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Abstract
Locks are a natural place for improving the energy ef-

ficiency of software systems. First, concurrent systems
are mainstream and when their threads synchronize, they
typically do it with locks. Second, locks are well-defined
abstractions, hence changing the algorithm implement-
ing them can be achieved without modifying the system.
Third, some locking strategies consume more power than
others, thus the strategy choice can have a real effect.
Last but not least, as we show in this paper, improving
the energy efficiency of locks goes hand in hand with
improving their throughput. It is a win-win situation.

We make our case for this throughput/energy-
efficiency correlation through a series of observations
obtained from an exhaustive analysis of the energy ef-
ficiency of locks on two modern processors and six soft-
ware systems: Memcached, MySQL, SQLite, RocksDB,
HamsterDB, and Kyoto Kabinet. We propose simple
lock-based techniques for improving the energy effi-
ciency of these systems by 33% on average, driven by
higher throughput, and without modifying the systems.

1 Introduction
For several decades, the main metric to measure the effi-
ciency of computing systems has been throughput. This
state of affairs started changing in the past few years as
energy has become a very important factor [17]. Reduc-
ing the power consumption of systems is considered cru-
cial today [26, 30]. Various studies estimate that datacen-
ters have contributed over 2% of the total US electricity
usage in 2010 [36], and project that the energy footprint
of datacenters will double by 2020 [1].

Hardware techniques for reducing energy consump-
tion include clock gating [38], power gating [52], as
well as voltage and frequency scaling [28, 56]. Soft-
ware techniques include approximation [16, 27, 57], con-
solidation [18, 21], energy-efficient data structures [23,
32], fast active-to-idle switching [44, 45], power-aware

∗Author names appear in alphabetical order.
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Figure 1: Power consumption and energy efficiency of
CopyOnWriteArrayList with mutex and spinlock.

schedulers [48, 55, 59], and energy-oriented compil-
ers [63, 64]. Basically, those techniques require changes
in hardware, installing new schedulers or runtime sys-
tems, or even rebuilding the entire system.

We argue that there is an effective, complementary
approach to saving energy: Optimizing synchronization,
specifically its most popular form, namely locking. The
rationale is the following. First, concurrent systems are
now mainstream and need to synchronize their activi-
ties. In most cases, synchronization is achieved through
locking. Hence, designing locking schemes that reduce
energy consumption can affect many software systems.
Second, the lock abstraction is well defined and one can
usually replace the algorithm implementing it without
any modification to the rest of the system. Third, the
choice of the locking scheme can have a significant effect
on energy consumption. Indeed, the main consequence
of synchronization is having some threads wait for one
another–an opportunity for saving energy.

To illustrate this opportunity, consider the av-
erage power consumption of two versions of a
java.util.concurrent.CopyOnWriteArrayList [6]
stress test over a long-running execution–Figure 1(a).
The two versions differ in how the lock handles con-
tention: Mutexes use sleeping, while spinlocks employ
busy waiting. With sleeping, the waiting thread is put
to sleep by the OS until the lock is released. With busy
waiting, the thread remains active, polling the lock until
the lock is finally released. Choosing sleeping as the
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waiting strategy brings up to 33% benefits on power.
Hence, as we pointed out, the choice of locking strategy
can have a significant effect on power consumption.

Accordingly, privileging sleeping with mutex locks
seems like the systematic way to go. This choice, how-
ever, is not as simple as it looks. What really matters is
not only the power consumption, but the amount of en-
ergy consumed for performing some work, namely en-
ergy efficiency. In the Figure 1 example, although the
spinlock version consumes 50% more power than mutex,
it delivers 25% higher energy efficiency (Figure 1(b)) for
it achieves twice the throughput. Hence, indeed, locking
is a natural place to look for saving energy. Yet, choosing
the best lock algorithm is not straightforward.

To finalize the argument that optimizing locks is a
good approach to improve the energy efficiency of sys-
tems, we need locks that not only reduce power, but also
do not hurt throughput. Is that even possible?

We show that the answer to this question is positive.
We argue for the POLY1 conjecture: Energy efficiency
and throughput go hand in hand in the context of lock
algorithms. POLY suggests that we can optimize locks to
improve energy efficiency without degrading throughput;
the two go hand in hand. Consequently, we can apply
prior throughput-oriented research on lock algorithms al-
most as is in the design of energy-efficient locks as well.

We argue for our POLY conjecture through a thorough
analysis of the energy efficiency of locks on two mod-
ern Intel processors and six software systems (i.e., Mem-
cached, MySQL, SQLite, RocksDB, HamsterDB, and
Kyoto Kabinet). We conduct our analysis in three layers.
We start by analyzing the hardware and software artifacts
available for synchronization (e.g., pausing instructions,
the Linux futex system calls). Then, we evaluate opti-
mized variants of lock algorithms in terms of throughput
and energy efficiency. Finally, we apply our results to
the six software systems. We derive from our analysis
the following observations that underlie POLY:

Busy waiting inherently hurts power consumption.
With busy waiting, the underlying hardware context re-
mains active. On Intel machines, for example, it is not
practically feasible to reduce the power consumption of
busy waiting. First, there is no power-friendly pause in-
struction to be used in busy-wait loops. The conventional
way of reducing the cost of these loops, namely the x86
pause instruction, actually increases power consump-
tion. Second, the monitor/mwait instructions require
kernel-level privileges, thus using them in user space
incurs high overheads. Third, traditional DVFS tech-
niques for decreasing the voltage and frequency of the
cores (hence lowering their power consumption) are too
coarse-grained and too slow to use. Consequently, the

1POLY stands for “Pareto optimality in locks for energy efficiency.”

power consumption of busy waiting can simply not be
reduced. The only way is to look into sleeping.

Sleeping can indeed save power. Our Xeon server has
approximately 55 Watts idle power and a max total power
consumption of 206 Watts. Once a hardware context is
active, it draws power, regardless of the type of work it
executes. We can save this power if threads are put to
sleep while waiting behind a busy lock. The OS can then
put the core(s) in one of the low-power idle states [5].
Furthermore, when there are more software threads than
hardware contexts in a system, sleeping is the only way
to go in locks, because busy waiting kills throughput.

However, going to sleep hurts energy efficiency. The
futex system call implements sleeping in Linux and is
used by pthread mutex locks. In most realistic scenar-
ios, the futex-call overheads offset the energy benefits
of sleeping over busy waiting, if any, resulting in worse
energy efficiency. Additionally, the spin-then-sleep pol-
icy of mutex is not tuned to account for these overheads.
The mutex spins for up to a few hundred cycles before
employing futex, while waking up a sleeping thread
takes at least 7000 cycles. As a result, it is common that
a thread makes the costly futex call to sleep, only to
be immediately woken up, thus wasting both time and
energy. We design MUTEXEE, an optimized version of
mutex that takes the futex overheads into account.

Thus, some threads have to go to sleep for long. An
unfair lock can put threads to sleep for long periods of
time in the presence of high contention. Doing so results
in lower power consumption, as fewer threads (hardware
contexts) are active during the execution. In addition,
lower fairness brings (i) better throughput, as the con-
tention on the lock is decreased, and (ii) higher tail la-
tencies, as the latency distribution of acquiring the lock
might include some large values.

Overall, on current hardware, every power trade-off is
also a throughput and a latency trade-off (motivating the
name POLY1): (i) sleeping vs. busy waiting, (ii) busy
waiting with vs. without DVFS or monitor/mwait, and
(iii) low vs. high fairness.

Interestingly, in our quest to substantiate POLY, we
optimize state-of-the-art locking techniques to increase
the energy efficiency of our considered systems. We im-
prove the systems by 33% on average, driven by a 31%
increase in throughput. These improvements are either
due to completely avoiding sleeping using spinlocks, or
due to reducing the frequency of sleep/wake-up invoca-
tions using our new MUTEXEE scheme.

We conduct our analysis on two modern Intel plat-
forms as they provide tools (i.e., RAPL interface [4]) for
accurately measuring the energy consumption of the pro-
cessor. Still, we believe that POLY holds on most modern
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multi-cores. On the one hand, without explicit hardware
support, busy waiting on any multi-core exhibits simi-
lar behavior. On the other hand, futex implementations
are alike regardless of the underlying platform, thus the
overheads of sleeping will always be significant. How-
ever, should the hardware provide adequate tools for fine-
grained energy optimizations in software, POLY might
need to be revised. We discuss the topic further in §8.

In summary, the main contributions of this paper are:

• The POLY conjecture, stating that we can simply, yet
effectively optimize lock-based synchronization to
improve the energy efficiency of software systems.

• An extensive analysis of the energy efficiency of
locks. The results of this analysis can be used to
optimize lock algorithms for energy efficiency.

• Our lock libraries and benchmarks, available at:
https://lpd.epfl.ch/site/lockin.

• MUTEXEE, an improved variant of pthread mutex
lock. MUTEXEE delivers on average 28% higher en-
ergy efficiency than mutex on six modern systems.

It is worth noting that POLY might not seem surpris-
ing to a portion of the multi-core community. Yet, we
believe it is important to clearly state POLY and quantify
through a thorough analysis the reasons why it is valid on
current hardware. As we discuss in §8, our results have
important software and hardware ramifications.

The rest of the paper is organized as follows. In §2,
we recall background notions regarding synchronization
and energy efficiency. We describe our target platforms
in §3 and explore techniques for reducing the power of
synchronization in §4. We analyze in §5 the energy effi-
ciency of locks and we use our results to improve various
software systems in §6. We discuss related work in §7,
and we conclude the paper in §8.

2 Background and Methodology
Lock-based Synchronization. Locks ensure mutual
exclusion; only the holder of the lock can proceed with
its execution. The remaining threads wait until the holder
releases the lock. This waiting is implemented with ei-
ther sleeping (blocking), or busy waiting (spinning) [49].

With sleeping, the thread is put in a per-lock wait
queue and the hardware context is released to the OS.
When the lock is released, the OS might wake up the
thread. With busy waiting, threads remain active, polling
the lock in a spin-wait loop.

Sleeping is employed by the pthread mutex lock
(MUTEX). MUTEX builds on top of futex system calls,
which allow a thread to wait for a value change on an ad-
dress. MUTEX might first perform busy waiting for a lim-
ited amount of time and if the lock cannot be acquired,
the thread makes the futex call.

The locks which use busy waiting are called spin-
locks. There are several spinlock algorithms, such as test-
and-set (TAS), test-and-test-and-set (TTAS), ticket-lock
(TICKET) [46], MCS (MCS) [46], and CLH (CLH) [22].
Spinlocks mostly differ in their busy-waiting implemen-
tation. For example, TAS spins with an atomic operation,
continuously trying to acquire the lock (global spinning).
In contrast, all other spinlocks spin with a load until the
lock becomes free and only then try to acquire the lock
with an atomic operation (local spinning).

Energy Efficiency of Software. Energy efficiency rep-
resents the amount of work produced for a fixed amount
of energy and can be defined as throughput per power
(TPP, #operation/Joule). Higher TPP represents a more
energy-efficient execution. We use the terms energy
efficiency and TPP interchangeably. Alternatively, en-
ergy efficiency can be defined as the energy spent on
a single operation, namely energy per operation (EPO,
Joule/operation). Note that TPP = 1/EPO.

Experimental Methodology. We prefer TPP over
EPO because both throughput and TPP are “higher-is-
better” metrics. Recent Intel processors include the
RAPL [4] interface for accurately measuring energy con-
sumption. RAPL provides counters for measuring the
cores’, package, and DRAM energy. We use these en-
ergy measurements to calculate average power. Our mi-
crobenchmark results are the median of 11 repetitions of
10 seconds. When we vary the number of threads, we
first use the cores within a socket, then the cores of the
second socket, and finally, the hyper-threads.

3 Target Platforms
We describe our two target platforms and then estimate
their maximum power consumption.

Platforms. We use two modern Intel processors:

Name Type #Cores L1 L2 LLC Mem TDP
Xeon server 10 32KB 256KB 25MB 128GB 115W

Core-i7 desktop 4 32KB 256KB 8MB 16GB 77W

In the interest of space and clarity of explanation, we fo-
cus in the paper on the results of our server. Note that
the results on Core-i7 are in accordance with the ones on
Xeon. Our server is a two-socket Intel Ivy Bridge (E5-
2680 v2), henceforth called Xeon. Xeon runs on frequen-
cies scaling from 1.2 to 2.8 GHz due to DVFS and uses
the Linux kernel 3.13 and glibc 2.13. Our desktop is an
Intel Core i7 (Ivy Bridge–3770K) processor, henceforth
called Core-i7. Core-i7 runs on frequencies scaling from
1.6 to 3.5 GHz due to DVFS and runs the Linux kernel
3.2 and glibc 2.15. Both platforms have two hardware
threads per-core (hyper-threads in Intel’s terminology).
Intel turbo boost is disabled for all the experiments.

3
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Figure 2: Power-consumption breakdown on Xeon.

3.1 Estimating Max Power Consumption
We estimate the maximum power that Xeon can con-
sume, using a memory-intensive benchmark that con-
sists of threads sequentially accessing large chunks of
memory from their local node. Figure 2 depicts the total
power and the power of different components on Xeon,
depending on the number of active hyper-threads and the
voltage-frequency (VF) setting.

Idle Power Consumption. The 0-thread points repre-
sent the idle power consumption, which accounts for the
static power in cores and caches, and DRAM background
power, and is the power that is consumed when all cores
are inactive.2 In both min and max frequency settings
the total idle power is 55.5 Watts as the VF setting only
affects the active power.

Power of Active Cores. Activating the first core of a
socket is more expensive than activating any subsequent
due to the activation of the uncore package components.
In particular, it costs 6.4 and 13.6 Watts in package power
on the min and max VF settings, respectively. The sec-
ond core costs 2.3 and 5.6 Watts. We perform more ex-
periments (not shown in the graphs) with data sets that fit
in L1, L2, and LLC. The results show that the package
power is not vastly reduced on any of these workloads,
indicating that once a core is active, the core consumes a
certain amount of power that cannot be avoided.

Attribution of Power to Cores, Package, and Memory.
Notice the breakdown of total power to package/core3

and DRAM power. DRAM power has a smaller dynamic
range than package and core power. On the max VF set-
ting, DRAM power ranges from 25 to 74 Watts, while
the range of package power is from 30 to 132 Watts, and
core power from 4 up to 96 Watts.

Implications. The power consumption of Xeon ranges
from 55 up to 206 Watts. Out of the 206 Watts, 74 Watts
are spent on the DRAM memory. Locks are typically
transferred within the processor by the cache-coherence
protocol, thus limiting the opportunities for reducing
power to package power (30-132 Watts). Additionally,
once a core is active, the core draws power, regardless

2Still, the OS briefly enables a few cores during the measurements.
3The package power includes the core power.
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Figure 3: Power consumption and CPI while waiting.

of the type of work performed. Consequently, the op-
portunity for reducing power consumption in software is
relatively low and mostly has to do with (i) using fewer
cores, by, for example, putting threads to sleep, or (ii) re-
ducing the frequency of a core.

4 Reducing Power in Synchronization
In this section, we evaluate the costs of busy waiting and
sleeping, and examine different ways of reducing them.

4.1 Power: The Price of Busy Waiting
We measure the total power consumption of the three
main waiting techniques (i.e., sleeping, global spinning,
and local spinning–see §2) when all threads are waiting
for a lock that is never released. Figure 3 shows the
power consumption and the cycles per instruction (CPI).
CPI represents the average number of CPU cycles that an
instruction takes to execute.

Two main points stand out. First, in this extreme
scenario, sleeping is very efficient because the waiting
threads do not consume any CPU resources. Second,
local spinning consumes up to 3% more power than
global spinning. This behavior is explained by the CPI
graph: Global spinning performs atomic operations on
the shared memory address of the lock, resulting in a
very high CPI (up to 530 cycles). In local spinning, every
thread executes an L1 load each cycle, whereas, in global
spinning, storing over coherence occurs once the atomic
operation is performed, each 530 cycles on average.

4.2 Reducing the Price of Busy Waiting
We reduce the power consumption of busy waiting in dif-
ferent ways: (i) we examine various ways of pausing in
spin-wait loops, (ii) we employ DVFS, and (iii) we use
monitor/mwait to “block” the waiting threads.

Pausing Techniques. Busy waiting with local spin-
ning is power hungry, because threads execute with low
CPI. Hence, to reduce power, we must increase the loop’s
CPI. We take several approaches to this end (Figure 4).

Any instruction, such as a nop, that the out-of-order
core can hide, cannot reduce the power of the spin loop.
According to Intel’s Software Developer’s Manual [4],
“Inserting a pause instruction in a spin-wait loop greatly
reduces the processor’s power consumption.” A pause

(local-pause) increases CPI to 4.6. However, not only

4
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Figure 4: Power consumption and CPI while spinning.

does it not “greatly reduce” power, but it even increases
the power consumption by up to 4%.4

In general, the reason behind the very low CPI of lo-
cal spinning is the aggressive execution mechanisms of
modern processors that allow instructions to execute both
speculatively and out of the program order. This results
in one out of three of the retired operations being a mem-
ory load (the other two are a test and a conditional jump).
Without appropriate pausing, the spin loop retires one
memory load per cycle.

A way to avoid the speculative execution of the load is
to insert a full, or a load, memory barrier. That way, the
loads only execute once the previous load retires and the
instructions that depend on it, test and jump, are stalled
as well. The results (local-mbar) show that the barrier
reduces the power consumption of local spinning to the
point that becomes less expensive than global spinning
(global). Additionally, local-mbar consumes up to 7%
less power than local-pause. It is worth noting that local-
mbar consumes less power than local-pause even for low
thread counts (e.g., 5% on 10 threads). In the rest of the
paper, we use a memory barrier for pausing in spin loops.

Dynamic Voltage and Frequency Scaling (DVFS).
An intuitive way of lowering the power consumption of
an active core is to reduce the voltage-frequency (VF)
point via DVFS (see §3). Figure 5 shows that spinning
on VF-min consumes up to 1.7x less power than on the
VF-max setting. Still, DVFS is currently impractical for
dynamically reducing power in busy waiting.

First, to trigger the VF change with DVFS, we need
to write on a certain per-hardware context file of the
/sys/devices directory (more details about DVFS can
be found in [62]). Hence, the VF-switch operation is
slow: We measure that it takes 5300 cycles on Xeon. If
DVFS is used while busy waiting, this overhead will be
on the critical path when the lock is acquired and the
thread must switch back to the maximum VF point.

Second, both hyper-threads of a physical core share
the same VF setting–the higher of the two. If a hyper-
thread lowers its VF setting, the action will have no effect
unless the second hyper-thread has the same or lower VF

4We speculate that one of the reasons for this increase in power is that
pause gives a hint to the core to prioritize the other hyper-thread.
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setting. Consequently, using DVFS with hyper-threading
is tricky, and as the DVFS-normal line shows, the power
consumption drops only when both hyper-threads lower
their VF points.

Monitor/mwait. The monitor/mwait [4] instructions
allow a hardware context to block and enter an
implementation-dependent optimized state while waiting
for a store event. In detail, monitor allows a thread
to declare a memory range to monitor. The hardware
thread then uses mwait to enter an optimized state until a
store is performed within the address range. Essentially,
mwait implements sleeping in hardware and can be used
in spin-wait loops: The hardware sleeps, yet the thread
does not release its context.

These instructions require kernel privileges. We de-
velop a virtual device and overload its file operations
functions to allow a user program to declare and wait on
an address, similar to [14]. A thread can wake up others
with a user-level store. However, threads pay the user-to-
kernel switch and system-call overheads for waiting.

Figure 5 includes the power of busy waiting with
monitor/mwait. These instructions can reduce power
consumption over conventional spinning up to 1.5x.
However, similarly to DVFS, using monitor/mwait has
two shortcomings. First, monitor/mwait can be only
used in kernel space. The overloaded file operation takes
roughly 700 cycles. The best case wake-up latency from
mwait, with just one core “sleeping,” is 1600 cycles.
In comparison, “waking up” a locally-spinning thread
takes two cache-line transfers (i.e., 280 cycles). Second,
programming with monitor/mwait on Intel processors
can be elaborate and limiting. The mwait instruction
blocks the hardware context until the thread is awaken.
In oversubscribed environments (i.e., more threads than
hardware contexts), monitor/mwait will likely exacer-
bate the “livelock” issues of spinlocks (see §6). Blocked
threads might occupy most hardware contexts, thus pre-
venting other threads from performing useful work.

Implications. Busy waiting drains a lot of power be-
cause cores execute at full speed. Neither of the two plat-
forms provides sufficient tools for reducing power con-
sumption in a systematic way. Pausing techniques, such
as pause, can even increase the power of busy waiting.

5
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Techniques that can significantly reduce power, such as
DVFS and monitor/mwait, are not designed for user-
space usage as they require expensive kernel operations.
Hence, sleeping is currently the only practical way of re-
ducing the power consumption in locks.

4.3 Latency: The Price of Sleeping
In Linux, sleeping is implemented with futex system
calls. A futex-sleep call puts the thread to sleep on a
given memory address. A futex wake-up call awakes
the first N threads sleeping on an address (N = 1 in
locks). The futex calls are protected by kernel locks. In
particular, the kernel holds a hash table (array) of locks
and futex operations calculate the particular lock to use
by hashing the address. Given that the array is large (ap-
proximately 256 ∗ #cores locks), the probability of false
contention is low. However, operations on the same ad-
dress (same MUTEX) do contend on kernel level.

We use a microbenchmark where two threads run in
lock-step execution (synchronized at each round with
barriers). One makes futex-sleep calls and the second
makes wake-up calls on the same futex, after waiting
for some time. A futex-sleep call (i.e., enqueuing be-
hind the lock and descheduling the thread) takes around
2100 cycles.5 This sleep latency is not necessarily on the
critical path: The thread sleeps because the lock is oc-
cupied. However, the latency to wake up a thread and
the one for the woken-up thread to be ready to execute
are on the critical path. Figure 6 contains the wake-up
call and the turnaround latencies, depending on the delay
between the invocation of the sleep call and the wake-up
call. The turnaround latency is the time from the wake-
up invocation until the woken-up thread is running.6

The turnaround time is at least 7000 cycles and is
higher than the wake-up call latency. Apart from the ap-
proximately 2700 cycles of the wake-up call, the woken-
up thread requires at least 4000 more cycles before ex-
ecuting. Concretely, once the wake-up call finishes, the
woken-up thread pays the cost of idle-to-active switching
and the cost of scheduling.7

Figure 6 further includes two interesting points. First,
for low delays between the two calls, the wake-up call
is more expensive as it waits behind a kernel lock for
the completion of the sleep call. Second, when the de-
lay between the calls is very large (>600K cycles), the
turnaround latency explodes, because the hardware con-
text sleeps in a deeper idle state [41].

Finally, the results in Figure 6 use just two threads and

5Estimated as the required delay between sleep and wake-up calls for
the wake-up calls to almost always find the other thread sleeping.

6The wake-up call latency is directly measured in our microbench-
mark, while the turnaround time is estimated as the duration of the
sleep call, reduced by the delay between the sleep and wake-up calls.

7When the core is constantly active due to multiprogramming, the
turnaround latency only includes the scheduling delays.
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thus represent the best-case latencies, with minimal or
no contention at the kernel level. With more threads, a
wake-up invocation is likely to contend with futex sleep
calls, all serialized using a single kernel lock.

Implications. futex operations have high latencies
and consume energy, as a non-negligible number of in-
structions are executed. Handing over a lock with a
futex wake-up call requires at least 7000 cycles. Even
on rather lengthy critical sections (e.g., 10000 cycles),
this latency is prohibitive; it almost doubles the execution
time of the critical section. In this case, the energy ben-
efits of sleeping will not easily compensate the perfor-
mance losses. In short critical sections, invoking futex

calls will have detrimental effects on performance.

4.4 Reducing the Price of Sleeping
Sleeping can save energy on long waiting durations. We
estimate when sleeping reduces power consumption with
two threads:

Period between wake-up calls (cycles) 1024 2048 4096 8192
Power (Watts) 72.03 69.18 68.75 68.02

The first thread sleeps on a location, while the second pe-
riodically wakes up the first thread. We vary the period
between the wake-up invocations, which essentially rep-
resents the critical-section duration in locks. The results
confirm that if a thread is woken up more frequently than
the futex-sleep latency, power consumption is not re-
duced. The thread goes to sleep only to be immediately
woken up by a concurrent wake-up call. When these
“sleep misses” happen, we lose performance without any
power reduction. Once the delay becomes larger than the
sleep latency (i.e., approximately 2100 cycles on Xeon),
we start observing power reductions.

Reducing Fairness. We show two problems with
futex-based sleeping: (i) high turnaround latencies, and
(ii) frequent sleeps and wake ups do not reduce power
consumption. To fix both problems simultaneously, we
recognize the following trade-off: We can let some
threads sleep for long periods, while the rest coordinate
with busy waiting. If the communication is mostly done
via busy waiting, we almost remove the futex wake-up
calls from the critical path. Additionally, we let threads
sleep for long periods, a requirement for reducing power
consumption in sleeping.
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Figure 7: Power and communication throughput of
sleeping, spinning, and spin-then-sleep for various T s.8

This optimization comes at the expense of fairness.
The longer a thread sleeps while some others progress,
the more unfair the lock becomes. We experiment with
the extreme case where only two threads communicate
via busy waiting, while the rest sleep. Each active thread
has a “quota” T of busy-waiting repetitions, after which
it wakes up another thread to take its turn. Figure 7 shows
the power and the communication rate (similar to a lock
handover) of sleeping, busy waiting, and spin-then-sleep
(ss-T ) with various T s on a single futex. T is the ratio
of busy-waiting over futex handovers.

Figure 7 clearly shows that the more unfair an execu-
tion (i.e., for large T s), the better the energy efficiency.
First, larger values of T result in lower power, because
the sleep and wake-up futex calls become infrequent,
hence the sleeping threads sleep for a long duration. For
example, on 10 threads with T = 1000, threads sleep for
about 2M cycles. In comparison, with only sleeping, the
sleep duration is less than 90000 cycles. Second, spin
handovers face minimal contention, as only two threads
attempt to “acquire” the cache line. Consequently, be-
cause most handovers (99.9%) happen with spinning, the
latency is very low, resulting in high throughput.

Implications. Frequent futex calls will hurt the en-
ergy efficiency of a lock. A way around this problem
is to reduce lock fairness in the face of high contention,
by letting only a few threads use the lock as a spinlock,
while the remaining threads are asleep.

5 Energy Efficiency of Locks
We evaluate the behavior of various locks in terms of
energy efficiency and throughput, heavily relying on the
results of §4. We first introduce MUTEXEE, an optimized
version of MUTEX.

5.1 MUTEXEE: An Optimized MUTEX Lock
In §4, we analyze the overhead of futex calls. Addi-
tionally, we show how we can trade fairness for energy
efficiency. MUTEX does not explicitly take these trade-
offs into account, although it is an unfair lock.

8The performance collapse of spin is due to contention, while of ss-10
and ss-100 due to the high idle-to-active switching costs (see Figure 6).

MUTEX MUTEXEE

lo
ck

for up to ∼ 1000 cycles for up to ∼ 8000 cycles
spin with pause spin with mfence

if still busy, sleep with futex

un
lo

ck release in user space (lock->locked = 0)
wait in user space

wake up a thread with futex

Table 1: Differences between MUTEX and MUTEXEE.

In particular, MUTEX by default attempts to acquire
the lock once before employing futex. MUTEX can
be configured (with the PTHREAD MUTEX ADAPTIVE NP

initialization attribute) to perform up to 100 acquire at-
tempts before sleeping with futex.9 Still, threads spin
up to a few hundred cycles on the lock before sleep-
ing with futex (the exact duration depends on the con-
tention on the cache line of the lock). This behavior can
result in very poor performance for critical sections of up
to 4000 cycles. In brief, threads are put to sleep, although
the queuing time behind the lock is less than the futex-
sleep latency. Additionally, to release a lock, MUTEX
first sets the lock to “free” in user space and then wakes
up one sleeping thread (if any). However, a third concur-
rent thread can acquire the lock before the newly awaken
thread Taw is ready to execute. Taw will then find the lock
occupied and sleep again, thus wasting energy, creating
unnecessary contention, and breaking lock fairness.

To fix these two shortcomings, we design an optimized
version of MUTEX, called MUTEXEE. Table 1 details how
MUTEXEE differs from the traditional MUTEX. The “wait
in user space” step of unlock requires further explana-
tion. MUTEXEE, after releasing the lock in user space,
but before invoking futex, waits for a short period to
detect whether the lock is acquired by another thread in
user space. In such case, the unlock operation returns
without invoking futex. The waiting duration must be
proportional to the maximum coherence latency of the
processor (e.g., 384 cycles on Xeon).

Moreover, MUTEXEE operates in one of two modes:
(i) spin, with ∼ 8000 cycles of spinning in the lock func-
tion and ∼ 384 in unlock, and (ii) mutex, with ∼ 256
cycles in lock and ∼ 128 in unlock (used to avoid useless
spinning). MUTEXEE keeps track of statistics regarding
how many handovers occur with busy waiting and with
futex. Based on those statistics, MUTEXEE periodically
decides on which mode to operate in: If the futex-to-
busy-waiting handovers ratio is high (>30%), MUTEXEE
uses mutex, otherwise it remains in spin mode.

9For brevity, in our graphs we show the default MUTEX configuration
(i.e., without PTHREAD MUTEX ADAPTIVE NP). We choose the default
MUTEX version because: (i) it is the default in our systems (§6), and
(ii) we thoroughly compare the two versions and conclude that for most
configurations MUTEX is slightly faster without the adaptive attribute.
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Figure 8: Throughput and TTP ratios of MUTEXEE over
MUTEX on various configurations with a single lock.

Our design sensitivity analysis for MUTEXEE (not
shown in the graphs) highlights three main points. First,
spinning for more than 4000 cycles is crucial for through-
put: MUTEXEE with 500 cycles spin behaves similarly
to MUTEX. Second, the “wait in user space” function-
ality is crucial for power consumption (and improves
throughput): If we remove it, MUTEXEE consumes simi-
lar power to MUTEX. Finally, the spin and mutex modes
of MUTEXEE can save power on lengthy critical sections.

Fine-tuning MUTEXEE. The default configuration pa-
rameters of MUTEXEE should be suitable for most x86
processors. Still, these parameters are based on the la-
tencies of the various events that happen in a futex-
based lock, such as the latency of sleeping or waking
up. Accordingly, in order to allow developers to fine-
tune MUTEXEE for a platform, we provide a script which
runs the necessary microbenchmarks and reports the con-
figuration parameters that can be used for that platform.

Comparing MUTEXEE to MUTEX. Figure 8 depicts
the ratios of throughput and energy efficiency of
MUTEXEE over MUTEX on various configurations on a
single lock. MUTEXEE indeed fixes the problematic be-
havior of MUTEX for critical sections of up to 4000 cy-
cles. While MUTEX continuously puts threads to sleep
and wakes them up shortly after, MUTEXEE lets the
threads sleep for larger periods and keeps most lock han-
dovers futex free. Of course, the latter behavior of
MUTEXEE results in lower fairness as shown in Figure 9.
Up to 4000 cycles, MUTEXEE achieves much lower 95th
percentile latencies than MUTEX, because most lock han-
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MUTEX and MUTEXEE on various configurations.
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Figure 10: Throughput and TTP ratios of MUTEXEE
without over with timeouts depending on the timeout.

dovers are fast with busy waiting. However, the price of
this behavior is a few extremely high latencies as shown
in the 99.99th percentile graph. These values are caused
by the long-sleeping threads and represent the trade-off
between lock fairness and energy efficiency. As the crit-
ical section size increases, the behavior of the two locks
converges: Both locks are highly unfair.

Reducing MUTEXEE’s Tail Latencies. MUTEXEE
purposefully tries to reduce the number of futex invo-
cations by handing the lock over in user space whenever
possible. Therefore, it might let some threads sleep while
the rest keep the lock busy, resulting in high tail laten-
cies. A straightforward way to limit the tail latencies of
MUTEXEE, so that threads are not allowed to remain “in-
definitely” asleep, is to use a timeout for the futex sleep
call. Once a thread is woken up due to a timeout, the
thread spins until it acquires the lock, without the pos-
sibility to sleep again.10 Controlling this timeout essen-
tially controls the maximum latency of the lock (given
that the sleep duration is significantly larger than the crit-
ical sections protected by that lock).

Figure 10 depicts the relative performance of
MUTEXEE without over with timeouts for a single lock
with 2000 cycles critical sections. For an 8 µs timeout,
MUTEXEE delivers up to 14x lower throughput and 24x
lower TPP than without timeouts. In general, for time-
outs shorter than 16-32 ms, both throughput and TPP suf-
fer, representing the clear trade-off between fairness and
performance. For example, with 20 threads, MUTEXEE
with a 4 ms timeout compares to the rest as follows:

Lock Throughput TPP Max Latency
Kacq/s Kacq/Joule Mcycles

MUTEX 317 4.0 2.0
MUTEXEE 855 10.9 206.5

MUTEXEE timeout 474 6.5 12.0

Depending on the application, the developer can decide
whether to use timeouts and choose the timeout duration
for MUTEXEE. For brevity, in the rest of the paper, we
use MUTEXEE without timeouts. As we show in §6, we
do not observe significant tail-latency increases due to
MUTEXEE in real systems.

10Of course, one can design more elaborate variants of this protocol.
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MUTEX TAS TTAS TICKET MCS MUTEXEE
Throughput 11.88 16.88 16.98 16.97 12.04 13.32

TPP 174.31 248.14 249.41 249.24 176.72 195.48

Table 2: Single-threaded lock throughput and TPP.

5.2 Evaluating Lock Algorithms
We evaluate various lock algorithms under different con-
tention levels in terms of throughput and TPP.

Uncontested Locking. It is common in systems that a
lock is mostly used by a single thread and both the ac-
quire and the release operations are almost always un-
contested. Table 2 includes the throughput (Macq/s) and
the TPP (Kacq/Joule) of various lock algorithms when a
thread continuously acquires and releases a single lock.
We use short critical sections of 100 cycles.

The trends in throughput and TPP are identical as
there is no contention. The locks perform inversely to
their complexity. The simple spinlocks (TAS, TTAS, and
TICKET) acquire and release the lock with just a few in-
structions. MUTEX performs several sanity checks and
also has to handle the case of some threads sleeping
when a lock is released. MUTEXEE is also more complex
than simple spinlocks due to its periodic adaptation. The
queue-based lock, MCS, is even more complex, because
threads must find and access per-thread queue nodes.

Contention–Single (Global) Lock. We experiment
with a single lock accessed by a varying number of
threads. This experiment captures the behavior of
highly-contended coarse-grained locks. We use a fixed
critical section of 1000 cycles.

Figure 11 contains the throughput and the TPP results.
On 40 threads, MUTEX delivers 73% lower TPP than
TICKET: 63% less throughput and 5.8% more power.
The throughput difference is due to (i) the global spin-
ning of MUTEX, and (ii) the futex calls, even if they are
infrequent. The power difference is mainly because of
the pausing technique. MUTEX spins with pause, while
TICKET uses a memory barrier. With pause instead of a
barrier, TICKET consumes 4 Watts more.

Moreover, MUTEXEE maintains the contention levels
and the frequency of futex calls low, regardless of the
number of threads. This results in stable throughput and
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Figure 12: Correlation of throughput with energy effi-
ciency (TPP) on various contention levels.

TPP because neither contention, nor the number of active
hardware contexts increases with the number of threads.
This behavior comes at the expense of high tail latency:
On 40 threads, MUTEXEE has an 80x higher 99.9th per-
centile latency than MUTEX.

Regarding spinlocks, TAS is the worst in this work-
load. This behavior is due to the stress on the lock, which
makes the release of TAS very expensive. Moreover, for
up to 40 threads, the queue-based lock (MCS) delivers
the best throughput and TPP. Queue-based locks are de-
signed to avoid the burst of requests on a single cache line
when the lock is released. On more than 40 threads, fair-
ness shows its teeth. As Xeon has 40 hardware threads,
there is oversubscription of threads to cores. TICKET and
MCS, the two fair locks, suffer the most: If the thread that
is the next to acquire the lock is not scheduled, the lock
remains free until that thread is scheduled.

Finally, throughput and TPP are directly correlated:
The higher the throughput, the higher the energy effi-
ciency. Still, MUTEXEE delivers higher TPP by achieving
both better throughput and lower power than the rest.

Variable Contention. Figure 12 plots the correlation
of throughput with TPP on a diverse set of configura-
tions. We vary the number of threads from 1 to 16, the
size of critical section from 0 to 8000 cycles, and the
number of locks from 1 to 512. At every iteration within
a configuration, each thread selects one of the locks at
random. The results are normalized to the overall maxi-
mum throughput and TPP, respectively.

Most data points fall on, or very close to, the linear
line. In other words, most executions have almost one-
to-one correlation of throughput with TPP. The bottom-
left cluster of values represents highly-contended points.
On high contention, there is a trend below the linear line,
which represents executions where throughput is rela-
tively higher compared to energy efficiency. These re-
sults are expected, as on very high contention sleeping
can save power compared to busy waiting, but still, busy
waiting might result in higher throughput.

If we zoom into the per-configuration best throughput
and TPP, the correlation of the two is even more pro-
found. On 85% of the 2084 configurations, the lock with
the best throughput achieves the best energy efficiency

9
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Figure 13: Normalized (to MUTEX) throughput of various systems with different locks. (Higher is better)
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Figure 14: Normalized (to MUTEX) energy efficiency (TPP) of various systems with different locks. (Higher is better)

as well. On the remaining 15%, the highest throughput
is on average 8% better than the throughput of the high-
est TPP lock, while the highest TPP is 5% better than the
TPP of the highest throughput lock.

Finally, MUTEXEE delivers much higher throughput
and TPP than MUTEX; on average, 25% and 32% higher
throughput and TPP, respectively. MUTEX is better than
MUTEXEE in just 4% of the configurations (by 9% on
average, both in terms of throughput and TPP).

5.3 Implications
The POLY conjecture states that energy efficiency and
throughput go hand in hand in locks. Our evaluation
of POLY with six state-of-the-art locks on various con-
tention levels shows that, with a few exceptions, POLY is
indeed valid. The exceptions to POLY are high contention
scenarios, where sleeping is able to reduce power, but
still results in slightly lower throughput than busy wait-
ing on the contended locks.

For low contention levels, energy efficiency depends
only on throughput, as there are no opportunities for sav-
ing energy. In these scenarios, even infrequent futex
calls reduce both throughput and energy efficiency.

For high contention, sleeping can reduce power con-
sumption. However, the frequent futex calls of MUTEX
hinder the potential energy-efficiency benefits due to
throughput degradation. MUTEXEE is able to reduce the
frequency of futex calls either by avoiding the ones
that are purposeless, or by reducing fairness. MUTEXEE
achieves both higher throughput and lower power than
spinlocks or MUTEX for high contention levels.

6 Energy Efficiency of Lock-based Systems
We modify the locks of various concurrent systems to
improve their energy efficiency. We choose the set

of systems so that they use the pthread library in di-
verse ways, such as using mutexes or reader-writer locks,
building on top of mutexes, or relying on conditionals.
Note that we do not modify anything else other than the
pthread locks and conditionals in these systems.

Table 3 contains the description and the different con-
figurations of the six systems that we evaluate. All
benchmarks use a dataset size of approximately 10 GB
(in memory), except for the MySQL SSD configuration
that uses 100 GB. We set the number of threads for each
system according to its throughput scalability.

6.1 Results
Figures 13-14 show the throughput and the energy effi-
ciency (TPP) of the target systems with different locks.

HamsterDB [3] An embedded key-value store. We run three tests with
random reads and writes, varying the read-to-write
ratio from 10% (WT), 50% (WT/RD), to 90% (RD).

Version: 2.1.7
# Threads: 4
Kyoto [7] An embedded NoSQL store. We stress Kyoto with a

mix of operations for three database versions
(CACHE, HT DB, B-TREE).

Version: 1.2.76
# Threads: 4
Memcached [8] An in-memory cache. We evaluate Memcached using

a Twitter-like workload [40]. We vary the get-to-set
ratio from 10% (WT), 50% (WT/RD), to 90% (RD).
The server and the clients run on separate sockets.

Version: 1.4.22
# Threads: 8

MySQL [9] An RDBMS. We use Facebook’s LinkBench and
tuning guidelines [2] for an in-memory (MEM) and an
SSD-drive (SSD) configurations.

Version: 5.6.19

RocksDB [10] A persistent embedded store. We use the benchmark
suite and guidelines of Facebook for an in-memory
configuration [11]. We run 3 tests with random reads
and writes, varying the read-to-write ratio from 10%
(WT), 50% (WT/RD), to 90% (RD).

Version: 3.3.0
# Threads: 12

SQLite [12] A relational DB engine. We use TPC-C with 100
warehouses varying the number of concurrent
connections (i.e., 8, 32, and 64).

Version: 3.8.5

Table 3: Software systems and configurations.
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For brevity, we show results with MUTEX, TICKET, and
MUTEXEE. The remaining local-spinning locks are sim-
ilar to TICKET (TAS is less efficient–see §5).

Throughput and Energy Efficiency. In 16 out of the
17 experiments, avoiding the overheads of MUTEX im-
proves energy efficiency from 2% to 184%. On aver-
age, changing MUTEX for either TICKET or MUTEXEE
improves throughput by 31% and TPP by 33%. The re-
sults include three distinct trends.

First, in some systems/configurations (i.e., Mem-
cached and HamsterDB) sleeping can “kill” through-
put. For instance, on the SET workload on Memcached,
MUTEXEE allows for a few sleep invocations, resulting
in lower throughput than TICKET.

Second, in some systems/configurations (i.e., MySQL
and RocksDB) MUTEX is less of a problem. Both of
these systems build more complex synchronization pat-
terns on top of MUTEX. MySQL handles most low-level
synchronization with customly-designed locks. Simi-
larly, RocksDB employs a write queue where threads en-
queue their operations and mostly relies on a conditional
variable. Therefore, altering MUTEX with another algo-
rithm does not make a big difference.

Finally, in MySQL and SQLite sleeping is necessary.
Both these systems oversubscribe threads to cores, thus
spinlocks, such as TICKET, result in very low through-
put. A spinning thread can occupy the context of a thread
that could do useful work. Additionally, on the SSD,
TICKET consumes 40% more power than the other two,
as it keeps all cores active. The fairness of TICKET exac-
erbates the problems of busy waiting in the presence of
thread oversubscription: TTAS (not shown in the graph)
has roughly 6x higher throughput than TICKET, but it is
still much slower than MUTEX and MUTEXEE.

Overall, in five out of the six systems, the energy-
efficiency improvements are mostly driven by the in-
creased throughput. SQLite is the only system where the
lock plays a significant role in terms of both throughput
and power consumption. With MUTEXEE, SQLite con-
sumes 15% and 18% less power than with MUTEX with
32 and 64 connections, respectively.

Tail Latency. MUTEXEE can become more unfair than
MUTEX (see §5). Figure 15 includes the QoS of four sys-
tems in terms of tail latency. For most configurations,
the results are intuitive: Better throughput comes with a
lower tail latency. However, there are a few configura-
tions that are worth analyzing.

First, MUTEXEE’s unfairness appears in the RD con-
figuration of HamsterDB, resulting in almost 20x higher
tail latency than MUTEX, but also in 46% higher TPP.
Second, TICKET has high tail latencies on all oversub-
scribed executions as a result of low performance.

Finally, MUTEXEE on SQLite achieves better through-
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Figure 15: Normalized (to MUTEX) tail latency of vari-
ous systems with different locks. (Lower is better)

put and lower power than MUTEX, without increasing
tail latencies. TPC-C transactions on SQLite have laten-
cies in the scale of tens of ms. Each transaction consists
of multiple accesses to shared data protected by various
locks. MUTEXEE does indeed increase the tail latency
of individual locks, but these latencies are in the scale of
hundreds of µs and do not appear in the transaction laten-
cies. However, this low-level unfairness brings huge con-
tention reductions. For instance, on 64 CON, the SQLite
server with MUTEX puts threads to sleep for 472 µs on
average, compared to 913 µs with MUTEXEE. The result
is that with MUTEX, SQLite spends more than 40% of the
CPU time on the raw spin lock function of the kernel
due to contention on futex calls. In contrast, MUTEXEE
spends just 4% of the time on kernel locks, and 21% on
the user-space lock functions.

Implications. Changing MUTEX in six modern sys-
tems results in 33% higher energy efficiency, driven by
a 31% increase in throughput on average. Clearly, the
POLY conjecture (i.e., throughput and energy efficiency
go hand in hand in locks) holds in software systems and
implies that we can continue business as usual: To opti-
mize a system for energy efficiency, we can still optimize
the system’s locks for throughput.

Additionally, we show that MUTEX locks must be re-
designed to take the latency overheads of futex calls
into account. MUTEXEE, our optimized implementation
of MUTEX, achieves 26% higher throughput and 28%
better energy efficiency than MUTEX. Furthermore, the
unfairness of MUTEXEE might not be a major issue in
real systems: MUTEXEE can lead to high tail latencies
only under extreme contention scenarios, that must be
avoided in well engineered systems.

In conclusion, we see that optimizing lock-based syn-
chronization is a good candidate for improving the en-
ergy efficiency of real systems. We can modify the locks
with minimal effort, without affecting the behavior of
other system components, and, more importantly, with-
out degrading throughput.
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7 Related Work
Lock-based Synchronization. Lock-based synchro-
nization has been thoroughly analyzed in the past. For
instance, many studies [13, 15, 34, 42, 46] point out scal-
ability problems due to excessive coherence with tradi-
tional spinlocks and propose alternatives, such as hier-
archical spin- and queue-based locks [34, 43, 54]. Prior
work [20, 25] sacrifices short-term fairness for perfor-
mance, however, it does not consider sleeping or energy
efficiency. Similarly to MUTEXEE, Solaris’ mutex locks
offer the option of “adaptive unlock,” where the lock
owner does not wake up any threads if the lock can be
handed over in user space [60]. David et al. [24] analyze
several locks on different platforms and conclude that
scalability is mainly a property of the hardware. More-
shet et al. [47] share some preliminary results suggesting
that transactional memory can be more energy efficient
than locks. Wamhoff et al. [62] evaluate the overheads
of using DVFS in locks and show how to improve per-
formance by boosting the lock owner. Our work extends
prior synchronization work with a complete study of the
energy efficiency of lock-based synchronization.

Spin-then-sleep Trade-off. The spin-then-sleep strat-
egy was first proposed by Ousterhout [49]. Various stud-
ies [19, 35, 39] analyze this trade-off and show that just
spinning or sleeping is typically suboptimal. Franke
et al. [29] recognize the need for fast user-space lock-
ing and describe the first implementation of futex in
Linux. Johnson et al. [33] advocate for decoupling the
lock-contention strategy from thread scheduling. At
first glance, MUTEXEE might look similar to their load-
control TP-MCS [31] lock (LC). However, the two have
some notable differences. LC relies on a global view of
the system for load control, while MUTEXEE performs
per-lock load control. LC’s global load control can re-
sult in “unlucky” locks having their few waiting threads
sleep for at least 100 ms, although there is low lock
contention–sleeping threads are not woken up by a lock
release, but only because of a decrease in load or 100 ms
timeout. Finally, in contrast to MUTEXEE, LC might
waste energy, because on low system load, no thread is
blocked, even if the waiting times are hundreds ms.

Energy Efficiency in Software Systems. There is a
body of work that points out the importance of energy-
efficient software. For instance, Linux has rules to
manage frequency and voltage settings [50]. Further
work proposes OS facilities for managing and estimat-
ing power [48, 55, 58, 59, 65, 66]. Other frameworks
approximate loops and functions to reduce energy [16,
57]. Moreover, compiler-based [63, 64] and decoupled
access-execute DVFS [37] frameworks trade off perfor-
mance for energy. In servers, consolidation [18, 21] col-
locates workloads on a subset of servers, and fast tran-

sitioning between active-to-idle power states allows for
low idle power [44, 45]. Psaroudakis et al. [53] achieve
up to 4x energy-efficiency improvements in database an-
alytical workloads, using hardware models for power-
aware scheduling. Similarly, Tsirogiannis et al. [61] an-
alyze a DB system and conclude that the most energy-
efficient point is also the best performing one. Our POLY
conjecture is a similar result for locks. Nevertheless,
while they evaluate various DB configurations, we study
the spin vs. sleep trade-off. To the best of our knowledge,
this is the first paper to consider the energy trade-offs of
synchronization on modern multi-cores.

8 Concluding Remarks
In this paper, we thoroughly analyzed the power/perfor-
mance trade-offs in lock-based synchronization in order
to improve the energy efficiency of systems. Our re-
sults support the POLY conjecture: Energy efficiency and
throughput go hand in hand in lock algorithms. POLY has
important software and hardware ramifications.

For software, POLY conveys the ability to improve the
energy efficiency of systems in an simple and systematic
way, without hindering throughput. We indeed improved
the energy efficiency of six popular software systems by
33% on average, driven by a 31% increase in throughput,
These improvements are mainly due to MUTEXEE, our
redesigned version of pthread mutex lock, that builds on
the results of our analysis.

For hardware, POLY highlights the lack of adequate
tools for reducing the power consumption of synchro-
nization, without significantly degrading throughput. We
performed our analysis on two modern Intel platforms
that are representative of a large portion of the processors
used nowadays. We argue that our results apply in most
multi-core processors, because without explicit hardware
support for synchronization, the power behavior of both
busy waiting and sleeping will be similar regardless of
the underlying hardware.

Our analysis further points out potential hardware
tools that could reduce the power of synchronization. In
brief, a truly energy-friendly pause, fast per-core DVFS,
and user-level monitor/mwait can make the difference.
In fact, industry has already started heading towards
these directions. Intel includes on-chip voltage regula-
tors on the latest processors, but all the cores share the
same frequency. Similarly, the recent Oracle SPARC
M7 processor includes a variable-length pause instruc-
tion and user-level monitor/mwait [51].
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