
This paper is included in the Proceedings of the
2016 USENIX Annual Technical Conference (USENIC ATC ’16).

June 22–24, 2016 • Denver, CO, USA

978-1-931971-30-0

Open access to the Proceedings of the
2016 USENIX Annual Technical Conference
(USENIX ATC ’16) is sponsored by USENIX.

Energy Discounted Computing
on Multicore Smartphones
Meng Zhu and Kai Shen, University of Rochester

https://www.usenix.org/conference/atc16/technical-sessions/presentation/zhu

USENIX Association 2016 USENIX Annual Technical Conference 129

Energy Discounted Computing on Multicore Smartphones

Meng Zhu Kai Shen
University of Rochester

Abstract
Multicore processors are not energy proportional: the
first running CPU core that activates shared resources in-
curs much higher power cost than each additional core
does. On the other hand, typical smartphone applica-
tions exhibit little parallelism and therefore when one
core is activated by an interactive application, comput-
ing resources at other cores are available at a deep en-
ergy discount. By non-work-conserving scheduling, we
exploit energy-discounted co-run opportunities to pro-
cess best-effort smartphone tasks that involve no direct
user interaction (e.g., data compression / encryption for
cloud backup, background sensing, and offline bytecode
compilation). We show that, for optimal co-run energy
discount, the best-effort processing must not elevate the
overall system power state (specifically, no reduction of
the multicore CPU idle state, no increase of the core fre-
quency, and no impact on the system suspension period).
In addition, we use available ARM performance counters
to identify co-run resource contention on the multicore
processor and throttle best-effort task when it interferes
with interactivity. Experimental results on a multicore
smartphone show that we can reach up to 63% energy
discount in the best-effort task processing with little per-
formance impact on the interactive applications.

1 Introduction

Energy remains the critical resource bottleneck for typi-
cal smartphone usage. Due to the slow progress on bat-
tery technologies and size restrictions of hand-held de-
vices, battery capacity still limits effective smartphone
usage between charges. At the same time, today’s popu-
lar smartphones are commonly equipped with quad-core
or even octa-core processors. Powerful multicore proces-
sors put further pressure on the scarce energy resource of
a mobile device.

Multicore processors are not energy proportional: the
first running CPU incurs much higher power cost than
each additional core does. This can be attributed to two
reasons. First, modern processors are good at power gat-
ing. When the system is completely idle, most parts of
the CPU can be shutdown resulting in minimum energy
consumption. Second, the sharing of hardware resources

on a multicore means that the first running core must ac-
tivate the bulk of shared resources while additional cores
can utilize the already activated resources at much lower
cost. This energy disproportionality suggests that a mul-
ticore processor is more energy-efficient when more of
its cores are utilized at the same time.

Unfortunately, typical smartphone applications are
built on event-driven, UI-centric framework and serve
only a single user. They do not have sufficient paral-
lelism to utilize multiple CPU cores simultaneously. Re-
cent studies [10, 19] on Android applications show a
lack of thread-level parallelism across applications and
an over-provisioning of core resources across devices.
This implies that smartphone multicore processors often
operate at low core utilization resulting in poor energy ef-
ficiency. At the same time, when one CPU core is being
utilized, computing resources at other cores are available
at a deep energy discount.

In this paper, we propose to exploit such energy-
discounted co-run opportunities to process best-effort
tasks that are useful on a smartphone but do not involve
direct user interaction (and thus its time of execution is
flexible). One example of best-effort tasks is the file
compression and encryption in preparation for backing
up the user data to the cloud. Another example is the of-
fline bytecode compilation into native code for optimized
application execution in Android. The third example is
background sensing and analysis of user’s facial expres-
sion or eye movements to improve user experience. Work
in this paper shows that best-effort tasks may be sched-
uled to co-run with interactive applications and realize
significant energy discount.

The idea of saving smartphone energy by bundling
tasks or piggybacking computation on other applications
is not new [14, 18]. Unlike previous work, we recog-
nize that optimal energy discount on multicores is only
realized when the best-effort task execution does not el-
evate the overall system power state. Specifically, the
best-effort task execution must not disrupt the multicore
CPU idle state, increase the core frequency, or affect
the smartphone’s suspension period. In other words, the
smartphone’s multicore power states should experience
no change due to the additional best-effort task execu-
tion. We accomplish this objective through careful non-
work-conserving CPU scheduling.

1

130 2016 USENIX Annual Technical Conference USENIX Association

While co-execution of applications on multicore pro-
cessors may improve the energy efficiency, it also risks
significant interference on shared hardware resources,
memory bandwidth and last-level-cache space in partic-
ular, and thereby leads to poor interactive application
performance and degraded user experience. To mitigate
such contention, we use available processor performance
counters to monitor memory bandwidth usage during the
co-execution, and throttle the best-effort task when it in-
terferes with the foreground application interactivity.

The rest of this paper is organized as follows. Sec-
tion 2 elaborates on multicore energy disproportional-
ity and available smartphone best-effort tasks that mo-
tivate our work. Section 3 presents our design of energy-
discounted computing and resource contention mitiga-
tion on multicore smartphones. Section 4 describes our
implementation on the Android platform. Section 5 eval-
uates the energy saving of best-effort task executions and
the impact of user interactivity between alternative ap-
proaches. We also perform trace-based application anal-
ysis to demonstrate the abundance of energy-discounted
computing opportunities in various smartphone usage
scenarios. We present related work in Section 6 before
concluding the paper in Section 7.

2 Motivation

2.1 Multicore Energy Disproportionality
CPUs have traditionally been the biggest energy con-
sumer in the computer system and are not energy propor-
tional. Thanks to many innovations, they are now much
improved. Today, multicore processors have very sophis-
ticated power states which can be dynamically adjusted
to adapt to different workloads. Specifically, dynamic
voltage and frequency scaling (DVFS) is used to achieve
a wide range of performance / power settings when the
system is active. During the idle period, clock gating
and power gating are heavily utilized to power down var-
ious parts of the processor in order to achieve low power
consumption. These techniques enable the CPU to scale
their power consumptions relatively well in relation to
their utilizations, making them probably the most energy
proportional hardware component in the current com-
puter system.

However, making good energy proportional hardware
remains difficult and current CPU’s energy proportional-
ity is far from perfect. This is particularly true for mul-
ticore processors. Figure 1 shows power consumptions
of several multicore smartphone / tablet platforms when
different number of cores are active. On all platforms we
can observe a disproportionate power jump when acti-
vating the first core of each multicore processor. Specif-
ically, we can see that activating each additional cores

typically consumes less than half of the power compar-
ing to that of the first core. This is substantial given the
small profile of the mobile device.

This energy disproportionality is mostly due to the ag-
gressive hardware sharing. In order to drive down cost,
reduce footprint and save power, modern multicore pro-
cessors share substantial hardware components between
cores. CPUs on one socket usually share the oscillator
and power rail which forces each CPU to operate at the
same frequency. As a result, multicore processors can
achieve high energy efficiency during heavy parallel pro-
cessing. However, if the workload can not scale to take
advantage of available cores, the entire socket will have
to be kept at certain frequency and voltage level to ac-
commodate a few cores’ performance needs resulting in
a waste of energy.

Besides limiting the capability of active perfor-
mance / power scaling, hardware sharing also affects the
processor idle state. Table 1 lists the available CPU idle
states on the Huawei Mate 7 smartphone. As you can
see, individual core idle state (C1) does not have much
impact on the overall power consumption. Maximum
power saving is only achieved through continuous and
simultaneous CPU sleeps (C2) [29]. Again, hardware
sharing plays an important role here. For example, L2
cache and related memory subsystem can only be shut-
down when the whole CPU cluster is completely idle.

We are aware that various heterogeneous architectures
have been proposed to improve the CPU energy propor-
tionality. For example, chips with asymmetric clocking
capabilities are able to set different frequencies for dif-
ferent cores, realizing more flexible performance / power
scaling. Also, chips equipped with CPUs of different
micro-architectures (e.g., ARM big-LITTLE) are used to
mitigate the performance vs. power dilemma. However,
these techniques do not completely eliminate the energy
disproportionality. Hardware sharing is and will continue
to be one of the fundamental design principles of multi-
core processors. Consequently, CPU energy dispropor-
tionality will remain a reality that computer systems have
to live with in the foreseeable future.

To summarize, modern multicore processors can
achieve high energy efficiency when doing heavy parallel
processing or in complete idle states. But due to the ag-
gressive hardware sharing, they are very inefficient when
dealing with workloads of limited parallelism. Unfortu-
nately, it is well known that typical smartphone applica-
tions lack the parallelism to utilize the increasing number
of cores available to them. This creates opportunities for
the mobile system to make use of the extra computation
resources to complete certain tasks at an energy discount.

2

USENIX Association 2016 USENIX Annual Technical Conference 131

0 1 2 3 4
0

1

2

3

4

Number of active CPUs

Po
w

er
 (W

at
ts

)
(A) Tegra 3 based Nexus 7 tablet

0 4 8
0

1

2

3

4

Number of active CPUs

Po
w

er
 (W

at
ts

)

(B) Exynos 5422 based Galaxy S5 smartphone

0 4 8
0

1

2

3

4

Number of active CPUs

Po
w

er
 (W

at
ts

)

(C) Kirin 925 based Huawei Mate 7 smartphone

Figure 1: Disproportionate multicore power consumption on the number of active CPUs. The Tegra 3 chipset on
Nexus 7 tablet (A) contains a quad-core processor. Both Exynos 5422 (B) and Kirin 925 (C) chipsets contain two
heterogeneous quad-core processors. We remove the device battery and use Monsoon Power Meter [4] to measure the
whole system power consumption. Devices are put into early-suspend mode where the display and the touchscreen
are turned off.

State Name Power Target residency Description
C0 Wait for interrupt (WFI) 403 mW 1 nSec Processor is clock gated but can respond to

cache / TLB maintenance (e.g., L2 snoop) re-
quests without exiting the WFI state.

C1 Individual powerdown 365 mW 1 mSec Processor is power gated. All state including
L1 cache content is lost and the processor is re-
moved from the coherency protocol.

C2 Cluster powerdown 214 mW 4 mSecs Can only be entered when all processors are in
individual powerdown mode. All state includ-
ing the L2 cache content is lost.

Table 1: CPU idle states available on the Huawei Mate 7 smartphone. A state’s target residency is a value defined
in the corresponding cpuidle driver in the Linux kernel. It indicates the minimum time period during which the CPU
expects to remain idle so that it is worthwhile to enter the state.

2.2 Best-Effort Tasks

We define best-effort tasks as application workloads that
are meaningful to the user but do not involve direct in-
teraction and thus have loose quality-of-service require-
ments. As mobile phones are increasingly used for a va-
riety of purposes, best-effort tasks are becoming com-
mon in day-to-day uses. Here are a few examples.

Upload and download operations are common on
smartphones. Syncing data with cloud storage ser-
vices, posting on social websites and software installa-
tion / update are typical smartphone usages. Some of
them can be delayed to a certain extent. Although
significant energy consumption comes from the trans-
mission module, CPUs also consume substantial en-
ergy during the process. For example, data compres-
sion / decompression requires heavy computation. And
encryption / decryption are almost mandatory nowadays
which also involve nontrivial CPU processing.

System maintenance work sometimes can also be
treated as best-effort tasks. For instance, Android / Linux
uses kswapd daemon to scan for memory pages that can
be swapped out to free up space. Another example is a
system daemon called dhd dpc which analyzes network
packets and scans for Wi-Fi hotspots. In addition, dur-
ing application installations, Android would optimize the
downloaded packages by recompiling the bytecode for
better native performance. All these require substantial
CPU processing. Some of them may have timing con-
straint (e.g., memory management). However, their com-
pletions often only matter when the user is also actively
using the phone, in which case discounted computation
opportunities are likely to be abundant (Section 5.4).

Background sensing is also a suitable best-effort task.
Previous work [14] has shown that delaying sensing ac-
tivities to overlap with other application executions can
be more energy efficient. With our technique, the bun-
dled execution can reap even more energy discount. Re-

3

132 2016 USENIX Annual Technical Conference USENIX Association

cent trends also suggest more creative ways of sensing.
For example, using camera sensors to analyze user’s fa-
cial expressions or eye movements [1] may improve user
experience. Due to privacy issues, it is beneficial to per-
form these analysis locally which will put pressure on
the device battery life. Since these sensing activities of-
ten overlap with user interactive tasks, our technique can
be used to substantially lower the energy cost.

Proactive tasks are done predictively to improve user
experience. As smartphones getting “smarter”, these
tasks are becoming increasingly common. For exam-
ple, Siri can provide recommendations, news and appli-
cations “even before you ask” [3]. Previous work [25]
also suggests to pre-launch applications to hide user per-
ceived delay. These tasks often do not have hard dead-
lines and thus can benefit from our technique to save en-
ergy.

3 Energy Discounted Computing

Given the energy disproportionality of smartphone mul-
ticore processors and the lack of parallelism in typical
mobile applications, it is possible to get a deep energy
discount by co-scheduling best-effort tasks with the in-
teractive application. However, achieving maximum en-
ergy discount without impacting the user experience re-
quires careful system control.

3.1 Power State Preservation
During the execution of interactive applications, the CPU
will dynamically adjust its power states to meet the ap-
plication performance needs. The key principle of reach-
ing the optimal energy efficiency is to utilize the addi-
tional (otherwise idle) processor resources without ele-
vating the overall CPU power state.

• CPU idle state, or ACPI “C” state [24]: On smart-
phones, there are often long idle gaps between user
interactions during which the user is consuming the
content on the screen while all CPUs enter deep
sleep state. As simultaneous and continuous sleeps
can save a lot of energy [29], it is crucial to keep
best-effort tasks from disrupting these idle peri-
ods. On the other hand, during active application
executions, due to lack of parallelism, idle CPUs
will often enter per-core idle states. These shal-
low sleep states, as we mentioned in Section 2.1,
do not save much energy. Thus these idle cores can
be utilized to run best-effort tasks at an energy dis-
count. To achieve this, the CPU scheduler needs
to schedule best-effort tasks opportunistically in ac-
cordance with interactive applications and therefore

non-work-conserving CPU scheduling may be nec-
essary. Specifically, the system should schedule
best-effort tasks on idle cores only if there is at least
one sibling CPU being actively utilized by the in-
teractive application. Otherwise it should enter idle
state even when best-effort tasks are ready to run.

• Core frequency state, or ACPI “P” state: Modern
CPUs use DVFS to quickly adjust power levels to
conserve energy and meet performance needs of dif-
ferent workloads. In our co-run scheme, the system
should avoid raising the CPU frequency / voltage
levels for best-effort tasks. Otherwise, the extra en-
ergy consumption will negate the energy discount
and the system may well consume more energy than
running each task individually combined. At the
same time, such caution should not affect the perfor-
mance of interactive applications. In other words,
the CPU frequency adjustment should only focus on
the needs of interactive applications and ignore the
presence of best-effort tasks.

• Smartphone suspension state, or ACPI “S” state:
Systems in the suspension state consume very lit-
tle energy by shutting down most parts of the hard-
ware, including the CPU and memory. On some
platforms (notably Android), applications can pre-
vent system suspension by making explicit requests
to the operating system. It is important that, in our
design, best-effort tasks are not permitted to make
such requests. The system should be able to enter
the suspension state regardless of best-effort tasks.

To summarize, realizing the maximum energy dis-
count requires judicious control of various aspects of
the system to prevent best-effort tasks from elevating the
system-wide CPU power states. In other words, best-
effort tasks should be invisible to the system when mak-
ing CPU power state adjustments.

3.2 Resource Contention Mitigation
Carefully running best-effort tasks along with interac-
tive applications can bring significant energy savings.
However, such savings should not sacrifice user expe-
rience. In particular, performance of interactive applica-
tions should not be affected.

Co-running tasks on a multicore can potentially slow
down each other due to resource contention. This is
further exacerbated in our system due to its scheduling
strategy—best-effort tasks are intentionally scheduled to
run hand in hand with interactive applications.

One easy mitigation is to adjust the CPU scheduling
priority. Various parameters are available for this pur-
pose (e.g., nice values and CPU shares on Linux). In our

4

USENIX Association 2016 USENIX Annual Technical Conference 133

design, due to the clear importance of interactive applica-
tions, we choose to grant absolute priority to them—they
are always picked by the scheduler before best-effort
tasks. In other words, within one CPU, best-effort tasks
can only be scheduled when there is no interactive task
waiting.

Absolute priority can eliminate contention on CPU
time and mitigate private cache and TLB pollution. How-
ever, due to the hardware resource sharing on multi-
core processors, contention could also result from shared
hardware resources like last-level-cache space and mem-
ory bandwidth between cores. Our system uses a sim-
ple contention identification approach. Specifically, we
monitor the last-level-cache miss rate using the avail-
able performance counters. Contention is identified if
the miss rate reaches a threshold that suggests mem-
ory bandwidth saturation. We acknowledge a limitation
of our approach—last-level-cache space contention that
does not lead to memory bandwidth saturation will not
be identified. Comprehensively identifying cache space
contention would be challenging and it generally cannot
be accomplished by online monitoring of performance
counters alone.

Once the contention is identified, the common ap-
proach is to throttle the antagonist (low priority tasks in
the contention) executions. This can be done most ef-
ficiently on platforms that support certain hardware fea-
tures such as CPU duty-cycle modulation or asymmet-
ric frequency clocking. Unfortunately, these hardware
features are not widely available on today’s smartphone
processors.

Our system relies on the CPU scheduler to throttle the
best-effort tasks. Comparing to the above techniques,
however, this is more coarse grained. We can only assert
control in the granularity of a CPU quantum (otherwise
risk extra scheduling overhead). Fortunately, closely
monitoring the contention through performance coun-
ters could help time the throttling control more accurate,
making this approach quite effective in practice.

4 Implementation

We have implemented our co-run scheme on Huawei
Mate 7 smartphone running Android 4.4 and
Linux 3.10.30. Our entire modification resides in
the Linux kernel.

We use Linux control groups (cgroup) to identify best-
effort tasks in the kernel. During system boot, a CPU
control group named best-effort is created under the
cgroup root hierarchy. Best-effort tasks can then be eas-
ily added to this group by interacting with the cgroup
virtual file system.

Non-work-conserving CPU scheduling We modify
the Linux complete fair scheduler to maximize CPU idle
state energy saving. Our scheduling policy requires co-
ordination between sibling CPUs. To avoid expensive
cross-CPU interrupts and synchronizations, we imple-
mented these communications asynchronously. Specif-
ically, a CPU that wants to schedule best-effort tasks
is responsible for checking its siblings’ state. We have
each CPU maintain a flag indicating its current schedul-
ing state with the following four values:

• BUSY indicates the CPU is running normal tasks
(e.g., interactive applications),

• IDLE indicates the CPU is in idle state (regardless
of the level of idle state),

• BEST-EFFORT indicates the CPU is running best-
effort tasks,

• and UNDEF is a transient state (e.g., during context
switches).

These per-core flags are cache line aligned to avoid pos-
sible false sharing. Although the asynchronous flag read
may return stale value under data races, it is likely to be
corrected at the next scheduling opportunity. When the
scheduler is picking next task to run, normal tasks have
absolute priority and are always picked before best-effort
ones. If there are only best-effort tasks left in the run
queue, the scheduler will first check its siblings’ state. If
any of them is currently BUSY, it will proceed to sched-
ule one of the best-effort tasks. Otherwise, it will enter
idle state directly.

Frequency preservation Kernel cpufreq governor is
responsible for adjusting the CPU frequency. It can come
in different flavors but the process usually involves track-
ing the system load and making adjustments according to
some fine-tuned parameters. The load is calculated on a
per-core basis by looking at the CPU busy time during
the past epoch. Governors typically raise the frequency
according to the need of the most heavily loaded CPU (if
per-core frequency setting is not available).

To prevent best-effort tasks from affecting the CPU
frequency, we track their CPU usage and subtract that
from the total CPU busy time when calculating the load.
This, along with the absolute priority modification in the
scheduler, essentially make best-effort tasks invisible to
the CPU governor. While governors completely ignore
best-effort tasks, they can still respond to the need of in-
teractive applications just like before.

These modifications reside in the generic gover-
nor framework thus individual governor change is not
needed.

5

134 2016 USENIX Annual Technical Conference USENIX Association

Suspension management On Android, wakelock is
used to govern the system suspension state. Applications
that want to keep the system awake need to make explicit
request to the kernel and grab a wakelock. According to
our co-run policy, best-effort tasks should not hold any
wakelocks. We modify the wakelock kernel sysfs inter-
face to reject any requests made from best-effort tasks.

Contention-triggered throttling Our performance
counter based throttling strategy is implemented
as a loadable kernel module. We assess the mem-
ory bandwidth usage by monitoring the L2 (last-
level) cache miss rate. Specifically, we select two
events in ARMv7 performance monitoring unit:
ARMV7 A15 PERFCTR L2 CACHE REFILL READ
as L2 cache read miss and
ARMV7 A15 PERFCTR L2 CACHE REFILL WRITE
as L2 cache write miss. Combined they approximate the
total access to the main memory. The module triggers
periodic interrupt every 20 ms to collect and update the
counter statistics. We read the counter value directly
from the registers and take care of the overflows. Before
picking best-effort task, the CPU scheduler is required to
check the latest L2 cache miss rate. If the rate is above
certain threshold, the best-effort task will not be sched-
uled. Similar to our other scheduler modifications, the
counter maintenance and lookups are performed in an
asynchronous way to avoid the overhead of cross-CPU
interrupts and synchronizations.

Our modifications (including the periodic perfor-
mance counter reading) incurs less than 1% perfor-
mance overhead for all our benchmarks described in Sec-
tion 5.1.

5 Evaluation

In this section, we evaluate our techniques on a real de-
vice with realistic benchmarks. Section 5.1 introduces
our evaluation setup. Section 5.2 evaluates the system
energy efficiency. Section 5.3 assesses the effectiveness
of our contention mitigation measures. Section 5.4 pro-
vides a trace-based application study to demonstrate the
abundance of energy-discounted computing opportuni-
ties in various smartphone usage scenarios.

5.1 Evaluation Setup

Experimental device We use Huawei Mate 7 smart-
phone. It was released in October 2014 and is equipped
with a Hisilicon Kirin 925 SoC which contains an ARM
big.LITTLE octa-core CPU. We use the big cluster in our
evaluation. It has four 1.8 GHz ARM Cortex-A15 cores.
Each core has its own 32 KB/32 KB L1 instruction and

data cache and all cores share a 2 MB L2 cache. It has
2 GB LPDDR3 memory with a bandwidth of 12.8 GB/s.

Power measurement In order to do precise power
measurement, we remove the smartphone’s battery and
connect its power pins to the Monsoon Power Meter [4]
which acts as an external power source and measures the
phone’s overall power consumption. The power meter is
able to sample the current at 5 kHz. We turn off hardware
components like GPS, cellular and dim the display to the
minimum brightness. WiFi is kept on for the purpose of
controlling the phone through the host machine without
the USB connection (which will disturb the power mea-
surement).

Interactive applications We assemble a suite of
benchmarks to represent typical interactive and best-
effort application co-run scenarios. Two representa-
tive interactive applications are chosen. Bbench [12],
a widely used web browsing benchmark which auto-
matically loads and renders locally cached popular web-
sites. It measures the browser performance by tracking
the JavaScript onLoad event which is triggered once a
webpage is fully rendered. We run it using the Android
default web browser. Another interactive application is
Angry Bird, a popular mobile casual game.

For the co-run experiments, it is important that we
are able to measure the interactivity of the interactive
application. For applications like web browser, the in-
teractivity can be defined as time needed to complete
certain tasks. For Bbench we use the aggregated web-
page rendering time to measure its interactivity. On the
other hand, for games like the Angry Bird, the interactiv-
ity is only defined by how responsive the application is.
Frames-per-second (FPS) is a more relevant metric. We
use GameBench [2] to measure its FPS.

Best-effort applications We select five applications as
best-effort tasks.

Spin, a CPU intensive microbenchmark that calculates
the n-th triangular number by summation. We choose
this microbenchmark to illustrate the optimal co-run
scenario—a CPU intensive workload with little memory
activity.

Compression compresses a set of files using bzip and
Encryption encrypts them using the AES encryption.
These two are chosen to mimic user download and up-
load activities.

AppOpt optimizes Android application packages by
recompiling them into native code. This is chosen to rep-
resent typical deferrable system work.

FaceAnalysis is an in-house developed application that
analyzes input faces. It uses Stasm [17], an active shape

6

USENIX Association 2016 USENIX Annual Technical Conference 135

model based library, to process images and extract posi-
tions of landmark features. This is particularly useful in
facial expression analysis. We use it to represent emerg-
ing passive sensing applications. To make the experi-
ment reproducible, we use locally cached face images as
its input.

Input Workload Application workloads are carefully
chosen such that the executions of the interactive appli-
cation and the best-effort task can mostly overlap with
each other when using our co-run strategy. Specifically,
Bbench are configured to load 15 websites with two sec-
onds delay (to mimic user think time) between each web-
site. The whole session takes roughly 44 seconds to
complete. Angry Bird, on the other hand, is played for
42 seconds. Best-effort tasks are launched in the back-
ground shortly after the interactive application starts and
the amount of the work is configured such that they can
finish right before the interactive application ends under
the most strict (throttling-based) best-effort task schedul-
ing policy. To make experiments reproducible, we use
RERUN [11], a record and replay tool for the Android
operating system, to automate the test flow. User inter-
action sessions are recorded into a sequence of touch and
system events. Later, these events are sent back to the
phone to replay user interactions with precise timing and
accuracy.

5.2 Energy Efficiency
To evaluate the energy efficiency of our system when
running best-effort tasks with interactive applications,
we run Bbench and Angry Bird with each of the five best-
effort workloads. We run each pair under two different
scheduling strategies:

• default, where there is no change to the original sys-
tem behavior;

• power-states-preservation scheduling, where our
non-work-conserving scheduling techniques are
used.

Figure 2 and Figure 3 show the result. Energy discount
(σ) of the best-effort task is calculated as

σ =
Ebest-effort − (Eco-run −Einteractive)

Ebest-effort
(1)

where Ebest-effort is the amount of energy consumed by the
best-effort task running alone under the default system
setting, Eco-run is the total system energy consumption
of the co-run execution and Einteractive is the total system
energy consumption when running the interactive appli-
cation alone. Each of our energy metrics measures the

active energy—those consumed above the system idle
power consumption.

The result clearly shows that our system can realize
deep energy discount in all co-run scenarios, ranging
from 23% to 71%. We attribute this to the fact that the
overall CPU power states are preserved—the execution
of the best-effort task is completely hidden behind the
interactive application power profile.

Spin Compress Encrypt AppOpt FaceAnalysis
0

10%

20%

30%

40%

En
er

gy
 d

is
co

un
t r

at
io

(A) Best−effort task energy discount

Default co−run
Power states preservation scheduling
Power states preservation and
contention−aware scheduling

Spin Compress Encrypt AppOpt FaceAnalysis
0

10

20

30

40
El

ap
se

d
tim

e
(in

 s
ec

on
ds

)
(B) Best−effort task elapsed time

Spin Compress Encrypt AppOpt FaceAnalysis
0

2%

4%

6%

8%

Best−effort tasksW
eb

pa
ge

 re
nd

er
in

g
sl

ow
do

w
n

ra
tio (C) Impact on BBench interactivity

Figure 2: Experimental results of running interactive ap-
plication BBench web browsing with various best-effort
tasks under different scheduling strategies. We show
the best-effort task energy discount (A), best-effort task
elapsed time (B), and impact on BBench’s interactivity
(webpage rendering slowdown) (C).

This is further illustrated in Figure 4. When Bbench
running alone, the current trace shows the typical burst-
then-idle pattern that is common on smartphones due to
the long user think time between interactions. During
these idle periods, the system is able to enter deep sleep
states to conserve energy (trough in the current wave-
form). However, best-effort tasks, without any control,
will disrupt these deep sleep states. In addition, during
the burst period, simultaneous executions of both tasks
would increase the system load and drive up the CPU fre-

7

136 2016 USENIX Annual Technical Conference USENIX Association

Spin Compress Encrypt AppOpt FaceAnalysis
0

20%

40%

60%

En
er

gy
 d

is
co

un
t r

at
io

(A) Best−effort task energy discount

Default co−run
Power states preservation scheduling

Spin Compress Encrypt AppOpt FaceAnalysis
0

10

20

30

40

El
ap

se
d

tim
e

(in
 s

ec
on

ds
)

(B) Best−effort task elapsed time

Spin Compress Encrypt AppOpt FaceAnalysis
0

20

40

60

Best−effort tasks

Fr
am

es
 p

er
 s

ec
on

d

(C) AngryBird frame rate

Figure 3: Experimental results of running interactive ap-
plication Angry Bird with various best-effort tasks under
different scheduling strategies. We show the best-effort
task energy discount (A), best-effort task elapsed time
(B), and Angry Bird’s frame rate (C).

quency. In both cases, the system overall power states are
elevated, resulting in more energy consumption. These
are shown in the current waveform of the default co-run
execution. With our power-state-preservation schedul-
ing, both kinds of disruption can be avoided. The best-
effort task is piggybacked by the interactive application
execution during the burst period, resulting in improved
energy efficiency.

It is worth noting that, in Figure 2, the default co-run
strategy can also provide some energy discount. This is
mostly due to the fact that we intentionally overlap the
two application executions by launching them roughly
at the same time. Thus a portion of the best-effort task
execution happens to be able to utilize some computa-
tion resources without elevating the overall CPU power
state. In other words, the resulted energy discount is un-
dependable at best. It completely depends on the applica-
tion characteristics and how the user interacts with them.
In fact, in some of our tests, the default co-run strategy

can result in more energy consumption than running each
task individually combined. Given the typical burst-then-
long-idle smartphone usage pattern, the default co-run
strategy is likely to perform poorly in most practical sce-
narios. Our system, on the other hand, always preserves
the CPU power states and thus is able to consistently pro-
vide high energy discount under all circumstances.

Our non-work-conserving scheduling strategy in-
evitably reduces the system resource utilization and leads
to longer execution time of best-effort tasks. Fortunately,
best-effort tasks do not involve direct user interaction
thus their time of execution is somewhat flexible. The
saved energy, on the other hand, could extend the smart-
phone battery life and let user use their phones more
freely which could greatly improve the user experience.

5.3 Throttling-based contention mitigation

As shown in Figure 2, there are non-negligible slowdown
on the interactive application when doing power-states-
preservation co-run scheduling. In this part of the evalu-
ation, we assess the effectiveness of our throttling-based
contention mitigation technique.

We first focus on two application pairs which experi-
ence large interactivity slowdown: Bbench+AppOpt and
Bbench+FaceAnalysis with 6.77% and 8.66% slowdown
respectively. Different L2 miss rate throttling thresholds
are used to evaluate their impact on the system perfor-
mance. Table 2 shows the result. The throttling tech-
nique, with properly set threshold, proves to be effec-
tive in resource mitigation and minimizing the interac-
tivity slowdown. With L2 miss rate threshold set at
15 misses/µSecs, both the best-effort task elapsed time
and the interactivity slowdown remain similar to the non-
throttling based scheduling strategy. This means that
the throttling mechanism is probably not triggered and
a lower threshold is needed. With lower L2 miss rate
thresholds, the best-effort task begins to see increased
elapsed time while the interactive application perfor-
mance is improved. This suggests that the system is
throttling best-effort tasks while the memory bandwidth
is under pressure as it reaches the L2 miss rate threshold.
This in turn helps to improve the interactive application
performance by reducing the resource contention caused
by best-effort task.

However, the benefit is diminished above
10 misses/µSecs. Beyond that, there is very little
improvement and even negative impact on the in-
teractive application and the elapsed time of the
best-effort task increases dramatically. For a threshold
of 6 misses/µSecs, the FaceAnalysis benchmark could
not even finish within the 44 seconds Bbench session.
This implies that 10 misses/µSecs L2 miss rate is a good
indicator of the memory bandwidth saturation and any

8

USENIX Association 2016 USENIX Annual Technical Conference 137

0 10 20 30 40
0

0.5

1

1.5

Time (Seconds)

 C
ur

re
nt

 (A
m

ps
)

(A) Bbench running alone

0 10 20 30 40
0

0.5

1

1.5

Time (Seconds)

C
ur

re
nt

 (A
m

ps
)

(B) Bbench + Spin default co−run

0 10 20 30 40
0

0.5

1

1.5

Time (Seconds)

C
ur

re
nt

 (A
m

ps
)

(C) Bbench + Spin with power state preserving scheduling

Figure 4: Current trace of Bbench running alone and Bbench+Spin co-run under different scheduling strategies. In
the default co-run test (B), the spin task takes 9.07 seconds to finish. Under the power states preserving scheduling
strategy (C), the same task takes 31.91 seconds.

lower thresholds can only bring unnecessary slowdown
to the best-effort task without benefiting the interactive
application.

Next, we apply the contention-aware scheduling tech-
nique to all Bbench co-run pairs. The throttling threshold
is set at 10 misses/µSecs. Figure 2 shows the result. Be-
sides reducing the Bbench slowdown, we can also see
that the throttling technique does not affect the energy
savings. In addition, for Spin and Encryption where there
is no slowdown of the interactive application, we observe
little changes on the best-effort task elapsed time. This
suggests that the scheduler is truly contention-aware—it
only activates the throttling when there is resource con-
tention in the system.

5.4 Trace-based Application Analysis

In this section we conduct a trace-based application anal-
ysis to study the amount of energy discounted computing
opportunities in typical smartphone usage scenarios.

Eight popular applications are selected, their detailed
descriptions are listed in Table 3. For fair comparisons,
each usage scenario lasts for one minute.

We use Linux debugfs-based kernel trace facility to
collect CPU frequency and idle state transition events
and then calculate the amount of energy discounted com-
puting cycles based on our power-states-preservation
scheduling policy. Specifically, if at least one CPU is ac-
tively running at certain frequency, other idle CPUs are
counted to be able to provide energy discounted comput-
ing cycles at that frequency.

For each usage scenario, we measure the abundance of
energy discounted computing opportunities in relation to
the active CPU usage of the corresponding interactive ap-
plication. Further, we convert the amount of discounted
cycles into meaningful best-effort task workloads by nor-
malizing it to the amount of CPU cycles needed to finish
a unit of work (e.g., analyzing one frame of face or en-

(A) Bbench + FaceAnalysis

Throttling
threshold

(misses/µSecs)

Best-effort task
elapsed time

Bbench
slowdown ratio

7.5 42.65 Secs 3.94 %
10.0 36.25 Secs 3.57 %
12.5 32.42 Secs 6.58 %
15.0 30.20 Secs 8.73 %

(B) Bbench + AppOpt

Throttling
threshold

(misses/µSecs)

Best-effort task
elapsed time

BBench
slowdown ratio

6.0 43.10 Secs 4.20 %
7.5 36.85 Secs 3.72 %
10.0 33.87 Secs 3.88 %
12.5 29.62 Secs 5.80 %
15.0 29.77 Secs 6.81 %

Table 2: The impact of L2 cache miss rate throttling
threshold when doing power states preservation and
contention-aware scheduling. We show differences in
best-effort task elapsed time and Bbench slowdown ra-
tio for two scenarios: (A) Bbench co-running with Face-
Analysis and (B) Bbench co-running with AppOpt.

crypt one minute standard resolution video).
Table 4 shows the result. As you can see, there are sub-

stantial energy discounted computing opportunities in all
application categories. This is consistent with the earlier
observation that typical smartphone applications lack the
parallelism to utilize multicore CPUs. This study demon-
strates the potential of exploiting the opportunities en-
abled by the lack of parallelism in smartphone applica-
tions to process useful best-effort tasks at a deep energy

9

138 2016 USENIX Annual Technical Conference USENIX Association

Category Description
Web Browsing In Chrome, go to Yahoo.com and browse three top news.

Video Streaming In YouTube, watch a short HD video for one minute.
Gaming Play casual game Subway Surf for one minute.

Navigation In Google Maps, search several nearby attractions and get their directions.
Messaging In Hangout, open two conversations, type and send two messages.

Social Network In Facebook, load personal timeline, refresh for friend feeds and browse three posts.
Camera Use the native camera app to take a minute long video.

Music Streaming In Google Play Music, stream a song for one minute.

Table 3: Description of eight application scenarios used in the trace-based application study.

Category
Abundance of

discounted CPU
cycles (multicore)

Abundance of
discounted CPU

cycles (single-core)

Equivalent work
of FaceAnalysis
(frames of faces
can be analyzed)

Equivalent work
of Encryption

(minutes of video
can be encrypted)

Web Browsing 1.63 0.66 30 21
Video Streaming 2.41 0.85 4 3

Gaming 1.61 0.65 21 15
Navigation 2.42 0.85 13 9
Messaging 2.88 0.97 3 2

Social Network 1.88 0.72 12 9
Camera 2.10 0.77 5 4

Music Streaming 1.63 0.66 7 5

Table 4: Results for the trace-based application study. Each usage scenario lasts for one minute. Abundance of
discounted CPU cycles is the ratio of energy discounted CPU cycles to the active CPU cycles used by the corresponding
interactive application. In the second column (marked with multicore), energy discounted cycles on all CPUs are
counted, assuming the best-effort task has perfect parallelism to utilize all idle CPUs. In the third column (marked
with single-core), energy discounted CPU cycles are only counted on one of the eligible CPUs, assuming the best-
effort task has no parallelism. We use single-core cycles to calculate the equivalent work of best-effort tasks in column
four and five.

discount.

6 Related Work

Smartphone power characterization and energy manage-
ment has received a great deal of research interests. Us-
ing an extensive smartphone power instrumentation plat-
form, Carroll and Heiser [5] developed a power model of
various smartphone components and identified promis-
ing directions to improve power management. They [6]
further suggest that, on a multicore smartphone, CPU
cores should be kept online as long as there is work for
them. AppScope [26] monitors kernel as well as appli-
cation activities and correlates them with the smartphone
power usage. Song et al. [22] optimized smartphone en-
ergy efficiency by lowering CPU frequency when user
facing tasks are completed (e.g., display updates finish).
Martins et al. [16] monitor and intercept smartphone

background activities while the system is in suspension
state to extend the battery life. In this paper, we present a
new approach to improve smartphone energy efficiency
by carefully running best-effort tasks together with inter-
active applications on a multicore to realize deep energy
discounts.

Previous research has recognized the efficiency benefit
of piggybacking or co-running background work while
the system is active with primary tasks. A classic ex-
ample [15] is to perform disk work “for free” if such
work happens to lie in the disk head rotation and seek
path to serve the foreground requests. In the context of
mobile systems, Lane et al. [14] showed that performing
sensing work while a smartphone is otherwise already
active saves substantial wakeup power costs. Nikzad
et al. [18] developed an annotation language that de-
marcates power-hungry executions for delayed execution
when the device enters an active state. In this paper,

10

USENIX Association 2016 USENIX Annual Technical Conference 139

we make new contributions on energy-efficient multicore
piggyback execution by non-work-conserving schedul-
ing that preserves the system power states as if the best-
effort task does not run.

Work-conserving schedulers that always utilize avail-
able resources when there is work to do is generally de-
sirable for high resource utilization. However, previous
research has found the benefits of non-work-conserving
scheduling in particular contexts. In disk scheduling, the
anticipatory scheduler [13] may keep the disk idling for
a short period of time even when there are pending oper-
ations. It does so in anticipation of a new I/O operation
from the process that issued the just completed opera-
tion, which often requires little or no seeking from the
current disk head location. In the context of hardware
multithreading processors, Fedorova et al. [7] found that
running fewer threads than the number of processors may
reduce resource contention and improve performance. In
this paper, we use non-work-conserving scheduling to
run best-effort tasks only when it does not elevate the
power states of a smartphone.

There exists a large body of prior work on characteriz-
ing smartphone workload behaviors. Gao et al. [10] ana-
lyzed a broad range of mobile applications and found that
they exhibit little thread-level parallelism and thereby are
unable to effectively utilize multiple CPU cores. Seo et
al. [19] showed that the lack of thread-level parallelism
also prevents mobile applications from effectively utiliz-
ing the heterogeneous (big and little) multicore proces-
sors. Shingari et al. [21] have identified that co-running
multiple mobile applications may yield substantial con-
tention on shared multicore resources. These identified
characteristics of smartphone workloads motivate our
work of improving execution parallelism and mitigating
potentially resulted performance interference.

Multicore performance and power management has
been an active area of work for general computer
systems. In particular, many techniques were pro-
posed to manage and isolate the shared multicore re-
sources, by partitioning the shared on-chip cache [23,
28], contention-easing scheduling [9, 27], and execu-
tion timeslice adjustment [8]. Multicore power dispro-
portionality was also recognized in server power model-
ing [20]. Mobile systems present new circumstances for
multicore performance and power management. First,
a lack of thread-level parallelism results in poor mul-
ticore energy efficiency on smartphones. Second, the
co-existence of interactive and best-effort applications
presents differential quality-of-service requirements that
complicate resource management.

7 Conclusion

This paper demonstrates the feasibility and benefits in
running best-effort tasks on multicore smartphones for
an energy discount. The work is motivated by the energy
disproportionality of multicore processors and the lack
of parallelism in typical smartphone applications. Due to
hardware resource sharing, the first running CPU on mul-
ticore processors could incur high power cost while each
additional core can be used at a much lower energy cost.
On the other hand, smartphone applications exhibit little
parallelism, leaving room for energy discounted comput-
ing on the additional cores.

We propose to exploit these opportunities by running
best-effort tasks—tasks that are useful to the user but
do not involve direct user interactions. Our contribu-
tion lies in the recognition that maximum energy dis-
count can only be realized when overall system power
states are preserved. Specifically, the multicore CPU
idle state, the processor frequency and the system sus-
pension time should not be affected by the presence of
best-effort tasks. We apply careful non-work-conserving
CPU scheduling to achieve this goal. In addition, to
deal with the interactive application slowdown caused by
the co-run activities. We use performance counter based
throttling to mitigate the contention on the memory band-
width. We evaluate our work on Huawei Mate 7 smart-
phone with realistic workloads. The result shows signif-
icant energy discount (up to 63%) for best-effort tasks
with minimum impact on the interactive application exe-
cution (3.8% slowdown in the worst case).

Acknowledgments This work was supported in part
by the National Science Foundation grants CNS-
1217372, CNS-1239423, and CCF-1255729, and by
a Google Research Award. We thank Handong Ye,
Yi Jiang and Jun Wang from FutureWei Technologies,
Inc. and Vijayakumar Krishnamurthy, Anthony Maz-
zola, Chuk Orakwue from Huawei Device for valuable
discussions and support. We also thank the anonymous
USENIX ATC reviewers and our shepherd Rodrigo Fon-
seca for comments that helped improve this paper.

References

[1] Fast, affordable eye tracking. http://www.

sticky.ad/.

[2] Gamebench setup. https://www.gamebench.

net/en/gamebench-setup.

[3] iOS 9, Siri. http://www.apple.com/ios/

whats-new/#siri.

11

140 2016 USENIX Annual Technical Conference USENIX Association

[4] Monsoon power meter. https://www.msoon.

com/LabEquipment/PowerMonitor/.

[5] CARROLL, A., AND HEISER, G. An analysis of
power consumption in a smartphone. In Proc. of
the USENIX Annual Technical Conf. (Boston, MA,
June 2010).

[6] CARROLL, A., AND HEISER, G. Mobile multi-
cores: use them or waste them. In Proc. of the
Workshop on Power-Aware Computing and System
(HotPower) (Nov. 2013).

[7] FEDOROVA, A., SELTZER, M., AND SMITH,
M. D. A non-work-conserving operating system
scheduler for SMT processors. In Proc. of the
Workshop on the Interaction between Operating
Systems and Computer Architecture (2006).

[8] FEDOROVA, A., SELTZER, M., AND SMITH,
M. D. Improving performance isolation on chip
multiprocessors via an operating system scheduler.
In Proc. of the 16th IEEE Int’l Conf. on Parallel
Architecture and Compilation Techniques (PACT)
(Brasov, Romania, Sept. 2007), pp. 25–38.

[9] FEDOROVA, A., SMALL, C., NUSSBAUM, D.,
AND SELTZER, M. Chip multithreading systems
need a new operating system scheduler. In Proc.
of the SIGOPS European Workshop (Leuven, Bel-
gium, Sept. 2004).

[10] GAO, C., GUTIERREZ, A., RAJAN, M., DRES-
LINSKI, R. G., MUDGE, T., AND WU, C.-J. A
study of mobile device utilization. In Proc. of
the IEEE Int’l Symp. on Performance Analysis of
Systems and Software (ISPASS) (Philadelphia, PA,
Mar. 2015).

[11] GOMEZ, L., NEAMTIU, I., AZIM, T., AND MILL-
STEIN, T. RERAN: Timing-and touch-sensitive
record and replay for Android. In Proc. of the 35th
Int’l Conf. on Software Engineering (ICSE) (San
Francisco, CA, May 2013), pp. 72–81.

[12] GUTIERREZ, A., DRESLINSKI, R. G., WENISCH,
T. F., MUDGE, T., SAIDI, A., EMMONS, C., AND
PAVER, N. Full-system analysis and characteri-
zation of interactive smartphone applications. In
Proc. of the IEEE Int’l Symp. on Workload Charac-
terization (IISWC) (2011), pp. 81–90.

[13] IYER, S., AND DRUSCHEL, P. Anticipatory
Scheduling: A Disk Scheduling Framework to
Overcome Deceptive Idleness in Synchronous I/O.
In Proc. of the 18th ACM Symp. on Operating
Systems Principles (SOSP) (Banff, Canada, Oct.
2001), pp. 117–130.

[14] LANE, N. D., CHON, Y., ZHOU, L., ZHANG, Y.,
LI, F., KIM, D., DING, G., ZHAO, F., AND CHA,
H. Piggyback crowdsensing (PCS): Energy effi-
cient crowdsourcing of mobile sensor data by ex-
ploiting smartphone app opportunities. In Proc. of
the 11th ACM Conf. on Embedded Networked Sen-
sor Systems (SenSys) (Rome, Italy, Nov. 2013).

[15] LUMB, C. R., SCHINDLER, J., GANGER, G. R.,
AND NAGLE, D. F. Towards higher disk head uti-
lization: Extracting free bandwidth from busy disk
drives. In Proc. of the 4th USENIX Symp. on Oper-
ating Systems Design and Implementation (OSDI)
(San Diego, CA, Oct. 2000).

[16] MARTINS, M., CAPPOS, J., AND FONSECA, R.
Selectively taming background android apps to im-
prove battery lifetime. In 2015 USENIX Annual
Technical Conference (USENIX ATC 15) (2015),
pp. 563–575.

[17] MILBORROW, S., AND NICOLLS, F. Active shape
models with SIFT descriptors and MARS. In
Proc. of the Int’l Conf. on Computer Vision The-
ory and Applications (VISAPP) (Lisbon, Portugal,
Jan. 2014), pp. 380–387.

[18] NIKZAD, N., CHIPARA, O., AND GRISWOLD,
W. G. APE: An annotation language and middle-
ware for energy-efficient mobile application devel-
opment. In Proc. of the 36th Int’l Conf. on Software
Engineering (ICSE) (Hyderabad, India, June 2014),
pp. 515–526.

[19] SEO, W., IM, D., CHOI, J., AND HUH, J. Big
or little: A study of mobile interactive applications
on an asymmetric multi-core platform. In Proc. of
the IEEE Int’l Symp. on Workload Characterization
(IISWC) (Atlanta, GA, Oct. 2015).

[20] SHEN, K., SHRIRAMAN, A., DWARKADAS, S.,
ZHANG, X., AND CHEN, Z. Power containers: An
OS facility for fine-grained power and energy man-
agement on multicore servers. In Proc. of the 18th
Int’l Conf. on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS)
(Houston, TX, Mar. 2013).

[21] SHINGARI, D., ARUNKUMAR, A., AND WU, C.-
J. Characterization and throttling-based mitigation
of memory interference for heterogeneous smart-
phones. In Proc. of the IEEE Int’l Symp. on Work-
load Characterization (IISWC) (Atlanta, GA, Oct.
2015), pp. 22–33.

[22] SONG, W., SUNG, N., CHUN, B.-G., AND KIM,
J. Reducing energy consumption of smartphones

12

USENIX Association 2016 USENIX Annual Technical Conference 141

using user-perceived response time analysis. In
Proc. of the 15th Workshop on Mobile Computing
Systems and Applications (HotMobile) (Santa Bar-
bara, CA, Feb. 2014).

[23] TAM, D., AZIMI, R., SOARES, L., AND STUMM,
M. Managing shared L2 caches on multicore sys-
tems in software. In Proc. of the Workshop on the
Interaction between Operating Systems and Com-
puter Architecture (San Diego, CA, June 2007).

[24] UNIFIED EXTENSIBLE FIRMWARE INTERFACE
FORUM. Advanced configuration and power inter-
face specification, July 2014. Revision 5.1.

[25] YAN, T., CHU, D., GANESAN, D., KANSAL, A.,
AND LIU, J. Fast app launching for mobile devices
using predictive user context. In Proc. of the 10th
Int’l Conf. on Mobile Systems, Applications, and
Services (MobiSys) (Lake District, United King-
dom, June 2012), pp. 113–126.

[26] YOON, C., KIM, D., JUNG, W., KANG, C., AND
CHA, H. AppScope: Application energy meter-
ing framework for Android smartphone using ker-
nel activity monitoring. In Proc. of the USENIX
Annual Technical Conf. (Boston, MA, June 2012).

[27] ZHANG, X., DWARKADAS, S., FOLKMANIS, G.,
AND SHEN, K. Processor hardware counter statis-
tics as a first-class system resource. In Proc. of the
11th Workshop on Hot Topics in Operating Systems
(HotOS) (San Diego, CA, May 2007).

[28] ZHANG, X., DWARKADAS, S., AND SHEN, K.
Towards practical page coloring-based multi-core
cache management. In Proc. of the 4th EuroSys
Conf. (Nuremberg, Germany, Apr. 2009), pp. 89–
102.

[29] ZHU, Q., ZHU, M., WU, B., SHEN, X., SHEN,
K., AND WANG, Z. Software engagement with
sleeping CPUs. In 15th USENIX Workshop on Hot
Topics in Operating Systems (HotOS XV) (Kartause
Ittingen, Switzerland, May 2015).

13

