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Abstract 
Device drivers may encounter errors when communi-
cating with OS kernel and hardware. However, error 
handling code often gets insufficient attention in driver 
development and testing, because these errors rarely 
occur in real execution. For this reason, many bugs are 
hidden in error handling code. Previous approaches for 
testing error handling code often neglect the characteris-
tics of device drivers, so their efficiency and accuracy 
are limited. In this paper, we first study the source code 
of Linux drivers to find useful characteristics of error 
handling code. Then we use these characteristics in fault 
injection testing, and propose a novel approach named 
EH-Test, which can efficiently test error handling code 
in drivers. To improve the representativeness of injected 
faults, we design a pattern-based extraction strategy to 
automatically and accurately extract target functions 
which can actually fail and trigger error handling code. 
During execution, we use a monitor to record runtime 
information and pair checkers to check resource usages. 
We have evaluated EH-Test on 15 real Linux device 
drivers and found 50 new bugs in Linux 3.17.2. The 
code coverage is also effectively increased. Comparison 
experiments to previous related approaches also show 
the effectiveness of EH-Test. 

1. Introduction 
As important components of the operating system, de-
vice drivers control hardware and provide fundamental 
supports for high-level programs. During driver execu-
tion, different kinds of occasional errors may occur, 
such as kernel exceptions and hardware malfunctions 
[31]. Therefore, device drivers need error handling code 
to assure reliability. But in some drivers, error handling 
code is incorrect or even missed. In these drivers, seri-
ous problems like system crashes and hangs may occur 
when occasional errors are triggered. According to our 
study on Linux driver patches, more than 40% of ac-
cepted patches add or update corresponding error han-
dling code. It shows that error handling code in device 
drivers is not reliable enough, so testing error handling 
code and detecting bugs inside are very necessary. 

A challenge of testing error handling code is that oc-
casional errors are infrequent to happen in real execu-

tion [34]. For example, “bad address” (EFAULT) is a 
common error should be handled, but it happens only 
when the memory or I/O address is invalid. Another 
example is hardware error, which happens only when 
the hardware malfunctions. Triggering these errors in 
real environment is very hard and uncontrollable. 

To simulate software and hardware errors at runtime, 
software fault injection (SFI) is often used in driver 
testing. This technique mutates the code to inject specif-
ic errors into the program, and enforces error handling 
code to be executed at runtime. Linux Fault Injection 
Capabilities Infrastructure (LFICI) [43] is a well-known 
project integrated in Linux kernel. It can simulate com-
mon errors, such as memory-allocation failures and bad 
data requests. Inspired by LFICI, other fault injection 
approaches [7, 13, 23, 32] have been proposed in recent 
years, and they have shown promising results in driver 
testing and bug detection. However, these approaches 
still have some limitations in practical use.  
 The representativeness of injected faults is often 

neglected, and most injected faults are random or 
manually selected. Random faults can not reflect 
real errors well. Manually selected faults often omit 
representative injected faults.  

 Numerous redundant test cases are generated. In 
fact, many generated test cases may cover the same 
error handling code, but they all need to be actually 
tested at runtime. For this reason, they often spend 
much time in runtime testing.  

 Only several kinds of faults can be injected, such as 
memory-allocation failures. But these faults can not 
cover most error handling code in drivers. 

 Much manual effort is needed. The kinds and plac-
es of injected faults are often manually decided. 

In fact, previous fault injection approaches aim to 
support general software, but they neglect the character-
istics of target programs. To relieve their limitations, we 
should consider the key driver characteristics in SFI. 
For example, because drivers are often written in C, so 
built-in error handling mechanisms (such as “try-catch”) 
are not supported. For this reason, the developers often 
use an if check to decide whether the error handling 
code should be triggered in device drivers. This charac-
teristic can help to decide which functions can actually 
fail and should be fault-injected. 
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In this paper, we first study Linux driver code, and 
find three useful characteristics in error handling code: 
function return value trigger, few branches and check 
decision. Then based on these characteristics and SFI, 
we propose a practical approach named EH-Test 1  to 
efficiently test error handling code and detect bugs in-
side. Firstly, EH-Test uses a pattern-based extraction 
strategy to extract target functions which can fail from 
the captured runtime traces of normal execution. This 
strategy can automatically and accurately extract real 
target functions to improve the representativeness of 
inject faults. Then, we generate test cases by corrupting 
the return values of target functions. Next, we run each 
test case on the real hardware, and use a monitor to rec-
ord runtime information and pair checkers to check re-
source-usage violations. These pair checkers contain the 
basic information of resource-acquiring and resource-
releasing functions, which can be obtained from specifi-
cation mining techniques [18, 20, 37, 38] and user con-
figuration. During driver execution, system crashes and 
hangs can be easily identified through kernel crash logs 
or user observation. After driver execution, EH-Test 
can report resource-release omissions. We have imple-
mented EH-Test using LLVM, and evaluated it on 15 
Linux drivers of three classes. The results show that 
EH-Test can accurately find real bugs in error handling 
code and improve code coverage in runtime testing. 
Comparison experiments to previous approaches also 
show its effectiveness. 

Compared to previous SFI approaches for testing 
drivers, our approach have four advantages: 

1) Representative injected faults. We design a pat-
tern-based extraction strategy to automatically and ac-
curately extract real target functions as representative 
injected faults. It uses code patterns to decide whether a 
function can actually fail in driver execution. This strat-
egy can largely improve the effectiveness of SFI. 

2) Efficient test cases. According to our study, many 
drivers have few branches in error handling code, so 
injecting a single fault in each test case is enough to 
cover most error handling code. Moreover, our pattern-
based extraction strategy can filter many unrepresenta-
tive injected faults. Therefore, the test cases generated 
by EH-Test are efficient, and the time usage of runtime 
testing can be largely shortened. 

3) Accurate bug detection. By injecting representa-
tive faults, EH-Test can realistically simulate different 
kinds of occasional errors to cover error handling code. 
Moreover, EH-Test runs on the real hardware and uses 
exact execution information to perform analysis. These 
points assure the accuracy of bug detection. 
                                                                                              

1 EH-Test program can be downloaded from the link: 
http://oslab.cs.tsinghua.edu.cn/EHTest/index.html 

4) High automation and scalability. Most working 
procedure of EH-Test is automated, including target-
function extraction, fault injection and test-case execu-
tion. And it can support many kinds of existing drivers. 

In this paper, we make the following contributions: 
 We study the source code of Linux device drivers, 

and find three useful characteristics in error han-
dling code. 

 Based on the patterns of error handling code in 
drivers, we design a pattern-based extraction strate-
gy to automatically and accurately real target func-
tions as representative injected faults. 

 Based on the characteristics, we design a practical 
approach named EH-Test, which can efficiently test 
error handling code in device drivers and detect 
bugs inside. 

 We evaluate EH-Test on 15 device drivers in Linux 
3.1.1 and 3.17.2, and respectively find 32 and 50 
bugs. All the detected bugs in 3.17.2 have been 
confirmed by developers. The code coverage is also 
effectively increased in runtime testing. We also 
perform comparison experiments to previous ap-
proaches, and find that EH-Test can detect the bugs 
which are missed by them. The experimental results 
show that EH-Test can efficiently perform driver 
testing and accurately find real bugs. 

The rest of this paper is organized as follows. Section 
2 introduces the motivation. Section 3 presents the three 
characteristics of device drivers found by our study on 
Linux driver code. Section 4 presents our pattern-based 
extraction strategy. Section 5 introduces EH-Test in 
detail. Section 6 shows our evaluation on 15 Linux de-
vice drivers and comparison experiments to previous 
approaches. Section 7 introduces the related work and 
Section 8 concludes this paper. 

2. Motivation 
To ensure the reliability of device drivers, error han-
dling code should be correctly implemented to handle 
different kinds of occasional errors. But in fact, error 
handling code is incorrect or even missed in some driv-
ers, so hard-to-find bugs may occur during execution. In 
this section, we first reveal this problem using a con-
crete example and our study on Linux driver patches, 
and then we sketch the software fault injection tech-
nique used in this paper. 

2.1 Motivating Example 
We first motivate our work using a real Linux driver 
bnx2. This driver manages Broadcom NetXtreme II 
Ethernet Controller. Figure 1 shows a part of its source 
code in Linux 3.1.1. The function bnx2_init_board calls 
pci_request_regions (line 7906) to request PCI I/O and 
memory resources when initializing the hardware. If an 
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Path: linux-3.1.1/drivers/net/bnx2.c 
7869. static int __devinit bnx2_init_board(….) 
7870. { 

…… 
7885.       bp->temp_stats_blk = kzalloc(…); 

…… 
7906.       rc = pci_request_regions(pdev, …); 

…… 
7937.       bp->regview = ioremap_nocache(…); 
7938.       if (!bp->regview) { 
7939.            dev_err(“Cannot map register space, aborting\n”); 
7940.            rx = -ENOMEM; 
7940.            goto err_out_release; 
7941.       } 

…… 
8247. err_out_release: 
8248.      pci_release_regions(pdev); 
8249. err_out_disable: 
8250.       pci_disable_device(pdev); 
8251.       pci_set_drvdata(pdev, NULL); 
8252. err_out: 
8253.       return rc; 
8254. } 

 

occasional error occurs when mapping bus memory into 
CPU, the function ioremap_nocache (line 7937) will 
fail and return NULL. In this situation, the driver calls 
pci_release_regions (line 8248) to release allocated 
resources in error handling code. Reviewing the code, 
the function kzalloc (line 7885) is called to allocate 
kernel-space memory. But this memory is not freed in 
error handling code, so a memory leak occurs. In fact, 
this bug still remains in Linux 3.17.2. 

In this example, we have three findings. Firstly, error 
handling code in drivers is often used to release allocat-
ed resources and undo recent operations [30]. It is be-
cause that many drivers are based on the fail-stop model 
[33], namely a simple error can force the driver to exit. 
Due to this feature, many bugs in error handling are 
related to resource-usage violations, such as resource 
leaks and deadlocks. Secondly, error handling code is 
often written in a separate segment in drivers (line 
8274-8253 in Figure 1 is an example), and different 
“goto” target labels handle different errors.  This goto-
based strategy is recommended by the Linux kernel 
documentation [44], because this strategy can simplify 
error handling logic and reduce repeated code. Thirdly, 
bugs in error handling code are hard-to-find. It is be-
cause that error handling code is rarely executed, and 
maintainers pay insufficient attention to it. In the exam-
ple, from Linux 3.1.1 (released in November 2011) to 
3.17.2 (released in October 2014), the memory leak in 
Figure 1 had not been fixed. Thus, it is very necessary 
to reveal and detect bugs in error handling code. 

Figure 1: Part of the bnx2 driver code in Linux 3.1.1. 

Driver Class Accepted Patches Error Handling 

I2C 29 13 (44.83%) 
PCI 38 13 (34.21%) 

PowePC 42 11 (26.19%) 
RTC 24 8 (33.33%) 

Network 598 253 (42.31%) 
Total 731 298 (40.77%) 

Table 1: Study result of Linux driver patches. 
2.2 Study on Linux Patches 
To clearly illustrate the reliability of current error han-
dling code in device drivers, we make a study on Linux 
driver patches. We manually read patches in the Patch-
work project2 and select accepted patches from them in 
July 2015. These patches are from 5 driver classes, 
namely I2C bus drivers, PCI bus drivers, PowerPC 
drivers, real-time clock (RTC) drivers and network 
drivers. Among them, we identify those which add or 
update corresponding error handling code. The result is 
listed in Table 1. The first column presents the driver 
class name; the second column shows the number of 
accepted patches; the third column shows the number 
and percentage of accepted patches add or update corre-
sponding error handling code. 

From Table 1, we find that 40% accepted patches add 
or update corresponding error handling code. In these 
accepted patches, many are used to fix common bugs, 
such as memory leaks and null pointer dereferences. 
One reason for this phenomenon is that complex control 
flows and different kinds of occasional errors make it 
difficult to implement correct error handling code. An-
other reason is that error handling code is often trig-
gered by specific and infrequent conditions (such as 
insufficient memory and hardware errors), so develop-
ers hardly test it well at runtime. 

In brief, current error handling code in device drivers 
is not reliable enough as we expected, and many bugs 
are hidden in it. Once these bugs are triggered, serious 
system problems may occur, such as crashes and re-
source leaks. Therefore, it is important and necessary to 
test error handling code in device drivers and detect 
bugs inside. 

2.3 Software Fault Injection 
Software fault injection (SFI) is a widely used technique 
of testing error handling code. It intentionally introduc-
es faults or occasional errors into the program, and then 
tests whether the program can correctly handle the in-
jected faults or errors at runtime. In this paper, we use 
SFI to test drivers and detect bugs. To help better un-
derstand this paper, we explain several terms about SFI. 
                                                                                              

2 Patchwork project. http://patchwork.ozlabs.org/ 
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Fault Injection. We inject faults or errors to make error 
handling code executed at runtime. In this paper, fault 
injection and error injection [17] can be identical, and 
injected faults can also be called injected errors. As 
shown in Figure 1, we can inject a fault or error to make 
the function ioremap_nocache (line 7937) fail, and let 
its error handling code (line 8247-8253) executed. 
Fault Representativeness. It reflects whether an in-
jected fault can represent a real fault or error to trigger 
error handling code. If the injected fault is representa-
tive, it means that this fault or error can occur in real 
execution, so the bugs detected in this situation can be 
regarded as real bugs. Otherwise, the detected bugs are 
very probably false. Fault representativeness is a key 
factor, and it decides the effectiveness of SFI [24]. 
Target Function. A target function is a called function 
which can fail and trigger error handling code, so it 
should be fault-injected in SFI. A target function can be 
a kernel interface or defined in the driver code. If a tar-
get function is real, its failure can be a representative 
injected fault, because its failure can cause a real error 
and actually trigger error handling code. Namely, the 
realness of target functions largely decides the fault 
representativeness of SFI. For example in Figure 1, the 
function ioremap_nocache can actually fail and return a 
null pointer to trigger error handling code, so it is a real 
target function. 
False Positive. There are two kinds of false positives in 
this paper. One is the false positive of fault representa-
tiveness, which is the injected fault that can not actually 
trigger error handling code. The other is the false posi-
tive of bug detection, which is the false detected bug. 

Driver Class Number “Goto” Statement Return Value 
Wireless 116 5109 3757 (73.54%) 
Ethernet 219 6749 5192 (76.93%) 
Block 56 1322 1005 (76.02%) 

Bluetooth 21 121 89 (73.56%) 
Clock 117 260 213 (81.92%) 
PCI 51 467 351 (75.16%) 
USB 268 4148 2971 (71.62%) 
Total 848 18176 13578 (74.70%) 

Table 2: Study result of “goto” statements. 

Driver Class Number Error handling Without Branch 
Wireless 116 3903 3111 (79.71%) 
Ethernet 219 2587 1941 (75.03%) 
Block 56 149 127 (85.23%) 

Bluetooth 21 330 239 (72.42%) 
Clock 117 467 422 (90.36%) 
PCI 51 470 371 (78.94%) 
USB 268 701 493 (70.32%) 
Total 848 8607 6704 (77.89%) 

Table 3: Study result of branches in error handling code. 

3. Characteristics 
Previous SFI approaches often have limitations in prac-
tical use, such as reporting many false bugs and needing 
much manual effort. One reason is that they are often 
used for general software, but neglect key characteris-
tics of device drivers. To improve SFI in testing drivers, 
we first study the source code of Linux device drivers to 
find key characteristics of error handling code. 

3.1 Function Return Value Trigger 
Occasional errors in drivers are often triggered with the 
function failures, which are reflected as bad return val-
ues (null pointers or negative integers of error codes). 
As shown in Figure 1, when an error occurs in memory 
mapping, ioremap_nocache returns a null pointer. In 
the example, we find that error handling code is trig-
gered by a bad function return value. To know about 
the proportion of this specific form, we write a program 
to automatically analyze the source code of 848 Linux 
(version 3.17.2) device drivers from 7 driver classes. 
These driver classes are all commonly used, so the 
study result on them can be applicative to most drivers. 
In the study, we search for “goto” statements in the 
code, because they are often the entries of error han-
dling code according to the goto-based strategy [30]. 
The result is shown in Table 2. The first column shows 
the driver class name; the second column shows the 
number of drivers in each class; the third column shows 
the number of “goto” statements; the fourth column 
shows the number and proportion of “goto” statements 
in the “if” branches of bad function return values. 

From Table 2, we find that about 75% of “goto” 
statements are in the “if” branches of bad function re-
turn values. It indicates that most error handling code in 
device drivers is triggered by bad function return values. 
There are two common data types of function return 
values in device drivers, namely pointer and integer. 
According to the Linux kernel documentation [44], a 
null pointer or non-zero integer indicates the operation 
failure. Moreover, different non-zero integers represent 
different failure types. For example, -EIO indicates an 
input/output error and -ENODEV indicates no such 
device. As for the remaining 25% “goto” statements, 
they are triggered by data failures in the code, such as 
erroneous data read from registers and bad device states. 

3.2 Few Branches 
In user-mode applications, error handling code often 
contains many if branches [39]. The main reason is that 
most user-mode applications are based on fail-recovery 
model. During recovery, error handling code should 
handle other errors. Therefore, multiple faults need to 
be injected in user-mode applications to cover most 
error handling code in runtime testing. 
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Procedure: Pattern-based extraction strategy 
1: func_set := ø; cand_set := ø;  fault_set := ø; 
2: func_set := called functions in normal execution traces; 
3: foreach  func  in  func_set  do 
4: if  GetRetType(func) == integer or pointer  then 
5: AddSet(cand_set, func); 
6: end if 
7 end foreach 
8: foreach  func  in  cand_set  do 
9: if  func’s RetVal is checked by “if” in the driver  then 

10: AddSet(fault_set, func); 
11: else if  func’s RetVal is checked in other drivers  then 
12: AddSet(fault_set, func); 
13: else if  func’s RetVal is specified to be checked  then 
14: AddSet(fault_set, func); 
15: end if 
16: end foreach 

Figure 2: Procedure of extracting target functions. 

Different from user-mode applications, many device 
drivers are based on the fail-stop model [33]. Namely, 
when an error occurs, the driver only handles it and 
prepares to exit, but other errors are never handled at 
that time. Thus, there are few if branches in error han-
dling code of device drivers. To validate this character-
istic, we also write a program to automatically analyze 
the source code of these 848 Linux drivers. In the study, 
we first filter out all annotations and blank lines, and 
then count source code lines with and without if branch-
es in error handling code. The result is shown in Table 3. 
The first column shows the driver class name; the se-
cond column shows the number of drivers in each class; 
the third column presents the number of source code 
lines in error handling code; the fourth column presents 
the number and proportion of source code lines without 
if branches in error handling code. 

From Table 3, we can see that nearly 78% of error 
handling code is not in if branches in these drivers. It 
indicates that injecting a single fault in each test case is 
enough to cover most error handling code. This charac-
teristic can help to simplify the complexity of injected 
faults and improve the efficiency of SFI. The remaining 
22% error handling code is in if branches because dif-
ferent resource-usage states or device states need to be 
separately handled in the same error handling code. 

This characteristic commonly exists in fail-stop driv-
ers. However, some drivers like SATA are based on the 
fail-recovery model, namely they will restart when an 
error occurs. Thus, many branches are needed to handle 
the recovery procedure. For these drivers, injecting a 
single fault is not enough to cover most error handling 
code. In this paper, we mainly focus on fail-stop drivers, 
because they occupy a large part of existing drivers [34].  

3.3 Check Decision 
Linux drivers are often implemented in C, so built-in 
error handling mechanisms (such as “try-catch”) are not 
supported. To check whether an occasional error occur, 
an if check is often used in the source code. The if 
statement checks whether the key data is erroneous and 
decides whether error handling code should be executed. 
This key data can be a common variable or a function 
return value. Thus, the characteristic in Section 3.1 can 
be regarded as an aspect of it. For example in Table 2, 
all “goto” statements triggered by bad function return 
values are in if checks. Particularly, most if checks for 
function return values only check whether the value is a 
null pointer or non-zero integer (line 7938 in Figure 1 is 
an example). Namely, different bad function return val-
ues are often handled by the same error handling code. 

This if check decision characteristic is also recom-
mended by the Linux kernel documentation [44]. It can 

help us inject more representative and efficient faults 
for SFI. Specifically, we can inject faults in the data 
checked by these if checks, to simulate more realistic 
errors in device drivers. 

4. Pattern-based Extraction 
The representativeness of injected faults is a key factor 
of SFI [24]. This property largely determines the accu-
racy of bug detection and the efficiency of runtime test-
ing. Injecting representative faults can simulate realistic 
errors to trigger real error handling, so detected bugs 
are very probably real. Meanwhile, useless test cases 
are less generated when the injected faults are repre-
sentative, so the time usage can be largely reduced. 

A common strategy is to inject random faults, which 
has been used in many previous SFI approaches [11, 14, 
21, 22]. But some studies [15, 17, 24] have proved this 
strategy can not well represent real errors, and they also 
introduces many false positives in bug detection. Be-
cause most error handling code in drivers is triggered by 
bad function return values (in Section 3.1), it is feasible 
to inject faults in some manually selected target func-
tions which can fail at runtime. This strategy has been 
used in some previous approaches [7, 32, 43] to test 
drivers, but it has three problems. Firstly, new target 
functions should be manually selected when testing a 
new driver. Secondly, it is hard to assure the selected 
target functions can actually trigger realistic errors at 
runtime. Thirdly, many real target functions may be 
omitted in manual selection. 

Based on the characteristics mentioned in Section 3.1 
and 3.3, we propose a pattern-based extraction strategy 
to automatically and accurately extract real target func-
tions from the source code. Figure 2 shows the main 
procedure of this strategy, which consists of two phases. 
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Figure 3: Overall architecture of EH-Test. 

Firstly, we run the driver normally on the hardware, and 
record the runtime traces during normal execution. All 
functions whose return values are pointers and integers 
are selected from the recorded runtime traces. These 
functions are regarded as candidate functions for fault 
injection. Secondly, for each candidate function, we 
judge whether it can trigger a realistic error. According 
to the code patterns of Linux device drivers, a candidate 
function can be regarded as a real target function under 
three patterns. 
Pattern 1. The return value of the candidate function is 
checked by an if statement in the driver. Because an if 
check is often used to decide whether error handling 
code should be triggered (in Section 3.3). In most cases, 
this if check is often closely behind the function call. 
Pattern 2. The return value of the candidate function is 
checked in other drivers. In some cases, the developer 
may forget to check the return value of a certain func-
tion in the driver. But this function’s bad return value 
can be deemed to trigger a realistic error, when it is 
checked by an if statement in other drivers. 
Pattern 3. The return values of some kernel interface 
functions are clearly specified to be checked in their 
declarations or annotations, because they can trigger 
errors. For example in the Linux kernel code, a specific 
macro “__must_check” is defined. If this macro is noted 
in the declaration of a function, its return value must be 
checked. The function pci_request_regions in Figure 1 
uses this macro. Besides, some key phrases in the func-
tion annotation also indicate the function return value 
should be checked. Therefore, the declaration and anno-
tation of candidate functions should be checked as well. 

This strategy has three advantages. Firstly, when the 
driver source code and hardware are available, this 
strategy can automatically extract target functions with-
out manual effort. Secondly, by using exact runtime 
information and common code patterns, many unreal 
target functions are filtered out. Thirdly, no real target 
functions in the captured runtime traces are omitted. By 
using this strategy, we can automatically and accurately 
extract real target functions as representative injected 
faults to improve the effectiveness of SFI. 

5. Approach 
To efficiently test error handling code in device drivers, 
we propose EH-Test based on driver characteristics, 
code instrumentation and dynamic analysis. Figure 3 
shows the overall architecture of EH-Test, which con-
sists of five modules: 
 Fault extractor. This module uses the pattern-

based extraction strategy to automatically extract 
target functions. It needs the source code of the tar-
get driver, other drivers and kernel interface func-
tions as input, which can be obtained from the OS 
source code. 

 Fault injector. This module uses code instrumenta-
tion to inject faults by corrupting the return values 
of target functions. A single fault is injected in each 
test case. 

 Probe inserter. This module instruments probes in 
the driver code to collect runtime information and 
count code coverage during execution. It outputs 
test cases of the tested driver. Each test case is a 
loadable driver, which can be directly installed in 
the operating system. 

 Runtime monitor. This module runs test cases and 
records the runtime information of the tested driver 
during execution. It also detects bugs at runtime. 

 Pair Checkers. They are used to check resource 
usages in drivers. Each pair checker contains the 
basic information of a pair of resource-acquiring 
and resource-releasing functions. We have written 
some pair checkers in EH-Test based on the result 
of specification mining techniques. 

Based on the architecture, two phases are performed 
when EH-Test works, namely test case generation and 
runtime testing. The manual work only includes writing 
pair checkers, checking extracted target functions and 
rebooting the system when crash bugs are detected. 

5.1 Test Case Generation 
In this phase, we have two tasks, namely extracting tar-
get functions from the code and generating test cases of 
the driver by injecting faults on target functions. The 
detailed steps are as follows. 

Firstly, we input the driver code and OS source code 
to the fault extractor. It uses the pattern-based extrac-
tion strategy to extract target functions. After extraction, 
the user also is allowed to check and modify target 
functions as needed. 

Secondly, we inject faults into target functions. A key 
question is that how many faults should be injected in 
each test case. Many previous approaches [7, 22, 35, 39] 
inject multiple faults in each test case, because they aim 
to cover as much error handling code as possible. But 
fault scenario explosion may occur in this situation, 
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Figure 4: Compilation procedure of the tested driver. 

which can largely reduce testing efficiency. To relieve 
this problem and speed up testing, these approaches 
have to use some expedients, such as limiting the num-
ber of injected faults (or searching paths) [7, 39] and 
resorting to user guidance [22]. For many Linux drivers, 
a key characteristic is that there are few if branches in 
error handling code (in Section 3.2). Namely, the error 
handling code in many device drivers only handles a 
single error at a time. Thus, to cover most error han-
dling code with less testing time, we only corrupt the 
return value of one target function in each test case. The 
target function call is replaced by an error function in 
the code. What this error function does is only returning 
a bad value. If the return value of the target function is a 
pointer, the error function will return a null pointer; if 
the return value of the target function is an integer, the 
error function will return a random negative number. 

Thirdly, we instrument probes to collect runtime in-
formation and count code coverage during execution. 
The runtime information is used to detect bugs in the 
next phase. The code coverage is used to quantify the 
effectiveness of runtime testing. Finally, driver test cas-
es are generated. Each test case is a kernel object file, 
namely a loadable driver. 

In the second and third steps, code instrumentation is 
used. We implement it at compile time using the Clang 
[40] compiler. Figure 4 shows the compilation proce-
dure of the tested driver. Firstly, we use the Clang com-
piler to compile the C source code of the driver into the 
LLVM bytecode. Secondly, we utilize the fault injector 
and probe inserter to instrument our handled code in the 
bytecode. Thirdly, we use the Clang compiler to com-
pile the bytecode into the assembly code, and then build 
the object file using GCC. Finally, we link the object 
file and the runtime monitor’s program together, and 
generate a kernel object file as a test case. 

5.2 Runtime Testing 
In this phase, we run each test case on the real hardware 
and detect bugs during execution. Three kinds of bugs 
are detected in current implementation, namely crashes, 
hangs and resource-release omissions. 

When driver crashes occur, the OS outputs the dump 
information into the kernel crash log. Therefore, we can 
check the kernel crash log to detect and locate crash 
bugs like null pointer dereferences. For driver hangs, 
we can detect them by observing whether the system 
freezes. These two kinds of bugs are easy to observe in 
real execution. 

Function Names Description Data 
request_irq Enable / disable the interrupt 

line and IRQ handling 
Para1 

free_irq Para1 
pci_enable_device Initialize / disable the device on 

the PCI bus 
Para1 

pci_disable_device Para1 
dma_pool_alloc Allocate / free a block of con-

sistent memory for DMA 
RetVal 

dma_pool_free Para1 

Table 4: Selected paired functions in device drivers. 
As for resource-release omissions, they are hard-to-

find in real execution, because they rarely lead to obvi-
ous exceptions. However, they often cause resource-
usage problems, such as resource leaks and memory 
leaks. Moreover, resource-release omissions often occur 
in device drivers, especially in error handling code [31]. 
For these reasons, EH-Test should detect resource-
release omissions in device drivers. A resource-release 
omission occurs when a resource-acquiring function is 
successfully called but its resource-releasing function is 
not called. For example in Figure 1, kzalloc is a re-
source-acquiring function and it is used to allocate ker-
nel memory, but the resource-releasing function kfree is 
not called, which leads to a resource-release omission. 
A resource-acquiring function and its resource-releasing 
function should be called in pairs, so they can be called 
paired functions [20]. Besides, they should operate the 
same mapped data (parameter or return value) as the 
handled resource. In EH-Test, we implement some pair 
checkers to detect resource-release omissions. Each pair 
checker contains the basic information of a pair of 
paired functions, including function names and mapped 
data. Some previous approaches for specification min-
ing [18, 20, 37, 38] can be used to extract paired func-
tions from the code. In this paper, we use the mining 
result of PF-Miner [20], which is a static approach for 
mining paired functions in Linux drivers, to build the 
pair checkers. Table 4 shows some selected paired func-
tions in the checkers. The first column shows function 
names; the second column shows the description; the 
third column shows the mapped data. 

During driver execution, the runtime monitor uses the 
inserted probes to record the runtime information of 
function calls and maintains a resource-usage list. For 
each function call, the monitor checks whether it is in 
the pair checkers. When a resource-acquiring function 
is called, the monitor checks its return value to judge 
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whether the resource is successfully allocated. If it is 
true, the monitor will create a node containing the func-
tion name and mapped data, and add it into the re-
source-usage list. When a resource-releasing function is 
called, the monitor scans the list to match the node with 
the function information. If it is matched, the node will 
be deleted to indicate the resource is released. When the 
driver is removed, the monitor checks the nodes in the 
list. If the list is not empty, it indicates resource-release 
omissions occur, so the monitor will report them. 

6. Evaluation 
6.1 Experimental Setup 
To validate the effectiveness of EH-Test, we evaluate it 
on real device drivers. The tested drivers should satisfy 
three criteria. Firstly, they should be commonly used in 
practice. Secondly, they should be within the driver 
classes in Section 3, because they can satisfy the charac-
teristics found by the study. Thirdly, they should run as 
kernel modules, because the test cases of them can be 
directly installed and removed without rebooting the 
operating system. According to these criteria, 15 Linux 
device drivers are selected, including wireless, USB and 
Ethernet drivers. Table 5 shows the basic information of 
tested drivers in Linux 3.17.2. 

Class Driver Hardware Lines 

Wireless 

rtl8180 Realtek RTL8180L Wireless Controller 4.6K 
b43 Broadcom BCM4322 Wireless Controller 57.5K 
iwl4965 Intel 4965AGN Wireless Controller 29.1K 
rt2800 Ralink RT3060 Wireless Controller 22.5K 

USB 
usb_storage Kingston 4GB USB disk 7.6K 
uhci_hcd Intel USB UHCI Controller 7.2K 
ehci_hcd Intel USB2 EHCI Controller 11.2K 

Ethernet 

e100 Intel 82559 Ethernet Controller 3.2K 
e1000e Intel 82572EI Ethernet Controller 28.3K 
igb Intel 82575EB Ethernet Controller 24.9K 
r8169 Realtek RTL8169 Ethernet Controller 7.4K 
8139too Realtek RTL8139D Ethernet Controller 2.7K 
3c59x 3Com 3c905B Ethernet Controller 3.4K 
sky2 Marvell 88E8056 Ethernet Controller 7.7K 
ipg ICPlus IP1000 Ethernet Controller 3.0K 

Table 5: Tested drivers in Linux 3.17.2. 

The experiment runs on a Lenovo PC with two Intel 
i5-3470@3.20G processors and 2GB physical memory. 
GCC 4.8 and Clang 3.2 are used for compilation. We 
write 75 pair checkers based on the result of PF-Miner. 
For each test case of the drivers, we install it in the sys-
tem, run it on the workload, and finally remove it. The 
workload consists of three kinds. For wireless drivers, 
we turn on WiFi, ping another computer and turn off 
WiFi; for Ethernet drivers, we ping another computer; 
For USB drivers, we copy a 4MB file to the USB disk. 

Driver Candidate Target Real 
rtl8180 39 18 17 (14) 
b43 260 55 55 (46) 
iwl4965 497 79 74 (64) 
rt2800 185 65 57 (48) 
usb_storage 60 20 15 (15) 
uhci_hcd 120 24 19 (10) 
ehci_hcd 160 23 21 (14) 
e100 80 33 27 (26) 
e1000e 175 62 56 (41) 
igb 247 59 51 (51) 
r8169 77 15 15 (14) 
8139too 64 9 8 (7) 
3c59x 59 15 14 (14) 
sky2 86 30 25 (25) 
ipg 74 16 16 (15) 
Total 2183 523 470 (404) 

Table 6: Result of the pattern-based extraction. 

6.2 Target Function Extraction 
The representativeness of injected faults is a key factor 
of SFI. In this paper, injected faults are bad return val-
ues of target functions, and all target functions are au-
tomatically extracted by our pattern-based extraction 
strategy. Thus, the fault representativeness of SFI large-
ly depends on the effectiveness of our pattern-based 
extraction strategy. There are three important research 
questions about its effectiveness: 
RQ1: How many unrepresentative candidate functions 

are automatically filtered out? 
RQ2: How much is the false positive rate of the strategy? 
RQ3: How many real target functions are omitted? 

To answer these questions, we first evaluate EH-Test 
on the 15 drivers to extract candidate functions and tar-
get functions. Then we manually check the extracted 
target functions to judge their realness. Table 6 shows 
the result in Linux 3.17.2. The first column presents the 
driver name; the second column shows the number of 
candidate functions; the third column shows the number 
of extracted target functions; the fourth column shows 
the number of real target functions. 

From Table 6, we can find that 523 target functions 
are extracted from 2183 candidate functions. It indicates 
that 76% candidate functions are automatically filtered 
out because they are unrepresentative, which can an-
swer RQ1. By manually checking the documents and 
implementations of the extracted target functions, we 
find that 470 target functions are real, which means they 
can actually fail and trigger error handling code. It indi-
cates that the false positive rate of our pattern-based 
extraction strategy is only 10%, which can answer RQ2. 
Many false target functions return integers which are 
also checked by if statements, but they reflect different 
driver configurations or states but never trigger occa-
sional errors. Answering RQ3 is difficult, because target 



USENIX Association  2016 USENIX Annual Technical Conference 643

9 
 

Driver Linux 3.1.1 Linux 3.17.2 
Test case Time usage Crash / Hang Resource Bugs Test case Time usage Crash / Hang Resource Bugs 

rtl8180 16 03:14 0 / 0 1 (0) 1 18 04:21 0 / 0 3 (2) 3 
b43 62 23:57 0 / 0 1 (1) 1 55 26:34 0 / 0 1 (1) 1 
iwl4965 100 36:42 5 / 0 7 (7) 12 79 25:18 5 / 0 8 (8) 13 
rt2800 62 19:21 1 / 0 1 (0) 2 65 21:37 0 / 0 1 (0) 1 
usb_storage 25 03:35 0 / 0 0 (0) 0 20 03:07 0 / 0 0 (0) 0 
uhci_hcd 22 03:47 0 / 0 0 (0) 0 24 03:20 0 / 0 0 (0) 0 
ehci_hcd 24 03:50 0 / 0 1 (0) 1 23 03:58 0 / 0 10 (9) 10 
e100 33 03:02 1 / 0 0 (0) 1 33 02:28 1 / 0 1 (1) 2 
e1000e 66 11:01 0 / 0 0 (0) 0 62 10:30 3 / 0 3 (0) 6 
igb 62 10:09 0 / 0 0 (0) 0 59 12:56 0 / 1 6 (6) 7 
r8169 15 01:24 0 / 0 0 (0) 0 15 01:43 0 / 0 0 (0) 0 
8139too 9 00:45 0 / 0 1 (0) 1 9 00:46 0 / 0 1 (0) 1 
3c59x 18 01:26 0 / 0 2 (2) 2 15 01:24 0 / 0 2 (2) 2 
sky2 26 01:43 3 / 0 8 (0) 11 30 02:14 4 / 0 0 (0) 4 
ipg 17 01:16 0 / 0 0 (0) 0 16 01:28 0 / 0 0 (0) 0 
Total 557 125:12 10 / 0 22 (10) 32 523 121:42 13 / 1 36 (29) 50 

Table 7: Bug-detection result of EH-Test. 
functions are extracted from normal execution traces, 
but different execution paths may have different runtime 
traces. Thus, the real target functions within the unexe-
cuted paths will be omitted. However, we find that all 
target functions in the captured runtime traces are ex-
tracted by our strategy. 

Reviewing the result, we also find an interesting 
phenomenon. Most target functions are in the initializa-
tion procedure. The data in the parenthesis of the fourth 
column show the numbers of these functions. They oc-
cupy 86% of all target functions. Namely, most kinds of 
occasional errors in drivers occur in the initialization 
procedure. In fact, it has been noted in the Linux driver 
manual [9], and our results can successfully verify it. 
The explanation for this phenomenon is that different 
kinds of configurations need to be made in the initiali-
zation, and each configuration can cause a kind of occa-
sional error. After the driver is initialized, only several 
kinds of errors can occur in the running procedure. 
6.3 Bug Detection 
With the extracted target functions, we perform runtime 
testing to detect bugs in error handling code. Each test 
case is generated by making one target function fail. To 
validate whether EH-Test can find the known bugs hav-
ing been fixed, we first use EH-Test to test the 15 driv-
ers in an older Linux version 3.1.1 (released in Novem-
ber 2011). Then we test these drivers in a newer Linux 
version 3.17.2 (released in October 2014) to validate 
whether EH-Test can find new bugs. Table 7 shows the 
result. The first column shows the driver name; the se-
cond and seventh columns (“Test case”) show the num-
ber of generated test cases; the third and eighth columns 
(“Time usage”) present the time usage of the runtime 
testing; the fourth and ninth columns (“Crash / Hang”) 
show the number of detected crashes and hangs; the 
fifth and tenth columns (“Resource”) present the num-
ber of detected resource-release omissions; the sixth and 

eleventh columns (“Bugs”) show the number of detected 
bugs. Specifically, the number of memory leaks is 
shown in the parenthesis of the fifth and tenth columns 
(“Resource”), because the memory leak is an important 
kind of resource-release omission. 

From Table 7, we make the following observations: 
Firstly, EH-Test finds 32 bugs in the 15 drivers in 

Linux 3.1.1, including 10 crashes and 22 resource-
release omissions. Among these resource-release omis-
sions, 10 are memory leaks. Reviewing the driver code, 
8 resource-release omissions (sky2 driver) and 1 crash 
(rt2800 driver) have been fixed in Linux 3.17.2. It indi-
cates that EH-Test can find the known bugs. 

Secondly, EH-Test finds 50 bugs in the 15 drivers in 
Linux 3.17.2, including 13 crashes, 1 hang and 36 re-
source-release omissions. Among the resource-release 
omissions, 29 are memory leaks. Moreover, 23 bugs are 
reserved from the legacy code in 3.1.1, and 27 bugs are 
introduced due to new implementations. We send all the 
bugs to the driver developers, and all of them have been 
confirmed. We also send 17 patches3 to fix them, and 
15 have been applied by the maintainers. It indicates 
that EH-Test can accurately find new bugs in drivers. 

Actually, a threat to validity is that false extracted 
target functions may introduce false bugs. In our evalua-
tion, no false bugs are detected for this reason. 

Thirdly, the time usage of EH-Test is short. About 2 
hours are spent in totally testing the 15 drivers, and only 
several minutes are spent for most drivers. This time 
usage is shorter than many previous SFI approaches [7, 
13, 23] for testing drivers. One reason is that EH-Test 
uses the pattern-based extraction strategy to filter out 
many unrepresentative candidate functions, so no re-
dundant test cases are generated. Thus, the test cases are 
efficient, and the testing time is largely shortened. 
                                                                                              

3 The patches can be found in the link: 
http://oslab.cs.tsinghua.edu.cn/EHTest/patch.html 
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Path: linux-3.17.2/drivers/net/ethernet/intel/e100.c 
1901. static int e100_alloc_cbs(…) 
1902. { 

…… 
1910.       nic->cbs = pci_pool_alloc(nic->cbs_pool, …); 
1911.       if (!nic->cbs) 
1912.             return -ENOMEM; 

…… 
1929. } 
 
2843. static int e100_probe(….) 
2844. { 

…… 
2967.       nic->cbs_pool = pci_pool_create(…); 
2968.        netif_info(…); 
                  …… 
2990. } 

 
Figure 6: Code coverage of the tested drivers. 

Fourthly, resource-release omissions occupy a large 
part of detected bugs. The main reason is that resource-
release omissions often get little attention by developers. 
The complex execution paths make it difficult to cor-
rectly manage resources in error handling code. Mean-
while, resource-release omissions rarely lead to obvious 
exceptions, so they are hard-to-find in runtime testing. 

Figure 5 shows a crash detected by EH-Test in the 
e100 driver. The function pci_pool_create (line 2967) 
is called to create a pool of consistent memory blocks 
for the PCI device, and this function returns a pointer 
(nic->cbs_pool) to this memory area. But the function 
pci_pool_create may fail when the memory is insuffi-
cient, and it will return a null pointer in this situation. 
Thus, a null pointer dereference will occur, when the 
function pci_pool_alloc (line 1910) uses this pointer to 
allocate a memory block. This crash is detected when 
we inject a fault in the function pci_pool_create. This 
function is extracted as a target function in our pattern-
based extraction strategy, because many other drivers 
check its return value in the code (pattern 2 in Section 
4). To fix this bug, we add an if check after the function 
pci_pool_create (line 2967) to check its return value 
and implement the corresponding error handling code. 

Figure 5: A detected bug in the e100 driver4. 
                                                                                              

4 The applied patch for this bug is in the link: 
http://marc.info/?l=linux-netdev&m=143993218231729&w=2 

6.4 Code Coverage 
Code coverage is a key criterion in runtime testing. To 
calculate code coverage, we use the inserted probes to 
count executed instructions at runtime. Because most 
target functions are in the initialization procedure, we 
focus on measuring the code coverage in this procedure.  
Figure 6 shows the results in Linux 3.17.2. The average 
code coverage of EH-Test is increased by 8.82% com-
pared to the normal execution. It indicates that hundreds 
of more instructions are executed in runtime testing. 

In fact, not all error handling code can be covered by 
EH-Test. Firstly, EH-Test only injects faults in target 
functions, but some error handling code is triggered by 
erroneous data read from hardware registers. Secondly, 
our approach injects a single fault in each test case, but 
some error handling code is triggered by multiple errors. 
Thirdly, target functions in unexecuted paths are not 
extracted in our pattern-based strategy, so their error 
handling code can not be covered. These points cause 
that the bugs in the uncovered code will be missed. 

6.5 Comparison Experiments 
Software fault injection and symbolic execution are two 
runtime techniques which are often used to test drivers. 
Software Fault Injection. We compare EH-Test to 
ADFI [7], a state-of-the-art SFI approach for testing 
drivers. It uses a bounded trace-based iterative strategy 
to relieve fault scenario explosion and a permutation-
based replay mechanism to assure the fidelity of fault 
injection. Similar to EH-Test, it injects faults in some 
target functions and generates test cases to detect bugs. 
But there are two main differences between ADFI and 
EH-Test. Firstly, the target functions in ADFI are all 
manually selected. Only memory, DMA and PCI related 
interfaces are considered. Thus, much manual work is 
needed, and many real target functions may be omitted. 
EH-Test can automatically and accurately extract all 
target functions in the captured runtime traces without 
omissions, and the only optional manual work is check-
ing the extracted target functions. Secondly, ADFI in-
jects multiple faults in each test case. The advantage is 
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that much more configuration and error handling code 
can be covered to detect more bugs. But numerous test 
cases are generated, so it spends much more time (often 
several hours) than EH-Test when testing a driver. 

ADFI program and its detailed bug reports are not 
available, thus we compare the number of its detected 
bugs from the paper. ADFI and EH-Test both test three 
drivers with the same workload. For the e100 and r8169 
drivers, they both find the same number of bugs. For the 
ehci_hcd driver, EH-Test finds 10 bugs, but ADFI does 
not find any bug in this driver. Reviewing the code, we 
find that these bugs are triggered by the target functions 
which are not memory, DMA or PCI related functions, 
so ADFI omits them. 
Symbolic Execution. We select SymDrive [28], a fa-
mous symbolic execution approach to make the compar-
ison. This approach uses a symbolic device and some 
checkers to detect bugs, including memory leaks and 
null pointer dereferences. 

SymDrive program is open-source, and we success-
fully run it to test the e100 driver. It runs for nearly 80 
minutes and searches 4838 paths, finally exits due to 
insufficient disk space. In the experiment, SymDrive 
does not find the bug shown in Figure 5. The reason is 
that the return value of the function pci_pool_create is 
not marked as a symbolic value in SymDrive, so the 
corresponding error handling path is not searched. Be-
sides, SymDrive can only test the drivers whose devices 
are supported by QEMU [4]. But many devices are not 
supported by the QEMU used in SymDrive, so the driv-
ers for these devices can not be directly tested. The sky2 
and iwl4965 drivers are the typical examples. 

7. Related Work 
7.1 Software Fault Injection 
In software testing, software fault injection is a tech-
nique for testing rarely executed code by deliberately 
injecting faults. In particular, it is often used to test er-
ror handling code in software systems.  

Many approaches [11, 14, 21, 22] use random fault 
injection in software testing. They replace the program 
data with random faulty data or inject faults into ran-
dom places, and then run test cases to validate whether 
the software can properly handle the faults. But random 
fault injection often leads to poor code coverage and 
low bug-detection accuracy. To relieve this problem, 
some approaches [3, 12, 39] use program information to 
guide fault injection and generate efficient test cases. 
Moreover, to improve the representativeness of injected 
faults, much research [10, 17, 24, 25] gives useful solu-
tions through empirical studies. In fact, these approach-
es are often used for general software, especially user-
mode applications. They often neglect the characteris-

tics of device drivers, so their effectiveness may be 
largely limited when directly testing device drivers. 

Besides user-mode applications, SFI is also carefully 
designed to test drivers [7, 13, 23, 29, 32, 35]. Mendon-
ca et al. [23] perform robustness testing for Windows 
drivers based on random fault injection. Frequently 
used kernel interfaces in drivers are called with random 
parameters. ADFI [7] uses a bounded trace-based itera-
tive strategy to relieve fault scenario explosion and a 
permutation-based replay mechanism to assure the fi-
delity of fault injection. But these approaches still have 
limitations when testing device drivers. A typical limita-
tion is that they often neglect the representativeness of 
injected faults, and their injected faults are often ran-
dom or manually selected. To relieve this limitation, 
EH-Test uses a pattern-based extraction strategy to au-
tomatically and accurately extract real target functions 
as representative injected faults. 
7.2 Symbolic Execution 
Some approaches [5, 8, 16, 28] introduce symbolic exe-
cution in driver testing without the real hardware. DDT 
[16] is a tool for testing binary drivers against undesired 
behaviors, such as resource leaks and race conditions. It 
combines virtualization with selective symbolic execu-
tion to test drivers using some modular dynamic check-
ers. SymDrive [28] provides a symbolic device based 
on QEMU [4] to simulate real hardware behaviors. It 
utilizes a favor-success path-selection algorithm in exe-
cution, which can increase the exploration priority of 
executing path at every successful function return within 
drivers and kernel interfaces. Some checkers are pro-
vided to detect common bugs like memory leaks. 

Symbolic execution is very time consuming, and it 
needs much programmer guidance to avoid path explo-
sion. Moreover, many devices can not be simulated well 
in virtual machines, so their drivers can not be directly 
tested using symbolic execution. 
7.3 Static Analysis 
Static analysis is often used to detect bugs in device 
drivers. It only analyzes the driver source code or bina-
ry code without actually running target drivers. Some 
approaches [1, 2, 6, 26, 27, 36, 41, 42] are based on 
program verification. For example, SDV [2] is a famous 
static tool to verify Windows drivers. It abstracts the C 
source code to a simpler form encoded as a state ma-
chine, and checks violations of kernel API usage rules. 
Some approaches [18, 19, 20, 31] mine implicit specifi-
cations from the driver code and detect related bugs. 
For example, PR-Miner [19] exploits data mining tech-
niques to automatically extract implicit programming 
rules from software code and detect violations against 
these extracted rules. 
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Compared to runtime testing, static analysis lacks 
precise context information of real execution, so some 
false positives may be introduced in bug detection. 

8. Conclusion 
In this paper, we first study the source code of Linux 
drivers, and find three useful characteristics of error 
handling code. Then based on these characteristics, we 
propose a practical approach named EH-Test to effi-
ciently test error handling code and detect bugs inside. 
It uses a pattern-based extraction strategy to automati-
cally and accurately extract real target functions as rep-
resentative injected faults. It has been evaluated on 15 
Linux drivers and found 50 new real bugs. Our work 
shows that by introducing the characteristics of target 
programs, software testing can be more effective. 
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