
This paper is included in the Proceedings of the
2016 USENIX Annual Technical Conference (USENIX ATC ’16).

June 22–24, 2016 • Denver, CO, USA

978-1-931971-30-0

Open access to the Proceedings of the
2016 USENIX Annual Technical Conference
(USENIX ATC ’16) is sponsored by USENIX.

Erasing Belady’s Limitations: In Search of Flash
Cache Offline Optimality

Yue Cheng, Virginia Polytechnic Institute and State University; Fred Douglis,
Philip Shilane, Michael Trachtman, and Grant Wallace, EMC Corporation;

Peter Desnoyers, Northeastern University; Kai Li, Princeton University

https://www.usenix.org/conference/atc16/technical-sessions/presentation/cheng

USENIX Association 2016 USENIX Annual Technical Conference 379

Erasing Belady’s Limitations: In Search of Flash Cache Offline Optimality

Yue Cheng

Virginia Tech

Fred Douglis

EMC

Philip Shilane

EMC

Michael Trachtman

EMC

Grant Wallace

EMC

Peter Desnoyers

Northeastern University

Kai Li

Princeton University

Abstract

NAND-based solid-state (flash) drives are known for

providing better performance than magnetic disk drives,

but they have limits on endurance, the number of times

data can be erased and overwritten. Furthermore, the unit

of erasure can be many times larger than the basic unit

of I/O; this leads to complexity with respect to consol-

idating live data and erasing obsolete data. When flash

drives are used as a cache for a larger, disk-based storage

system, the choice of a cache replacement algorithm can

make a significant difference in both performance and

endurance. While there are many cache replacement al-

gorithms, their effectiveness is hard to judge due to the

lack of a baseline against which to compare them: Be-

lady’s MIN, the usual offline best-case algorithm, con-

siders read hit ratio but not endurance.

We explore offline algorithms for flash caching in

terms of both hit ratio and flash lifespan. We design and

implement a multi-stage heuristic by synthesizing sev-

eral techniques that manage data at the granularity of a

flash erasure unit (which we call a container) to approx-

imate the offline optimal algorithm. We find that simple

techniques contribute most of the available erasure sav-

ings. Our evaluation shows that the container-optimized

offline heuristic is able to provide the same optimal read

hit ratio as MIN with 67% fewer flash erasures. More

fundamentally, our investigation provides a useful ap-

proximate baseline for evaluating any online algorithm,

highlighting the importance of comparing new policies

for caching compound blocks in flash.

1 Introduction

Unlike magnetic disk drives, flash devices such as solid

state drives (SSDs) transfer data in one unit but explicitly

erase data in a larger unit before rewriting. This erasure

step is time-consuming (relative to transfer speeds) and it

also has implications for the endurance of the device, as

the number of erasures of a given location in flash is lim-

ited. A common endurance metric is Erasures Per Block

Per Day (EPBPD), a rate commonly guaranteed by flash

manufacturers for a time period [33, 34].

SSDs typically provide a flash translation layer (FTL)

within the device, which maps from logical block num-

bers to physical locations. A host can access individ-

ual file blocks that are kilobytes in size, and if some live

blocks are physically located in the same erasure unit as

data that can be recycled, the FTL will garbage collect

(GC) by copying the live data and then erasing the previ-

ous location to make it available for new writes.

As an alternative to performing GC in the FTL, the

host can group file blocks to match the erasure unit (also

called blocks in flash terminology). While some research

literature refers to these groupings as “blocks” (e.g.,

RIPQ [38]), there are many other names for it: write-

evict unit [22], write unit [31], erase group unit [30], and

container in our own recent work on online flash cache

replacement [23]. Thus we use “container” to describe

these groupings henceforth.

Containers are written in bulk, thus the FTL never sees

partially dead containers it needs to GC. However, the

host must do its own GC to salvage important data from

containers before reusing them. The argument behind

moving the functionality from the SSD into the host is

that the host has better overall knowledge and can use

the SSD more efficiently than the FTL [21].

Flash storage can be used for various purposes, includ-

ing running a standalone file system [7, 16, 20, 24, 41]

and acting as a cache for a larger disk-based file sys-

tem [8, 9, 13, 19, 29, 32, 36, 42]. The latter is a somewhat

more challenging problem than running a file system, be-

cause a cache has an additional degree of freedom: data

can be stored in the cache or bypassed [15, 35], but a

file system must store all data. In addition, the cache

may have different goals for the flash storage: maxi-

mize hit rate, regardless of the effect on flash endurance;

limit flash wear-out, and maximize the hit rate subject to

that limit; or optimize for some other utility function that

takes both performance and endurance into account [23].

Flash cache replacement solutions such as RIPQ [38]

and Pannier [23] consider practical approaches given a

historical sequence of file operations; i.e., they are “on-

line” algorithms. Traditionally, researchers compare on-

line algorithms against an offline optimal “best case”

baseline to assess how much room an algorithm might

have for improvement [5, 9, 11, 43]. For cache replace-

ment, Belady’s MIN algorithm [2] has long been used as

that baseline.

380 2016 USENIX Annual Technical Conference USENIX Association

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 10 100 1000

R
e
a
d
 h

it
 r

a
ti
o
 (

%
)

EPBPD

Offline

Offline

Our subject

Container-optimized (10%)
MIN (10%)

Pannier (10%)
RIPQ+ (10%)

LRU (10%)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 10 100 1000

R
e
a
d
 h

it
 r

a
ti
o
 (

%
)

EPBPD

Offline

Offline

Our subject

Container-optimized (1%)
MIN (1%)

Pannier (1%)
RIPQ+ (1%)

LRU (1%)

Figure 1: A RHR vs. endurance (EPBPD, on a log scale)

scatter-plot of results for different caching algorithms. We re-

port the average RHR and EPBPD across a set of traces, us-

ing cache sizes of 1% or 10% of the WSS. (Descriptions of

the datasets and the full box-and-whisker plots appear below.)

RIPQ+ and Pannier are online algorithms, described in §5.3.

The goal of our container-optimized offline heuristic is to re-

duce EPBPD with the same RHR as MIN, an offline algorithm

that provides the optimal RHR without considering erasures.

Figure 1 plots read hit ratio (RHR) against the EPBPD

required by a given algorithm assuming SSD sizes of 1%

or 10% of the working set size (WSS) of a collection

of traces (described in §5.1). MIN achieves an average

RHR improvement of 10%–75% compared to LRU, a

widely used online algorithm. Using future knowledge

makes a huge difference to RHR: Pannier covers only

33% to 52% of the gap from LRU to MIN, while RIPQ+

(described in §5.3) sees about the same RHR as LRU.

However, MIN is suboptimal when considering not only

RHRs but also flash endurance: it will insert data into a

cache if it will be accessed before something currently

in the cache, even if the new data will itself be evicted

before being accessed. Such an insertion increases the

number of writes, and therefore the number of erasures,

without improving RHR; we refer to these as wasted

writes. In this paper we explore the tradeoffs between

RHR and erasures when future accesses are known.

A second complicating factor arises in the context of

flash storage: containers. Not only should an offline al-

gorithm not insert unless it improves the RHR, it must

be aware of the container layout. For example, data that

will be invalidated around the same time would benefit

by being placed in the same container, so the container

can be erased without the need to copy blocks.

We believe that an offline optimal flash replacement

algorithm not only requires future knowledge but is com-

putationally infeasible. We develop a series of heuris-

tics that use future knowledge to make best-effort cache

replacement decisions, and we compare these heuristics

to each other and to online algorithms. Our container-

optimized offline heuristic maintains the same RHR as

MIN. The heuristic identifies a block that is inserted into

the cache but evicted before being read, and omits that

insertion in order to avoid needing to erase the region

where that block is stored. At the same time, the heuris-

tic consolidates blocks that will be evicted at around the

same time into the same container when possible, to min-

imize GC activities. One important finding is that sim-

ple techniques (e.g., omitting insertions and GC copies

that are never reread) provide most of the benefit; the

more complicated ones (e.g., consolidating blocks that

die together) have a marginal impact on saving erasures

at relatively large cache sizes. Alternatively, we describe

other approaches to maximize RHR subject to erasure

constraints. Figure 1 provides examples in which the av-

erage RHR is the same maximum achievable by MIN,

while lowering EPBPD by 56%–67%. Interestingly, the

container-based online algorithms reduce EPBPD rela-

tive to LRU by similar factors.

Specifically, we make the following contributions:

• We thoroughly investigate the problem space of off-

line compound object caching in flash.

• We identify and evaluate a set of techniques to make

offline flash caching container-optimized.

• We present a multi-stage heuristic that approxi-

mates the offline optimal algorithm; our heuristic

can serve as a useful approximate baseline for ana-

lyzing any online flash caching algorithm.

• We experiment with our heuristic on a wide range

of traces collected from production/deployed sys-

tems, to validate that it can provide a practical upper

bound for both RHR and lifespan.

2 Background and Related Work

Here we provide a brief background of the offline cach-

ing algorithms, discuss the challenges of finding an off-

line optimal caching algorithm for container-based flash,

and describe some previous analytical efforts.

2.1 Belady’s MIN and its Limitations

Belady’s MIN algorithm [2] replaces elements whose

next reference is the furthest in the future, and it is prov-

ably optimal with respect to the read hit ratio given cer-

tain assumptions [25, 26]. In particular, it applies in a

single level of a caching hierarchy in which all blocks

(or pages) must be inserted. For instance, it applies to

demand-paging in a virtual memory environment.

Our environment is slightly different. We assume a

DRAM cache at the highest level of the cache hierarchy

and a flash device serving as an intermediate cache be-

tween DRAM and magnetic disks. A block that is read

from disk into DRAM and then evicted from DRAM can

be inserted into flash to make subsequent accesses faster,

but it can also be removed from DRAM without insert-

ing into flash (“read-around”). Similarly, writes need not

be inserted into flash as long as persistent writes will be

stored on disk (see §3.4).

Since this is not a demand-fetch algorithm, MIN is not

2

USENIX Association 2016 USENIX Annual Technical Conference 381

necessarily the optimal strategy. Consider a simple 2-

location cache with the following access sequence:

A,B,C, A,B,D, A,B,C, A,B,D ...

In a demand-fetch algorithm a missing block must be in-

serted into the cache, replacing another one; in this case

the hit rate will be 1
3
, as B will always be replaced by C

or D before the next access. With read-around it is not

necessary for C and D to be inserted into cache, allowing

hits on both A and B for a hit rate of 2
3
. We note, how-

ever, that such behavior may be emulated by a demand-

fetch algorithm using one more cache location, which is

reserved for those elements which would not be inserted

into cache in the read-around algorithm. The hit rate for

a read-around algorithm with N cache locations is thus

bounded by the performance of MIN with N+1 locations,

a negligible difference for larger values of N which we

ignore in the remainder of the paper.

Even if MIN provides the optimal RHR, we argue be-

low that it can write more blocks than another approach

providing the same RHR with fewer erasures. We use

MIN to refer to a variant of Belady’s algorithm that does

not insert a block into the cache if it will not be reread,

while M+ is a further enhancement that does not insert a

block that will not be reread prior to eviction.

Temam [39] extends Belady’s algorithm by exploit-

ing spatial locality to take better advantage of processor

caches. Gill [10] applies Belady’s policy to multi-level

cache hierarchies. His technique is useful for iterating

across multiple runs of a cache policy. However, since

Belady targets general local memory caching, it is not

directly applicable to container-based flash caching due

to the inherent difference between DRAM and flash.

2.2 Container-based Caching Algorithms

Previous work shows that various container-based flash

cache designs lead to different performance–lifespan

trade-offs [22, 23, 30, 31, 38]. SDF [31], Nitro [22], and

SRC [30] use a large write unit aligned to the flash era-

sure unit size to improve cache performance. RIPQ [38]

leverages another level of indirection to track reaccessed

photos within containers. Pannier [23] explicitly exploits

hot/cold block and invalidation mixtures for container-

based caching to further improve performance and re-

duce flash erasures. However, it is not known how much

headroom in both performance and lifespan might exist

for any state-of-the-art flash caching algorithms. To give

a clear idea of how well an online flash caching algorithm

performs, we need an offline optimal algorithm that in-

corporates performance and lifespan of the flash cache.

2.3 Analytical Approaches

Considerable prior work has explored the offline opti-

mality of caching problems in various contexts from a

theoretical perspective. Albers et al. [1] and Brehob

et al. [4] prove the NP-hardness of optimal replacement

for non-standard caches. Chrobak et al. [6] prove the

strong NP-completeness of offline caching supporting el-

ements with varying sizes (i.e., costs). Neither explicitly

studies the offline optimality of the flash caching prob-

lem with two goals that are essentially in conflict.

Other researchers have looked at related problems.

Horwitz et al. [14] formulate the index register alloca-

tion problem to the shortest path problem with a general

graph model and prove the optimality of the allocation

algorithm. Ben-Aroya and Toledo [3] analyze a vari-

ety of offline/online wear-leveling algorithms for flash-

based storage systems. Although not directly related to

our problem, these works provide insights into the offline

optimality of container-based flash caching.

3 Quest for the Offline Optimal

A flash device contains a number of flash blocks, the unit

of erasures, referred to in our paper as containers to avoid

confusion with file blocks. But many of the issues sur-

rounding flash caching arise even in the absence of con-

tainers. We refer to the case where each file block can be

erased individually as unit caching, and we describe the

metrics (§3.1) and algorithms (§3.2) in that context. This

separates the general problem of deciding what to write

into the flash cache in the first place from the overhead

of garbage collecting containers; we return to the impact

of containers in §3.3. In §3.2–3.3 we also introduce a

set of techniques for eliminating wasted writes. We then

discuss how to handle user-level writes in §3.4. Finally,

we summarize the algorithms of interest in §3.5.

3.1 Metrics

The principal metrics of concern are:

Read Hit Ratio (RHR): The ratio of read I/O requests

satisfied by the cache (DRAM cache + flash cache) over

total read requests.

The Number of Flash Erasures: In order to compare

the impact on lifespan across different algorithms and

workloads, we focus on the EPBPD required to run a

given algorithm on a given workload and cache size. The

total number of erasures is the product of EPBPD, capac-

ity, and workload duration.

Flash Usage Effectiveness (FUE): The FUE metric [23]

endeavors to balance RHR and erasures. It is defined as

the number of bytes of flash hit reads divided by flash

writes, including client writes and internal copy-forward

(CF) writes. A score of 1 means that, on average, every

byte written to flash is read once, so higher scores are

better. It can serve as a utility function to evaluate dif-

ferent algorithms. We define Weighted FUE (WFUE),

a variant of FUE that considers both RHR and erasures

and uses a weight to specify their relative importance:

3

382 2016 USENIX Annual Technical Conference USENIX Association

Technique Description C

RN omit insertions reread < N times ✗
TRIM notify GC to omit dead blocks ✓
CFR avoid wasted CF blocks ✓
E segregate blocks by evict time ✓

Table 1: Summary of offline heuristic techniques used for

eliminating wasted writes to the flash cache. C: container-

optimized.

WFUE= α∗ (RHRA/RHRM) + (1−α)∗ (EM −EA)/EM

The utility of an algorithm is determined by comparing

the RHR and erasures (E) incurred by the algorithm, de-

noted by A, to the values for M+ (an improved MIN,

described in §3.2, denoted here by M for simplicity).1 If

α is low and an algorithm saves many writes in exchange

for a small reduction in RHR, WFUE will increase.

3.2 Objectives and Algorithms

Depending on the goals of end users, we may have dif-

ferent objective functions. Optimizing for RHR irrespec-

tive of erasures is trivial: the performance metric RHR

serves as a naı̈ve but straightforward goal for which MIN

can easily get an optimal solution, without considering

the flash endurance. Taking erasures into account, we

identify three objectives of interest. We describe each

briefly to set the context for comparison, then elaborate

on heuristics to optimize for them. (We do not claim their

optimality, leaving such analysis to future work.)

O1: Maximal RHR The purpose of objective O1 is to

minimize erasures subject to maximal RHR. If we con-

sider the RHR obtained by MIN, there should be a se-

quence of cache operations that will preserve MIN’s hit

ratio while reducing the number of erasures. Belady’s

MIN caches any block that either fits in the cache, or

which will be reaccessed sooner than some other block

in the cache. It does not take into account whether the

block it inserts will itself be evicted from the cache be-

fore it is accessed.

The first step to reducing erasures while keeping the

maximal RHR is to identify wasted cache writes due to

eviction. Algorithm M+ is a variant of MIN that iden-

tifies which blocks are added (via reads or writes) to the

cache and subsequently evicted without rereference, then

no longer inserts them into the cache (RN in Table 1,

where N = 1).

It is unintuitive, but cache writes can be wasted even

if they result in a read hit. As an example, assume block

1Though these two factors have different ranges and respond differ-

ently to changes, WFUE controls the value of both via normalization

so that the higher each factor yields, the better the algorithm performs

with respect to that goal. A negative value due to high erasures would

demonstrate the deficiency of the algorithm in saving erasures. Hence,

WFUE can serve as a general metric for quantitatively comparing dif-

ferent heuristics.

A is in cache at time t0, and will next be accessed at time

T > t0. If block B is accessed at t0, and will be accessed

exactly one more time at time T −1, MIN dictates that A

be replaced by B. However, by removing B, there is still

one miss (on B rather than A), while an extra write has

occurred. Leaving A in the cache would have the same

RHR but one fewer write into the cache.

Ultimately, our goal is to identify a Pareto-optimal so-

lution set where it is impossible to reduce the number

of erasures without reducing RHR. This requires that

no block be inserted if it does not improve RHR, but

the complexity of considering every insertion decision

in that light is daunting. Thus we start with eliminating

cache insertions that are completely wasted and leave ad-

ditional trades of one miss against another to future work.

An offline heuristic Algorithm H that approximates

M+ works as follows:

STEP 1 Annotate each entry with its next reference.

STEP 2 Run MIN to annotate the trace with a sequence

of cache insertions and evictions, given a cache capac-

ity. Note all insertions that result in being evicted with-

out at least one successful reference.

STEP 3 Replay the annotated trace: do not cache a block

that had not been accessed before eviction.

O2: Limited Erasures In some cases a user will be will-

ing to sacrifice RHR in order to reduce the number of

erasures. In fact, given limits on the total number of era-

sures of a given region of flash, it may be essential to

make that tradeoff. Thus, O2 first limits erasures to a

particular rate, such as 5 EPBPD. (The EPBPD rate is

multiplied by the size of the flash cache and the dura-

tion of the original trace to compute a total budget for

erasures.) Given an erasure limit, the goal of O2 is to

maximize RHR. Note that the rate of erasures is averaged

across an entire workload, meaning that the real limit is

the total number of erasures; EPBPD is a way to normal-

ize that count across workloads or configurations.

We can modify Algorithm H for O2 to have a thresh-

old. HT works as follows:

STEP 1 Run H and record all insertions. Annotate each

record with the number of read hits absorbed as a re-

sult of that insertion, and count the total number of

insertions resulting in a given number of read hits.

STEP 2 Compute the number of cache insertions I per-

formed in the run of H and the number of insertions I′

allowed to achieve the EPBPD threshold T . If I > I′

then count the cumulative insertions CI resulting in 1

read hit, 2 read hits, and so on until I −CI = I′. Iden-

tify the reuse count, R, at which eliminating these low-

reuse insertions brings the total EPBPD to the thresh-

old T . Call the number of cache insertions with R

reuses that must also be eliminated the leftover, L.

STEP 3 Rerun H, skipping all insertions resulting in

4

USENIX Association 2016 USENIX Annual Technical Conference 383

fewer than R read hits, and skipping the first L inser-

tions resulting in exactly R hits.

Algebraically, we can view the above description as

follows: Let Ai represent the count of cache insertions

absorbing i hits.

I =

n∑

i=1

Ai and CI = (

R−1∑

i=1

Ai) + L

We identify R such that this results in I −CI = I′.
O3: Maximize WFUE The goal of O3 is to maximize

WFUE, which combines RHR and erasures into a single

score to simplify the comparison of techniques (§3.1).

Intuitively, the user may want to get the highest read

hits per erasure (i.e., best “bang-for-the-buck” consider-

ing the user pays the cost of device endurance for RHR).

To compare the tradeoffs between RHR and erasures,

we consider a variant of H, Algorithm HN , which omits

cache insertions that are reread < N times (RN in Ta-

ble 1). This is similar to the threshold-based Algorithm

HT , but the decision about the number of reaccesses nec-

essary to justify a cache insertion is static. An increase in

the minimum number of reads per cache insertion should

translate directly to a higher FUE, though the writes due

to GC are also a factor. For WFUE, the value of α deter-

mines whether such a threshold is beneficial.

3.3 Impact from Containers

The metrics and objectives described in §3.1–3.2 apply

to the unit caching scenario, in which each block may be

erased separately, but they also apply to the container en-

vironment. The aim is still to minimize erasures subject

to a maximal RHR, to maximize RHR subject to a limit

on erasures, or to maximize a utility function of the two.

However, the approach to solving the optimization

problem varies when containers are considered. This

complexity arises because there is an extra degree of

freedom: not only does an algorithm need to decide

whether to cache a block, it must decide where it goes

and whether to reinsert it during GC. Regarding place-

ment, one option is to cache data in a container-oblivious

manner. For instance, a host could write each block to a

distinct location in flash and rely on an FTL to reorganize

data to consolidate live data and reuse areas of dead data.

This might result in a significant overhead from the FTL

unwittingly copying forward blocks that MIN knows are

no longer needed, so adding the SSL TRIM [40] com-

mand to inform the FTL that a block is dead can reduce

erasures significantly (see §6.1). As shown in Table 1,

we categorize TRIM as container-optimized, because an

FTL itself manages data at the granularity of containers.

For CF, the first step is to supplement the annotations

from §3.2 with information about blocks that are CF and

not reaccessed. Copy-Forward Reduction (CFR in Ta-

ble 1) effectively extends TRIM with the logic of R1,

by identifying “wasted” CFs; however, eliminating all

needless CFs is difficult. With the smallest cache, on av-

erage this reduces the erasures due to wasted CFs from

4% to 1%; repeating this step a few more times brings

it down another order of magnitude but does not com-

pletely eliminate wasted CFs. This is because (for a

small cache) there is always a block to CF that has not

yet been verified as a useful copy nor marked as wasted.

Note that while it seems appealing to simply not copy

something forward that was not copied forward in a pre-

vious iteration, the act of excluding a wasted copy makes

new locations for data available, perturbing the sequence

of operations that follow. This makes the record from the

previous run only partly useful for avoiding mistakes in

the subsequent run, an example of the “butterfly effect.”

Still, writing in a container-optimized manner can im-

prove on the naive data placement of M+, which uses the

FTL to fill a container at a time. By segregating blocks

by their expiration time as they are written to flash (E in

Table 1), we may be able to erase one container, with-

out the need to CF, as soon as all the blocks within it are

no longer needed. We refer to E as container-optimized

since it explicitly consolidates data that die together at

the host or application level.

Since the purpose of our study is to provide a best-

case comparison point for real-world cache replacement

algorithms, we focus henceforth on the container-based

cache replacement policies. Note that if containers con-

sist of only one block, any approaches that are specifi-

cally geared to containers should work for the unit cach-

ing replacement policy. In the next section, we describe

the algorithms in greater detail, using C to represent the

offline heuristic H in the context of containers.

3.4 Impact from Dirty Data

The results from the various algorithms depend signifi-

cantly on how the cache treats writes into the file system.

For example, Pannier [23] requires that all file writes

be inserted into the cache, with the expectation that the

cache be an internally consistent representation of the

state of the file system at any given time. All writes are

immediately reflected in stable storage, which is appro-

priate for an online algorithm; Pannier’s comparison to

Belady used the same approach even with future knowl-

edge, writing all user-level writes into SSD.

With future knowledge, however, one can argue that a

“dead write” that will be overwritten before being read

need not be inserted into the cache. The same is true of a

write that is never again referenced, though in that case it

should be written through to disk. Since we model only

the flash cache RHR and endurance, we place these dead

writes into DRAM but not into flash.

5

384 2016 USENIX Annual Technical Conference USENIX Association

In-RAM
Cache

Block

…

In-RAM write-buf PQ

Latest to dieEarliest to die
…

In-Flash

Container PQMost valid blocks Least valid blocks

…

MIN block PQ Next ref furthestNext ref nearest

Insert MIN-check1

Replacement:
Cache is full,

Evict tail containers

7

Copy-forward MIN-check8

…

In-RAM
In-Flash

Invalid
Evict-pending

Valid

ContainerContainerContainer
ContainerContainerContainer

ContainerContainerContainer … ContainerContainerContainer
ContainerContainerContainer

Index lookup

Not found

Update 5

Found

ContainerContainerContainer

Chunk into containers,
Write to flash

3
Read

4

In-RAM cache status

Pack2

Block index

6

Figure 2: Container-optimized offline flash caching framework. PQ: priority queue.

3.5 Algorithm Granularity

For the remainder of this paper, we compare the follow-

ing algorithms. M refers to variants of MIN while C

refers to container-optimized algorithms. A table sum-

marizing these (and other) algorithms appears in §5.3.

M Belady’s MIN, which does not insert a block that will

be overwritten or never reread by the client.

M+ A variant of MIN, which identifies a block that is

inserted into cache but evicted before being read, and

omits that insertion. It also uses TRIM to avoid CF

once the last access to a block occurs.

MN A variant of M+, which does not insert blocks with

accesses < N . M1 is equivalent to M+, while MN

generalizes it to N > 1.

MT A variant of M+, which eliminates enough low-

reuse cache insertions to get the best RHR under a

specific erasure limit (see §3.2).

C Each block is inserted if and only if M+ would in-

sert it. However, a write buffer of W containers is

set aside in memory, and the system GCs whenever

it is necessary to make that number of containers free

to overwrite. Containers are filled using the eviction

timestamp indicating when, using M+, a block would

be removed from the cache. The contents of the con-

tainers are ordered by eviction time, so the first con-

tainer has the m blocks that will be evicted first, the

next container has the next m blocks, and so on.

CN , CT Analogous to MN , MT .

4 Offline Approximation

Here we describe how to evolve the container-oblivious

MIN algorithm to a container-optimized heuristic C,

which provides the same RHR but significantly fewer

erasures. We also explain creating CN and CT .

4.1 Key Components

Figure 2 depicts the framework architecture and exam-

ples of the insertion and lookup paths. A detailed dis-

cussion appears in the next subsection, but the following

components are the major building blocks.

Block Index An in-memory index maps from a block’s

key (e.g., LBA) to a location in flash. Upon a read, the

in-memory index is checked for the block’s key, and if

found, the flash location is returned. Newly inserted

blocks are added to the in-memory write buffer queue

first. Once the content of the writer buffer is persisted

in the flash cache, all blocks are assigned an address (an

index entry) used for reference from the index. When

invalidating a block, the block’s index entry is removed.

In-RAM Write Buffer An in-memory write buffer is

used to hold newly inserted blocks and supports in-place

updates. The write buffer is implemented as a priority

queue where the blocks are ranked based on their evic-

tion timestamps (described in greater detail in §4.2). The

write buffer queue is filled cumulatively and updated in

an incremental fashion. Once the write buffer is full, its

blocks are copied into containers, sealed and persisted

in the flash cache. The advantage of cumulative packing

and batch flushing is that the blocks with close eviction

timestamps get allocated to the same container so that

erasures are minimized. Overwrites to existing blocks

stored in flash are redirected to the write buffer without

updating the sealed container.

In-RAM Cache Status A few major in-memory data

structures construct and reflect the runtime cache status.

Once a container is sealed, its information structure is in-

serted into a container priority queue (PQ), a structure

to support container-level insertion and eviction. When-

ever a container is updated (e.g., a block is invalidated or

evict-pending, etc.), its relevant position in the queue is

updated. In addition to the container PQ, a block-level

MIN PQ is designed to support the extended Belady

logic and track the fine-grained block-level information.

We discuss the operations of the MIN PQ in §4.2.

4.2 Container-optimized Offline Heuristic

The multi-stage heuristic C offers the optimal RHR while

attempting to approach the practically lowest number of

erasures on the flash cache. In the following, we describe

the container-optimized heuristic pipeline (Figure 2) in

6

USENIX Association 2016 USENIX Annual Technical Conference 385

1 vo id Lookup (Object ob j) :
2 // WB: Wri te b u f f e r p r i o r i t y queue
3 i f WB. e x i s t (ob j . key) or INDEX . e x i s t (ob j . key) :
4 Object e x i s t i n g = Read (ob j . key)
5 OnAccess (e x i s t i n g , ob j)
6 e l s e : On In s e r t (ob j) // Upon a mis s
7

8 vo id On In s e r t (Object ob j) :
9 i f not MINFul l () :

10 i f ob j . n e x t r e f == INF : r e t u rn

11 i f Rec [ob j . key] . r e a d f r e q <= r e a d f r e q t h r e s h :
12 r e t u rn

13 MIN Q . i n s e r t (ob j) // I n s e r t i n t o MIN queue
14 e l s e :
15 Object v i c t im = MIN Q . top ()
16 i f ob j . n e x t r e f > v i c t im . n e x t r e f : r e t u rn

17 i f Rec [ob j . key] . r e a d f r e q <= r e a d f r e q t h r e s h :
18 r e t u rn

19 // T r i g g e r e v i c t on MIN queue
20 EvictMIN (MIN Q , v i c t im)
21 MIN Q . i n s e r t (ob j)
22 i f WB. f u l l () : OnSeal ()
23 WB. i n s e r t (ob j) // Pack i n t o WB
24 Ev i c t F l a s h ()
25

26 vo id OnSeal () :
27 Object ob j = WB. beg in ()
28 // I t e r a t e th rough a l l s o r t e d ob j s
29 wh i l e ob j != WB. end () :
30 F r e eCL i s t [c u r r p t r] . i n s e r t (ob j)
31 i f F r e eCL i s t [c u r r p t r] . f u l l () :
32 // C Q : Con ta i n e r queue
33 C Q . i n s e r t (F r e eCL i s t [c u r r p t r ++])
34 ob j = WB. nex t ()
35 WB. c l e a r ()
36

37 vo id EvictMIN (Object v i c t im) :
38 MIN Q . pop () ;
39 i f WB. e x i s t (v i c t im . key) : // Remove i f i n WB
40 WB. e r a s e (v i c t im)
41 r e t u rn

42 Con ta i n e r c = GetConta i ne r (v i c t im)
43 v i c t im . e v i c t p e n d i n g = t rue

44 c . num ev i c t p end i ng++
45 C Q . update (c) // Update c ’ s p o s i t i o n i n C Q
46

47 vo id Ev i c t F l a s h () :
48 wh i l e F l a s h F u l l () :
49 Con ta i n e r c = C Q . pop ()
50 GC(c) // Garbage c o l l e c t the e v i c t e d c
51

52 vo id OnCopyForward (Object ob j) :
53 i f ob j . n e x t r e f == INF : r e t u rn

54 MIN Q . i n s e r t (ob j)
55

56 vo id OnAccess (Object o l d ob j , Ob ject new obj) :
57 i f o l d o b j . e v i c t p e n d i n g :
58 Count a c c e s s as a mis s
59 r e t u rn

60 Update h i t s t a t s
61 o l d o b j . n e x t r e f = new obj . n e x t r e f
62 // Update ob j ’ s p o s i t i o n i n MIN queue
63 MIN Q . update (o l d o b j)
64 o l d o b j . e v i c t t i m e = new obj . e v i c t t i m e

Figure 3: Functions handling events for flash-cached blocks

and containers in the container-optimized offline heuristic.

detail. Figure 3 shows the pseudocode of how the offline

heuristic handles different events.

Insert, Access and Seal We describe inserting a block,

accessing a block, and sealing/persisting a container.

1 When a client inserts a block upon a miss and the

cache is not full, the OnInsert function first checks if the

block’s next reference timestamp is INFINITE (i.e., the

block is never read again in the future or the next ref-

erence is a write). If so, OnInsert simply bypasses it

and returns. Otherwise, an insertion record is checked

to see if the block exceeds read_freq_thresh, a con-

figurable read hit threshold. For instance, setting the

read_freq_thresh to 1 filters out those that are inserted

but evicted before being read, avoiding a number of

Valid

Invalid

Evict-
pending

Overwrite /

Invalidate

Move to tail /
Evict by MIN

O
verw

rite /
Invalidate

Reclaimed

Evict tail container /GC

Evict tail container /

GC

Write to flash /
None

Read hit /
Count as a m

iss

Read hit /
Update status

Event / Action

Figure 4: State transitions of blocks in our heuristic.

wasted writes. CN and CT also take advantage of this

scheme for trading-off RHR with endurance: setting the

threshold higher additionally filters out the less useful

writes, reducing RHR but decreasing the number of era-

sures. The threshold can be fixed (CN) or computed

based on the total erasure budget (CT , as described for

HT in §3.2). More useful writes, which result in a greater

number of read hits, still take place. We study the trade-

offs in §6.3.

Once the threshold test succeeds, if the cache is full

and the block will be referenced furthest in the future

(i.e., the block has a greater next reference timestamp

than the most distant block (victim) currently stored in

the cache), OnInsert returns without inserting it. When

both checks are passed, EvictMIN function is triggered to

evict the victim and the new block is inserted into the

MIN queue (MIN_Q). At the same time, 2 the block is

added to the in-memory write buffer queue (WB).

3 When WB is full, all the blocks held in it, sorted

based on their eviction timestamp, are copied into mul-

tiple containers from the free container list FreeCList.

curr_ptr maintains a pointer to the first available free

container in FreeCList. (We compare the sorted ap-

proach to FIFO insertion of the blocks in §6.2.) The

OnSeal function then persists the open containers in the

flash cache.

Lookup 4 On a Lookup, both the WB and in-memory

index (INDEX) are referenced to locate the block, and the

read is serviced. On a read access (OnAccess), 5 the

read hit updates the existing block’s block-level metadata

(old_obj) and old_obj’s position is updated in MIN_Q on

the next access time. Upon a miss OnInsert is triggered

as described.

Invalidation and Eviction 6 The container-optimized

offline caching introduces another new block state –

evict-pending. Evict-pending describes the state when a

block is evicted from MIN_Q (transitioning from the valid

state to evict-pending) but temporarily resides in the GC

area of the flash, pending being reclaimed. Figure 4

shows the state transitions of a block in the heuristic.

A block is inserted/reinserted into the flash cache with

a valid state. Once it is overwritten, the old block in the

flash is marked as invalid and the updated data is inserted

into WB. Overwriting an evict-pending block makes it

transition to the invalid state. If the victim to be evicted

7

386 2016 USENIX Annual Technical Conference USENIX Association

from MIN_Q happens to reside in WB, EvictMIN directly re-

moves it from the memory. The on-flash container main-

tains a num_evict_pending counter. On evict-pending,

the corresponding container increments its counter and

updates its position in the container PQ C_Q.

Let V , I, and E represent the percentage of valid, in-

validated and evict-pending blocks in a container, respec-

tively; then V + I + E = 100%. The priority of a container

is calculated using V . When the cache is full, EvictFlash

selects the container with the lowest V (i.e., the fewest

valid blocks) for eviction.

Copy-forwarding and GC 7 When the cache is full

and a container has been selected for eviction, the heuris-

tic copies valid blocks forward to the in-memory write

buffer. Function OnCopyForward is called to check if the

reinserted block is useful. All the invalidated and evict-

pending blocks get erased in the flash. The selected con-

tainer is then reclaimed and inserted back to FreeCList.

8 The check for a “useful” reinserted block looks for

future references and (optionally) confirms the block will

not be evicted before it is read.

5 Experimental Methodology

Throughout our analyses, we set the flash erasure unit

size to 2MB. We place a small DRAM cache (5% of the

flash cache size) in front of the flash cache to represent

the use case where the flash cache is used as a second-

level cache. (The DRAM cache uses the MIN eviction

policy for offline flash cache algorithms and LRU for on-

line ones.) Because some of the datasets in the reposito-

ries we accessed have too small a working set for 5% of

the smallest flash cache to hold the maximum number of

in-memory containers, we restrict our analyses to those

datasets with a minimum 32GB working set.

This section describes the traces; implementation and

configuration for the experimental system; and the set of

caching algorithms evaluated.

5.1 Trace Description

We use a set of 34 traces from 3 repositories:

EMC-VMAX Traces: This includes 25 traces of EMC

VMAX primary storage servers [37] that span at least

24 hours, have at least 1GB of both reads and writes, and

meet the minimum working set threshold (slightly over

half the available traces).

MS Production Server Traces: This includes 3 storage

traces from a diverse set of Microsoft Corporation pro-

duction servers captured using event tracing for windows

instrumentation [18], meeting the 32GB minimum.2

MSR-Cambridge Traces: This includes 6 block-level

traces lasting for 168 hours on 13 servers, representing

2The traces are: BuildServer, DisplayAdsPayload,

DevelopmentToolsRelease.

a typical enterprise datacenter [28]. We narrowed avail-

able traces to 6 to include appropriate traces for cache

studies. The properties include a working set size greater

than 32GB, ≥ 5% of capacity accessed, and read/write

balance (≤ 45% writes).3

Given a raw trace, we annotate it by making a full pass

over the trace and marking each 4KB I/O block with

its next reference timestamp. Large requests in traces

are split into 4KB blocks, each of which is annotated

with the timestamp of its next occurrence individually.

The annotated trace is then fed to the cache simulator.

Round 1 simulation, e.g., M , may generate the insert log

that can be used by round 2 simulation (e.g., M+, MN)

to filter out blocks that will be evicted before being read.

5.2 Implementation and Configuration

For the experimental evaluation, we built our container-

optimized offline caching heuristic by adding about

3,900 lines of C++ code to a full-system cache simula-

tor. It reports metrics such as hit ratio and flash erasures

based on the Micron MLC flash specification [27].

The size of the flash cache for each trace is determined

by a fixed fraction of the WSS of the trace (from 1–10%).

For C, a write buffer queue (with default size equal to

4 containers) is used for newly inserted blocks and is a

subset of this DRAM cache. We over-provision the flash

capacity by 7% by default; this extra capacity is used

for FTL GC or to ensure the ability to manually clean

containers in the container-optimized case. We discuss

varying the over-provisioning space in §6.2.

We conduct the simulation study on 4 VMs each

equipped with 4 cores and 128 GB DRAM. All tests

are run in parallel (using GNU parallel [12]). We mea-

sured the CPU time of heuristic M+ and C looping over

all traces, not including the runtime of trace annotating

and insertion log generating pre-runs. We ran the exper-

iments 5 times and variance was low. C takes 21.7%

longer (2.47 hr) than M+ (2.03 hr) for the smallest cache

size due to the overhead of PQ used by C under intensive

GCs. The heuristic keeps track of more metadata in 10%

cache size. Thus, with the least amount of GCs, it takes

M+ almost as long (2.19 hrs) as C does (2.21 hrs), to re-

play all traces. The results show that our heuristic simu-

lation can process a large set of real-world traces within a

reasonable time. This strengthens our confidence that our

offline heuristics can serve as a practically useful tool.

5.3 Caching Algorithms

Table 2 shows the caching algorithms selected to repre-

sent past and present work. We select the classic LRU

algorithm, two state-of-the-art container-based online al-

gorithms (described next), and a variety of offline algo-

3The traces are: prn0, prn1, proj0, proj4, src12, usr2.

8

USENIX Association 2016 USENIX Annual Technical Conference 387

Policy Abbrev. Description O C

LRU L least recently used ✗ ✗
RIPQ+ R+ RIPQ with overwrites, segmented-LRU ✗ ✗
Pannier P container-based, S2LRU*, survival queue, insertion throttling ✗ ✓

MIN M FK, do not insert data whose next ref. is the most distant ✓ ✗

MIN+ M+ FK, do not insert data evicted without read (R1+TRIM, O1) ✓ ✓
MIN+write-threshold MT FK, limit number of insertions (RT+TRIM, O2) ✓ ✓
MIN+insertion-removal MN FK, do not insert data with accesses < N (RN+TRIM, O3) ✓ ✓

Container-optimized C FK, container-optimized (R1+TRIM+CFR+E, O1) ✓ ✓
C+write-threshold CT FK, container-optimized (RT+TRIM+CFR+E, O2) ✓ ✓
C+insertion-removal CN FK, container-optimized, do not insert data w/ acc. < N (RN+TRIM+CFR+E, O3) ✓ ✓

Table 2: Caching algorithms. FK: future knowledge, O: offline, C: container-optimized.

rithms (as described in §4). The configurations for previ-

ous work are the default in their papers (e.g., number of

queues) unless otherwise stated.

RIPQ+ is based on RIPQ [38], a container-based flash

caching framework to approximate several caching algo-

rithms that use queue structures. As a block in a con-

tainer is accessed, its ID is copied into a virtual container

in RAM, and when a container is selected for eviction,

any blocks referenced by virtual containers are copied

forward. We adopt a modified version of RIPQ that han-

dles overwrite operations, referred to as RIPQ+ [23]. We

use the segmented-LRU algorithm [17] and a container

size of 2MB with 8 insertion points.

Pannier [23] is a container-based flash caching mech-

anism that identifies divergent (heterogeneous) contain-

ers where blocks held therein have highly varying access

patterns. Pannier uses a priority-based survival queue to

rank containers based on their survival time, and it se-

lects a container for eviction that has either reached the

end of its survival time or is the least-recently used in a

segmented-LRU structure. During eviction, frequently

accessed blocks are copied forward into new contain-

ers. Pannier also uses a multi-step credit-based throttling

scheme to ensure flash lifespan.

6 Evaluation

In §6.1 we evaluate a number of caching algorithms with

respect to RHR and EPBPD. We also evaluate the contri-

bution of various techniques on the improvement in en-

durance. This is followed in §6.2 by a sensitivity analy-

sis of some of the parameters, the use of the write buffer

and overprovisioning. We then consider tradeoffs that

improve endurance at a cost in RHR (§6.3).

6.1 Comparing Caching Algorithms

We first compare the three online algorithms from Ta-

ble 2 with the RHR-maximizing offline algorithms:

MIN, M+ and C. We focus initially on O1, minimiz-

ing erasures subject to a maximal read hit ratio. Figure 5

shows the RHR and EPBPD results across all 34 traces,

while varying the cache size for each trace.

In Figure 5(a), we see that LRU (the left bar in each

set) obtains the lowest hit rate because it has neither fu-

ture knowledge nor a sophisticated cache replacement al-

gorithm. RIPQ+ has about the same RHR as LRU; its

benefits arise in reducing erasures rather than increas-

ing hit rate. Pannier achieves up to 26% improvement in

RHR over LRU and RIPQ+. By leveraging future knowl-

edge, MIN, M+ and C achieve the (identical) highest hit

ratio, which improves upon Pannier by 9.7%–40%. The

gap is widest for the smallest cache sizes. Figure 5(b)

shows the range of the normalized RHR (normalized

against the best-case C), with a similar trend as shown

in Figure 5(a).

Figure 5(c) and 5(d) show that online algorithms incur

the most erasures. Pannier performs slightly better than

RIPQ+ due to the divergent container management and

more efficient flash space utilization. Though it is not

explicitly erasure-aware, MIN saves up to 86% of era-

sures compared to Pannier. This is because with perfect

future knowledge, MIN can decide not to insert blocks

that would never be referenced or whose next reference

is a write. This implicit admission control mechanism

results in significantly fewer flash erasures and higher

RHR. M+ further reduces erasures by 31% compared to

MIN, because M+ avoids inserting blocks that would be

evicted before being accessed and uses TRIM to avoid

copying blocks during GC if they will not be rerefer-

enced. Variation does exist, as shown in Figure 5(d): the

10% and 25%-ile (the lower bound of box and whiskers)

breakdown of M+ are closer to 1 than those of MIN;

the lower bounds never reach below 1 while the upper

bounds (75% and 90%-ile) are far above, especially for

small cache sizes. At small cache sizes, the container-

optimized offline heuristic, C, further improves on M+

by 40% by lowering GC costs.

One way to understand the differences among MIN,

M+, and C is to view the contributions of the individ-

ual improvements. The cumulative fraction of erasures

saved by the techniques used by M+ or C (summarized

in Table 1) is depicted in Figure 6, normalized against the

erasures used by MIN. Surprisingly, we find that simple

techniques such as R1 and TRIM have a greater impact

on reducing erasures compared to more advanced tech-

niques such as the container-optimized E.

9

388 2016 USENIX Annual Technical Conference USENIX Association

 0

 10

 20

 30

 40

 50

 60

 70

1% 2.5% 5% 10%

R
e
a
d
 h

it
 r

a
ti
o
 (

%
)

Cache size

L R
+ P M M

+ C

(a) Read hit ratio.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1% 2.5% 5% 10%

N
o
rm

a
liz

e
d
 R

H
R

Cache size

L R
+ P

(b) Normalized read hit ratio. M /M+/C are all 1 due to normalization.

 0.1

 1

 10

 100

 1000

 10000

1% 2.5% 5% 10%

E
P

B
P

D

Cache size

12
77

57
4
54

4

77
42

25

48
4

18
1
17

1

30

15
10

20
6

70 66

14

6.
5
5.

3

78

26 25

6.
3

3.
0
2.

8

L R
+ P M M

+ C

(c) EPBPD.

 0.1

 1

 10

 100

 1000

1% 2.5% 5% 10%

N
o
rm

a
liz

e
d
 E

P
B

P
D

Cache size

L R
+ P M M

+ C

(d) Normalized EPBPD.

Figure 5: RHR and EPBPD for various online/offline caching algorithms and sizes. EPBPD is shown on a log scale, with values

above the bars to ease comparisons. The box-and-whisker plots in (b) and (d) show the {10, 25, average, 75, 90}%-ile breakdown

of the normalized RHR and EPBPD, respectively; each is normalized to that of the best-case C.

 0

 20

 40

 60

 80

 100

1% 2.5% 5% 10%

S
a
v
in

g
 o

n
 e

ra
s
u
re

s
 (

%
)

Cache size

R1

TRIM

CFR

E

Figure 6: Fraction of erasures saved in different stages. R1:

never inserting blocks that will be evicted before being read.

TRIM: removing blocks that would not be reread at FTL layer,

CFR: avoiding wasted CFs, E: packing blocks in write buffer

using eviction timestamp.

• The top component in each stacked bar (R1) shows the

relative improvement from preventing the insertion of

blocks that will be evicted without being referenced;

for the smallest cache, this accounts for about half the

overall improvement from all techniques, but it is a

relatively small improvement for the largest cache.

• For MIN, using TRIM to avoid the FTL copying of

blocks that will not be reaccessed has an enormous

contribution for the largest cache (˜80% of all erasures

eliminated), but it is a much smaller component of the

savings from the smallest caches. Note that we con-

vert MIN to M+ by avoiding (1) unread blocks due to

eviction and (2) FTL GC for unneeded blocks.

• Adding a check for blocks that are copied forward

(CFR) but then evicted without being rereferenced has

a moderate (10%) impact on the smallest cache, but lit-

tle impact on the largest. This is done only for C, as

the copy-forwarding within the FTL for M+ occurs in

a separate component.

• Using 4 write buffers and grouping by eviction times-

tamp (E) has a similar effect to CFR on smaller caches

and a nontrivial improvement for larger ones.

6.2 Sensitivity Analysis

Thus far we have focused on default configurations. Here

we compare the impact of different in-memory write

buffer designs and sizes on erasures. Then we examine

the impact of over-provisioned capacity.

Impact of Consolidating Blocks

We study the impact of consolidating blocks with sim-

ilar eviction timestamps into the same containers and the

impact of sizing the write buffer. Figure 7 plots the av-

erage EPBPD and variation across all traces, as a func-

tion of policy and write buffer size, grouped by differ-

ent cache sizes. All experiments are performed using C

and give the same optimal RHR. By default C uses the

priority-based queue structure as the in-memory write

buffer, which is filled using the eviction timestamp in-

dicating when, using M+, the block would be evicted

from the cache. The write buffer, once full, is dispersed

into containers that are written into flash. For compari-

son purposes we implemented a FIFO-queue-based write

buffer, where the blocks are simply sorted based on their

10

USENIX Association 2016 USENIX Annual Technical Conference 389

 0

 5

 10

 15

 20

 25

 30

 35

1% 2.5% 5% 10%

E
P

B
P

D

Cache size

Arrival_1
Evict_1

Arrival_2
Evict_2

Arrival_4
Evict_4

Arrival_8
Evict_8

(a) EPBPD.

 1

 1.5

 2

 2.5

1% 2.5% 5% 10%

N
o
rm

a
liz

e
d
 E

P
B

P
D

Cache size

Arrival_1
Evict_1

Arrival_2
Evict_2

Arrival_4
Evict_4

Arrival_8
Evict_8

(b) Normalized EPBPD.

Figure 7: Impact of consolidating blocks based on eviction

timestamp, and trade-offs in varying the size of the in-memory

write buffer (a multiple of containers); Arrival 2 means pack-

ing the blocks into the write buffer (2-container worth of ca-

pacity) based on their arrival time, Evict 4 means packing the

blocks into the 4-container-sized write buffer based on the evic-

tion timestamp. The box-and-whisker plot in (b) shows the {10,

25, average, 75, 90}%-ile breakdown of the EPBPD, normal-

ized to that of Evict 8.

arrival timestamp.4 There is no difference in EPBPD

with a queue size of 1 container, because blocks can-

not be sorted by eviction timestamp with a single open

container in DRAM. Increasing the write buffer size, we

observe a reduction in erasures with Evict. This effect is

more pronounced with a bigger write buffer queue. For

example, for the 2.5% cache size, Evict_2 reduces the

EPBPD by 5% compared to Arrival_2; but this EPBPD

differential increases to 13% for an 8-container write

buffer. This is because a bigger Evict write buffer re-

sults in less fragmentation due to evict-pending blocks

in containers stored in flash. The trend shown in av-

erage consistently matches that of the individual varia-

tion in Figure 7(b). Interestingly, Arrival_8 with a 1%

cache size yields a slightly higher EPBPD than that of

Arrival_4. This is because the fraction of data copied

forward internally (due to GC) is higher when using a

relatively small cache and a large write buffer. We ob-

served that while the 4 least populated containers gen-

erally were sufficiently “dead” to benefit from GC, the

next 4 (5th–8th least populated) containers hold signifi-

4Packing blocks based on LBA or whether clean (newly inserted)

or dirty (invalidated due to overwrite), yields no impact on erasures or

WFUE scores for the offline heuristics.

 0

 10

 20

 30

 40

 50

 60

1% 2.5% 5% 10%

E
P

B
P

D

Cache size

M
+
 OP=5%

C OP=5%
M

+
 OP=10%

C OP=10%

M
+
 OP=25%

C OP=25%
M

+
 OP=50%

C OP=50%

(a) EPBPD.

 0

 2

 4

 6

 8

 10

 12

 14

1% 2.5% 5% 10%

N
o
rm

a
liz

e
d
 E

P
B

P
D

Cache size

M
+
 OP=5%

C OP=5%
M

+
 OP=10%

C OP=10%

M
+
 OP=25%

C OP=25%
M

+
 OP=50%

C OP=50%

(b) Normalized EPBPD.

Figure 8: Trade-offs in over-provisioned (OP) space. The box-

and-whisker plot shows normalized EPBPD against C OP=50%.

cantly more live data than the first four when collected in

a batch; this increases CF significantly.

Impact of Over-provisioned Capacity

Next, we analyze the impact of over-provisioned (OP)

capacity on erasures. Figure 8 shows the average EPBPD

when varying the over-provisioned space between 5%

and 50% for different cache sizes. As in the previ-

ous experiment, we omit results of RHR, which are un-

affected by overprovisioning. We classify the results

into block-level (M+) and container-optimized (C) ap-

proaches, which are interspersed and grouped by the

amount of over-provisioned capacity. (Thus, for a given

capacity, it is easy to see the impact of the container-

optimized approach.)

For both groups, a larger OP space results in lower

EPBPD, because the need for GC to reclaim new space

becomes less urgent than a flash equipped with relatively

smaller OP space. This effect is more significant for M+,

as M+ manages data placement in a container-oblivious

manner; this results in more GCs, which in turn cause

larger write amplification (more internal writes at the

FTL level). We observe that for a 1% cache size, C

with 10% OP incurs fewer erasures than M+ with 25%

OP. This is because C consolidates blocks that would be

removed at roughly the same time, resulting in signif-

icantly fewer internal (CF) flash writes. C also avoids

CF of most blocks that get evicted before reaccess. With

the largest cache, however, the relative benefit from ad-

ditional overprovisioning is nominal. Again, Figure 8(b)

demonstrates that the variation across traces exists; and

11

390 2016 USENIX Annual Technical Conference USENIX Association

 0

 10

 20

 30

 40

 50

 60

 70

1% 2.5% 5% 10%

R
e
a
d
 h

it
 r

a
ti
o
 (

%
)

Cache size

(a) Read hit ratio

M25% C25% M50% C50% M75% C75% M+ C

 0.1

 1

 10

 100

1% 2.5% 5% 10%

E
P

B
P

D

Cache size

(b) EPBPD

 0

 0.2

 0.4

 0.6

 0.8

 1

1% 2.5% 5% 10%

W
F

U
E

Cache size

(c) WFUE (α=0.2)

 0

 0.2

 0.4

 0.6

 0.8

 1

1% 2.5% 5% 10%

W
F

U
E

Cache size

(d) WFUE (α=0.8)

Figure 9: Trade-offs when limiting erasures: WFUE as a func-

tion of algorithm, EPBPD quota, cache size, and α weights.

it is just a matter of how many more erasures each trace

incurs, compared to the best case.

6.3 Throttling Flash Writes

Thus far the evaluation has focused on O1, optimiz-

ing first for RHR and second for EPBPD. If erasures

are more important, we can limit flash writes to reduce

EPBPD at some cost to hit rate. Recall that O2 tries to

maximize RHR subject to a specific limit, whereas O3

tries to optimize WFUE given a particular weight of the

importance of RHR relative to EPBPD.

Figure 9 demonstrates the effect of CT , which uses the

admission control logic described in §3.5 to meet a spe-

cific EPBPD limit. It removes insertions with the least

impact (i.e., blocks with least number of read hits) on

RHR to meet the endurance goal. Figure 9 shows the re-

sults averaged across all traces when varying the EPBPD

quota for a trace from 25%–75% of the EPBPD neces-

sary for M or C respectively; this represents a reasonable

range of user requirements on flash lifespan in real-world

cases. For each cache size there are eight bars, with pairs

of MT and CT algorithms as the threshold varies from

25% to 100% of total erasures. (The limits for MT and

CT are set differently, since the maximum values vary.)

We observe in Figure 9(a) that for big cache sizes

(5% and 10%) the RHR loss is about 39% for the 25%

EPBPD quota. The gap reduces to 13% for the 75%

EPBPD quota. As expected and shown in Figure 9(b),

overall EPBPD decreases as the threshold is lowered,

while CT moderately improves upon MT .

For WFUE, one question is what an appropriate

weight α would be. Figures 9(c) and (d) plot the same

algorithms but report WFUE using α = 0.2 and α = 0.8

(this prioritizes erasures and hit rates respectively). With

α = 0.2, the erasure savings dominate. Hence, M25%

and C25% achieve the highest WFUE scores while M+

 0

 10

 20

 30

 40

 50

 60

 70

1% 2.5% 5% 10%

R
e

a
d

 h
it
 r

a
ti
o

 (
%

)

Cache size

(a) Read hit ratio

M3 C3 M2 C2 M+ C

 0.1

 1

 10

 100

1% 2.5% 5% 10%

E
P

B
P

D

Cache size

(b) EPBPD

Figure 10: Trade-offs in read hit based insertion removals.

and C see lower ones. Prioritizing RHR gives M+ and

C the highest WFUE across all variants. CT consis-

tently outperforms the corresponding MT because it can

avoid most wasted CFs and because it groups by eviction

timestamp (see §6.1).

Figure 10 shows the effect of limiting flash insertions

to blocks that are reread ≥ N times. It plots M+ (which

is equivalent to M1), M2, and M3, as well as the corre-

sponding container-optimized C algorithms. Results for

RHR and EPBPD are averaged across all 34 traces. For

small cache sizes (1% and 2.5%), C2 loses an average of

41% of the RHR (Figure 10(a)), but it gets about a 79%

savings in EPBPD (Figure 10(b)). Prioritizing erasures

and RHR shows similar trends as the WFUE results in

read hit based insertion removal tests (Figures 9(c) and

(d)), hence are omitted due to space constraints.

7 Conclusion and Future Work

While it is challenging to optimize for both RHR and

endurance (represented by EPBPD) simultaneously, we

have presented a set of techniques to improve endurance

while keeping the best possible RHR, or conversely,

trade off RHR to limit the impact on endurance. In par-

ticular, our container-optimized heuristic can maintain

the maximal RHR while reducing flash writes caused by

garbage collection; we see improvements of 55%–67%

over MIN and 6%–40% over the improved M+, which

avoids many wasted writes and uses TRIM to reduce GC

overheads. Another important finding in our study indi-

cates that simple techniques such as R1 and TRIM pro-

vide most of the benefit in minimizing erasures. Alter-

natively, the flash writes can be limited to those that are

rereferenced a minimum number of times. We define a

new metric, Weighted Flash Usage Effectiveness, which

uses the offline best case as a baseline to evaluate trade-

offs between RHR and EPBPD quantitatively.

In the future, we would like to investigate the com-

plexity of the various algorithms (we believe them to

be NP-hard). Exploring approaches to improving on-

line flash caching algorithms is also part of our future

work. We are particularly interested in heuristics to trade

off one cache hit against another to further reduce cache

writes without impacting RHR.

12

USENIX Association 2016 USENIX Annual Technical Conference 391

Acknowledgments

We are grateful to our shepherd, Dan Tsafrir, as well

as the anonymous reviewers, for their valuable com-

ments and suggestions that helped improve the paper. We

would also like to thank Dan Arnon, Cheng Li, Stephen

Manley, Darren Sawyer, and Kevin Xu for their general

feedback, and Prof. Sanjeev Arora from Princeton Uni-

versity, and his students, Holden Lee, Fermi Ma, Karen

Singh, and Cyril Zhang, for discussions on algorithm

complexities. This work was supported in part by NSF

award CNS-1149232.

References

[1] Susanne Albers, Sanjeev Arora, and Sanjeev

Khanna. Page replacement for general caching

problems. In Proceedings of the ACM-SIAM Sym-

posium on Discrete Algorithms (SODA’99), 1999.

[2] L. A. Belady. A study of replacement algo-

rithms for a virtual-storage computer. IBM Syst. J.,

5(2):78–101, June 1966.

[3] Avraham Ben-Aroya and Sivan Toledo. Compet-

itive analysis of flash memory algorithms. ACM

Trans. Algorithms, 7(2):1–37, March 2011.

[4] M. Brehob, S. Wagner, E. Torng, and R. En-

body. Optimal replacement is np-hard for nonstan-

dard caches. Computers, IEEE Transactions on,

53(1):73–76, Jan 2004.

[5] Ali R. Butt, Chris Gniady, and Y. Charlie Hu. The

performance impact of kernel prefetching on buffer

cache replacement algorithms. In Proceedings of

the ACM SIGMETRICS International Conference

on Measurement and Modeling of Computer Sys-

tems (SIGMETRICS’05), 2005.

[6] Marek Chrobak, Gerhard J. Woeginger, Kazuhisa

Makino, and Haifeng Xu. Caching is hard—even

in the fault model. Algorithmica, 63(4):781–794,

2012.

[7] Biplob Debnath, Sudipta Sengupta, and Jin Li.

Flashstore: High throughput persistent key-value

store. Proceedings of the VLDB Endowment, 3(1-

2):1414–1425, September 2010.

[8] Facebook Flashcache.

https://github.com/facebook/flashcache.

[9] Ziqi Fan, David HC Du, and Doug Voigt. H-

arc: A non-volatile memory based cache policy

for solid state drives. In Proceedings of the 30th

Mass Storage Systems and Technologies Sympo-

sium (MSST’14). IEEE, 2014.

[10] Binny S. Gill. On multi-level exclusive caching:

Offline optimality and why promotions are bet-

ter than demotions. In Proceedings of the 6th

USENIX Conference on File and Storage Technolo-

gies (FAST’08), February 2008.

[11] Chris Gniady, Ali R. Butt, and Y. Charlie Hu.

Program-counter-based pattern classification in

buffer caching. In Proceedings of the 6th USENIX

Conference on Symposium on Operating Systems

Design & Implementation (OSDI’04), 2004.

[12] GNU Parallel. http://www.gnu.org/

software/parallel/.

[13] David A. Holland, Elaine Angelino, Gideon Wald,

and Margo I. Seltzer. Flash caching on the storage

client. In Proceedings of the USENIX Annual Tech-

nical Conference (ATC’13), 2013.

[14] L. P. Horwitz, R. M. Karp, R. E. Miller, and

S. Winograd. Index register allocation. J. ACM,

13(1):43–61, January 1966.

[15] Sai Huang, Qingsong Wei, Jianxi Chen, Cheng

Chen, and Dan Feng. Improving flash-based disk

cache with lazy adaptive replacement. In Proceed-

ings of the IEEE 29th Symposium on Mass Storage

Systems and Technologies (MSST’13), May 2013.

[16] Jffs2: The journalling flash file system, version 2.

https://sourceware.org/jffs2/.

[17] Ramakrishna Karedla, J Spencer Love, and

Bradley G Wherry. Caching strategies to improve

disk system performance. Computer, 27(3):38–46,

1994.

[18] S. Kavalanekar, B. Worthington, Qi Zhang, and

V. Sharda. Characterization of storage workload

traces from production windows servers. In Pro-

ceedings of the IEEE International Symposium on

Workload Characterization (IISWC’08), Sept 2008.

[19] Ricardo Koller, Leonardo Marmol, Raju Ran-

gaswami, Swaminathan Sundararaman, Nisha Ta-

lagala, and Ming Zhao. Write policies for host-

side flash caches. In Proceedings of the 11th

USENIX Conference on File and Storage Technolo-

gies (FAST’13), February 2013.

[20] Changman Lee, Dongho Sim, Jooyoung Hwang,

and Sangyeun Cho. F2fs: A new file system

for flash storage. In Proceedings of the 13th

USENIX Conference on File and Storage Technolo-

gies (FAST’15), February 2015.

[21] Sungjin Lee, Ming Liu, Sangwoo Jun, Shuotao Xu,

Jihong Kim, and Arvind. Application-managed

flash. In Proceedings of the 14th USENIX Confer-

13

392 2016 USENIX Annual Technical Conference USENIX Association

ence on File and Storage Technologies (FAST’16),

February 2016.

[22] Cheng Li, Philip Shilane, Fred Douglis, Hyong

Shim, Stephen Smaldone, and Grant Wallace. Ni-

tro: A capacity-optimized ssd cache for primary

storage. In Proceedings of the USENIX Annual

Technical Conference (ATC’14), June 2014.

[23] Cheng Li, Philip Shilane, Fred Douglis, and Grant

Wallace. Pannier: A container-based flash cache

for compound objects. In Proceedings of the

16th International Middleware Conference (Mid-

dleware’15), December 2015.

[24] Leonardo Marmol, Swaminathan Sundararaman,

Nisha Talagala, Raju Rangaswami, Sushma Deven-

drappa, Bharath Ramsundar, and Sriram Ganesan.

Nvmkv: A scalable and lightweight flash aware

key-value store. In Proceedings of the 6th USENIX

Workshop on Hot Topics in Storage and File Sys-

tems (HotStorage’14), June 2014.

[25] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L.

Traiger. Evaluation techniques for storage hierar-

chies. IBM Syst. J., 9(2):78–117, June 1970.

[26] Lyle A. McGeoch and Daniel D. Sleator. A strongly

competitive randomized paging algorithm. Algo-

rithmica, 6(1-6):816–825, 1991.

[27] Micron MLC SSD Specification. http://www.

micron.com/products/nand-flash, 2013.

[28] Dushyanth Narayanan, Austin Donnelly, and

Antony Rowstron. Write off-loading: Practical

power management for enterprise storage. In Pro-

ceedings of 6th USENIX Conference on File and

Storage Technologies (FAST’08), February 2008.

[29] Yongseok Oh, Jongmoo Choi, Donghee Lee, and

Sam H. Noh. Caching less for better performance:

Balancing cache size and update cost of flash mem-

ory cache in hybrid storage systems. In Proceed-

ings of the 10th USENIX Conference on File and

Storage Technologies (FAST’12), February 2012.

[30] Yongseok Oh, Eunjae Lee, Choulseung Hyun,

Jongmoo Choi, Donghee Lee, and Sam H. Noh. En-

abling cost-effective flash based caching with an ar-

ray of commodity ssds. In Proceedings of the 16th

Annual Middleware Conference (Middleware’15),

December 2015.

[31] Jian Ouyang, Shiding Lin, Song Jiang, Zhenyu

Hou, Yong Wang, and Yuanzheng Wang. Sdf:

Software-defined flash for web-scale internet stor-

age systems. In Proceedings of the 19th Inter-

national Conference on Architectural Support for

Programming Languages and Operating Systems
(ASPLOS’14). ACM, 2014.

[32] Dai Qin, Angela Demke Brown, and Ashvin Goel.

Reliable writeback for client-side flash caches. In

Proceedings of the USENIX Annual Technical Con-

ference (ATC’14), June 2014.

[33] Samsung Server SSD Specification. http://www.

samsung.com/serverssd/, 2015.

[34] SanDisk SATA Solid State Drives.

http://www.sandisk.com/enterprise/

sata-ssd/, 2015.

[35] Ricardo Santana, Steven Lyons, Ricardo Koller,

Raju Rangaswami, and Jason Liu. To ARC or not to

ARC. In Proceedings of the 7th USENIX Workshop

on Hot Topics in Storage and File Systems (Hot-

Storage’15), July 2015.

[36] Mohit Saxena, Michael M. Swift, and Yiying

Zhang. Flashtier: A lightweight, consistent and

durable storage cache. In Proceedings of the 7th

ACM European Conference on Computer Systems

(EuroSys’12), 2012.

[37] Hyong Shim, Philip Shilane, and Windsor Hsu.

Characterization of incremental data changes for

efficient data protection. In Proceedings of the

USENIX Annual Technical Conference (ATC’13),

2013.

[38] Linpeng Tang, Qi Huang, Wyatt Lloyd, Sanjeev

Kumar, and Kai Li. Ripq: Advanced photo caching

on flash for facebook. In Proceedings of the 13th

USENIX Conference on File and Storage Technolo-

gies (FAST’15), February 2015.

[39] Olivier Temam. Investigating optimal local mem-

ory performance. In Proceedings of the Eighth

International Conference on Architectural Support

for Programming Languages and Operating Sys-

tems (ASPLOS-VIII). ACM, 1998.

[40] TRIM Specification. ATA/ATAPI Command Set- 2

(ACS-2). http://www.t13.org/.

[41] Yaffs (Yet Another Flash File System).

http://www.yaffs.net/.

[42] Jingpei Yang, Ned Plasson, Greg Gillis, and Nisha

Talagala. Hec: Improving endurance of high per-

formance flash-based cache devices. In Proceed-

ings of the 6th International Systems and Storage

Conference (SYSTOR’13). ACM, 2013.

[43] Yifeng Zhu and Hong Jiang. Race: A robust adap-

tive caching strategy for buffer cache. IEEE Trans.

Comput., 57(1):25–40, January 2008.

14

