% 12% 21% 78%
streamcluster 68% 21% 32% 88%
streamcluster_l1 60% 28% 31% 90%
vips 2% 3% 82% 82%
volrend 16% 27% 44% 85%
water_nsquared 23% 24% 13% 52%
water_spatial 12% 10% 10% 29%

Table 13: For each application, percentage of pairwise
changes in the lock performance hierarchy when chang-
ing the number of nodes (A-64 machine).

Impact of the machine. Table 14 shows the number
of pairwise lock inversions observed between the ma-
chines (both at max nodes and at the optimized number
of nodes). More precisely, for a given application at a
given node configuration, we check whether two locks
are in the same order or not on the target machines.

We observe that the lock performance hierarchy
changes significantly according to the chosen ma-
chine. Interestingly, we observe that there is approxi-
mately the same number of inversions between each pair
of machines.

A-64 A-48 A-64

Vs. Vs. VS.

nodes A-48 148 148

Max 38% 36% 38%
Opt ‘ 30% ‘ 29% ‘ 31% ‘

Table 14: For each pair of machines, at max nodes and
at opt nodes, percentage of pairwise changes in the lock
performance hierarchy (all machines).

A note on Phtread locks. The various results pre-
sented in this paper show that the current Linux Pthread
locks perform well (i.e., are among the best locks) for
a significant share of the studied applications, thus
providing a different insight than recent results, which
were mostly based on synthetic workloads [9]. Beyond
the changes of workloads, these differences may also
be explained by the continuous refinement of the Linux
Pthread implementation. It is nevertheless important to
note that on each machine, some locks stand out as the
best ones for a higher fraction of the applications than
Pthread locks. Finally, we note that Pthread adaptive
locks perform slightly better than standard Pthread locks.

Impact of thread pinning. As explained in §3.2, all
the above-described experiments were run without any
restriction on the placement of threads, leaving the corre-
sponding decisions to the Linux scheduler. However, in
order to better control CPU allocation and improve local-
ity, some developers and system administrators use pin-
ning to explicitly restrict the placement of each thread to
one or several core(s). The impact of thread pinning may
vary greatly according to workloads and can yield both
positive and negative effects [9, 27]. In order to assess
the generality of our observations, we also performed the
complete set of experiments with an alternative configu-
ration in which each thread is pinned to a given node,
leaving the scheduler free to place the thread among the
cores of the node. Note that for an experiment with a
N-node configuration, the complete application runs on
exactly first N nodes of the machine. We chose thread-to-
node pinning rather than thread-to-core pinning because
we observed that the former generally provided better

USENIX Association

2016 USENIX Annual Technical Conference 659

performance for our studied applications, especially the
ones using more threads than cores. The detailed results
of our experiments with thread-to-node pinning are avail-
able in the companion technical report [18]. Overall, we
observe that all the conclusions presented in the paper
still hold with per-node thread pinning.

6 Related work

The design and implementation of the LiTL lock li-
brary borrows code and ideas from previous open-source
toolkits that provide application developers with a set
of optimized implementations for some of the most-
established lock algorithms: Concurrency Kit [1], li-
block [25, 24, 26], and libslock [9]. All of these toolk-
its require potentially tedious source code modifications
in the target applications, even in the case of algorithms
that have been specifically designed to lower this bur-
den [3, 33, 36]. Moreover, among the above works,
none of them provides a simple and generic solution
for supporting Pthread condition variables. The au-
thors of liblock [26] have proposed an approach but
we discovered that it suffers from liveness hazards due
to a race condition. Indeed, when a thread T calls
pthread_cond.wait (), itis not guaranteed that the two
steps (releasing the lock and blocking the thread) are al-
ways executed atomically. Thus, a wake-up notification
issued by another thread may get interleaved between the
two steps and 7 may remain indefinitely blocked.

Several research works have leveraged library interpo-
sition to compare different locking algorithms on legacy
applications (e.g., Johnson et al. [21] and Dice et al.
[14]) but, to the best of our knowledge, they have not
publicly documented the design challenges to support
arbitrary application patterns, nor disclosed the corre-
sponding source code and the overhead of their interpo-
sition library has not been discussed.

Several studies have compared the performance of dif-
ferent multicore lock algorithms, either from a theoreti-
cal angle or based on experimental results [4, 33, 9, 24,
14]. In comparison, our study encompasses significantly
more lock algorithms and waiting policies. Moreover,
the bulk of these studies is mainly focused on charac-
terization microbenchmarks while we focus instead on
workloads designed to mimic real applications. Two no-
ticeable exceptions are the work from Boyd-Wickizer
et al. [4] and Lozi et al. [26] but they do not con-
sider the same context as our study. The former is fo-
cused on kernel-level locking bottlenecks, and the lat-
ter is focused on applications in which only one or a
few heavily contended critical sections have been op-
timized (after a profiling phase). For all these rea-
sons, we make observations that are significantly differ-
ent from the ones based on all the above-mentioned stud-

ies. Other synchronization-related studies like the one
from Gramoli [16] have a different scope and focus on
concurrent data structures, possibly based on other facil-
ities than locks.

Finally, some tools have been proposed to facilitate the
identification of locking bottlenecks in applications [35,
8, 26]. These publications are orthogonal to our work.
We note that, among them, the profilers based on library
interposition can be stacked on top of LiTL.

7 Conclusion and future work

Optimized lock algorithms for multicore machines are
abundant. However, there are currently no clear guide-
lines and methodologies helping developers to select the
right lock for their workloads. In this paper, we have
presented a broad study of 27 locks algorithms with 35
applications on Linux/x86. To perform that study, we
have implemented LiTL, an interposition library allow-
ing the transparent replacement of lock algorithms used
for Pthread mutex locks. From our study, we draw sev-
eral conclusions, including the following ones: at its op-
timized contention level, no single lock dominates for
more than 52% of the lock-sensitive applications; any
of the locks is harmful for at least several applications;
for a given application, the best lock varies according to
both the number of contending cores and the machine
that executes the application. These observations call for
further research on optimized lock algorithms, as well as
tools and dynamic approaches to better understand and
control their behavior.

The source code of LiTL and the data sets of our ex-
perimental results are available online [17].

Acknowledgments

We thank the anonymous reviewers and our shepherd,
Tim Harris, for their insightful comments on ealier drafts
of this paper. Dave Dice provided detailed answers for
our questions on Malthusian locks. Baptiste Lepers pro-
vided valuable insights for some of the case studies.
Pierre Neyron provided his help to set up experiments
on the I-48 machine. Finally, this work has been par-
tially supported by: LabEx PERSYVAL-Lab (ANR-11-
LABX-0025-01), EmSoc Replicanos and AGIR CAEC
projects of Université Grenoble-Alpes and GrenobleINP,
and the INRIA/LIG Digitalis project.

660 2016 USENIX Annual Technical Conference

References
[1] AL BAHRA, S. Concurrency Kit, 2015. http://
concurrencykit.org.
USENIX Association

[2

—

[3]

[4]

[5

=

[6

=

[7

—

[8]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

ANDERSON, T. E. The Performance of Spin Lock Alternatives
for Shared-Memory Multiprocessors. IEEE Transaction on Par-
allel and Distributed Systems (Jan. 1990), 6-16.

AUSLANDER, M., EDELSOHN, D., KRIEGER, O., ROSEN-
BURG, B., AND WISNIEWSKI, R. Enhancement to the MCS
Lock for Increased Functionality and Improved Programmabil-
ity. U.S. Patent Application Number 20030200457 (abandoned),
October 2003.

BOYD-WICKIZER, S., KAASHOEK, M. F., MORRIS, R., AND
ZELDOVICH, N. Non-scalable Locks are Dangerous. In Pro-
ceedings of the Linux Symposium (Ottawa, Canada, July 2012).

CHABBI, M., FAGAN, M., AND MELLOR-CRUMMEY, J. High
Performance Locks for Multi-level NUMA Systems. In Proceed-
ings of the 20th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP’15) (2015), ACM.

CHABBI, M., AND MELLOR-CRUMMEY, J. Contention-
conscious, Locality-preserving Locks. In Proceedings of the 21st
ACM SIGPLAN Symposium on Principles and Practice of Paral-
lel Programming (PPoPP’16) (2016), ACM.

CRAIG, T. S. Building FIFO and Priority-Queuing Spin Locks
from Atomic Swap. Tech. Rep. TR 93-02-02, University of
Washington, 1993.

DAviID, F., THOMAS, G., LAWALL, J., AND MULLER, G.
Continuously Measuring Critical Section Pressure with the Free-
lunch Profiler. In Proceedings of the 2014 ACM Interna-
tional Conference on Object Oriented Programming Systems
Languages & Applications (2014), OOPSLA *14, ACM.

DAvVID, T., GUERRAOUI, R., AND TRIGONAKIS, V. Everything
You Always Wanted to Know About Synchronization but Were
Afraid to Ask. In Proceedings of the Twenty-Fourth ACM Sympo-
sium on Operating Systems Principles (SOSP’13) (2013), ACM.

DAVID, T., GUERRAOUI, R., AND TRIGONAKIS, V. Asynchro-
nized Concurrency: The Secret to Scaling Concurrent Search
Data Structures. In Proceedings of the Twentieth International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS’15) (2015), ACM.

DICE, D. Brief Announcement: A Partitioned Ticket Lock.
In Proceedings of the Twenty-third Annual ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA’11) (2011),
ACM.

DICE, D. Malthusian Locks, november 2015.
arxiv.org/abs/1511.06035.

http://

DICE, D., MARATHE, V. J., AND SHAVIT, N. Flat-Combining
NUMA Locks. In Proceedings of the Twenty-third Annual
ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA’11) (2011), ACM.

DICE, D., MARATHE, V. J., AND SHAVIT, N. Lock Cohorting:
A General Technique for Designing NUMA Locks. ACM Trans-
actions on Parallel Computing 1,2 (Feb. 2015), 13:1-13:42.

FATOUROU, P., AND KALLIMANIS, N. D. Revisiting the Com-
bining Synchronization Technique. In Proceedings of the 17th
ACM SIGPLAN Symposium on Principles and Practice of Paral-
lel Programming (PPoPP’12) (2012), ACM.

GRAMOLI, V. More Than You Ever Wanted to Know About Syn-
chronization: Synchrobench, Measuring the Impact of the Syn-
chronization on Concurrent Algorithms. In Proceedings of the
20th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP’15) (2015), ACM.

GUIROUX, H., LACHAIZE, R., AND QUEMA, V. LiTL
source code and data sets, 2016. https://github.com/
multicore-1locks.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

GUIROUX, H., LACHAIZE, R., AND QUEMA, V. Multicore
Locks: the Case is not Closed Yet. Technical report, 2016. Avail-
able from https://github.com/multicore-1locks.

HE, B., SCHERER, W. N., AND ScOTT, M. L. Preemption
Adaptivity in Time-published Queue-based Spin Locks. In Pro-
ceedings of the 12th International Conference on High Perfor-
mance Computing (HiPC’05) (2005), Springer-Verlag.

HENDLER, D., INCZE, I., SHAVIT, N., AND TZAFRIR, M. Flat
Combining and the Synchronization-Parallelism Tradeoff. In
Proceedings of the Twenty-second Annual ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA’10) (2010),
ACM.

JOHNSON, F. R., STOICA, R., AILAMAKI, A., AND MOWRY,
T. C. Decoupling Contention Management from Scheduling. In
Proceedings of the 15th International Conference on Architec-
tural Support for Programming Languages and Operating Sys-
tems (ASPLOS’10) (2010), ACM.

KARLIN, A. R., LI, K., MANASSE, M. S., AND OWICKI, S.
Empirical Studies of Competitve Spinning for a Shared-memory
Multiprocessor. In Proceedings of the Thirteenth ACM Sympo-
sium on Operating Systems Principles (SOSP’91) (1991), ACM.

KYLHEKU, K. What is PTHREAD_MUTEX_ADAPTIVE_NP?,
2014. http://stackoverflow.com/a/25168942.

Lozi, J.-P. Towards More Scalable Mutual Exclusion
for Multicore Architectures. PhD thesis, UPMC, Paris,
July 2014. http://www.i3s.unice.fr/~jplozi/
documents/lozi-phd-thesis.pdf.

Lozi, J.-P., DaviD, F., THOMAS, G., LAWALL, J., AND
MULLER, G. Remote Core Locking: Migrating Critical-Section
Execution to Improve the Performance of Multithreaded Appli-
cations. In Proceedings of the 2012 USENIX Annual Technical
Conference (2012), USENIX Association.

Lozi, J.-P., DAavID, F., THOMAS, G., LAWALL, J., AND
MULLER, G. Fast and Portable Locking for Multicore Archi-
tectures. ACM Transactions on Computer Systems 33, 4 (Jan.
2016), 13:1-13:62.

Lozi, J.-P., LEPERS, B., FUNSTON, J., GAUD, F., QUEMA,
V., AND FEDOROVA, A. The Linux Scheduler: A Decade of
Wasted Cores. In Proceedings of the 11th European Conference
on Computer Systems (EuroSys’16) (2016), ACM.

LUCHANGCO, V., NUSSBAUM, D., AND SHAVIT, N. A Hier-
archical CLH Queue Lock. In Proceedings of the 12th Interna-
tional Conference on Parallel Processing (Euro-Par’06) (2006),
Springer-Verlag.

MAGNUSSON, P. S., LANDIN, A., AND HAGERSTEN, E. Queue
Locks on Cache Coherent Multiprocessors. In Proceedings of
the 8th International Symposium on Parallel Processing (1994),
IEEE Computer Society.

MELLOR-CRUMMEY, J. M., AND SCOTT, M. L. Algorithms
for Scalable Synchronization on Shared-memory Multiproces-
sors. ACM Transactions on Computer Systems 9, 1 (Feb. 1991),
21-65.

OYAMA, Y., TAURA, K., AND YONEZAWA, A. Executing
Parallel Programs with Synchronization Bottlenecks Efficiently.
In Proceedings of the International Workshop on Parallel and
Distributed Computing For Symbolic And Irregular Applications
(PDSIA’99) (1999), World Scientific.

RADoOVIC, Z., AND HAGERSTEN, E. Hierarchical Back-
off Locks for Nonuniform Communication Architectures. In
Proceedings of the 9th International Symposium on High-
Performance Computer Architecture (HPCA’03) (2003), IEEE
Computer Society.

USENIX Association

2016 USENIX Annual Technical Conference 661

[33] ScoTTt, M. L. Shared-Memory Synchronization. Morgan & cations. In Proceedings of the 15th ACM SIGPLAN Symposium
Claypool Publishers, 2013. on Principles and Practice of Parallel Programming (PPoPP’10)
[34] ScoTT, M. L., AND SCHERER, W. N. Scalable Queue-based (2010), ACM.
Spin Locks with Timeout. In Proceedings of the Eighth ACM
ISDIGPLAN _Sym’;)‘;flg;,g IZ(’)’(’)CIZPIZSCK/'[M Practices of Parallel [36] WANG, T., CHABBI, M., AND KIMURA, H. Be My Guest —
rogramming (PPoPP’01) (2001), ACM. MCS Lock Now Welcomes Guests. In Proceedings of the 21t
[35] TALLENT, N. R., MELLOR-CRUMMEY, J. M., AND PORTER- ACM SIGPLAN Symposium on Principles and Practice of Paral-
FIELD, A. Analyzing Lock Contention in Multithreaded Appli- lel Programming (PPoPP’16) (2016), ACM.

662 2016 USENIX Annual Technical Conference USENIX Association

