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Abstract

As more and more mobile applications need to run se-
curity critical codes (SCCs) for secure transactions and
critical information handling, the demand for a Trusted
Execution Environment (TEE) to ensure safe execution
of SCCs is rapidly escalating. Although a number of
studies have implemented TEEs using TrustZone or hy-
pervisors and have evinced the effectiveness in terms
of security, they face major challenges when consider-
ing deployment in mobile devices. TrustZone-based ap-
proaches bloat the TCB of the system as they must in-
crease the code base size of the most privileged soft-
ware. Hypervisor-based approaches incur performance
overhead on mobile devices that are already suffering
from resource restrictions.

To alleviate these problems, in this paper, we propose
a hybrid approach that utilizes both TrustZone and a hy-
pervisor. Our approach basically implements a TEE us-
ing a hypervisor, while mitigating performance overhead
by activating the hypervisor only when the TEE is de-
manded by SCCs. This scheme, called on-demand hy-
pervisor activation, has been efficiently and securely im-
plemented by leveraging the memory protection capa-
bility of TrustZone. We have implemented and experi-
mented our system with real world applications. The re-
sults show that our system can successfully protect SCCs
without any noticeable delay (< 100 µs), while limiting
the overhead increase due to our hypervisor during its
hibernation near 0 %.

1 Introduction

With a plethora of mobile devices, an extensive range of
mobile applications providing convenience are emerging
into our lives. However, as mobile devices increasingly
offer more sophisticated services, security and sensitivity
of the data they handle has become a critical issue [31].
Mobile payment applications nowadays, for example,

enable customers to purchase diverse products regard-
less of place or time. For this, the applications must be
authorized to process sensitive data, such as credit card
information and personal identification numbers. Ac-
cordingly, a number of recent attacks on mobile devices
for monetary gain have mostly aimed at achieving un-
lawful access to sensitive data in such applications. To
fend off these attacks, many engineers have introduced
the notion of privilege separation in the development of
their applications by utilizing trusted execution environ-
ments (TEEs) on mobile devices. The key objective of
privilege separation is to minimize the attack surface of
sensitive data by limiting the data accessibility only to
the trusted parts of an application, called security critical
code (SCC) [36, 37, 33], that will be partitioned away
from the rest of the application at code development time,
and deployed exclusively for secure data transactions in
the TEE at runtime.

To provide TEEs for privilege separation on mobile
devices, a growing amount of work [23, 48, 45, 44] lever-
ages TrustZone [2], which is a hardware-based secu-
rity extension installed in ARM processors. TrustZone
maintains two separate execution environments, the nor-
mal world and the secure world. The normal world is
reserved for common OSes and untrusted applications.
These typically have rich functionality but are prone to
potential attacks due to the existence of exploitable vul-
nerabilities [13, 61]. Whereas in the secure world, a
trusted minimal OS is installed to establish a TEE and
provide an individual secure execution environment for
each SCC at runtime. Unfortunately, this approach, re-
lying on TrustZone to protect SCCs, faces a major chal-
lenge in terms of security. In TrustZone, as the secure
world is undoubtedly the trusted computing base (TCB)
of the entire system due to its highest privilege level, it
must maintain integrity to ensure the safety of the sys-
tem. However, to support the growing number of versa-
tile SCCs, functional extensions of the trusted OS are in-
evitable, which increases the size and complexity of the
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code base of the trusted OS. Recall that, even carefully
designed and engineered code contains bugs and vulner-
abilities in proportion to its size [38]. Hence, hosting
more SCCs in the secure world may open more doors
for attackers to compromise the trusted OS by exploit-
ing its vulnerabilities, which in turn may jeopardize the
safety not only of the secure world but also of the entire
system. In the real world, as a result, mobile device ven-
dors, such as Samsung, usually have a tendency of be-
ing reluctant to render the TrustZone-based secure world
freely accessible to public developers. Instead, they have
only accepted a few OEM applications that have passed
thorough in-house testing.

An alternate way to provide a TEE would be to use a
hypervisor which, as the most privileged software layer,
is responsible for monitoring and controlling the behav-
ior of the OS layer below it. As long as it is care-
fully designed, the hypervisor can provide these secu-
rity and isolation guarantees even when the OS is com-
promised. Therefore, several studies have relied on hy-
pervisors to implement a TEE for SCC protection and
have demonstrated the safety and feasibility of their ap-
proaches [36, 62]. However, it must be noted [12, 40, 43]
that a hypervisor, running as an extra software layer for
virtualization in the system, inevitably suffers from non-
negligible performance degradation. This performance
overhead may particulary be of great concern in mobile
devices which are mostly restricted by severe resource
constraints. In fact, the performance concern has been
considered to be one of the primary reasons that impedes
a wide adoption of existing hypervisor-based approaches
in such small resource-stringent devices.

Based on our observations on the problems of previ-
ous approaches using either TrustZone or a hypervisor,
we have developed a new hybrid approach that attempts
to take advantages of both a hypervisor and TrustZone in
a way to attain safe, yet efficient SCC execution on mo-
bile devices. To limit the extension of the secure world
in TrustZone-based approaches, our approach uses a hy-
pervisor to implement an additional TEE in the normal
world alongside the original TEE in the secure world.
This virtualization scheme enables application develop-
ers to implement and distribute their SCCs without the
security concern for the secure world corresponding to
the system TCB. To tackle the performance concern of
other hypervisor-based approaches, we have devised a
scheme, called on-demand hypervisor activation, which
activates our hypervisor only when a TEE must be estab-
lished for SCC executions. In reality, SCCs are executed
occasionally just by a handful of special security appli-
cations installed in the system such as DRM and certifi-
cate managements. Also an earlier study [14] revealed
that even for a given security application, SCC often ac-
counts for a small portion of the entire application. All

these support our assertion that our hypervisor should be
deactivated for most of the time while the system is up
and running. Therefore, as being compared to other ap-
proaches which maintain their hypervisors persistently at
all times, our solution will suffer from much less virtual-
ization overhead.

To confirm the feasibility of our hybrid approach, we
have designed a protection system, named On-demand
Software Protection (OSP). OSP relies on a hypervisor
to meet security requirements for ensuring safe execu-
tions of SCCs by implementing an additional TEE in the
normal world while suppressing the TCB bloating of the
secure world. Therefore, mobile device vendors can al-
low public developers to install and exeucte their SCCs
in the TEE without a large amount of verification efforts.
OSP also meets the stringent performance requirements
of mobile devices by adopting an on-demand hypervisor
activation scheme. In our design, we use TrustZone to
enforce memory protection when our hypervisor is deac-
tivated. While the hypervisor is active and running on the
machine, OSP checks if there are any SCCs currently be-
ing executed by an application. As soon as it finds that no
SCC is running, it deactivates its hypervisor and simul-
taneously orders TrustZone to protect the current states
of the deactivated hypervisor as well as all the SCCs that
were protected by the hypervisor. TrustZone internally
maintains a secure enclave that is not accessible to any
other software including the OS kernel. Therefore, every
critical information about the hypervisor and SCCs will
be safely protected while the hypervisor is in hiberna-
tion. Later when an application is about to invoke one of
the SCCs, OSP removes the protection of TrustZone, and
wakes up the hypervisor by reactivating it with its origi-
nal states that were protected by TrustZone. Then the ac-
tivated hypervisor soon reconstructs the TEE where the
newly invoked SCC will be securely executed.

To evaluate OSP, we have implemented a prototype of
OSP on a development board for Exynos 5422, an ARM-
based application processor (AP) platform adopted by
commercial mobile devices like Samsung Galaxy S5. In
implementation of the OSP prototype, we have only uti-
lized the existing hardware features available in most
ARM APs; thus, we believe that OSP is deployable on
COTS-devices as well. In order to evaluate its feasibil-
ity, we have ported some Android applications to OSP:
e.g., Chromium web browser and a file encryption appli-
cation. The results revealed that OSP was able to ensure
secure executions of all SCCs in our system.

The rest of this paper is structured as follows. Section
2 provides background information. Section 3 discusses
our threat model and assumptions. Section 4 describes
the design and Section 5 introduces implementation de-
tails of the OSP prototype. Section 6 presents the evalu-
ation of the experimental results and Section 7 discusses
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Figure 1: Components of ARM TrustZone

remaining issues. Finally, Section 8 shows related works
and Section 9 concludes this paper.

2 Background

This section provides a summary of the security and vir-
tualization extensions supported by ARM.

2.1 Security extensions
TrustZone enables the system to operate in both the se-
cure and normal world in a time-sliced fashion. To sep-
arate the two worlds and ensure the confidentiality and
integrity of the secure world, diverse extensions are inte-
grated across the system, as depicted in Figure 1. First,
the secure and normal world have their own processor
modes and system configuration registers and are there-
fore allowed to build individual software stacks for the
OS and applications even if they share a single physi-
cal system. To coordinate and arbitrate between the two
worlds, the most privileged processor mode, called the
monitor mode, is added alongside the existing processor
modes. Both the secure and the normal world are able to
enter the monitor mode by issuing a secure monitor call
(SMC) instruction.

TrustZone includes an extension for secure interrupts
as well, which is only visible and delivered to the secure
world. The ARM architecture is equipped with a GIC [8]
to control system-wide interrupts in a manner similar to
APIC of Intel. GIC provides 16 software generated in-
terrupts (SGI) that can be delivered to every core or only
to specific cores as inter-processor interrupts (IPI). The
security extension of GIC allows us to designate some of
the SGIs as secure interrupts such that they can be used to
pass signals secretly. GIC also enables secure SGIs using
FIQ signals, instead of IRQ signals, in order to increase
the priority of the interrupts.

The NS-bit in the secure configuration register (SCR)
indicates whether a processor is executing in the normal

world or the secure world. This bit is also propagated
across the entire system by being attached to system bus
transactions, so that scattered TrustZone components are
able to manage access to resources, such as memory and
peripherals, out of the CPU cores. For example, Trust-
Zone includes TZMA [4] and TZASC [7], respectively
located in front of the SRAM and DRAM. They partition
the address spaces corresponding to SRAM and DRAM
into several regions, each of which is assigned to the se-
cure world or the normal world, and prevent access to
the secure world regions from the normal world. Trust-
Zone also adds the TZPC [5], which enforces a similar
security policy with regard to peripherals. This way, the
secure world can configure and access peripherals in an
explicit manner.

2.2 Virtualization extensions
Similar to VT-x [39] of Intel and SVM [29] of AMD,
ARM introduced hardware virtualization extensions [6]
that allow hypervisors to efficiently manage guest OSes.
To empower hypervisors to configure the entire system,
ARM supports a privileged processor mode known as the
hyp mode [6], which is beneath the kernel mode in the
hierarchy of processor modes as described in Figure 1.
Hypervisors running in the hyp mode are able to config-
ure fundamental system resources, such as the exception
vector table, counter and timer, with a variety of control
registers only accessible in the hyp mode. In particu-
lar, hypervisors can configure and deploy the extended
page tables underneath the primary page tables managed
by guests. By assigning various access-permission flags
in the extended page tables, hypervisors are able to ex-
clusively enforce access-control policies for all address
spaces of guests. Along with the hyp mode, a hypervi-
sor call (HVC) instruction is added for communication
between hypervisors and guests.

The ARM virtualization extensions include a system
MMU [3] as well. If the system MMU is enabled, each
peripheral is given its own page table. Configuring those
page tables according to guests, hypervisors can dynam-
ically change the address spaces of peripherals. This fa-
cilitates device virtualization without the intervention of
hypervisors, thereby improving hypervisors in terms of
their performance and porting effort. The system MMU,
moreover, is effective at preventing DMA attacks of mis-
configured peripherals by limiting the accessible address
space of each peripheral.

3 Threat model and Assumptions

In this section, we describe the threat model and as-
sumptions pertaining to the implementation and design
of OSP.

3
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Threat model. We assume that our adversaries can ex-
ploit vulnerabilities to gain full control over the rich OS.
In other words, they can freely perform arbitrary memory
reads, memory writes, and code executions in the address
spaces of the OS kernel and applications. With this ca-
pability, they may attempt to access the address spaces
of SCCs in order to steal confidential contents revealed
during runtime. They may also try to acquire the binary
files of SCCs so that they could extract statically stored
secrets with reverse-engineering or determine the core al-
gorithms of SCCs through binary analysis.

In addition, as we cannot fully trust application de-
velopers and their products, SCCs could be abused to
tamper with and/or eavesdrop on other SCCs and their
sensitive data. Malicious SCCs may also attempt to sub-
vert a TEE by making arbitrary system calls with crafted
parameters.
Assumptions. We assume that in the secure world,
carefully verified software is preinstalled and dynamic
software installation is not allowed. The built-in soft-
ware of the secure world, including the minimal OS and
OEM applications, is trusted and will be intactly loaded
with a secure boot mechanism such as AEGIS [50] or
UEFI [56]. Therefore, we do not take into account any
attacks originating within the secure world. We also do
not consider denial-of-service (DoS) attacks. Memory
attacks, such as cold boot attacks [26] and bus monitor-
ing attacks [49, 54] are beyond the scope of our adversary
model as well. Similarly, hardware attacks, such as phys-
ical side-channel and JTAG attacks are not considered in
this work.

4 Design

OSP creates a TEE alongside Trustzone, which provides
a security and efficient protection mechanism. This TEE
can be used by mobile device vendors to provide a way
for application developers to protect their SCCs. In this
section, we present the details of the design of OSP and
explain how it achieves this goal.

4.1 Design objectives
In order to secure SCCs, we deliberately design OSP
while seeking to accomplish the following objectives.
Practical mechanism. Opening the secure world for
SCC protection causes a security concern about TCB
bloating from an increased code base. Therefore, OSP
should arrange a TEE on the exterior of the secure world,
thereby enabling application developers to protect their
SCCs without reducing the level of security of the se-
cure world. In addition, as we consider resource con-
strained mobile devices, OSP should incur negligible
performance overhead when maintaining the TEE.

OS
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Figure 2: Overview of OSP. OSP consists of the OSP hy-
pervisor, which protects and manages the SCCs, and the
OSP core, which controls and configures OSP overall.

Runtime protection. To protect the confidentiality and
integrity of SCCs, OSP should provide each SCC an indi-
vidual execution environment, which is isolated from the
OS kernel and other SCCs. As SCCs are not trusted enti-
ties, each SCC should be able to communicate with other
SCCs and the OS kernel only when allowed by OSP.
Secure provisioning. SCC binaries often encompass se-
crets, such as key values and core algorithms, which de-
velopers want to protect. Therefore, SCC binaries should
not be exposed to attackers during their distribution so as
to ensure the confidentiality of those secrets.

4.2 Overall Design

Figure 2 depicts the overall design of OSP. OSP defines
the OSP world alongside the normal world and the se-
cure world. As the OSP world is completely separated
from both worlds, OSP can securely provide an addi-
tional TEE to SCCs while keeping the secure world com-
pact. OSP consists of two software components: the OSP
core and the OSP hypervisor. As the TCB of the entire
OSP system, the OSP core, located in the secure world,
is responsible for initializing OSP during the system boot
sequence and for deploying and controlling the OSP hy-
pervisor at runtime. The OSP hypervisor, the de facto
TCB of SCCs, plays a vital role in the functionality of
OSP. It protects the OSP world by blocking unauthorized
accesses of the normal world; it also creates a TEE in the
OSP world, thereby providing isolated execution envi-
ronments for SCCs.

Although the OSP hypervisor is a fundamental com-
ponent in OSP for the runtime protection of SCCs, it may
incur non-negligible performance impacts due to virtu-
alization overheads. Therefore, to minimize such over-
heads, OSP activates its hypervisor only while a protec-
tion service is required, i.e., when one or more SCCs are
running. Moreover, the OSP core expands the secure
world enough to cover the entire OSP world to protect
it from invasions by the normal world when the OSP hy-
pervisor is no longer active.

4



USENIX Association  2016 USENIX Annual Technical Conference 569

Function Name Parameter Call-site Description
Management interfaces

SCC_register scc_file_name, ptr_external_handler app
Registers an SCC with a specification. 
Upon success, returns the SCC’s number.

SCC_unregister scc_num app Unregisters an SCC.

SCC_parameter_add
ptr_scc_param_spec, param_flag, 
ptr_param, length

app Add a parameter to a parameter specification.

SCC_invoke scc_num, entry_func, ptr_scc_param_spec, arg0…arg3 app
Invokes an SCC with a parameter specification.
Upon finish, returns a return value.

SCC_ret_to_scc scc_num, return_value app Return to an SCC with a return value

Service interfaces

OSP_save ptr_data, length SCC
Save data on secure storage. 
Upon success, returns the storage number.

OSP_load storage_num, ptr_buffer, length SCC Loads the data for a storage number.

OSP_delete storage_num SCC Deletes the data for a storage number.

OSP_encrypt ptr_data, ptr_buffer, length SCC Encrypt data

OSP_decrypt ptr_data, ptr_buffer, length SCC Decrypt data

OSP_signing ptr_data, length, private_key, signature SCC Sign data with a given private key 

OSP_verification ptr_data, length, public_key, signature SCC Verify data with a given public key 

OSP_external_handler cmd, arg0…arg3 SCC
Call the external handler with parameters.
Upon finish, returns a return value

Table 1: The management and service interfaces of OSP

registration invocation termination unregistration

Figure 3: The lifecycle model of an SCC

encrypted metadata encrypted SCC binary

dev_id scc_id

metadata size

scc_length scc_decryption_key # of entries entries

Figure 4: The format of an SCC file

4.3 Development of SCCs

To protect sensitive data using SCCs, developers need to
develop their applications while being conscious of the
concept of privilege separation. Developers should han-
dle sensitive data only in SCCs and should transmit the
data to the remainder of their applications after encrypt-
ing it to prevent exposure. For the sake of minimizing
the attack surface, we highly recommend that developers
ensure that their SCCs are self-contained to prevent inter-
nal states from being exposed outside of the SCCs during
execution. However, SCCs may sometimes want to out-
source certain functions, such as network or file system
access, to enrich their functionality. OSP supports such
cases by letting developers implement external handlers
that can process outsourced requests in their applications
running on the rich OS and allowing SCCs to call those
handlers.

Application developers should design SCCs consider-
ing the lifecycle model of an SCC, depicted in Figure 3.
They can implement SCCs using the following interfaces
that are offered in the form of a static or dynamic library.
We describe the details in Table 1.
Management interface. Using the management inter-
face, a developer can include an SCC into her application
as if using a dynamic library. To begin with, we assume
that there is a prebuilt SCC file (§4.4). The developer
should initially call SCC register with the name of the

SCC file and, if needed, the address of an external han-
dler located in the application. An SCC number is then
given after registration, which is used to specify an SCC
in the later invocation and unregistration processes. To
invoke the registered SCC, the developer should prepare
a parameter specification by gathering the properties of
the parameters that are to be passed, each of which con-
sists of a start address, a length and flags. In particular,
the flags specify when a parameter will be marshalled;
the input and the output flags indicate that the corre-
sponding parameter will be marshalled when the SCC is
invoked and returned, respectively, and the shared flag
means that the corresponding parameters do not need to
be marshalled because they are shared between the ap-
plication and the SCC. At this point, the developer can
invoke the SCC with the specified parameters and can
continue to invoke it unless the SCC is unregistered.
Service interface. The current implementation of
OSP provides secure storage and cryptographic services,
which allows SCCs to protect passwords and crypto-
graphic keys. Expanding the capabilities of SCCs by
adding new services offered by the OSP is left for future
work (refer to Section 7). In the current OSP, instead,
SCCs can outsource some operations that are not sup-
ported by OSP, i.e., memory management, networking,
file system, to an external handler, which would be ap-
pointed during the SCC registration step, located in the
application. However, as external handlers may be po-

5
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tentially vulnerable, developers are responsible for veri-
fying returned results to defeat unintended attacks such
as Iago attacks [16].

4.4 Provision of SCCs
SCCs can be distributed in various ways. In this paper,
we assume a scenario where application developers dis-
tribute their SCCs along with their applications. Appli-
cation developers initially need to have a developer ID
(e.g., a developers private key) that can identify them in-
dividually. Because developers are allowed to distribute
more than two SCCs, they should choose a unique SCC
ID for distinguishing each SCC. To maintain integrity
and confidentiality, SCCs must be distributed in an en-
crypted form. Figure 4 describes the distribution file for-
mat of an SCC, which is made up of metadata and an en-
crypted SCC binary. The metadata consists of two noted
IDs and a key for decrypting the encrypted SCC binary.
In addition, the metadata should contain a list of entry
functions that are allowed for applications to invoke; thus
preventing non-designated internal functions from being
called directly. Lastly, the metadata is encrypted asym-
metrically with the public key of OSP to protect the con-
tents by sealing.

4.5 Execution of SCCs
At runtime, once the OSP hypervisor receives a registra-
tion request with an encrypted SCC file, the hypervisor
copies contents of the file to the OSP world and performs
a series of decryptions and parsing. It first decrypts the
metadata of the SCC with the private key of OSP and
parses that to extract developer and SCC IDs and the de-
cryption key. The hypervisor subsequently decrypts the
encrypted SCC binary and begins to load the decrypted
contents onto the OSP world. It prepares an empty ex-
tended page table and maps the address space of code,
data and stack of the SCC to the page table. Then, it fi-
nalizes the registration step by returning the number of
the SCC to the caller application.

An invocation request for the SCC is delivered to the
OSP hypervisor with a parameter specification and an en-
try functions number. In the beginning, parameters that
are documented on the parameter specification are mar-
shalled according to the details of the specification. Next,
the hypervisor maps the parameters to the page table
of the SCC. The hypervisor masks unrelated interrupts
to the SCC, preventing the OS kernel from interrupting
the execution of the SCC. The hypervisor, moreover, ap-
plies the prepared page table to the system to reflect the
SCCs own address space. Finally, it checks the correct-
ness of the passed entry functions number and it trans-
fers control to the corresponding entry function. At the
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COUNT (SCC)
=< 0

COUNT (SCC)
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World
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World

OSP
World

OSP Hypervisor

Figure 5: Two protection mechanisms for the OSP world

same time, the hypervisor instigates a timeout to prevent
a buggy or malicious SCC from seizing the system for
too long. After a while, if the SCC finishes its work, the
OSP hypervisor instantly restores the states relevant to
the caller application and returns the control to the appli-
cation. A similar procedure is conducted when the SCC
calls its external handler while it is being executed. In
this case, however, it is required for the application to
issue OSP ret to scc in order to resume the SCC.

The execution environment of the SCC is maintained
until the application unregisters the SCC explicitly. If
an unregistration request is issued, the OSP hypervisor
completely clears every relevant state of the SCC, such
as the page table and the contents of the heap and stack
regions. To use the same SCC from that time, the appli-
cation must register it again.

4.6 On-demand activation of the OSP hy-
pervisor

As noted above, the OSP hypervisor is activated by the
OSP core only while SCCs are running in the OSP world.
The OSP core finishes the default configuration of the
OSP hypervisor during the boot sequence. This process
includes the creation of the default extended page table
that identically maps the entire address space of the nor-
mal world, although the OSP core does not enable ex-
tended paging at this point. However, considering that
the OSP hypervisor depends on extended paging, to pro-
tect the OSP world while the hypervisor is deactivated,
introducing another mechanism is inevitable.

For this purpose, OSP capitalizes on TZASC which,
as a hardware component of TrustZone, allows dynami-
cally setting the address space of the secure world. While
the extended paging is disabled, as described in Fig-
ure 5, the OSP core includes the OSP world in the se-
cure world using TZASC, thereby preventing malicious
accesses originating from normal world software. Note
that OSP creates its TEE in the normal world rather than

6



USENIX Association  2016 USENIX Annual Technical Conference 571

core 0 core 1 core 2 core 3

secure IPIActivate OSP Hyp
& run SCC

Activate OSP Hyp Activate OSP Hyp Activate OSP Hyp

Deactivate OSP Hyp
& terminate SCC

Deactivate OSP Hyp

secure IPI

Deactivate OSP Hyp Deactivate OSP Hyp

Figure 6: On-demand activation of the OSP hypervisor
in multi-core environments

the secure world. Therefore, this configuration is cleared
when SCCs are invoked; from this point on, the OSP hy-
pervisor protects the OSP world from the normal world
by activating extended paging. When an SCC is termi-
nated, the OSP hypervisor checks if any other SCC is
still running. When all SCCs are terminated, the OSP
core disables extended paging to reduce the performance
degradation caused by extended paging. This, however,
renders security-critical data stored in the OSP world
vulnerable to untrusted software in the normal world be-
cause they are now accessible to anyone with control
over the normal world. To address this problem, be-
fore disabling extended paging, the OSP core reconfig-
ures TZASC so that the secure world once again engulfs
the OSP world.

4.6.1 Multi-core support

OSP supports multi-core environments; it allows several
SCCs to run concurrently in different cores. However,
this does not mean that the OSP hypervisor can be in-
dividually activated in each core, even though each core
has its own MMU and control registers. Because there is
only one TZASC within the system, located between the
system bus and main memory, when a core configures
TZASC, the effect is not limited to that core. For exam-
ple, when in a core, if the OSP core configures TZASC
to pull the OSP world from the secure world and ac-
tivates the OSP hypervisor, the OSP world will imme-
diately be exposed to normal world software on all of
the other cores. In addition, another severe problem will
arise when the OSP hypervisor is deactivated. Let us as-
sume that, in a core, the OSP core deactivates the OSP
hypervisor and reconfigures TZASC to include the OSP
world in the secure world. At this point, however, the
OSP hypervisor is still activated in the other cores, a per-
mission violation for the secure world will be provoked
(at least due to address translations by extended paging).
Consequently, OSP must synchronize the hypervisor ac-
tivation state of every core, as in Figure 6.

Procedure ACTIVATE_OSP_HYP
Enable the extended paging
Send secure IPIs to other cores to enable the extended paging, too
Reduce the secure world to reveal the OSP world using TZASC

End

Procedure DEACTIVATE_OSP_HYP
Expand the secure world to cover the OSP world using TZASC
Clean and invalidate cache entries of the OSP world
Disable the extended paging
Send secure IPIs to other cores to disable the extended paging, too

End

Figure 7: On-demand activation and deactivation rou-
tines of the OSP core

4.6.2 Activation and deactivation routines

Figure 7 summarizes the routines of the OSP core for ac-
tivating and deactivating the OSP hypervisor at runtime.
If the activation routine is initiated, the routine initially
enables extended paging and sends secure IPIs to other
cores, so that they enable extended paging as well, to
activate the OSP hypervisor. This must be done before
removing the protection of TZASC in order to prevent
untrusted software from accessing the OSP world. We
can control extended paging using the Hyp Configura-
tion Register (HCR), which is not accessible in the nor-
mal world. The HCR register consists of a number of
configuration bits; in particular, we can enable and dis-
able extended paging by setting and clearing the VM-bit.
In addition, the HCR register contains the TDC-bit. This
bit makes OSP enable cache memory while SCCs run
even if address translation of the kernel space is disabled.
After activating the OSP hypervisor, the routine controls
TZASC to reveal the OSP world from the secure world.
TZASC can be controlled using memory mapped regis-
ters similar to most components of ARM. As explained
in Section 2.1, TZASC manages regions as a unit of per-
mission enforcement. We can control these regions with
two primary registers, the Region Setup Register and Re-
gion Attributes Register. The former one controls the
base address of each region. The latter one plays a more
important role; it determines the size and permission1.
Particularly, this register has an enable bit, so that we can
enable and disable the corresponding region by toggling
the bit.

The deactivation routine is performed in the reverse or-
der of the activation routine. First, it configures TZASC
to cover the OSP world with the secure world. After con-
figuring TZASC, the routine cleans and invalidates every
cache entry corresponding to the OSP world. Otherwise,
some states of the OSP world remaining in the cache
memory may be exposed to untrusted software in the nor-
mal world. Finally, the routine deactivates the OSP hy-

1A permission can be configured as a combination of secure read,
secure write, non-secure read and non-secure write flags.
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pervisor by disabling extended paging. As the last step, it
sends secure IPIs to the other cores so that they can also
disable extended paging. Each core disables extended
paging as soon as it receives the IPI.

4.7 Interface implementation

As noted in Section 4.3, OSP provides two types of in-
terfaces, called the management interface and the service
interface. In this subsection, we explain how OSP imple-
ments these interfaces.
Management interface. In general terms, the normal
world software is intended to communicate with a hyper-
visor using the HVC instruction. However, this option
is not available in OSP considering the dynamic activa-
tion state of the OSP hypervisor. Thus, OSP would have
to provide two duplicate management interfaces which
are implemented based on the SMC and the HVC in-
structions, and the normal world software would need
to choose the proper interface each time depending on
whether or not the OSP hypervisor is hibernating in the
secure world.

To avoid this complication, OSP implements the man-
agement interface using only the SMC instruction. For
this, the activation routine of the OSP core, introduced
in Section 4.6.2, sets the TSC-bit of the HCR register to
1, thus trapping future executions of the SMC instruction
into the OSP hypervisor. After which, if a normal world
software executes SMC instructions, the OSP hypervisor
first analyzes whether the SMC instruction is intended
for the interface of OSP by parsing it. If so, the hyper-
visor performs a management operation according to the
request, and if not, it is transferred to the OSP core to be
handled in the secure world.
Service interface. It is fairly known that the supervisor
call (SVC) instruction is used to implement system calls
of the kernel. Moreover, (unprivileged) applications are
not allowed to execute the SMC or the HVC instructions
on ARM. Accordingly, OSP enables SCCs to use the ser-
vice interface that is implemented based on the SVC in-
struction. For this, the activation routine of the OSP core
sets the TGE-bit of the HCR register. By doing so, all ex-
ecutions of the SVC instructions are trapped into the OSP
hypervisor; thus, the hypervisor can receive and handle
service requests of SCCs.

5 Implementation

In this section, we explain implementation details which
were not presented in the earlier sections.

bl1

bl2

u-boot

Init.
OSP Hyp

Init. TZASC and GIC

Wake up 
the other cores kernel

Idle
Deactivate
OSP Hyp

Init. TrustZone

Figure 8: Boot sequence of OSP

5.1 OSP Hypervisor

The structure of our OSP hypervisor is somewhat re-
lated to KVM/ARM [21], an open-source hypervisor
found in the mainline Linux kernel, in the sense that our
hypervisor borrows several key implementation mecha-
nisms regarding virtualization. However, in comparison
to KVM/ARM, the OSP hypervisor has a simple struc-
ture with a small code base because it only needs to sup-
port a single guest OS. As a result, it can run with much
lower overhead than the general-purpose KVM hypervi-
sors. For example, the OSP hypervisor requires only a
quarter to half of the CPU cycles (1,119 cycles) required
by KVM/ARM (from 2,112 to 4,917 cycles) for world-
switching latency (round trip from the kernel to the hy-
pervisor).

For simplicity, we statically place the OSP hypervisor
on the top 128 MB of the physical memory address that
is reserved for the OSP world. Such static deployment
may reduce the available physical memory of the kernel,
but this problem could be mitigated by making the OSP
hypervisor use the memory management service of the
kernel. This task is left for future work.

5.2 Boot Sequence of OSP

Figure 8 illustrates the modified boot sequence used
when launching OSP. We assume that each bootloader
verifies the integrity of the succeeding bootloader using a
secure boot mechanism so that we can trust the code and
initial states of the OSP software components. The OSP
core should start while running in the kernel mode of
the secure world to access the privileged system control
registers related to TrustZone and virtualization. First, it
enables SMC instructions and sets the SMC call handlers
for OSP. It also initializes TZASC and GIC. Next, it pre-
pares the OSP hypervisor and the TEE by initializing vir-
tualization features, such as the extended page tables and
programming interfaces. In a multi-core environment,
as each core has an independent execution environment,
the OSP core wakes the other cores and initializes them
as well. The OSP core finally deactivates itself by exe-
cuting a secure monitor call and transfers control to the
kernel. The remaining cores, apart from the primary one,
jump to the idling code, a.k.a. a boot monitor.
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6 Evaluation

In this section, we evaluate OSP by analyzing its per-
formance overhead and security. Experiments were
conducted on ODROID-XU3 Lite [27], which has an
Exynos-5422 SoC with an ARM Cortex-A15 1.8 GHz
quad-core processor and 2 GB of DRAM, used on a vari-
ant of a Samsung Galaxy S5 smartphone. The OS is An-
droid 4.4.2 with Linux Kernel 3.10.

To obtain accurate results, we leave the device idle and
let it cool down between experimental trials. Without
such measures, the processor would be throttled by heat,
ultimately leading to an inaccurate evaluation. Note that
mobile processors can overheat within seconds if they
are fully utilized. A cooling fin and fan were attached
onto the target experiment board as additional counter-
measures.

6.1 Performance impact
To investigate the performance impact on the system, we
tested the three following cases:
• baseline: with a bare Android without OSP
• hyp on: with OSP while the OSP hypervisor is ac-

tivated
• hyp off: with OSP while the OSP hypervisor is de-

activated
Note that the performance of hyp on represents the per-
formance of applications when SCCs are running in other
cores. We show the results normalized by the values of
the baseline.

We experimented with popular mobile benchmarks:
AnTuTu, BaseMark and Geekbench. We also ex-
perimented with other synthetic workload benchmarks
with various categories: CPU and memory (Vellamo-
Machine, CF-bench), JavaScript for web browsers
(Vellamo-Browser), file system throughput (IOZone),
graphics throughput (GFXBench) and kernel system
calls (lmbench).

Figure 9 shows the experimental results. In the figure,
higher values represent shorter latency times or higher
throughput, where 1 represents the performance of the
baseline. In addition, geomean indicates the normalized
geometric mean values of all benchmark results.

When the OSP hypervisor is activated, performance
is degraded mainly due to a high TLB miss penalty
caused by complicated address translations. Therefore,
memory-intensive tasks show somewhat higher overhead
than computation-intensive tasks in hyp on. Note that
most test cases, with the exception of “DVFS Off” of
AnTuTu, allow the kernel to freely adjust the CPU fre-
quency, as in most mobile devices. Also, note that
“DVFS Off” represents the case in which the frequency
of the CPU is fixed at 1.2GHz such that we can eliminate

the possibility of performance throttling, which could be
caused by overheating or by the variances induced by
DVFS itself. These results suggest that such effects do
not arise.

The slowdown in hyp off is near 0 % (mean = 1.003);
on the other hand hyp on shows visible degradation
(mean = 1.066). These results reflect the effectiveness of
on-demand activation for reducing hypervisor-induced
overhead. Overall, OSP virtually does not incur any
slowdown for the system when no SCCs are running.

6.2 World switching latency
We investigated the latency of a single round of world
switch between the normal world and the OSP world.
The latency depends on whether or not the OSP hyper-
visor is activated. Our results show that the latency is
only 550 cycles when the OSP hypervisor is activated.
In contrast, the world switching latency is 127,453 cy-
cles (71 µs at 1.8 GHz), which includes 11,191 cycles to
set up the OSP world in the OSP core, 550 cycles to enter
and exit the OSP world, 31,450 cycles to clean and inval-
idate the cache memory, and 68,329 to verify the config-
uration of the system MMU to defeat DMA attacks. This
amount of latency is likely to be tolerable in a commer-
cial device. Note that the latency of OSP is comparable
to the context switch latency of ARM processors of pre-
vious generations [22, 1].

6.3 Application benchmarks
To investigate the feasibility of OSP, we ported two ap-
plications, the Chromium web browser and a file encryp-
tor. As a result, we confirmed that (1) OSP incurs no
noticeable delay when SCCs are called infrequently, and
(2) on-demand activation makes OSP effective against
hypervisor overhead.

Chromium web browser Modern web browsers inter-
nally provide an autocomplete function for user conve-
nience, which adds IDs and passwords to a login form
using saved values. However, this function introduces a
risk that the saved list of IDs and passwords can be ex-
posed to untrusted software. Therefore, the list in the
autocomplete function must be secured.

We conducted an experiment on the Chromium web
browser for Android, version 46.0.2469.0. If the browser
finds a login form, it provides the autocomplete func-
tionality by using the LoginDatabase class, includ-
ing AddLogin, UpdateLogin and GetLogins members.
However, as, in the target version of the browser, the
LoginDatabase class saves and secures IDs and pass-
words by simply encoding them with UTF-8, we modi-
fied it to encrypt IDs and passwords before saving them

9
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Figure 9: Performance results of OSP relative to the baseline
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Figure 10: Performance results of the encryption SCC
for 100 KB and 10 MB files relative to the baseline

(baseline). To evaluate OSP, instead of that, we mod-
ified the LoginDatabase class to save IDs and pass-
words after encrypting them with our SCC. Moreover,
according to the lifecycle model of an SCC in Figure 3,
we inserted the registration and unregistration routines
of the SCC into the constructor and destructor of the
LoginDatabase.

After making such modifications , we visited the lo-
gin page of Facebook. In Chromium, the page load
function and the autocomplete function run in separate
threads. Therefore, we measured the page loading time
and the autocompletion time separately. The experiment
was repeated 100 times. The page load time averaged at
995.7 ms for both the baseline function and that with an
SCC. Regarding the autocompletion time, the trial with
an SCC averaged at 0.101 ms, which is 20.4 times slower
than the baseline. However, when combined with the
page load time, the difference in the autocompletion time
is negligible.

File encryptor Many recent applications encrypt their
sensitive data, such as chat logs and private pictures, for
data protection purposes. In the figure, a higher value
represents a longer execution time. A significant issue
associated with such an approach is the method used to
protect their encryption key. To address this, we imple-
mented an SCC which provides AES-256 encryption and
decryption functions and linked it to our own file encryp-
tor using JNI. The file encryptor reads a file in chunks of
4 KB and 64 KB and encrypts each chunk with the SCC.

Figure 10 shows experimental results, consisting of
the results of 100 separate executions of different input
file sizes. In comparison to the baseline, hyp dyn (en-
abling the on-demand feature), shows a degraded perfor-
mance level due to activation overhead, proportional to
the number of invocations of the SCC. We investigate the
impact of on-demand activation by comparing hyp dyn
to hyp on (disabling the on-demand feature). As a re-
sult, hyp dyn is more efficient than hyp on despite the
accumulated overhead from on-demand activations. This
is likely due to the fact that hyp on incurs performance
overhead caused by the hypervisor while the host appli-
cation completes file operations between the SCC calls.

6.4 Security analysis

6.4.1 TCB size

In OSP, the OSP hypervisor is the TCB of SCCs and
the OSP core residing in the secure world belongs to
the TCB of the entire system. To estimate the safety
of OSP in terms of TCB size, we measured the number
of source lines of our OSP prototype with the SLOC-
Count tool [57]. The OSP hypervisor consists of <
3,000 C SLOC and < 500 assembly SLOC. The OSP
core has < 700 C SLOC and < 100 assembly SLOC.
In conclusion, OSP has as small a TCB as in previous
works [47, 36, 62].

6.4.2 On-demand activation

After the system is turned on, OSP undergoes various
state transitions. We analyzed the security of OSP as fol-
lows according to its states.
Initialization. The initialization of OSP is carried out as
part of the boot sequence described in Section 5.2. We
guarantee its safety under two assumptions: first, there
must be no exploitable vulnerabilities in the code of OSP;
second, a secure boot mechanism must be implemented.
Therefore, we can be sure that the loaded OSP code and
initial states are intact and that the boot stage of OSP is
completed with certain known good states.

10
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Hyp off. While the OSP hypervisor is not deployed, the
OSP core temporarily covers the OSP world with the se-
cure world by configuring TZASC. All code and data re-
siding in the OSP world are isolated from the normal
world by the TrustZone components that are scattered
across the system so that malicious memory accesses
from both untrusted software in the normal world and
misconfigured peripherals are completely prevented.
Hyp on. While the OSP hypervisor is deployed, the OSP
world strictly belongs to the normal world within the
concept of TrustZone, which splits all system resources
into the normal and secure worlds. Nevertheless, the
OSP world is still secure from untrusted software, as the
OSP hypervisor is capable of blocking unallowed mem-
ory accesses to the world by means of extended paging.
DMA attacks are also thwarted by examining the map-
ping tables of the system mmu so as to prevent the OSP
world from being exposed to peripherals.

6.4.3 Malicious SCC

As OSP allows application developers to deploy their
SCCs without thorough verification or examination, it is
reasonable to postulate that there could be SCCs built
with malicious intention. Malicious SCCs might attempt
to tamper with the normal world software or other SCCs.
In OSP, however, because each SCC is strongly isolated,
the attack surface is minimized, leaving few windows
for malicious SCCs to compromise the hypervisor. They
may try to abuse the service interface of OSP with crafted
parameters to compromise the OSP hypervisor. To defeat
such approaches, we may need to execute each SCC in a
sandbox [59, 33]. Unfortunately, as the current OSP pro-
totype does not contain such defense mechanisms, there
is a possibility that the OSP hypervisor could be compro-
mised. Nevertheless, as the OSP core, being located in
the secure world, still has full control over the OSP hy-
pervisor, it can ensure the integrity of the OSP hypervisor
by using TrustZone-based solutions [9, 25].

7 Future work

Trusted I/O path. Although the currently implemented
OSP does not offer a trusted I/O path, it is a desired
feature for application developers. With this feature,
SCCs could directly interact with users without going
through the vulnerable OS kernel. Fortunately, as ex-
plained in 2.1, TrustZone includes various components
that are capable of isolating interrupts and bus transac-
tions between the CPU cores and peripherals. They are
sufficient to facilitate the implementation of a trusted I/O
path [32, 51]. Similar to academic works, off-the-shelf
mobile devices are known to depend on TrustZone to

implement a trusted path on fingerprint sensors or other
components.

Therefore, it would be reasonable for OSP to reley on
the TrustZone-based trusted I/O path to provide features
for SCCs rather than to develop its own trusted I/O path.
Therefore, OSP initially needs to establish a secure chan-
nel between the OSP world and the secure world. The
OSP core can do this by creating and passing a session
key to the OSP hypervisor early in the boot stage. The
OSP hypervisor can then offer a trusted I/O path, which
is implemented in TrustZone, to SCCs through the OSP
core without the intervention of the OS kernel.
Kernel-mode SCC. In this paper, we have assumed that
SCCs are executed in the user mode. However, we can
also consider other SCCs running in the kernel mode.
For example, if there are SCCs that are intended to mon-
itor the integrity of the kernel, they must run in the ker-
nel mode to execute privileged instructions or to access
privileged data structures such as page tables. We be-
lieve that kernel-mode SCCs are difficult to protect in
TrustZone-based solutions due to the high security risk
involved in permitting privilege instructions. On the
other hand, we deem that OSP could cover such SCCs as
well. To provide isolated execution environments, OSP
depends on the OSP hypervisor working beneath the OS
kernel; therefore, we can improve the OSP hypervisor to
mediate and verify behaviors of kernel-mode SCCs that
may corrupt the system.
Other Future Work. ARM introduced the big.LITTLE
architecture, which leverages big (high-performance)
cores or little (low-performance) cores depending on the
performance requirements of tasks, thereby improving
the power efficiency. The current prototype of OSP has
yet to support this technique. However, as it becomes
more popular on mobile devices, it will be necessary to
upgrade OSP to support it.

8 Related work

In this section, we compare OSP with existing solutions
attempting to protect software.
TrustZone-based solutions TrustZone, originated by
ARM, has been spotlighted as a secure and lightweight
solution to protect SCCs. Recently, it was also adopted
in the x86 architecture by AMD. To enhance its usability,
TLR [45, 44] ported the .NET framework inside Trust-
Zone so that it enables SCCs programmed with the .NET
bytecode to execute in the secure world. However, its
monolithic design in which all SCCs are sharing a single
world will increase the attack surface in proportion to the
number of installed SCCs. TrustICE [52] addressed this
problem by providing each SCC with a separated execu-
tion environment, called ICE, in the normal world. Thus,
in that work, third-party developers are permitted to pro-
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tect their SCCs. This work achieves a similar objective
as OSP, but unlike OSP, TrustICE was designed to cre-
ate isolated execution environments based on the kernel
mode, thus using the same privilege level with the un-
trusted OS kernel. Consequently, it faces limitations in
supporting multi-core environments. While an ICE runs
in a core, the other cores must be suspended until the ICE
is terminated, to prevent the OS kernel from accessing
the ICE.
Hypervisor-based solutions Many studies have at-
tempted to provide isolated execution environments by
leveraging hypervisors. TERRA [24] and Proxos [55]
attempted to provide each application with its own oper-
ating system. Overshadow [17] and SP3 [58] protected
application data from being exposed to untrusted OSes
by encrypting the data transparently.

As frequent encryption operations incur significant
performance overhead in the system, numerous studies
have constructed isolated execution environments using
elaborate access-control mechanisms based on the ex-
tended paging technique. InkTag [28], AppShield [18]
and AppSec [43] concentrated on shielding all applica-
tions from an untrusted OS. On the other hand, TrustVi-
sor [36], MiniBox [33] and Wimpy Kernel [62] focused
on protecting security critical portions of applications
(SCCs in this paper) rather than all applications. These
solutions attempt to reduce the code size of their hyper-
visors in order to reduce the size of their TCB as well.
Our OSP can be considered similar to these solutions in
the sense that OSP protects a small portion of an applica-
tion using a lightweight hypervisor, minimizing the code
size of its hypervisor.

However, all of the aforementioned techniques place a
burden on the system through persistent computational
overhead for their hypervisors to maintain virtualiza-
tion. Curtailing such overhead by dynamically activat-
ing hypervisors was originally proposed in earlier stud-
ies [35, 41], in which the technique was used for efficient
OS maintenance based on a hypervisor. However, these
techniques are inadequate for software protection as their
designs do not consider security constraints. Meanwhile,
P-MAPS [42] and another study [60] adopted afore-
mentioned techniques for security purposes. However,
in comparison with OSP, their implementations are not
lightweight because they rely on time-consuming cryp-
tographic functions of TPM for on-demand functional-
ity. In particular, P-MAPS has world-switching latency
of 300 ms, which is clearly noticeable to users.
Hardware-based Approaches AEGIS [50], Bas-
tion [15], SecureME [19] and XOMOS [34] provide se-
cure execution environments. However, they are not
compatible with conventional systems because they re-
quire new architectural features.

Flicker [37], based on TPM and DRTM of Intel x86,

supports on-demand protections for SCCs. Similar to P-
MAPS, Flicker incurs a world switching latency problem
owing to its dependency of TPM. SICE [10] and Secure
Switch [53] create isolated execution environments with
an additional CPU mode known as the system manage-
ment mode (SMM). However, SICE shows a few seconds
of latency when entering the isolated execution environ-
ment, and Secure Switch can only build secure environ-
ments in a specific type of memory, i.e., SMRAM, which
is physically limited.

Intel recently proposed Software Guard Extension
(SGX) [30], containing a new set of special instructions
for creating isolated execution environments. SGX is se-
cure against various memory attacks [20] including cold-
boot attacks [26] and bus monitoring attacks [49, 54].
Although it is not yet deployed in commercial products,
HAVEN [11] and VC3 [46] demonstrated its effective-
ness through real-world scenarios in a cloud system. Un-
fortunately, available of this technique is limitedly to the
Intel x86 architecture.

9 Conclusion

In this paper, we have proposed OSP, a TrustZone-
hypervisor hybrid protection system, which aims to pro-
vide isolated computing environments for SCCs in an
efficient and secure manner. OSP reduces the virtual-
ization overhead by leveraging the on-demand hyper-
visor activation scheme that is efficiently carried out
with assistance of TrustZone. To measure the perfor-
mance of OSP on a mobile device, we performed a
set of experiments with ODROID-XU3-Lite using the
mobile processor adopted by latest commercial smart-
phones. Our evaluations have shown that OSP achieves
very low performance overhead during hypervisor hiber-
nation (near 0 %) and efficiently protects SCCs with low
activation latency (< 100 µs).
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