
This paper is included in the Proceedings of the
2016 USENIX Annual Technical Conference (USENIX ATC ’16).

June 22–24, 2016 • Denver, CO, USA

978-1-931971-30-0

Open access to the Proceedings of the
2016 USENIX Annual Technical Conference
(USENIX ATC ’16) is sponsored by USENIX.

Getting Back Up: Understanding How
Enterprise Data Backups Fail

George Amvrosiadis, University of Toronto; Medha Bhadkamkar, Veritas Labs

https://www.usenix.org/conference/atc16/technical-sessions/presentation/amvrosiadis

USENIX Association 2016 USENIX Annual Technical Conference 479

Getting Back Up:
Understanding How Enterprise Data Backups Fail

George Amvrosiadis
Dept. of Computer Science, University of Toronto

gamvrosi@cs.toronto.edu

Medha Bhadkamkar
Veritas Labs

medha.bhadkamkar@veritas.com

Abstract

In the enterprise world, retaining data backups is the
de-facto solution against data loss in the event of catas-
trophic failures. As backup software evolves to achieve
faster backup and recovery times, however, backup sys-
tems deploying it become increasingly complex to ad-
minister. This complexity stems from optimizations tar-
geted to specific applications, which increase the number
of configuration parameters for the system. Still, there is
no work in the literature that attempts to study the error
characteristics of enterprise backup systems, despite our
reliance on the guarantees they provide.

With this study we aim to help researchers and prac-
titioners understand how backup system jobs fail, and
identify factors that can be used to predict these failures.
Our results are derived from an analysis of data on 775
million jobs, collected from more than 20,000 backup
software installations over a span of 3 years. We confirm
that trends reported in the software reliability literature
also hold for backup systems, such as that the major-
ity of job errors are due to misconfigurations. For the
systems in our dataset, we find that error rates remain
stable across software versions and over time. To better
understand these errors, we investigate the effect of sev-
eral factors on the system’s error rate, such as job sizes
and policy complexity, and demonstrate their predictive
power for future errors.

1 Introduction

From enterprise organizations to home users, data back-
ups are still the preferred mechanism for the prevention
of data loss in the event of catastrophic failures. The
guarantees provided by backup software, however, rely
on the assumption that periodic backup jobs will com-
plete successfully. Unfortunately, backup software is be-
coming increasingly complex to configure and manage,
as more tuning parameters are introduced to handle di-
verse application requirements. Recent surveys of CIOs
and IT professionals show that 27% of businesses have
trouble recovering from backups due to backup jobs not
completing successfully [18], and 80% experience chal-

lenges managing backup data and configuring the backup
software [35]. At the same time, data generation rates in-
crease. In a recent study, we found that full backups are
performed as often as every 1-4 days to accommodate
data churn [3], leaving less time to repeat failed jobs.

The goal of this study is to help researchers and prac-
titioners understand how backup system jobs fail, and
identify the factors that can be used to predict these fail-
ures. Our results are based on the analysis of periodic
reports collected from customer installations of Veritas
NetBackup [37], a commercial backup software prod-
uct, over the span of 3 years. In total, we studied 775
million jobs from more than 20,000 backup systems, i.e.
customer installations. Depending on their type, these
jobs perform specific operations, such as data backup, re-
covery, and backup data management (e.g. replication).
Jobs are scheduled according to backup policies, which
are sets of configurable parameters dictating how indi-
vidual applications should be backed up. For example,
VMware policies expose parameters specific to virtual
machines, while Oracle policies expose parameters rele-
vant to database instances.

First, we investigate the prevalence of errors in backup
systems and their causes. We find that backup sys-
tem jobs fail frequently, and the majority of errors are
attributed to misconfigurations, which confirms a re-
current trend in the literature for other system types
[11, 24, 25, 34, 44]. On the bright side, we find that the
errors themselves are not diverse, and the 10 most fre-
quent error codes returned by jobs account for more than
78% of job errors. We explain these errors in detail, pro-
viding guidelines that designers can leverage to improve
the robustness of future backup software.

Next, to understand why errors occur, we study the
context in which they appear. Specifically, we study
characteristics of the backup system and individual jobs,
and the degree to which they affect the frequency and di-
versity of the occurring errors. For example, we find that
factors such as the size of the job, and the configuration
complexity of a policy, are likely linked to job failures.
On the other hand, factors such as the frequency of con-
figuration updates and software versions, are likely not
tied to failures. By quantifying the relationships between

1

480 2016 USENIX Annual Technical Conference USENIX Association

Characteristic Observation Section Previous work

Prevalence In the average backup system, 15.2% of jobs terminate with an error.
The overall job error rate across all systems in our dataset remains stable over time.

4.1 None

Diversity The 10 most frequent error codes correspond to more than 78% of job errors. 4.2 None

Causes More than 75% of job errors are due to misconfigurations. 4.3
Similar trends for
different applications
[11, 24, 25, 27].

Dependence
on job
properties

Jobs managing (e.g. replicating) existing backup images exhibit the highest error rates. 5.1 None
Systems with larger jobs tend to experience higher job error rates. 5.2 None
Policies with more configurable parameters exhibit higher job error diversity. 5.3 None

Dependence
on system
properties

Backup software and operating system versions have no effect on job error rate. 6.1 None
The size and load of a backup system is indicative of its job error diversity. 6.2 None
The rate of configuration changes has no effect on the system’s error rate or diversity. 6.3 None

Predictability
The number of daily occurrences of a given error code follows predictable trends, but
error inter-arrival times do not. 7.1 None

Job errors can be fairly accurately predicted based on the occurrence of other error
codes. The factors in previous observations, however, make superior predictors. 7.2 None

Table 1: A summary of the most important observations of our study regarding backup system job errors.

each factor and the system’s resulting error rate, we aim
to provide administrators with rules of thumb that can be
consulted during system configuration.

For monitored systems, we receive weekly reports that
allow us to observe how these systems evolve over time.
We show that the number of daily errors in a backup sys-
tem follows predictable trends, while error inter-arrival
times do not. Finally, we demonstrate that while differ-
ent error types are correlated, the factors we identify in
the observations of our study are better predictors of fu-
ture error occurrences. We find these results encourag-
ing, suggesting that future backup systems could rely on
prediction models to automatically detect and self-heal
from errors, without affecting their reliability guarantees.

Table 1 summarizes the most important observations
of our study. The remainder of the paper is organized
as follows. In Section 2 we present an overview of prior
work on backup systems and related work in the software
reliability literature. The dataset we use in this study
is introduced in Section 3. First, we analyze this data
to understand the prevalence and causes of job errors in
backup systems in Section 4. Then, we identify job char-
acteristics that can be correlated to higher error rates in
Section 5. In Section 6 we examine the relationship be-
tween properties of the backup system, and its reported
error rate. In Section 7 we evaluate the predictability
of errors, and the predictive power of our observations
from previous sections for future errors. Finally, we out-
line the implications of our results in the design of future
backup systems in Section 8, and conclude in Section 9.

2 Related work

Little work exists to characterize the operation of backup
systems. Park and Lilja [26] used traces of weekly full
backup operations from 6 systems to characterize their

deduplication ratios. Wallace et al. [39] study the con-
tents and workload of file systems that store data pro-
duced by the jobs of backup systems such as NetBackup.
Our earlier work [3] identifies and characterizes trends
in the configuration and job characteristics of backup
systems. Other work [10, 36] has focused on modeling
the growth rate of storage capacity in backup systems,
but it does not examine the prevalence of storage capac-
ity errors. Overall, none of the aforementioned work
looks into the characteristics of errors in the operation
of backup systems.

Despite the lack of prior work on backup systems, sev-
eral studies have examined the characteristics and preva-
lence of software and administration errors in other sys-
tem types. In his seminal paper on system faults, Gray
[11] reports that 25% of faults in high-end mainframes
are due to software errors, while 42% are attributed to
administrator errors. Similarly, Patterson et al. [27] ob-
served that 8-34% of failures in telephone networks and
Internet systems were due to software, while 51-59%
were due to administration errors. Oppenheimer et al.
[25] studied the failures of Internet Services and report
that failures are due to software errors 33% of the time,
while 57% are administration mistakes, and Nagaraja et
al. [24] confirm these findings in a user study. Tang et
al. [34] report that 16% of high-impact incidents over a
three-month period at Facebook were due to misconfig-
urations, but do not provide a more detailed breakdown.
Our study is the first to consider backup systems, but it is
worth noting that our breakdown of backup system errors
by cause (Figure 5) matches closely the results reported
in the literature for other system types.

Due to the prevalence of misconfigurations, several re-
search efforts have put forth ideas to detect, diagnose,
and automatically fix these errors. PeerPressure [40] uses
a statistical approach and a repository of configurations

2

USENIX Association 2016 USENIX Annual Technical Conference 481

Job type Entries Function

Backup 604.9 M Create backup images

Management 105.8 M Manage (e.g. delete, replicate,
migrate) backup images

Snapshot 58.2 M Create Copy-on-Write data
snapshots

Recovery 6.3 M Recover data from backup images
Total 775.2 M

Table 2: Breakdown of job types in our dataset.

to identify parameter errors in a given configuration. In a
similar manner, Yuan et al. [45] identify error root causes
using support vector machines to detect anomalous pat-
terns in system call sequences. CODE [46] extends this
idea by identifying invariants for configuration access
rules. EnCore [47] adopts a learning approach guided by
sample configurations, augmented with information on
the execution context of the configurations. Chronus [42]
retains disk state through periodical checkpoints, and tra-
verses them to detect the configuration changes respon-
sible for the misconfiguration. ConfAid [6] instruments
application binaries to trace the configuration entry re-
sponsible for the misconfiguration. AutoBash [5, 33]
leverages carefully crafted bug-tracking predicates to de-
tect deviations from healthy machines, and uses a specu-
lative OS kernel to find a fix through trial and error and
a solution database. Such approaches can benefit greatly
from studies outlining the contributing factors to errors.
Observations derived from such studies can be used as
heuristics for learning approaches, and to prune the state
space for data-flow analysis techniques. Furthermore,
while these are successful reactive approaches to error
occurrence, we also examine the feasibility of proactive
approaches, such as error prediction.

3 Dataset description

Our analysis and models are based on data from teleme-
try reports collected from enterprise customer instal-
lations of a commercial backup product, Veritas Net-
Backup [37]. Reports are only collected from customers
who opt to participate in the telemetry program, and con-
tain no personal identifiable information. This section
outlines the characteristics of our telemetry dataset.

Reported information. Telemetry reports received
from customer backup systems contain runtime and con-
figuration information about these systems. This runtime
information describes the jobs that run in each system,
and whether they completed successfully. The different
job types recorded in monitored backup systems are de-
scribed in Table 2. Jobs run in backup windows, the time
and duration of which are configured by the system ad-
ministrator. When a job fails to complete successfully, it

can be retried in the current or next backup window, sub-
ject to time availability and priority compared to other
jobs. By default, backup jobs are retried once, while
other job types are never retried. The job scheduler will
also cancel retries of jobs that are scheduled to recur in
the current backup window. Our telemetry reports record
the error codes returned by failed jobs, but do not allow
us to distinguish job retries. In our analysis we use job
error codes in conjuction with other system or job char-
acteristics, to investigate why jobs fail.

Dataset size and breadth. Our dataset consists of 1
million telemetry reports, collected over the span of three
years, between September 2012 and August 2015. These
reports represent 22 minor versions of the backup soft-
ware, all under the same major version: NetBackup
7.6. More than 20,000 customer installations are repre-
sented, across most modern operating systems. Note that
this dataset is different from the one used in our earlier
work [3]: we have excluded systems that deploy versions
of NetBackup earlier than 7.6, since their telemetry re-
ports do not include error information, and extended the
dataset by collecting reports for another year.

Architecture. Modern backup systems typically con-
sist of three tiers of operation: a master server, one or
more storage servers, and several clients [3]. The mas-
ter server is responsible for scheduling and monitoring
backup jobs, while storage servers manage the archival
of backup images. In smaller systems, the master server
can be consolidated with a storage server. In our dataset,
27.9% of backup systems use dedicated storage servers,
while the rest consist of one master/storage server.

Monitoring duration. The backup systems described
in our study were each monitored for 5.7 months on av-
erage, and for a maximum of 34 months. Note that the
monitoring time is not always equivalent to the total life-
time of the backup system, as most of these systems were
still online at the time of this writing. For some systems,
our dataset contains only a single weekly telemetry re-
port. We are unable to distinguish whether these reports
correspond to systems with a lifespan of one week or
less, refer to failed installations, or are due to reporting
errors. Our dataset also contains reports from systems
used internally in Veritas for development and quality as-
surance. As part of pre-processing, we have chosen to
exclude almost 5,000 systems from our analysis, which
belong to either one of these categories.

4 Error characteristics

In this section, we use our dataset to characterize the fre-
quency of job errors in backup systems. We further in-
vestigate the diversity in the error codes returned by in-

3

482 2016 USENIX Annual Technical Conference USENIX Association

0
5

10
15
20
25
30
35
40
45
50

09/12 03/13 09/13 03/14 09/14 03/15 09/15

Month/Year

M
on

th
ly

 e
rro

r r
at

e
(%

)

0

1

2

3

4

Sy
st

em
s

(th
ou

sa
nd

s)

Monthly job error rate
Systems monitored

Figure 1: Monthly job error rates in a 3-year time period.

Category Version Jobs Lifespan Systems

Production Stable 176,173 76 days 4,220

Development
Alpha,
Beta

5,965 18 days 5,217

Test Stable 112 10 days 6,066

Table 3: Characteristics of the different types of backup
systems in our dataset. The number of jobs and lifespan
refer to averages across individual systems.

dividual jobs, and analyze them to find the most popular
causes for job errors.

4.1 Prevalence of job errors
After pre-processing, our dataset consists of 775.2 mil-
lion jobs across 15,503 systems. Of these jobs, 69.4 mil-
lion (or 8.7%) terminate with an error code indicating a
partial, or complete failure. In Figure 1, we show the
monthly job error rate across all recorded jobs. Note
that as more systems join the telemetry program (right
y-axis), the error rate becomes more stable (left y-axis).
Since error rates are not improving over time, a better un-
derstanding of backup system errors seems imperative.

It is common for customers to test development or sta-
ble versions of the backup software. The installations
used in this process have radically different error and
workload profiles, as will be demonstrated later in the
paper. Thus, we have grouped these systems and report
results on each system type separately. The different sys-
tem categories are listed in Table 3. Production systems
are deployed in the field. They have long lifespans, most
still being online at the time of this writing, and are by
far the busiest systems. Development systems are run by
partner organizations that are given early access to new
software features through alpha and beta versions. These
systems are short-lived, but run workloads with job fre-
quencies comparable to production systems. Finally, test
systems are customer systems that run stable versions of
the software, for the purpose of testing its operation be-
fore deploying it in production. These systems are also
short-lived, but run a small number of jobs, presumably

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100

Pe
rc

en
ta

ge
 o

f s
ys

te
m

s
(%

)

Job error rate (%)

Development systems (Mean: 50.9%)
Test systems (Mean: 48.5%)
Production systems (Mean: 15.2%)

Figure 2: CDFs for the job error rate of individual backup
system types.

to test different aspects of the system’s operation.
Only 3,243, or 20.9%, of the systems in our dataset

exhibit no errors in the time they are monitored. Sur-
prisingly, only 13 of these systems are used in produc-
tion, while the rest are used for test and development
purposes. The three system types also differ with re-
gards to the job error rates they exhibit. Figure 2 shows
the empirical cumulative distribution functions (CDFs)
for the error rates of systems of each type. The error
rate for jobs in production systems is 15.2% on aver-
age. Through Kolmogorov-Smirnov tests [23], we con-
firmed that the job error rates for production systems fol-
low a Weibull distribution, with a shape parameter of
(76.1±0.9)×10−2 and a scale parameter of 13.0±0.3.
Note that the Weibull distribution is typical in systems
reliability research, especially for modeling failure rates
[30, chapter 2.12]. On the other hand, job error rates for
development and test systems approximate the uniform
distribution. On average, jobs in development and test
systems fail 48.5% and 50.9% of the time, respectively.
This is not surprising, as one would expect these sys-
tems to be used for testing a variety of scenarios in order
to iron out problems before deployment in production.
Note that these numbers differ from those in Figures 1
and 9, which aggregate jobs across all backup systems.

Observation 1: 15.2% of jobs terminate with an error
in production backup systems. Testing and development
systems exhibit up to 3.3 times more errors on average.

4.2 Error diversity
In NetBackup, there are 1,194 distinct error codes that
can be returned when a job fails partially, or completely
[38]. Of these error codes, only 333 (or 27.9%) are re-
ported in our dataset.

Backup systems of different types experience differ-
ent sets of error codes, as jobs fail for different reasons.
Specifically, 21 error codes occur only in development
systems. These errors are caused by commands failing
due to permission or communication issues, invalid in-

4

USENIX Association 2016 USENIX Annual Technical Conference 483

0
10
20
30
40
50
60
70
80
90

100

1 2 4 8 16 32 64 128

Pe
rc

en
ta

ge
 o

f s
ys

te
m

s
(%

)

Number of unique error codes

Devel. systems (Mean: 4.9)
Test systems (Mean: 2.4)
Prod. systems (Mean: 22.3)

Figure 3: CDFs for the number of unique job error codes
for each type of backup system.

puts, and unsupported or unavailable software features.
Similarly, 59 error codes are specific to production sys-
tems. These errors occur as a result of communication
errors due to offline system components, product licens-
ing issues, misconfigurations, or the inability to fit all
scheduled jobs in the specified backup window. Interest-
ingly, the set of error codes that occur in test systems is a
strict subset of the errors occurring in both development
and production systems. In other words, error codes that
occur during testing are likely those that survived devel-
opment, but they make up only a strict subset of the errors
that occur in production.

The set of error codes experienced by individual
backup systems can also differ. Figure 3 shows the em-
pirical CDFs for the number of unique error codes exhib-
ited in individual backup systems throughout their lifes-
pan. While average test and development systems expe-
rience 2.4 and 4.9 error codes respectively, production
systems can exhibit 22.3 error codes on average, almost
an order of magnitude difference.

Observation 2: Production systems experience an or-
der of magnitude more error codes, for three orders of
magnitude more jobs run compared to test systems.

The number of error codes exhibited by a system is
not an indicator of the system’s job error rate. This is a
result of a few error codes being responsible for the vast
majority of job errors. In Figure 4, we show the percent-
age of job errors that correspond to the N most frequent
error codes. Jobs are partitioned by system type. Over-
all, we find that the 10 most frequently occurring error
codes correspond to 78.1%, 79.0%, and 89.5% of job
errors in production, development, and test systems re-
spectively. Among these errors, half are unique for each
system type, while the remaining 5 error codes are com-
mon across all systems. Of those, the most common er-
ror code denotes a partially successful backup job, which
failed to back up some of the requested data because the
backup process was unable to access it. Other common
error codes occur due to insufficient backup storage ca-

0
10
20
30
40
50
60
70
80
90

100

1 2 4 8 16 32 64 128 256Pe
rc

en
ta

ge
 o

f j
ob

 e
rro

rs
 (%

)

N most frequent error codes

Development systems
Test systems
Production systems

Figure 4: Percentage of job errors due to the N most fre-
quent error codes for different backup system types.

pacity, as a result of the backup window being too short
to fit all scheduled jobs, or because the storage unit was
unreachable.

Observation 3: The 10 most frequent error codes cor-
respond to 78.1-89.5% of job errors, depending on the
system type.

4.3 Error causes
A smaller number of errors in a backup system implies
fewer failure scenarios that need to be accounted for. It
is not indicative, however, of the effort necessary to re-
solve each failure. Since many error codes in NetBackup
are overloaded, we are unable to classify them based on
their severity. Instead, we categorize error codes based
on their cause, and analyze the distribution of job error
causes across backup system types.

We manually categorized the error codes that appear in
our dataset into three categories, using the troubleshoot-
ing guide provided to administrators of the backup soft-
ware [38]. We classify an error as a misconfiguration if
it can be attributed to configuration parameters that have
been assigned incorrect values, or system components
configured in a way that obstructs the correct operation
of the backup system. Examples of such errors include:
inability to backup data due to incorrect file permissions
or locked files, jobs that were aborted because the backup
window was configured too short, authentication errors,
and jobs that failed due to insufficient backup storage ca-
pacity. An error is classified as a system error when it
describes events that are not directly in the system ad-
ministrator’s control, in both the software and hardware
layers. Examples of such errors include: unavailability
of system components due to issues at the storage layer,
errors at the operating system level, and internal errors
of the backup software or applications it interfaces with.
Finally, we classify as informational messages all error
codes that describe non-fatal but unusual scenarios, such
as jobs terminated by the administrator, warning mes-
sages, and product licensing issues.

5

484 2016 USENIX Annual Technical Conference USENIX Association

Development Test Production
0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f j
ob

 e
rro

rs

System type

Misconfigurations
System errors
Informational messages

75.0%

22.5%

 2.4%

90.0%

 8.5%
 1.4%

75.5%

22.2%

 2.2%

Figure 5: Breakdown of job errors based on their cause.

In Figure 5, we show a breakdown of job errors based
on their cause. A separate breakdown is provided for
each system type. As is evident, the majority of job er-
rors are due to misconfigurations: 90% in test systems,
and over 75% for development and production systems.
The remainder of the errors are mostly due to system er-
rors, while 1-2% are informational messages. This re-
sult is encouraging because misconfiguration errors usu-
ally identify which parameters were incorrectly set, or
the constraints that did not apply, causing the error. As
a result, they are significantly easier to address com-
pared to system errors, which could start at the hardware
level, or any of the storage and operating system layers
above. Therefore, we expect that misconfigurations in
NetBackup will be a good fit for self-healing approaches.
Motivated by this result, we next look into factors that
could be used to predict misconfigurations.

Observation 4: Depending on system type, 75-90% of
job errors are attributed to misconfigurations.

5 Dependence on job properties

To help us prevent job errors, we attempt to identify
heuristics that would help us predict them. To derive
these heuristics, this section studies the effect of job
properties on the manifestation of errors. Specifically,
we analyze correlations between job errors, and the char-
acteristics of the affected jobs, such as their type, size,
and backup policy type they are part of.

5.1 Job type
We categorize jobs based on the types described in Table
2. Of all the error codes that appear in our dataset, we
find that 45.6% are exclusive to a specific job type, while
13.3% are common across all job types. Error codes
that are exclusive to specific job types are mostly due
to misconfigurations, while error codes that are univer-
sal across job types mostly refer to component unavail-
ability, or generic system errors. The remaining error
codes are shared between all job types except recovery
jobs. Recovery jobs are initiated and controlled directly

Development Test Production
0

20

40

60

80

100

Jo
b

er
ro

r r
at

e
(%

)

System and job type

Management jobs
Backup jobs
Recovery jobs
Snapshots

43%

 8% 6%
18%

76%

13%
23%

44%

29%

10%
 2% 5%

Figure 6: Error rates for different job types, across
backup system types.

by users, and only a single error code is logged on error.
We do not have sufficient information to correlate data
loss due to recovery errors with other job errors.

Recall that in our dataset, the majority of jobs are
backups (Table 2). These jobs, however, exhibit low
error rates across all system types. In Figure 6, we
show the error rates for each job type, across all sys-
tem types. As expected, production systems have signif-
icantly lower job error rates compared to other systems.
Overall, management jobs exhibit by far the highest er-
ror rates, as high as 29% even in production systems.
We find that across system types, management job er-
rors are attributed to operations that attempt to replicate
backup images either within the same backup system, or
by migrating them to remote backup systems that are ad-
ministered independently. Most operations that replicate
backup images within the same backup system fail due
to insufficient storage space, while some fail due to stor-
age device unavailability. On the other hand, most inter-
system replication operations fail due to configuration in-
compatibilities between the systems.

Observation 5: Management jobs, especially jobs
replicating backup images, exhibit the highest error
rates.

5.2 Job size
A limitation of our dataset is that job sizes are not col-
lected individually for each job. Instead, telemetry re-
ports contain the total number of bytes transferred in a
given backup system on a given day. We use this infor-
mation in conjunction with the number of jobs that were
executed on the system, to derive the average job size
and error rate over the lifespan of the system. Using this
data, we study correlations between a system’s average
job size and its job error rate.

Test and development systems run few jobs that are
mostly small in size, and thus there are no significant
trends to report. On the other hand, we find that produc-
tion systems exhibit significant positive correlations be-

6

USENIX Association 2016 USENIX Annual Technical Conference 485

Average job size (GB)

Jo
b

er
ro

r r
at

e
(%

)

0

20

40

60

80

100

<1 1−100 >100

Backup jobs

<1 1−100 >100

Management jobs

<1 1−100 >100

Recovery jobs

Figure 7: Box plots describing the relationship between
the average backup system job size, type and error rate.

tween the average job size in the system, and the system’s
average job error rate. This holds in different degrees for
backup, management, and recovery jobs. In Figure 7,
we show box plots describing this relationship for each
job type. The lower and upper edges of the boxes rep-
resent the 25th and 75th percentiles of job sizes across
systems, respectively. The middle bar corresponds to the
median, and the whiskers mark the largest and smallest
data points in the distribution. Snapshot operations are
excluded, as they incur no data transfer. Note that backup
and recovery job error rates tend to increase significantly
for larger job sizes. Smaller management jobs, however,
are characterized by a wider spread. Management jobs
of such small sizes are mostly operations used to make
changes to the backup system that do not incur data trans-
fers, such as deleting backup images, or examining vir-
tual machine configurations prior to backup. Overall, we
find that the most common errors in systems with larger
jobs are due to insufficient available storage. In systems
with smaller jobs, errors relevant to component unavail-
ability are more common.

Observation 6: Production systems with larger job
sizes tend to experience higher job error rates.

5.3 Policy type
To achieve consistent backups, applications may require
a specific sequence of operations to take place. Thus,
backup software offers predefined policies tailored to
individual applications. For example, a Microsoft Ex-
change Server policy also backs up the server’s trans-
action log, capturing updates since the backup started.
Users can configure policies to specify the characteristics
of the backup process, such as the frequency of backup
jobs and the retention rate for backed up data. The ma-
jority of parameters, however, are policy-specific, e.g.
whether to skip unallocated blocks of virtual disks, or
back up database redo logs.

We find that the number of unique error codes returned
by jobs running under a given policy, is strongly corre-

0
20
40
60
80

100
120
140
160
180

1 5 10 15 20 25

M
an

ife
st

ed
 e

rro
r c

od
es

Policy parameters

y = 43.148 + 4.004x

Figure 8: The number of unique error codes due to jobs
of a policy type, as a function of the number of policy
parameters. Each data point represents a policy type.

lated (Pearson’s rp = 0.73) with the number of policy
parameters exposed to users. In Figure 8 we show the
number of unique error codes due to jobs running under
a given policy type, as a function of the number of config-
urable parameters for the policy type. Our results focus
only on production systems, which account for 95.9% of
jobs. To fit a line to the data we used R’s lm package [28].
The residual standard deviation (RSD) for the fit is 25.7
error codes, and the line’s slope and intercept were cho-
sen with p-values < 10−2. The fit indicates that backup
system policies are responsible for an additional 4 error
codes per configurable parameter, in addition to 43 error
codes that are common across policies. Note, however,
that we find no correlation between a policy’s parame-
ters and its error rate. More complex policies increase
the system’s error diversity, but not the error count.

Figure 8 reports the number of unique error codes
across all systems. Looking at individual backup sys-
tems, we also find a strong correlation (rp = 0.73) be-
tween the number of policy types deployed, and the num-
ber of error codes in a given system. This is important,
because we find that individual systems in our dataset de-
ploy 10.7 policy types on average. The best least-squares
fit for this relationship is e = 1.1p+ 0.07p2, where e is
the number of error codes in the system, and p is the
number of policy types. The RSD of the fit is 11.7 er-
rors, with coefficient p-values < 10−11. While our find-
ings suggest that many error codes do not manifest in
a given system, they highlight the relationship between
policy configuration and error diversity.

Observation 7: The number of configurable parame-
ters in a backup policy is positively correlated with the
diversity of errors returned from its jobs.

6 Effect of system setup

We have shown that diversity within the backup sys-
tem, at the level of policy and job characteristics, can be
linked to the number and diversity of job errors. Backup

7

486 2016 USENIX Annual Technical Conference USENIX Association

0

10

20

30

40

50

60

09/2012 03/2013 12/2013 07/2014 12/2014 05/2015
Version release date (month/year)

Jo
b

er
ro

r r
at

e
(%

) Stable versions
Alpha/Beta versions
Overall average

Figure 9: Job error rates across different versions of the
backup software.

systems, however, can also differ with regards to the
characteristics of the environment in which they are de-
ployed. This section looks into the effect of such factors
on job errors: the backup software and operating system
versions, the backup system’s size and load, and the rate
of configuration changes in the system.

6.1 Software components
Overall, we examined backup systems running 22 ver-
sions of the backup software. We grouped jobs based
on the software version under which they ran, and Fig-
ure 9 shows the job error rate for the different versions.
We find that the job error rate remains stable across most
software versions, approximating the average error rate
across all jobs, which is 8.7%. As one would expect, ear-
lier alpha and beta versions of the backup software, run-
ning on development systems, demonstrate higher error
rates. These error rates are also accentuated by the short
lifespan (see Table 3), and the purpose of these systems.

The systems we study are also diverse with regards
to the operating environments of their clients, i.e. the
machines contributing their data for backup. Backup
system clients in our dataset represent several operat-
ing system families: Windows, Linux, OS X, AIX, and
others. Moreover, they deploy 45 different versions of
these operating systems, and many of them often ap-
pear in the same backup system. We find no evidence
that this client-side heterogeneity can affect the job error
rate in the system. This heterogeneity, however, does
explain the large number of deployed backup policies
(recall Section 5.3). Some policies are tailored to spe-
cific operating system families, and we find that backup
systems are usually diverse enough to deploy many such
policies concurrently, across different clients. Specifi-
cally, the majority of backup systems consist of clients
deploying at least 6 operating system versions spanning
3 operating system families.

Observation 8: A system’s job error rate remains
unaffected across backup software versions and hetero-
geneity in client operating systems.

6.2 System size and load
The weekly telemetry reports we collect from customer
systems also contain runtime information about the sys-
tem, such as the number of clients that are active in the
system on a given week. We use the number of clients
as indication of the system’s size, which we find to be
non-linearly correlated (Spearman’s rs = 0.67) to the sys-
tem’s load. We define the load, or weekly job rate, of
the system as the average number of jobs that run in the
system in a given week. Due to the non-linear relation-
ship between the two quantities, we apply a logarithmic
transformation on both quantities before using linear re-
gression to model their relationship. The resulting model
is c = 0.69 j0.6 −1, where c is the number of clients, and
j is the weekly job rate of the system. The model’s RSD
is 8.67 clients, with coefficient p-values < 10−8. This
relationship is likely attributed to clients that join backup
policies once they are added to the system, although not
all systems follow this tactic [3].

The weekly job rate of a backup system is also corre-
lated (rs = 0.56) to its client heterogeneity. As in Section
6.1, we define a system’s client heterogeneity based on
the number of different operating system versions rep-
resented across its client base. After applying a loga-
rithmic transformation to the weekly job rates, we were
able to fit a linear model to the data with RSD of 5.9 op-
erating systems, and coefficient p-values < 10−2. Note
that while residual errors are too large for prediction pur-
poses, due to high variability in the data, this model in-
dicates the relationship between heterogeneity and sys-
tem load. The number of client operating systems is ex-
pressed as o = 0.77log j+0.1(log j)2.

Finally, we find that the weekly job rate is indicative
(rs = 0.62) of error diversity in the system. Recall that
error diversity is defined as the number of unique error
codes returned by jobs in a given system. We have fitted a
linear model after applying a logarithmic transformation
on weekly job rates. The model’s RSD is 13.5 errors,
with coefficient p-values < 10−15. The number of unique
error codes in the system is expressed as e= 0.55(log j)2.

Figure 10 shows the shapes of the curves describ-
ing the relationships between a given backup system’s
weekly job rate, and the three quantities: the number
of clients, the number of client operating systems, and
the number of unique error codes. We find no evidence,
however, that any one of these quantities is indicative of
the system’s job error rate. In other words, while larger
systems should be expected to be busier, more heteroge-
neous, and exhibit higher error diversity, they shouldn’t
be expected to have jobs fail at higher rates.

Observation 9: A backup system’s size tends to be
indicative of: its load, its clients’ heterogeneity, and its
error diversity.

8

USENIX Association 2016 USENIX Annual Technical Conference 487

0
10
20
30
40
50
60
70
80
90

100

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

Weekly job rate

Number of clients
Distinct error codes
Client OS versions

Figure 10: Fits describing the relationships between the
average weekly rate of jobs in a backup system and its
size, error diversity, and client heterogeneity.

6.3 Configuration changes
For each monitored backup system, we collect weekly
statistics on the number of clients, policies, and storage
devices configured with the system. To describe the vari-
ability for these quantities over time, we estimate their
coefficient of variation. This metric is defined as the ra-
tio of the standard deviation across our weekly measure-
ments, compared to the overall mean value for the sys-
tem. As a result, the coefficient corresponds to the frac-
tion of the mean by which a given measurement is ex-
pected to deviate, i.e. larger values imply wider spread.

We find that variability in the number of clients of
a backup system is strongly positively correlated to the
number of backup policies in the system. This implies
that the addition and removal of policies in a system co-
incides with variability in the number of clients. This is
likely due to policies that define clients that follow them
upon their addition to the system, and due to deleted poli-
cies rendering some clients inactive upon their removal.

Lastly, we find no correlation between the variability
of a backup system’s configuration and its job error rate,
or its error diversity. This is attributed to the fact that
across all systems, these quantities are characterized by
low variability throughout the system’s lifespan. Vari-
ability in the number of storage devices in the system is
also not correlated to any of the previous metrics, for the
same reason.

Observation 10: The rate of configuration changes in
a backup system has no effect on its job error rate, or its
error diversity.

7 Error predictability

The majority of errors occurring in a backup system re-
quire administrator intervention in order to be resolved
(Section 4.3). As a result, we expect these errors to re-
cur over time. In Section 7.1 we examine whether this
property describes the errors in our dataset, and whether

it can help us predict future errors. Furthermore, jobs
in a backup policy execute in a fixed sequence, and thus
we expect their success to be dependent on the success
of prior jobs. To test this assumption, we examine the
existence of dependencies between different error codes
in Section 7.2. We further assess the predictive power of
factors described in previous sections when forecasting
future errors.

7.1 Auto-predictability of error codes
Using the periodic reports we receive for each backup
system in our dataset, we can construct time series that
reveal information about the timing of error occurrences.
Specifically, we have information on the number of indi-
vidual job error codes that occur in a given backup sys-
tem, on a specific day. We use this data to construct two
types of time series: a series of error counts, i.e. the
number of times that a given error code occurs daily, and
a series of inter-arrival times, i.e. the number of days
between occurrences of the same error code. Across all
systems, we analyze 55,862 error count time series, and
54,461 inter-arrival time series in total 1.

Most of the errors we study are misconfigurations that
require administrator intervention in order to be resolved.
We expect these errors to be recurrent, and therefore pre-
dictable. To test the predictability of our time series,
we use the Hurst exponent. This metric is widely used
as a measure of the long-term memory of time series
[21, 32]. The values of the Hurst exponent, H, range
between 0 and 1: H = 0.5 indicates a completely un-
correlated series, and 0 < H < 0.5 corresponds to mean-
reverting series, i.e. observations switching between low
and high values, gravitating towards the mean. Finally,
0.5 < H < 1 indicates trend-reinforcing series where fu-
ture values are likely to be similar to past values. Due
to this dependence, the latter category of time series are
easier to predict.

Figure 11 shows the CDFs of Hurst values for both
types of time series. The values have been estimated
using the traditional R/S analysis approach [41]. We
find that 90.1% of daily error count series exhibit strong
trends (H > 0.5). This implies that the occurrences of a
given error code tend to follow a trend, instead of varying
wildly. The remaining time series score lower because
they belong to hosts that have been monitored for shorter
periods, and error counts exhibit low variation, if any.
Specifically, the majority of series with Hurst exponents
less than 0.5 show 1.9 times less variance, and consist of
6.3 times fewer observations. On the other hand, as many
as 46.1% of error inter-arrival time series show low Hurst
values (H ≤ 0.5). The reason for this is that these time

1The smaller number of inter-arrival series is due to 1,401 error
time series that span only two weeks. In those cases, inter-arrival series
cannot be defined.

9

488 2016 USENIX Annual Technical Conference USENIX Association

0
10
20
30
40
50
60
70
80
90

100

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0Pe
rc

en
ta

ge
 o

f t
im

e
se

rie
s

(%
)

Hurst exponent value

Error interarrival times
Error counts

Figure 11: CDFs of Hurst exponent values for time se-
ries of error counts and inter-arrival times. Hurst values
higher than 0.5 indicate persistent, predictable behavior.

series are 6.5 times shorter on average, as many errors
occur in bursts. As a result, the number of inter-arrival
times is smaller than the number of days we have data
for, and the resulting trend consists of haphazard spikes.

Observation 11: The number of daily occurrences of
a given error code follows predictable trends, but error
inter-arrival times do not.

While Hurst exponent values reveal trends in time se-
ries, they cannot be used to suggest the right method
to predict future occurrences. The most widely used
forecasting methods for univariate time series are ex-
ponential smoothing, and auto-regression. Exponential
smoothing models make predictions using weighted av-
erages of past observations, with the weights decaying
exponentially for older observations [9]. While these
models try to capture the trend and seasonality in the
data, auto-regressive models such as ARIMA [17, chap-
ter 8.9] attempt to explicitly capture correlations with
past observations.

For each time series, we estimated the best exponential
smoothing and ARIMA model using Akaike’s Informa-
tion Criterion [2], a metric that rewards smaller predic-
tion errors while penalizing models with more parame-
ters. We consider a range of models, such as additive,
multiplicative, and damped exponential smoothing. We
trained each model using 75% of the available observa-
tions, and picked the model that scored the smallest av-
erage prediction error on the remaining test data.

In order to compare the prediction accuracy of models
fitted to different datasets, we use the mean of the ab-
solute prediction error percentage, a scale-independent
error metric [17, chapter 2.5]. Since this metric divides
the prediction error for a given observation by its value,
it is sensitive to values approaching zero, and undefined
for zero values. Therefore, we scaled all time series by
adding the same constant prior to model fitting. In Fig-
ure 12, we show the CDFs of the average prediction error
for each time series of error inter-arrival times, and error

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100Pe
rc

en
ta

ge
 o

f t
im

e
se

rie
s

(%
)

Average prediction error (%)

Error interarrival times (Mean: 166.4%)
Error counts (Mean: 102.1%)

Figure 12: CDFs of the average prediction error of the
best auto-regressive and exponential smoothing model
fits for each time series.

counts. A point (x,y) in the graph indicates that y% of
time series predict future values with at most x% error.

We find that for the majority of time series, error inter-
arrivals cannot be predicted with an error smaller than
42% on average. Error counts are more predictable, as
their Hurst exponent values imply, with the majority of
time series exhibiting less than 14% error in predictions.
Both distributions are long-tailed, however, and predic-
tions can exhibit errors as high as 2400% (or 166% on
average) for inter-arrival series, and 886% (or 102% on
average) for error counts. Since errors are expressed rel-
ative to true values, large errors are expected for short
time series with high variability. In any case, these re-
sults indicate that job errors cannot be reliably predicted
across many systems using only historical information
on error occurrence. In the following subsection, we in-
vestigate the predictive power of other factors that affect
the job error rate, as a means of increasing the prediction
accuracy of our models.

Observation 12: Forecasting methods that take into
account only historical information of error occurrences
fail to reliably predict future occurrences.

7.2 Inter-error dependencies
Backup system policies define a fixed sequence of jobs
that need to be scheduled before the assigned data has
been backed up in a consistent manner. As a result, we
expect the success of backup system jobs to be tied to
the success of earlier jobs. To investigate whether de-
pendencies exist between individual error codes in such
a manner, we need to measure correlations between the
time series of every possible error code pair in a system.
Unfortunately, doing so manually is infeasible, because
metrics that summarize cross-correlation as a number
make assumptions about the data that must be verified
through rigorous inspection of the time series involved.
On the other hand, machine learning models can be used
to discover patterns without being as restrictive.

10

USENIX Association 2016 USENIX Annual Technical Conference 489

We choose to model our data using random forests of
decision trees for individual error codes, where the out-
put for each forest determines whether an error code will
occur on a given day, given inputs on the occurrence of
other error codes on the same day, and in the last week.
Random forests are groups of decision trees, each of
which is built using a random subset of the input fea-
tures and the training data. The output is decided by tak-
ing a simple majority vote over all the trees. Due to their
construction, random forests are more robust against bias
and over-fitting, compared to individual decision trees.

We trained individual random forests for every error
code using daily data across all customer production sys-
tems, in order to detect trends that are independent of the
administrative decisions made in individual systems. We
use R’s randomForest package [7], with 500 trees per
forest, and we split our data so that 25% of the obser-
vations are reserved for testing the generated model. We
measure model accuracy by computing the model’s ROC
curve [31], which is a function of the model’s classifica-
tion performance given its sensitivity, and then calculat-
ing the area under the curve (AUC) [12]. This number
represents the model’s ability to distinguish true posi-
tives without incurring additional false positives, as the
sensitivity of the classification is varied. An accuracy of
50% represents the random classifier, while 100% indi-
cates the perfect model that avoids false classifications
entirely.

Overall, we find that random forest models trained us-
ing historical error data perform fairly well, achieving
AUC values in the range of 70-83%, with a median of
76%. To find the features that contribute the most to
the model’s accuracy, the values of each feature are per-
muted, i.e. fuzzed, and the overall drop in the model’s
accuracy is measured. This approach helps us identify
relationships between error codes. As a case in point,
errors indicating that backups were rejected because the
scheduling window closed are usually preceded by infor-
mational messages indicating that the administrator has
dequeued or killed active jobs. Another example is that
of errors indicating failures due to insufficient storage
space, which are usually preceded by errors indicating
that some, or no files have been backed up successfully.

While our results indicate clear dependencies, it is
hard to imagine that the accuracy of the presented mod-
els will be sufficient to make predictions in production
systems. To further test the validity of our observations,
we extended our training data to contain features inspired
from the observations made throughout this paper; the
full list of features is shown in Table 4. Retraining our
random forests with these extra features leads to consis-
tently increased accuracy across all models. Specifically,
the AUC values of these models lie in the range of 77-
90%, with a median of 83%. We find that the most im-

Feature Description Type
Occurrence of error code i today Boolean
Past week occurrences of error code i Numeric
Average number of jobs daily Numeric
Occurrence of backup jobs today Boolean
Occurrence of management jobs today Boolean
Occurrence of recovery jobs today Boolean
Average number of active policy parameters Numeric
Average system job size Numeric

Table 4: Features used in the training of the random
forests. The first two feature types refer to all error codes
except the one classified. The other features are specific
to the system’s operation and configuration.

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Tr
ue

 p
os

iti
ve

 ra
te

False positive rate

Features: other error codes
Features: other error codes,
environment characteristics

Figure 13: ROC curves for random forests predicting
the occurrence of the error code indicating that a storage
server is unreachable.

portant feature in 44% of the retrained models is one of
the features introduced in our earlier observations. In ad-
dition to that, 98% of the models contain at least two such
features in their five most important features. It is worth
noting that the features of highest significance across all
models are the number of jobs, and the average number
of parameters (i.e. complexity) of active policies.

Figure 13 shows the ROC curves of two random
forests built to predict the error code indicating that a
storage server is unreachable to the backup system. The
AUC for the model trained only using historical error
data is 77.8%, and Figure 13 shows that it incurs a high
rate of false positives once the true positive rate is ad-
justed above 60%. On the other hand, for the model tak-
ing into account factors from our study’s observations,
the AUC increases to 85.1% and a true positive rate of
80% is possible while retaining a low false positive rate.

Observation 13: Most errors can be fairly accurately
predicted based on the occurrence of other error codes.
The factors in previous observations shown in Table 4,
however, make superior predictors.

11

490 2016 USENIX Annual Technical Conference USENIX Association

8 Toward more resilient backup systems

This section outlines the implications of our results on
the design of future backup systems. We identify four
major topics with potential to increase the resilience of
backup systems to job failures.

Error prediction. Very little work exists in the liter-
ature on the application of predictive models on backup
systems. Chamness [10] and Vaughn et al. [36] use re-
gression to forecast shortages in storage capacity. Ma et
al. [22] use Naive Bayes to estimate the failure probabil-
ity of hard disks, and RAID arrays. We have applied pre-
dictive models on job errors, and our results suggest that
their occurrences follow predictable patterns. Our mod-
els, however, are constructed by simply applying well-
known learning methods. We believe that more sophisti-
cated approaches have the potential to yield higher levels
of accuracy that would allow administrators to be proac-
tive about errors. While we have trained our models to
detect patterns that are universal across all systems in
our dataset, prediction models used in individual systems
could benefit from biases toward system characteristics.

Configuration automation. While self-healing sys-
tems automatically discover and correct faults, they do
not improve the odds that they will not occur again in
the future. A small body of prior work attempts to rem-
edy this through system autoconfiguration. AutoBash
[33] leverages a speculative OS kernel to fix misconfig-
urations. Chronus [42] makes use of checkpointing and
rollback to detect the last working configuration. KarDo
[20] takes a machine learning approach to learn the steps
required to resolve the issue from a crowd-sourced col-
lection of solutions, supporting heterogeneous environ-
ments as well. NetPrints [1] collects examples of good
and bad network configurations, and generates a deci-
sion tree to determine the set of configuration changes
required to transition the system to a good state. One of
the challenges that these techniques face, is their time-
liness in providing solutions. In some contexts, such
as that of backup systems, allowing misconfigurations
to remain latent can adversely affect the system’s avail-
ability. Using the results from studies such as this one,
these tools could improve their efficiency by narrowing
down the list of potential errors. This filtering could be
achieved based on the probability of occurrence for indi-
vidual error codes, tracking the root cause faster.

Configuration validation. Research on misconfigu-
ration errors mainly focuses on detecting, diagnosing,
and troubleshooting these issues. While this provides a
remedy after the fact, it does not spare users from the
frustration of dealing with these errors in the first place.
To address this issue, a line of research focuses on im-
proving the design of configuration interfaces, and mak-
ing systems more resilient in the face of misconfigura-

tions. Some of the existing work includes the extraction
of configuration parameter types [29], statically analyz-
ing code to infer configuration variable constraints [43],
permuting valid configuration settings [19], testing oper-
ator actions in sandboxes [24], storing application state
to seamlessly undo and replay events in the case of er-
rors [8], and using a declarative language to express con-
figuration specifications [15]. Our findings in this study
pinpoint configuration variables typically linked to error
frequency or diversity in backup systems, and identify
other factors as having no effect. Furthermore, our pre-
vious work [3] suggests that configuration parameters of
these systems are often set to default values. We expect
that using these observations as heuristics will assist fu-
ture work in improving the efficiency of configuration
correctness proofs.

Work reduction. One of the most common errors
across systems indicates jobs being aborted because the
scheduled window for backups was too short. While this
error could be resolved by increasing the length of the
backup window, it may not be feasible to do so. To-
day, capacities of hard drives are increasing faster than
their data transfer speeds, causing near-line hard drives
to take 1.7 hours to access a single terabyte of data [13].
To avoid these delays, it is worth looking into approaches
that would allow the amount of maintenance work to be
reduced. This could be achieved via content-aware back-
ups that exclude temporary or unimportant files [14, 16],
or by piggybacking on other ongoing I/O [4].

9 Conclusion

We have analyzed an extensive dataset from customer
backup systems, consisting of 775 million jobs. We find
that job errors are prevalent in backup systems, mostly
due to misconfigurations. Fortunately, the errors that oc-
cur most frequently are not diverse in nature, with 10
error codes accounting for over 78% of job errors.

We identified factors that are responsible for job fail-
ures in backup systems, such as the job’s type, size, and
the complexity of the backup policy that issued the job.
We also highlight factors with little effect on job failures,
such as software characteristics, system size and load,
and configuration variability. We show that the most in-
fluential factors make superior predictors for future fail-
ures compared to historical data on job errors.

We hope that our observations can be used as guide-
lines in the design of more robust backup software. We
identify four promising directions for future work: error
prediction, configuration automation and validation, and
work reduction. We believe these features will be nec-
essary in the face of modern data growth rates, which
increase the time required to finish backups, leaving less
time to rerun failed jobs.

12

USENIX Association 2016 USENIX Annual Technical Conference 491

Acknowledgments

The study would not be possible without the telemetry
data collected by Veritas’ NetBackup team. We espe-
cially thank Liam McNerney for his tireless assistance
in understanding and extending the telemetry collection
infrastructure. We also thank the four anonymous re-
viewers and our (recurring) shepherd, Fred Douglis, for
their invaluable help in improving our paper. Finally, we
would like to thank Bruce Montague, CW Hobbs, Ash-
win Kayyoor, Vish Janakiraman, Henry Aloysius, Steve
Vranyes, and all other members of Veritas Labs for their
feedback during earlier stages of our study.

References

[1] AGGARWAL, B., BHAGWAN, R., DAS, T., ESWARAN,
S., PADMANABHAN, V. N., AND VOELKER, G. M.
NetPrints: Diagnosing Home Network Misconfigurations
Using Shared Knowledge. In Proc. of the USENIX Sym-
posium on Networked Systems Design and Implementa-
tion (2009), NSDI’09, pp. 349–364.

[2] AKAIKE, H. Information theory and an extension of the
maximum likelihood principle. In Proc. of the Interna-
tional Symposium on Information Theory (1973).

[3] AMVROSIADIS, G., AND BHADKAMKAR, M. Identi-
fying Trends in Enterprise Data Protection Systems. In
Proc. of USENIX Annual Technical Conference (2015),
ATC’15, pp. 151–164.

[4] AMVROSIADIS, G., BROWN, A. D., AND GOEL, A.
Opportunistic Storage Maintenance. In Proc. of the
25th Symposium on Operating Systems Principles (2015),
SOSP’15, pp. 457–473.

[5] ATTARIYAN, M., AND FLINN, J. Using Causality to Di-
agnose Configuration Bugs. In Proc. of the USENIX An-
nual Technical Conference (2008), ATC’08, pp. 281–286.

[6] ATTARIYAN, M., AND FLINN, J. Automating Configu-
ration Troubleshooting with Dynamic Information Flow
Analysis. In Proc. of the USENIX Conference on Operat-
ing Systems Design and Implementation (2010).

[7] BREIMAN, L., CUTLER, A., LIAW, A., AND WIENER,
M. randomForest: Breiman and Cutler Random Forests
for Classification and Regression. https://cran.r-

project.org/package=randomForest, Oct. 2015.

[8] BROWN, A. B., AND PATTERSON, D. A. Undo for Oper-
ators: Building an Undoable e-Mail Store. In Proc. of the
USENIX Annual Technical Conference (2003), ATC’03.

[9] BROWN, R. G. Exponential Smoothing for Predicting
Demand. Arthur D. Little Inc., 1956.

[10] CHAMNESS, M. Capacity Forecasting in a Backup Stor-
age Environment. In Proc. of the International Confer-
ence on Large Installation System Administration (2011).

[11] GRAY, J. Why Do Computers Stop And What Can Be
Done About It?, 1985.

[12] HANLEY, J. A., AND MCNEIL, B. J. The Meaning and
Use of the Area under a Receiver Operating Characteristic
(ROC) Curve. Radiology 143, 1 (Apr. 1982), 29–36.

[13] HETZLER, S., AND COUGHLIN, T. Touch Rate: A met-
ric for analyzing storage system performance, 2015.

[14] HILDRUM, K., DOUGLIS, F., WOLF, J. L., YU, P. S.,
FLEISCHER, L., AND KATTA, A. Storage Optimization
for Large-scale Distributed Stream-processing Systems.
Trans. Storage 3, 4 (Feb. 2008), 5:1–5:28.

[15] HUANG, P., BOLOSKY, W. J., SINGH, A., AND ZHOU,
Y. ConfValley: A Systematic Configuration Valida-
tion Framework for Cloud Services. In Proc. of the
ACM SIGOPS/EuroSys European Conference on Com-
puter Systems (2015), EuroSys ’15.

[16] HUGHES, D., AND FARROW, R. Backup Strategies for
Molecular Dynamics: An Interview with Doug Hughes.
Proc. USENIX ;login: 36, 2 (Apr. 2011), 25–28.

[17] HYNDMAN, R. J., AND ATHANASOPOULOS, G. Fore-
casting: Principles and Practice. oTexts, 2015.

[18] IRON MOUNTAIN. Data Backup and Recovery Bench-
mark Report. http://www.ironmountain.com/

Knowledge-Center/Reference-Library/View-by-

Document-Type/White-Papers-Briefs/I/Iron-

Mountain-Data-Backup-and-Recovery-

Benchmark-Report.aspx, 2013.

[19] KELLER, L., UPADHYAYA, P., AND CANDEA, G. Con-
fErr: A tool for assessing resilience to human configura-
tion errors. In Proc. of the IEEE International Conference
on Dependable Systems and Networks (2008).

[20] KUSHMAN, N., AND KATABI, D. Enabling
Configuration-independent Automation by Non-expert
Users. In Proc. of the USENIX Conference on Operating
Systems Design and Implementation (2010), OSDI’10.

[21] LELAND, W. E., TAQQU, M. S., WILLINGER, W., AND

WILSON, D. V. On the Self-similar Nature of Ethernet
Traffic. IEEE/ACM Trans. Netw. 2, 1 (Feb. 1994), 1–15.

[22] MA, A., DOUGLIS, F., LU, G., SAWYER, D., CHAN-
DRA, S., AND HSU, W. RAIDShield: Characteriz-
ing, Monitoring, and Proactively Protecting Against Disk
Failures. In Proc. of the USENIX Conference on File and
Storage Technologies (2015), FAST’15, pp. 241–256.

[23] MASSEY JR., F. J. The Kolmogorov-Smirnov Test for
Goodness of Fit. Journal of the American Statistical As-
sociation 46, 253 (1951), 68–78.

[24] NAGARAJA, K., OLIVEIRA, F., BIANCHINI, R., MAR-
TIN, R. P., AND NGUYEN, T. D. Understanding and
Dealing with Operator Mistakes in Internet Services. In
Proc. of the USENIX Symposium on Operating Systems
Design and Implementation (2004), OSDI’04.

13

492 2016 USENIX Annual Technical Conference USENIX Association

[25] OPPENHEIMER, D., GANAPATHI, A., AND PATTER-
SON, D. A. Why Do Internet Services Fail, and What Can
Be Done About It? In Proc. of the USENIX Symposium
on Internet Technologies and Systems (2003), USITS’03.

[26] PARK, N., AND LILJA, D. J. Characterizing Datasets for
Data Deduplication in Backup Applications. In Proc. of
the IEEE International Symposium on Workload Charac-
terization (2010), IISWC’10.

[27] PATTERSON, D., BROWN, A., BROADWELL, P., CAN-
DEA, G., CHEN, M., CUTLER, J., ENRIQUEZ, P., FOX,
A., KICIMAN, E., MERZBACHER, M., OPPENHEIMER,
D., SASTRY, N., TETZLAFF, W., TRAUPMAN, J., AND

TREUHAFT, N. Recovery Oriented Computing (ROC):
Motivation, Definition, Techniques, and Case Studies.
Tech. Rep. UCB/CSD-02-1175, EECS Department, Uni-
versity of California, Berkeley, Mar. 2002.

[28] R DOCUMENTATION. Fitting linear mod-
els. https://stat.ethz.ch/R-manual/R-

devel/library/stats/html/lm.html.

[29] RABKIN, A., AND KATZ, R. Static Extraction of Pro-
gram Configuration Options. In Proc. of the International
Conference on Software Engineering (2011), ICSE’11.

[30] RAUSAND, M., AND HØYLAND, A. System Reliabil-
ity Theory: Models, Statistical Methods and Applications
(Second Edition). Wiley-Interscience, 2003.

[31] Receiver operating characteristic. https:

//en.wikipedia.org/wiki/Receiver_operating_

characteristic.

[32] RISKA, A., AND RIEDEL, E. Disk drive level workload
characterization. In Proc. of the USENIX Annual Techni-
cal Conference (2006), ATC’06.

[33] SU, Y.-Y., ATTARIYAN, M., AND FLINN, J. Auto-
Bash: Improving Configuration Management with Op-
erating System Causality Analysis. In Proc. of the
21st ACM Symposium on Operating Systems Principles
(2007), SOSP’07, pp. 237–250.

[34] TANG, C., KOOBURAT, T., VENKATACHALAM, P.,
CHANDER, A., WEN, Z., NARAYANAN, A., DOWELL,
P., AND KARL, R. Holistic Configuration Management
at Facebook. In Proc. of the 25th Symposium on Operat-
ing Systems Principles (2015), SOSP’15, pp. 328–343.

[35] VANSON BOURNE. Virtualization Data Protection
Report 2013 – SMB edition. http://www.dabcc.com/
documentlibrary/file/virtualization-data-

protection-report-smb-2013.pdf, 2013.

[36] VAUGHN, C., MILLER, C., EKENTA, O., SUN,
H., BHADKAMKAR, M., EFSTATHOPOULOS, P., AND

KARDES, E. Soothsayer: Predicting Capacity Usage in
Backup Storage Systems. In Proc. of the IEEE Inter-
national Symposium on Modeling, Analysis and Simula-
tion of Computer and Telecommunication Systems (Oct.
2015), MASCOTS’15, pp. 208–217.

[37] VERITAS TECHNOLOGIES. Veritas NetBackup 7.7.
https://www.veritas.com/product/backup-and-

recovery/netbackup, Sept. 2015.

[38] VERITAS TECHNOLOGIES. Veritas NetBackup Status
Codes Reference Guide (Release 7.6). https://www.

veritas.com/support/en_US/article.DOC6471,
Sept 2015.

[39] WALLACE, G., DOUGLIS, F., QIAN, H., SHILANE, P.,
SMALDONE, S., CHAMNESS, M., AND HSU, W. Char-
acteristics of Backup Workloads in Production Systems.
In Proc. of the USENIX Conference on File and Storage
Technologies (2012), FAST’12.

[40] WANG, H. J., PLATT, J. C., CHEN, Y., ZHANG, R.,
AND WANG, Y.-M. Automatic Misconfiguration Trou-
bleshooting with PeerPressure. In Proc. of the USENIX
Symposium on Operating Systems Design and Implemen-
tation (2004), OSDI’04.

[41] WERON, R. Estimating long-range dependence: fi-
nite sample properties and confidence intervals. Physica
A Statistical Mechanics and its Applications 312 (Sept.
2002), 285–299.

[42] WHITAKER, A., COX, R. S., AND GRIBBLE, S. D. Con-
figuration Debugging As Search: Finding the Needle in
the Haystack. In Proc. of the USENIX Symposium on
Opearting Systems Design and Implementation (2004),
OSDI’04.

[43] XU, T., ZHANG, J., HUANG, P., ZHENG, J., SHENG,
T., YUAN, D., ZHOU, Y., AND PASUPATHY, S. Do
Not Blame Users for Misconfigurations. In Proc. of the
24th ACM Symposium on Operating Systems Principles
(2013), SOSP’13, pp. 244–259.

[44] YIN, Z., MA, X., ZHENG, J., ZHOU, Y., BAIRAVASUN-
DARAM, L. N., AND PASUPATHY, S. An empirical study
on configuration errors in commercial and open source
systems. In Proc. of the 23th Symposium on Operating
Systems Principles (2011), SOSP’11, pp. 159–172.

[45] YUAN, C., LAO, N., WEN, J.-R., LI, J., ZHANG, Z.,
WANG, Y.-M., AND MA, W.-Y. Automated Known
Problem Diagnosis with Event Traces. In Proc. of the 1st
ACM SIGOPS/EuroSys European Conference on Com-
puter Systems (2006), EuroSys’06, pp. 375–388.

[46] YUAN, D., XIE, Y., PANIGRAHY, R., YANG, J., VER-
BOWSKI, C., AND KUMAR, A. Context-based Online
Configuration-error Detection. In Proc. of the USENIX
Annual Technical Conference (2011), ATC’11.

[47] ZHANG, J., RENGANARAYANA, L., ZHANG, X., GE,
N., BALA, V., XU, T., AND ZHOU, Y. EnCore: Exploit-
ing System Environment and Correlation Information for
Misconfiguration Detection. In Proc. of the International
Conference on Architectural Support for Programming
Languages and Operating Systems (2014), ASPLOS’14.

14

