
This paper is included in the Proceedings of the
2016 USENIX Annual Technical Conference (USENIC ATC ’16).

June 22–24, 2016 • Denver, CO, USA

978-1-931971-30-0

Open access to the Proceedings of the
2016 USENIX Annual Technical Conference
(USENIX ATC ’16) is sponsored by USENIX.

ParaFS: A Log-Structured File System to Exploit
the Internal Parallelism of Flash Devices

Jiacheng Zhang, Jiwu Shu, and Youyou Lu, Tsinghua University

https://www.usenix.org/conference/atc16/technical-sessions/presentation/zhang

USENIX Association 2016 USENIX Annual Technical Conference 87

ParaFS: A Log-Structured File System
to Exploit the Internal Parallelism of Flash Devices

Jiacheng Zhang Jiwu Shu∗ Youyou Lu
Department of Computer Science and Technology, Tsinghua University
Tsinghua National Laboratory for Information Science and Technology

zhang-jc13@mails.tsinghua.edu.cn {shujw, luyouyou}@tsinghua.edu.cn

Abstract

File system designs are undergoing rapid evolution to
exploit the potentials of flash memory. However, the
internal parallelism, a key feature of flash devices, is
hard to be leveraged in the file system level, due to
the semantic gap caused by the flash translation layer
(FTL). We observe that even flash-optimized file systems
have serious garbage collection problems, which lead to
significant performance degradation, for write-intensive
workloads on multi-channel flash devices.

In this paper, we propose ParaFS to exploit the internal
parallelism while ensuring efficient garbage collection.
ParaFS is a log-structured file system over a simpli-
fied block-level FTL that exposes the physical layout.
With the knowledge of device information, ParaFS first
proposes 2-D data allocation, to maintain the hot/cold
data grouping in flash memory while exploiting channel-
level parallelism. ParaFS then coordinates the garbage
collection in both FS and FTL levels, to make garbage
collection more efficient. In addition, ParaFS sched-
ules read/write/erase requests over multiple channels
to achieve consistent performance. Evaluations show
that ParaFS effectively improves system performance for
write-intensive workloads by 1.6× to 3.1×, compared to
the flash-optimized F2FS file system.

1 Introduction

Flash memory has been widely adopted across embedded
systems to data centers in the past few years. In the
device level, flash devices outperform hard disk drives
(HDDs) by orders of magnitude in terms of both latency
and bandwidth. In the system level, the latency benefit
has been made visible to the software by redesigning
the I/O stack [8, 43, 22, 11]. But unfortunately, the
bandwidth benefit, which is mostly contributed by the

∗Corresponding author: Jiwu Shu (shujw@tsinghua.edu.cn).

internal parallelism of flash devices [13, 18, 10, 15], is
underutilized in system softwares.

Researchers have made great efforts in designing a file
system for flash storage. New file system architectures
have been proposed, to either improve data allocation
performance, by removing redundant functions between
FS and FTL [20, 45], or improve flash memory en-
durance, by using an object-based FTL to facilitate hard-
ware/software co-designs [33]. Features of flash memory
have also been leveraged to redesign efficient metadata
mechanisms. For instance, the imbalanced read/write
feature has been studied to design a persistence-efficient
file system directory tree [32]. F2FS, a less aggressive
design than the above-mentioned designs, is a flash-
optimized file system and has been merged into the Linux
kernel [28]. However, the internal parallelism has not
been well studied in these file systems.

Unfortunately, internal parallelism is a key design is-
sue to improve file system performance for flash storage.
Even though it has been well studied in the FTL level,
file systems cannot always gain the benefits. We observe
that, even though the flash-optimized F2FS file system
outperforms the legacy file system Ext4 when write
traffic is light, its performance does not scale well with
the internal parallelism when write traffic is heavy (48%
of Ext4 in the worst case, more details in Section 4.3 and
Figure 6).

After investigating into file systems, we have the fol-
lowing three observations. First, optimizations in both
FS and FTL are made but may collide. For example, data
pages1 are grouped into hot/cold groups in some file sys-
tems, so as to reduce garbage collection (GC) overhead.
FTL stripes data pages over different parallel units (e.g.,
channels) to achieve parallel performance, but breaks up
the hot/cold groups. Second, duplicated log-structured
data management in both FS and FTL leads to inefficient
garbage collection. FS-level garbage collection is unable

1In this paper, we use data pages instead of data blocks, in order
not to be confused with flash blocks.

88 2016 USENIX Annual Technical Conference USENIX Association

to erase physical flash blocks, while FTL-level garbage
collection is unable to select the right victim blocks due
to the lack of semantics. Third, isolated I/O scheduling
in either FS or FTL results in unpredictable I/O latencies,
which is a new challenge in storage systems on low-
latency flash devices.

To exploit the internal parallelism while keeping low
garbage collection overhead, we propose ParaFS, a log-
structured file system over simplified block-level FTL.
The simplified FTL exposes the device information to
the file system. With the knowledge of the physical
layout, ParaFS takes the following three approaches to
exploit the internal parallelism. First, it fully exploits the
channel-level parallelism of flash memory by page-unit
striping, while ensuring data grouping physically. Sec-
ond, it coordinates the garbage collection processes in
the FS and FTL levels, to make GC more efficient. Third,
it optimizes the request scheduling on read, write and
erase requests, and gains more consistent performance.
Our major contributions are summarized as follows:
• We observe the internal parallelism of flash devices

is underutilized when write traffic is heavy, and pro-
pose ParaFS, a parallelism-aware file system over a
simplified FTL.

• We propose parallelism-aware mechanisms in the
ParaFS file system, to mitigate the parallelism’s
conflicts with hot/cold grouping, garbage collec-
tion, and I/O performance consistency.

• We implement ParaFS in the Linux kernel. Eval-
uations using various workloads show that ParaFS
has higher and more consistent performance with
significant lower garbage collection overhead, com-
pared to legacy file systems including the flash-
optimized F2FS.

The rest of this paper is organized as follows. Sec-
tion 2 analyses the parallelism challenges and mo-
tivates the ParaFS design. Section 3 describes the
ParaFS design, including the 2-D allocation, coordi-
nated garbage collection and parallelism-aware schedul-
ing mechanisms. Evaluations of ParaFS are shown in
Section 4. Related work is given in Section 5 and the
conclusion is made in Section 6.

2 Motivation

2.1 Flash File System Architectures
Flash devices are seamlessly integrated into legacy stor-
age systems by introducing a flash translation layer
(FTL). Though NAND flash has low access latency
and high I/O bandwidth, it has several limitations, e.g.,
erase-before-write and write endurance (i.e., limited pro-
gram/erase cycles). Log-structured design is supposed to
be a friendly way for flash memory. It is adopted in both

the file system level (e.g., F2FS [28], and NILFS [27])
and the FTL level [10, 36]. The FTL hides the flash
limitations by updating data in a log-structured way
using an address mapping table. It exports the same I/O
interface as HDDs. With the use of the FTL, legacy file
systems can directly run on these flash devices, without
any changes. This architecture is shown in Figure 1(a).

FTL

READ / WRITE / TRIM

Log-structured File System

Namespace

Alloc. GC

Alloc.

Mapping

GC WL ECC

Channel N

Flash

…
Channel 0

Flash

Channel 1

Flash

Flash Memory

(a) Block Interface

Object-based FTL

GET / PUT

Object-based File System

Namespace

Alloc.

Mapping

GC WL ECC

Channel N

Flash

…
Channel 0

Flash

Channel 1

Flash

Flash Memory

(b) Object Interface

Figure 1: FS Architectures on Flash Storage

While FTL is good at abstracting the flash memory
as a block device, it widens the semantic gap between
file systems and flash memory. As shown in Figure 1(a),
the FS and FTL run independently without knowing
each other’s behaviours, resulting in inefficient storage
management. Even worse, the two levels have redundant
functions, e.g., space allocation, address mapping, and
garbage collection, which further induce performance
and endurance overhead.

Object-based FTL (OFTL) [33] is a recently proposed
architecture to bridge the semantic gap between file
systems and FTLs, as shown in Figure 1(b). However,
it requires dramatic changes of current I/O stack, and
is difficult to be adopted currently, either in the device
due to complexity or in the operating system due to rich
interfaces required in the drivers.

2.2 Challenges of Internal Parallelism
In a flash device, a number of flash chips are connected
to the NAND flash controller through multiple chan-
nels. I/O requests are distributed to different channels
to achieve high parallel performance, and this is known
as the internal parallelism. Unfortunately, this feature
has not been well leveraged in the file systems for the
following three challenges.

Hot/Cold Grouping vs. Internal Parallelism. With
the use of the FTL, file systems allocate data pages in a
one-dimension linear space. The linear space works fine
for HDDs, because a hard disk accesses sectors serially
due to the mechanical structure, but not for flash devices.

2

USENIX Association 2016 USENIX Annual Technical Conference 89

In flash-based storage systems, a fine hot/cold grouping
reduces the number of valid pages in victim flash blocks
during garbage collection. Some file systems separate
data into groups with different hotness for GC efficiency.
Meanwhile, the FTL trys to allocate flash pages from
different parallel units, aiming at high bandwidth. Data
pages that belong to the same group in the file system
may be written to different parallel units. Parallel space
allocation in FTL breaks hot/cold data groups. As such,
the hot/cold data grouping in the file system collides with
the internal parallelism in the FTL.

Garbage Collection vs. Internal Parallelism. Log-
structured file systems are considered to be flash friendly.
However, we observe that F2FS, a flash-optimized log-
structured file system, performs worse than Ext4 on
multi-channel flash devices when write traffic is heavy.
To further analyse this inefficiency, we implement a
page-level FTL and collect the GC statistics in the FTL,
including the number of erased flash blocks and the
percentage of invalid pages in each erased block (i.e.,
GC efficiency). Details of the page-level FTL and eval-
uation settings are introduced in Section 4. As shown in
Figure 2, for the random update workload in YCSB[14],
F2FS has increasing number of erased flash blocks and
decreasing GC efficiency when the number of channels
increases.

The reason lies in the incoordinate garbage collections
in FS and FTL. When the log-structured file system
cleans a segment in the FS level, the invalid flash pages
are actually scattered over multiple flash parallel units.
The more channels the device has, the more diverse the
invalid pages are. This degrades the GC efficiency in the
FTL. At the same time, the FTL gets pages’ invalidation
only after receiving the trim commands from the log-
structured file system, due to the no in-place update.
As we observed in the experiments, a large number of
pages which are already invalidated in the file system are
migrated to the clean flash blocks during the FTL’s erase
process. Therefore, garbage collections in FS and FTL
levels collide and damage performance.

(a) # of Recycled Blocks (b) GC Efficiency

Figure 2: GC Statistics under Heavy Traffic

Consistent Performance vs. Internal Parallelism.
Read or write requests may be blocked by erase opera-
tions in the FTL. Since erase latency is much higher than
read/write latency, this causes latency spikes, making I/O

latency unpredictable. It is known as the inconsistent
performance, which is a serious issue for low-latency
storage devices. Parallel units offer an opportunity to
remove latency spikes by carefully scheduling I/O re-
quests. Once a file system controls read, write and erase
operations, it can dynamically schedule requests to make
performance more consistent.

To address the above-mentioned challenges, we pro-
pose a new architecture (as shown in Figure 3) to ex-
ploit the internal parallelism in the file system. In this
architecture, we use a simplified FTL to expose the
physical layout to the file system. Our designed ParaFS
maximizes the parallel performance in the file system
level while achieving physical hot/cold data grouping,
lower garbage collection overhead and more consistent
performance.

3 Design

ParaFS is designed to exploit the internal parallelism
without compromising other mechanisms. To achieve
this goal, ParaFS uses three key techniques:

• 2-Dimension Data Allocation to stripe data pages
over multiple flash channels at page granularity
while maintaining hot/cold data separation physi-
cally.

• Coordinated Garbage Collection to coordinate
garbage collections in FS and FTL levels and lower
the garbage collection overhead.

• Parallelism-Aware Scheduling to schedule the
read/write/erase requests to multiple flash channels
for more consistent system performance.

In this section, we introduce the ParaFS architecture first,
followed by the description of the above-mentioned three
techniques.

3.1 The ParaFS Architecture
ParaFS reorganizes the functionalities between the file
system and the FTL, as shown in Figure 3. In the ParaFS
architecture, ParaFS relies on a simplified FTL (anno-
tated as S-FTL). S-FTL is different from traditional FTLs
in three aspects. First, S-FTL uses a static block-level
mapping table. Second, it performs garbage collection
by simply erasing the victim flash blocks without moving
any pages, while the valid pages in the victim blocks
are migrated by ParaFS in the FS level. Third, S-FTL
exposes the physical layout to the file system using three
values, i.e., the number of flash channels2, the flash page
size and the flash block size. These three values are
passed to the ParaFS file system through ioctl interface,

2Currently, ParaFS exploits only the channel-level parallelism,
while finer level (e.g., die-level, plane-level) parallelism can be ex-
ploited in the FTL by emulating large pages or blocks.

3

90 2016 USENIX Annual Technical Conference USENIX Association

READ / WRITE / ERASE

ParaFS

Namespace

S-FTL

Block Mapping WL ECC

Channel N

Flash

Channel 0

Flash

Channel 1

Flash

Flash Memory

2-D Allocation

Region 0 Region N

…

Parallelism-Aware Scheduler

Read
Write
Erase
Read

Req. Que. 0

…

…

Coordinated GC

Thread 0 Thread N

Req. Que. 1

Read
Write
Erase
Read

Req. Que. N

Read
Write
Erase
Read

…

…

…

Figure 3: The ParaFS Architecture

when the device is formatted. With the physical layout
information, ParaFS manages data allocation, garbage
collection, and read/write/erase scheduling in the file
system level. The ParaFS file system uses an I/O inter-
face that consists of read/write/erase commands, which
remains the same as the legacy block I/O interface. In
ParaFS, the erase command reuses the trim command in
the legacy protocol.

In S-FTL, the block mapping is different from those
in legacy block-based FTLs. S-FTL uses static block-
level mapping. For normal writes, the ParaFS file system
updates data pages in a log-structured way. There is no
in-place update in the FS level. For these writes, S-
FTL doesn’t need to remap the block. S-FTL updates
its mapping entries only for wear leveling or bad block
remapping. In addition, ParaFS tracks the valid/invalid
statuses of pages in each segment, whose address is
aligned to the flash block in flash memory. The file sys-
tem migrates valid pages in the victim segments during
garbage collection, and the S-FTL only needs to erase
the corresponding flash blocks afterwards. As such, the
simplified block mapping, simplified garbage collection
and reduced functionalities make S-FTL a lightweight
implementation, which has nearly zero overhead.

The ParaFS file system is a log-structured file system.
To avoid the “wandering tree” problem [38], file system
metadata is updated in place, by introducing a small
page-level FTL. Since we focus on the data management,
we omit discussions of this page-level FTL for the rest
of the paper. In contrast, file system data is updated

in a log-structured way and sent to the S-FTL. The
ParaFS file system is able to perform more effective
data management with the knowledge of the internal
physical layout of flash devices. Since the file system
is aware of the channel layout, it allocates space in
different channels to exploit the internal parallelism and
meanwhile keeps the hot/cold data separation physically
(details in Section 3.2). ParaFS aligns the segment of
log-structured file system to the flash block of the device.
Since it knows exactly the valid/invalid statuses of data
pages, it performs garbage collection in the file system
with the coordination of the FTL erase operations (details
in Section 3.3). With the channel information, ParaFS is
also able to optimize the scheduling on read/write/erase
requests in the file system and make system performance
more consistent (details in Section 3.4).

3.2 2-D Data Allocation

The first challenge as described in Section 2.2 is the con-
flict between data grouping in the file system and internal
parallelism in the flash device. Intuitively, the easiest
way for file system data groups to be aligned to flash
blocks, is using block granularity striping in the FTL.
The block striping maintains data grouping while paral-
lelizing data groups to different channels in block units.
However, the block-unit striping fails to fully exploit
the internal parallelism, since the data within one group
needs to be accessed sequentially in the same flash block.
We observe in our systems that block-unit striping has
significantly lower performance than page-unit striping
(i.e., striping in page granularity), especially in the small
synchronous write situations, like mail server. Some co-
designs employ a super block unit which contains flash
blocks from different flash channels [42, 12, 29]. The
writes can be striped in a page granularity within the
super block and different data groups are maintained in
different super blocks. However, the large recycle size of
the super block incurs higher overhead in the garbage
collection. Therefore, we propose 2-D allocation in
ParaFS that uses small allocation units to fully exploit
channel-level parallelism while keeping effective data
grouping. Tabel 1 summaries the characteristics of these
data allocation schemes and compares them with 2-D
allocation used in ParaFS.

Figure 4 shows the 2-D allocation in ParaFS. With the
device information from S-FTL, ParaFS is able to allo-
cate and recycle space that aligned to the flash memory
below. The data space is divided into multiple regions. A
region is an abstraction of a flash channel in the device.
The number and the size of regions equal to those of
flash channels. Each region contains multiple segments
and each segments contains multiple data pages. The
segment is the unit of allocation and garbage collection

4

USENIX Association 2016 USENIX Annual Technical Conference 91

Table 1: Data Allocation Schemes
Parallelism Garbage Collecion

Stripe Granularity Parallelism Level GC Granulariy Grouping Effect GC Overhead
Page Stripe Page High Block No High
Block Stripe Block Low Block Yes Low
Super Block Page High Multiple Blocks Yes Medium

2-D Allocation Page High Block Yes Low

Alloc.

Space

Free

Space

Alloc. Head 0

Alloc. Head 1

…

Alloc. Head m

…

Region 0

…Free Seg. List

Log-structured Segment Written Data Page

…

Region 1

…

…

Region N

…

…

Figure 4: 2-D Allocation in ParaFS

in ParaFS. Its size and address are aligned to the physical
flash block. The data page in the segments represents
the I/O unit to the flash and is aligned to the flash page.
There are multiple allocator heads and a free segment
list in each region. The allocator heads point to data
groups with different hotness within the region. They
are assigned a number of free segments and they allocate
free pages to the written data with different hotness, in a
log-structured way. The free segments of the region are
maintained in the free segment list.

The 2-D allocation consists of channel-level dimen-
sion and hotness-level dimension. ParaFS delays space
allocation until data persistence. Updated data pages
are first buffered in memory. When a write request is
going to be dispatched to the device, ParaFS starts the
2-D scheme to allocate free space for the request.

First, in the channel-level dimension, ParaFS divides
the write request into pages, and then stripes these pages
over different regions. Since the regions match the flash
channels one-to-one, the data in the write request is sent
to different flash channels in a page-size granularity, so
as to exploit the channel-level parallelism in the FS level.
After dividing and striping the data of the write request
over regions, the allocation process goes to the second
dimension.

Second, in the hotness-level dimension, ParaFS
groups data pages into groups with different hotness in
a region, and sends the divided write requests to their
proper groups. There are multiple allocator heads with
different hotness in the region. The allocator head,
which has similar hotness to the written data, is selected.
Finally, the selected allocator head allocates a free page
to the written data. The data is sent to the device with
the address of the allocated page. Since the segments

of allocator heads are aligned to the flash blocks, the
data pages with different hotness are assigned to different
allocator heads, thereby placed in separated flash blocks.
The hotness-level dimension ensures the effective data
grouping physically.

In implementation, ParaFS uses six allocators in each
region. The data is divided into six kinds of hotness,
i.e., hot, warm, and cold, respectively for metadata and
regular data. The hotness classification uses the same
hints as in F2FS [28]. Each allocator is assigned ten
segments each time. The address of the segments and
the offset of the allocator heads are recorded in the FS
checkpoint in case of system crash.

Crash Recovery. After the crash, legacy log-
structured file systems will recover itself to the last
checkpoint, which maintains the latest consistent state
of the file system. Some file systems[33][28] will do
the roll-forward recovery to restore changes after last
checkpoint. ParaFS differs slightly during the recovery.
Since ParaFS directly accesses and erases flash memory
through statically mapped S-FTL, it has to detect the
written pages after last checkpoint. These written pages
need to be detected so that the file system does not
overwrite these pages, which otherwise causes overwrite
errors in flash memory.

To solve this problem, ParaFS employs an update
window similar to that in OFSS [33]. An update window
consists of segments from each region that are assigned
to allocator heads after last checkpoint. Before a set of
segments are assigned to allocator heads, their addresses
are recorded first. During recovery, ParaFS first recovers
itself to the last checkpoint. Then, ParaFS does the
roll-forward recovery with the segments in the update
window in each region, since all written pages after last
checkpoint fall in this window. After recovering the valid
pages in the window, other pages will be considered as
invalid, and they will be erased by the GC threads in the
future.

3.3 Coordinated Garbage Collection
The second challenge as described in Section 2.2 is
the mismatch of the garbage collection processes in FS
and FTL levels. Efforts in either side are ineffective
in reclaiming free space. ParaFS coordinates garbage
collection in the two levels and employs multiple GC
threads to leverage the internal parallelism. This tech-

5

92 2016 USENIX Annual Technical Conference USENIX Association

nique improves both the GC efficiency (i.e., the percent
of invalid pages in victim blocks) and the space reclaim
efficiency (i.e., time used for GC).

The coordinated garbage collection contains the GC
process from FS level and FTL level. We use the
terms “paraGC” and “flashGC” to distinguish them. In
the FS level, the paraGC is triggered when free space
drops below a threshold (i.e., foreground paraGC) or file
system is idle (i.e., background paraGC). The unit of
garbage collection is the segment, as we described in
Section 3.2. The foreground paraGC employs greedy
algorithm to recycle the segments quickly and minimize
the latency of I/O threads. The background paraGC uses
cost-benefit algorithm [38] that selects victim segments
not only based on the number of invalid data pages, but
also their “age”. When the paraGC thread is triggered, it
first selects victim segments using the algorithms above.
Then, the paraGC thread migrates the valid pages in
the victim segments to the free space. If the migration
is conducted by foreground paraGC, these valid pages
are striped to the allocator heads with similar hotness
in different regions. If the migration is conducted by
background paraGC, these valid pages are considered
to be cold, and striped to the allocator heads with low
hotness. After the valid pages are written to the device,
the victim segments are marked erasable and they will be
erased after checkpoint. The background paraGC exits
after the migration while the foreground paraGC does
the checkpoint and sends the erase requests to S-FTL by
trim.

In the FTL level, the block recycling is simplified,
since the space management and garbage collection are
moved from FTL level to FS level. The segments in
the FS level match the flash blocks one to one. After
paraGC migrates valid pages in the victim segments,
the corresponding flash blocks can be erased without
additional copies. When S-FTL receives trim commands
from the ParaFS, flashGC locates the flash blocks that
victim segments mapped to, and directly erases them.
After the flash blocks are erased, S-FTL informs the
ParaFS by the callback function of the requests. The
coordinated GC migrates the valid pages in FS level,
and invalidates the whole flash block to the S-FTL. No
migration overhead is involved during the erase process
in the S-FTL.

Coordinated GC also reduces the over-provisioning
space of the device and brings more user available capac-
ity. Traditional FTLs need to move the valid pages from
the victim blocks before erasing. They keeps large over-
provisioning space to reduce the overhead of garbage
collection. The spared space in FTL decreases the
user visible capacity. Since the valid pages are already
moved by ParaFS, the flashGC in S-FTL can directly
erase the victim blocks without any migration. S-FTL

needn’t spare space for garbage collection. The over-
provisioning space of S-FTL is much smaller than the
traditional ones. The spared blocks are only used for bad
block remapping and block mapping table storage. S-
FTL also needn’t track and maintain the flash page status
and flash block utilization, which also reduces the size of
spared space.

ParaFS optimizes the foreground GC by employing
multiple GC threads. Legacy log-structured file systems
perform foreground GC in one thread [28], or none [27].
Since all operations are blocked during checkpointing.
Multiple threads cause frequent checkpoint and decrease
the performance severely. However, one or less fore-
ground GC thread is not enough under write intensive
workloads which consume the free segments quickly.
ParaFS assigns one GC thread to each region and em-
ploys an additional manager thread. The manager checks
the utilization of each region, and wakes up the GC
thread of the region when it’s necessary. After GC
threads migrate the valid data pages, the manager will
do the checkpoint, and send the erase requests asyn-
chronously. This optimization avoids multiple check-
points, and accelerates the segment recycling under
heavy writes.

3.4 Parallelism-Aware Scheduling

The third challenge as described in Section 2.2 is the
performance spikes. To address this challenge, ParaFS
proposes to schedule the read/write/erase requests in the
file system level while exploiting the internal parallelism.
In ParaFS, the 2-D allocation selects the target flash
channels for the write requests, and the coordinated GC
manages garbage collection in the FS level. These two
techniques offer an opportunity for ParaFS to optimize
the scheduling on read, write and erase requests. ParaFS
employs parallelism-aware scheduling to provide more
consistent performance under heavy write traffic.

Parallelism-aware scheduling consists of request dis-
patching phase and request scheduling phase. In the
dispatching phase, it optimizes the write requests. The
scheduler maintains a request queue for each flash chan-
nel of the device, shown in Figure 3. The target flash
channels of read and erase requests are fixed, while
the target channel of writes can be adjusted due to the
late allocation. In the channel-level dimension of 2-
D allocation, ParaFS splits the write requests into data
pages, and selects a target region for each page. The
region of ParaFS and the flash channel below are one-
to-one correspondence. Instead of a Round-Robin se-
lection, ParaFS selects the region to write, whose corre-
sponding flash channel is the least busy in the scheduler.
Due to the asymmetric read and write performance of
the flash drive, the scheduler assigns different weights

6

USENIX Association 2016 USENIX Annual Technical Conference 93

(Wread , Wwrite) to read and write requests in the request
queues. The weights are obtained by measuring the
corresponding latency of the read and write requests.
Since the write latency is 8× of the read latency in
our device, the Wread and Wwrite are set to 1 and 8 in
the evaluation. The channel with the smallest weight
calculated by the Formula 1 will be selected. Sizeread
and Sizewrite represent the size of read and write requests
in the request queue. The erase requests in the request
queue are not considered in the formula, because the
time, when they are sent to the device, is uncertain.

Wchannel = ∑(Wread ×Sizeread ,Wwrite ×Sizewrite) (1)

In the scheduling phase, the scheduler optimizes the
erase requests scheduling. Considering the fairness, the
parallelism-aware scheduler assigns a time slice for read
requests and a same-size slice for write/erase requests.
The scheduler works on each request queue individually.
In the read slice, the scheduler schedules read requests
to the channel. When the slice ends or no read request
is left in the queue, the scheduler determines to schedule
write or erase request in next slice by Formula 2. The
f is the percent of free blocks in the flash channel. Ne
is the percent of flash channels that are processing the
erase requests at this moment. The a and b represents the
weight of these parameters.

e = a× f +b×Ne (2)

If e is higher than 1, the scheduler sends write requests
in the time slice. Otherwise, the scheduler sends erase
requests in that time slice. After the write/erase slice,
the scheduler turns to read slice again. In current im-
plementation, a and b are respectively set to 2 and 1,
which implies that erase requests are scheduled only
after the free space drops below 50%. This scheme
gives higher priority to erase requests when the free
space is not enough. Meanwhile, it prevents too many
channels erasing at the same time, which helps to ease
the performance wave under heavy write traffic.

With the employment of these two optimizations, the
parallelism-aware scheduler helps to provide both high
and consistent performance.

4 Evaluation

In this section, we evaluate ParaFS to answer the follow-
ing three questions:

1. How does ParaFS perform compared to other file
systems under light write traffic?

2. How does ParaFS perform under heavy write traf-
fic? And, what are the causes behind?

3. What are the benefits respectively from the pro-
posed optimizations in ParaFS?

4.1 Experimental Setup
In the evaluation, we compare ParaFS with Ext4 [2],
BtrFS [1] and F2FS [28], which respectively represent
the in-place-update, copy-on-write, and flash-optimized
log-structured file systems. ParaFS is also compared to
a revised F2FS (annotated as F2FS SB) in addition to
conventional F2FS (annotated as F2FS). F2FS organizes
data into segment, which is the GC unit in FS and is the
same size as flash block. F2FS SB organizes data into
super blocks. A super block consists of multiple adjacent
segments. The number of the segments equals to the
number of channels in the flash device. In F2FS SB, a
super block is the unit of allocation and garbage collec-
tion, and can be accessed in parallel.

We customize a raw flash device to support pro-
grammable FTLs. Parameters of the flash device are
listed in Table 2. To support the file systems above,
we implement a page-level FTL, named PFTL, based on
DFTL [17] with lazy indexing technique [33]. PFTL
stripes updates over different channels in a page size
unit, to fully exploit the internal parallelism. S-FTL is
implemented based on PFTL. It removes the allocation
function, replaces the page-level mapping with static
block-level mapping, and simplifies the GC process, as
described in Section 3.1. In both FTLs, the number
of flash channels and the capacity of the device are
configurable. With the help of these FTLs, we collect
the information about flash memory operations, like the
number of erase operations and the number of pages
migrated during garbage collection. The low-level in-
formation is helpful for comprehensive analysis of file
system implications.

Table 2: Parameters of the Customized Flash Device
Host Interface PCIe 2.0 x8

Number of Flash Channel 34
Capacity per Channel 32G

NAND Type 25nm MLC
Page Size 8KB
Block Size 2MB

Read Bandwidth per Channel 49.84 MB/s
Write Bandwidth per Channel 6.55 MB/s

The experiments are conducted on an X86 server
with Intel Xeon E5-2620 processor, clocked at 2.10GHz,
and 8G memory of 1333MHz. The server runs with
Linux kernel 2.6.32, which is required by the customized
flash device. For the target system, we back-port F2FS
from the 3.15-rc1 main-line kernel to the 2.6.32 kernel.
ParaFS is implemented as a kernel module based on
F2FS, but differs in data allocation, garbage collection,
and I/O scheduling.
Workloads. Table 3 summarizes the four workloads
used in the experiments. Two of them run directly on file

7

94 2016 USENIX Annual Technical Conference USENIX Association

Table 3: Workload Characteristics
Name Description # of Files I/O size Threads R/W fsync

Fileserver File server workload: random read and write files 60,000 1MB 50 33/66 N
Postmark Mail server workload: create, delete, read and append files 10,000 512B 1 20/80 Y

MobiBench SQLite workload: random update database records N/A 4KB 10 1/99 Y
YCSB MySQL workload: read and update database records N/A 1KB 50 50/50 Y

(a) channel = 8 (b) channel = 32

Figure 5: Performance Evaluation (Light Write Traffic)

systems and the other two run on databases. Fileserver
is a typical pre-defined workload in Filebench [3] to
emulate the I/O behaviors in file servers. It creates,
deletes and randomly accesses files in multiple threads.
Postmark [26] emulates the behavior of mail servers.
Transactions, including create, delete, read and append
operations, are performed to the file systems. Mo-
bibench [19] is a benchmark tool for measuring the per-
formance of file IO and DB operations. In the evaluation,
it issues random update operations to the SQLite[9],
which runs with FULL synchronous and WAL journal
mode. YCSB [14] is a framework to stress many popular
data serving systems. We use the workload-A of YCSB
on MySql [7], which consists of 50% random reads and
50% random updates.

4.2 Evaluation with Light Write Traffic
In this section, we compare ParaFS with other file sys-
tems under light write traffic. We choose 8 and 32
channels for this evaluation, which respectively represent
SATA SSDs [6, 4, 5] and PCIe SSDs [5, 41]. The device
capacity is set to 128GB.

Figure 5 shows the throughput of evaluated file sys-
tems, and results are normalized against F2FS’s perfor-
mance in 8-channel case. From the figure, we have two
observations.

(1) ParaFS outperforms other file systems in all cases,
and achieves 13% higher over F2FS for postmark work-
load in the 32-channel case. In the evaluated file systems,
BtrFS performs poorly, especially for database bench-
marks that involve frequent syncs. The update prop-
agation (i.e., “wandering tree” problem [38]) of copy-
on-write brings intensive data writes in BtrFS during

the sync calls (7.2× for mobibench, 3.0× for YCSB).
F2FS mitigates this problem by updating the metadata
in place [28]. Except BtrFS, other file systems perform
roughly similar under light write traffic. F2FS only
outperforms Ext4 by 3.5% in fileserver with 32 channels,
which is consistent to the F2FS evaluations on PCIe
SSD[28]. The performance bottleneck appears to be
moved, due to the fast command processing and high
random access ability of the PCIe drive. F2FS SB
shows nearly the same performance to F2FS. Since PFTL
stripes the requests over all flash channels with a page-
size unit, larger allocation unit in F2FS SB doesn’t gain
more benefit in parallelism. The GC impact of larger
block recycling is also minimized due to the light write
pressure. The impact will be seen under heavy write traf-
fic evaluations in Section 4.3. ParaFS uses cooperative
designs in both FS and FTL levels, eliminates the dupli-
cate functions, and achieves the highest performance.

(2) Performance gains in ParaFS grow when the num-
ber of channels is increased. Comparing the two figures
in Figure 5, all file systems have their performance
improved when the number of channels is increased.
Among them, ParaFS achieves more. It outperforms
F2FS averagely by 1.53% in 8-channel cases and 6.29%
in 32-channel cases. This also evidences that ParaFS
spends more efforts in exploiting the internal parallelism.

In all, ParaFS has comparable or better performance
than the other evaluated file systems when the write
traffic is light.

4.3 Evaluation with Heavy Write Traffic
Since ParaFS is designed to address the problems of
data grouping and garbage collection while exploiting

8

USENIX Association 2016 USENIX Annual Technical Conference 95

(a) Fileserver (b) Postmark

(c) MobiBench (d) YCSB

Figure 6: Performance Evaluation (Heavy Write Traffic)

the internal parallelism, evaluations using heavy write
traffic are much more important. In this evaluation, we
limit the capacity of flash device to 16GB and increase
the benchmark sizes. The write traffic sizes in the four
evaluated benchmarks are set to 2× ∼ 3× of the flash
device capacity, to trigger the garbage collection actions.

4.3.1 Performance

Figure 6 shows the throughput of evaluated file systems
for the heavy write traffic cases, with the number of
channels varied from 1 to 32. Results are normalized
against F2FS’s throughput in 1-channel case. From the
figure, we have three observations.

(1) Ext4 outperforms F2FS for three out of the four
evaluated workloads, which is different from that in
the light write traffic evaluation. The performance gap
between Ext4 and F2FS tends to be wider with more
flash channels. The reason why the flash-optimized F2FS
file system has worse performance than Ext4 is the side
effects of internal parallelism. In F2FS, the hot/cold data
grouping and the aligned segments are broken when data
pages are distributed to multiple channels in the FTL.
Also, the invalidation of a page is known in the FTL
only after it is recycled in the F2FS, due to the no in-
place update. Unfortunately, a lot of invalid pages have
been migrated during garbage collection before their
statuses are passed to the FTL. Both reasons lead to
high GC overhead in FTL, and the problem gets more
serious with increased parallelism. In Ext4, the in-

place update pattern is more accurate in telling FTLs the
page invalidation than F2FS. The exceptional case is the
postmark workload, which contains a lot of create and
delete operations. Ext4 spreads the inode allocation in
all of the block groups for load balance. This causes the
invalid pages distributed evenly in the flash blocks and
results in higher garbage collection overhead than F2FS
(18.5% higher on average). In general, the observation
that flash-optimized file system is not good at exploiting
internal parallelism under heavy write traffic motivates
our ParaFS design.

(2) F2FS SB shows improved performance than F2FS
for the four evaluated workloads, and the improvement
grows with more channels. This is also different from
results in the light write traffic evaluation. The perfor-
mance of F2FS improves quickly when the number of
channels is increased from 1 to 8, but the improvement
is slowed down afterward. For fileserver, postmark and
YCSB workloads, F2FS gains little improvement in the
32-channel case over the 16-channel case. The main
cause is the increasing GC overhead, which will be seen
in next section. In contrast, allocation and recycling
in super block units of F2FS SB ease the GC overhead
caused by unaligned segments. The trim commands sent
by F2FS SB contain larger address space, and are more
effective in telling the invalid pages to the FTL. However,
selecting victims in larger units also decreases the GC
efficiency. As such, the internal parallelism using super
block methods [12, 42] is still not effective.

(3) ParaFS outperforms other file systems in all cases.

9

96 2016 USENIX Annual Technical Conference USENIX Association

(a) Recycled Block Count (b) GC Efficiency

(c) Write Traffic from FS (d) Write Traffic from FTL

Figure 7: Garbage Collection and Write Traffic Evaluation (Fileserver)

ParaFS outperforms Ext4 from 1.0× to 1.7× in the 8-
channel case, and to 2.5× in the 32-channel case. ParaFS
outperforms F2FS from 1.6× to 1.9× in the 8-channel
case, and from 1.7× to 3.1× in the 32-channel case.
ParaFS outperforms F2FS SB from 1.2× to 1.5× in
both cases. ParaFS keeps the aligned flash block erase
units while using page-unit striping in 2-D allocation.
The coordinated multi-threaded GC is also helpful in
reducing the GC overhead. And thus, ParaFS is effective
in exploiting the internal parallelism under heavy write
traffic.

4.3.2 Write Traffic and Garbage Collection

To further understand the performance gains in ParaFS,
we collect the statistics of garbage collection and write
traffic from both FS and FTL levels. We select the
fileserver workload as an example due to space limita-
tion. The other workloads have similar patterns and are
omitted. For fairness, we revise the fileserver benchmark
to write fixed-size data. In the evaluation, the write traffic
size in fileserver is set to 48GB, and the device capacity
is 16GB.

Figure 7(a) and Figure 7(b) respectively give the re-
cycled block count and the garbage collection efficiency
of evaluated file systems with varied number of flash
channels. The recycled block count is the number of
flash blocks that are erased in flash memory. The GC
efficiency is measured using the average percentage of
invalid pages in a victim flash block.

ParaFS has the lowest garbage collection overhead and
highest GC efficiency among all evaluated file systems
under four benchmarks. For the fileserver evaluation, it
achieves the lowest recycled block count (62.5% of F2FS
on average) and the highest GC efficiency (91.3% on av-
erage). As the number of channels increases, the number
of recycled blocks in F2FS increases quickly. This is
due to the unaligned segments and uncoordinated GC
processes of both sides (as analyzed in Section 4.3.1).
It is also explained with the GC efficiency degradation
in Figure 7(b). The GC efficiency of Ext4, BtrFS,
ParaFS trends to drop a little with more flash channels.
Because the adjacent pages are more scattered when the
device internal parallelism increases, and they tend to be
invalidated together. F2FS SB acts different from other
file systems. In F2FS SB, when the number of channels
is increased from 8 to 32, the number of recycled blocks
decreases and the GC efficiency increases. The reason
is that the super block has better data grouping and
alignments, and this advantage becomes increasingly
evident with higher degree of parallelism. F2FS SB also
triggers FS-level GC threads more frequently with larger
allocation and GC unit. More trim commands with larger
address space help to decrease the number of invalid
pages migrated by GC process in the FTL level. ParaFS
further utilizes fine-grained data grouping and GC unit,
and has the lowest garbage collection overhead.

Figure 7(c) shows the write traffic that file systems
write to FTLs. Figure 7(d) shows the write traffic

10

USENIX Association 2016 USENIX Annual Technical Conference 97

Figure 8: Performance Consistency Evaluation

that FTLs write to the flash memory. Write traffic in
either level comes from not only the file system data
and metadata but also the page migrated during garbage
collection in FS or FTL level. The write traffic from
FS in Ext4, BtrFS and F2FS are stable for different
parallelism levels, because the increase of the flash chan-
nels in the device is transparent to them. ParaFS writes
more in the file system than Ext4, F2FS and F2FS SB,
but less than them in the FTL. Because all the page
migration during the garbage collection is done in the
FS level. Similarly, F2FS SB has higher write traffic
from FS and lower from FTL than F2FS, as the number
of channels is increased from 8 to 32. This results
from the improved GC efficiency as mentioned above.
The FTL write traffic in F2FS is higher than F2FS SB,
which explains why F2FS SB has better performance
than F2FS in Figure 6. ParaFS coordinates garbage
collections in the two levels, and is more effective in
space recycling. Compared to F2FS, ParaFS decreases
the write traffic to the flash memory by 31.7% ∼ 54.7%
in 8-channel case, and 37.1% ∼ 58.1% in 32-channel
case. Compared to F2FS SB, ParaFS decreases it by
14.9% ∼ 48.4% in 8-channel case, and 15.7% ∼ 32.5%
in 32-channel case.

4.4 Performance Consistency Evaluation

To evaluate the performance consistency in ParaFS, we
monitor the throughput wave during each run of exper-
iments. ParaFS aims at more consistent performance
using multi-threaded GC and parallelism-aware schedul-
ing. In this evaluation, we use four versions of ParaFS.
The baseline (annotated as ParaFS Base) is the ParaFS
version without the above-mentioned two optimizations.
ParaFS PS and ParaFS MGC respectively stand for the
version with parallelism-aware scheduling and multi-
threaded GC. ParaFS is the fully-functioned version.

The fileserver and postmark have different phases
in the evaluation, which also cause fluctuation in the
aggregate throughput (in terms of IOPS). We choose
mobibench as the candidate for performance consistency
evaluation. Mobibench performs random asynchronous

reads and writes to pre-allocated files. In this evaluation,
the write traffic of mobibench is set to be 2× of the
device capacity.

Figure 8 shows the process of each run using four
versions of ParaFS. We compare ParaFS MGC and
ParaFS Base to analyse the impact of multi-threaded
GC. ParaFS MGC and ParaFS Base have similar perfor-
mance in the first 1000 seconds, during which no garbage
collection is involved. After that, the performance of
ParaFS MGC waves. The performance peaks appear
after the GC starts in multiple threads. ParaFS MGC
finishes the experiments earlier than ParaFS Base by
18.5%.

The parallelism-aware scheduling contains two major
methods, the write request dispatching and the erase
request scheduling. The effectiveness of write request
dispatching can be seen by comparing ParaFS PS and
ParaFS Base. For the first 1000 seconds when there is no
garbage collection, ParaFS PS outperforms ParaFS Base
by nearly 20%. This benefit comes from the write
dispatching in the parallelism-aware scheduling tech-
nique, which allocates pages and sends requests to
the least busy channels. The effectiveness of erase
request scheduling can be observed between ParaFS
and ParaFS MGC. In the latter part of each run when
the GC processes are frequently triggered, ParaFS us-
ing parallelism-aware scheduling performs more consis-
tently than ParaFS MGC.

In conclusion, the FS-level multi-threaded garbage
collection as implemented in ParaFS is more effective
in reclaiming free space, and the FS-level parallelism-
aware scheduling makes performance more consistent.

5 Related Work

Data Allocation. In the FTL or flash controller, in-
ternal parallelism has been extensively studied. Recent
researches [13, 18, 21] have conducted extensive ex-
periments on page allocation with different levels (i.e.,
channel-level, chip-level, die-level and plane-level) of in-
ternal parallelism. Gordon [12] introduces a 2-D striping
to leverage both channel-level and die-level parallelism.

11

98 2016 USENIX Annual Technical Conference USENIX Association

But note that, 2-D striping in Gordon is different from
2-D data allocation in ParaFS. 2-D striping is designed
in the flash controller, which places data to leverage
multiple levels of parallelism. 2-D data allocation is
designed in file system, which organizes data into dif-
ferent groups using metrics of parallelism and hotness.
In addition, aggressive parallelism in the device level
scatters data addresses, breaking up the data organization
in the system level. P-OFTL [42] has pointed out this
problem and found that increased parallelism leads to
higher garbage overhead, which in turn can decrease the
overall performance.

In the file system level, DirectFS [20] and Nameless
Write [45] propose to remove data allocation functions
from file systems and leverage the data allocations in
the FTL or storage device, which can have better de-
cisions with detailed knowledge of hardware internals.
OFSS [33] proposes an object-based FTL, which enables
hardware/software codesign with both knowledge of file
semantics and hardware internals. However, these file
systems pay little attention to internal parallelism, which
is the focus of ParaFS in this paper.
Garbage Collection. Garbage collection has a strong
impact on system performance for log-structured de-
signs. Researchers are trying to pass more file semantics
to FTLs to improve GC efficiency. For instance, trim is a
useful interface to inform FTLs the data invalidation, in
order to reduce GC overhead in migrating invalid pages.
Also, Kang et al. [25] found that FTLs can have more
efficient hot/cold data grouping, which further reduces
GC overhead, if the expected lifetime of written data is
passed from file systems to FTLs. In addition, Yang et
al. [44] found log-structured designs in both levels of
system software and FTLs have semantic gaps, which
make garbage collection in both levels inefficient. In
contrast, ParaFS proposes to bridge the semantic gap and
coordinate garbage collection in the two levels.

In the file system level, SFS [34] uses a sophisticated
hot/cold data grouping algorithm using both access count
and age of the block. F2FS [28] uses a static data group-
ing method according to the file and data types. How-
ever, these grouping algorithms suffer when grouped
data are spread out in the FTL. Our proposed ParaFS
aims to solve this problem and keep physical hot/cold
grouping while exploiting the internal parallelism.

A series of research works use large write block size to
align the flash block and decrease the GC overhead[40,
31, 30, 35]. RIPQ[40] and Pannier[31] aggregate small
random writes in memory, divide them into groups ac-
cording to the hotness, and evict the groups in flash block
size. Nitro[30] deduplicates and compresses the writes in
RAM and evicts them in flash block size. Nitro proposes
to modify the FTL to support block-unit striping that
ensures the effective of the block-size write optimization.

SDF[35] employs block-unit striping which is tightly
coupled with key-value workloads. ParaFS uses page-
size I/O unit and aims at file system workloads.
I/O Scheduling. In flash storage, new I/O scheduling
policies have been proposed to improve utilization of
internal parallelism [24, 23, 16] or fairness [37, 39].
These scheduling policies are designed in the controller,
the FTL or the block layer. In these levels, addresses
of requests are determined. In comparison, system-
level scheduling can schedule write requests before data
allocation, which is flexible.

LOCS [41] is a key-value store that schedules I/O
requests in the system level upon open-channel SSDs.
With the use of log-structured merge tree (LSM-tree),
data is organized into data blocks aligned to flash blocks.
LOCS schedules the read, write and erase operations to
minimize the response time.

Our proposed ParaFS is a file system that schedules
I/O requests in the system level. Different from key-
value stores, file systems have irregular reads and writes.
ParaFS exploits the channel-level parallelism with page-
unit striping. Moreover, its goal is in making perfor-
mance more consistent.

6 Conclusion

ParaFS is effective in exploiting the internal parallelism
of flash storage, while keeping physical hot/cold data
grouping and low garbage collection overhead. It also
takes the parallelism opportunity to schedule read, write
and erase requests to make system performance more
consistent. ParaFS’s design relies on flash devices with
customized FTL that exposes physical layout, which can
be represented by three values. The proposed design
bridges the semantic gap between file systems and FTLs,
by simplifying FTL and coordinating functions of the
two levels. We implement ParaFS on a customized
flash device. Evaluations show that ParaFS outperforms
the flash-optimized F2FS by up to 3.1×, and has more
consistent performance.

Acknowledgments

We thank our shepherd Haryadi Gunawi and anonymous
reviewers for their feedbacks and suggestions. This work
is supported by the National Natural Science Foundation
of China (Grant No. 61232003, 61433008, 61502266),
the Beijing Municipal Science and Technology Com-
mission of China (Grant No. D151100000815003), the
National High Technology Research and Development
Program of China (Grant No. 2013AA013201), and
the China Postdoctoral Science Foundation (Grant No.
2015M580098).

12

USENIX Association 2016 USENIX Annual Technical Conference 99

References
[1] Btrfs. http://btrfs.wiki.kernel.org.

[2] Ext4. https://ext4.wiki.kernel.org/.

[3] Filebench benchmark. http://sourceforge.net/apps/mediawiki
/filebench.

[4] Intel dc s3500 480gb enterprise ssd review.
http://www.tweaktown.com/reviews/5534/intel-dc-s3500-
480gb-enterprise-ssd-review/index.html.

[5] Intel ssd 750 pcie ssd review.
http://www.anandtech.com/show/9090/intel-ssd-750-pcie-
ssd-review-nvme-for-the-client.

[6] Intel x25-m and x18-m mainstream sata solid-state drives.
ftp://download.intel.com/newsroom/kits/ssd/pdfs/X25-
M 34nm ProductBrief.pdf.

[7] Mysql. https://www.mysql.com/.

[8] FusionIO Virtual Storage Layer.
http://www.fusionio.com/products/vsl, 2013.

[9] SQLite. http://www.sqlite.org/, 2014.

[10] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Man-
asse, and R. Panigrahy. Design tradeoffs for SSD performance.
In Proceedings of 2008 USENIX Annual Technical Conference
(USENIX ATC), Berkeley, CA, 2008. USENIX.

[11] M. Bjørling, J. Axboe, D. Nellans, and P. Bonnet. Linux block
io: introducing multi-queue ssd access on multi-core systems.
In Proceedings of the 6th International Systems and Storage
Conference (SYSTOR), page 22. ACM, 2013.

[12] A. M. Caulfield, L. M. Grupp, and S. Swanson. Gordon:
Using flash memory to build fast, power-efficient clusters for
data-intensive applications. In Proceedings of the 14th Inter-
national Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 217–228,
New York, NY, USA, 2009. ACM.

[13] F. Chen, R. Lee, and X. Zhang. Essential roles of exploiting
internal parallelism of flash memory based solid state drives in
high-speed data processing. In Proceedings of the 17th IEEE
International Symposium on High Performance Computer Archi-
tecture (HPCA), pages 266–277. IEEE, 2011.

[14] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking cloud serving systems with ycsb. In
Proceedings of the 1st ACM symposium on Cloud computing,
pages 143–154. ACM, 2010.

[15] C. Dirik and B. Jacob. The performance of pc solid-state
disks (ssds) as a function of bandwidth, concurrency, device
architecture, and system organization. In Proceedings of the
36th annual International Symposium on Computer Architecture
(ISCA). ACM, 2009.

[16] C. Gao, L. Shi, M. Zhao, C. J. Xue, K. Wu, and E. H. Sha.
Exploiting parallelism in i/o scheduling for access conflict min-
imization in flash-based solid state drives. In Mass Storage
Systems and Technologies (MSST), 2014 30th Symposium on,
pages 1–11. IEEE, 2014.

[17] A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: A flash translation
layer employing demand-based selective caching of page-level
address mappings. In Proceedings of the 14th International Con-
ference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 229–240, New York,
NY, USA, 2009. ACM.

[18] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and S. Zhang.
Performance impact and interplay of ssd parallelism through
advanced commands, allocation strategy and data granularity. In
Proceedings of the International Conference on Supercomputing
(ICS), pages 96–107. ACM, 2011.

[19] S. Jeong, K. Lee, J. Hwang, S. Lee, and Y. Won. Framework
for analyzing android i/o stack behavior: from generating the
workload to analyzing the trace. Future Internet, 5(4):591–610,
2013.

[20] W. K. Josephson, L. A. Bongo, D. Flynn, and K. Li. DFS: A file
system for virtualized flash storage. In Proceedings of the 8th
USENIX Conference on File and Storage Technologies (FAST),
Berkeley, CA, 2010. USENIX.

[21] M. Jung and M. Kandemir. An evaluation of different page
allocation strategies on high-speed ssds. In Proceedings of the 4th
USENIX conference on Hot Topics in Storage and File Systems,
pages 9–9. USENIX Association, 2012.

[22] M. Jung and M. Kandemir. Revisiting widely held ssd expecta-
tions and rethinking system-level implications. In Proceedings of
the fifteenth international joint conference on Measurement and
modeling of computer systems (SIGMETRICS), pages 203–216.
ACM, 2013.

[23] M. Jung and M. T. Kandemir. Sprinkler: Maximizing resource
utilization in many-chip solid state disks. In High Performance
Computer Architecture (HPCA), 2014 IEEE 20th International
Symposium on, pages 524–535. IEEE, 2014.

[24] M. Jung, E. H. Wilson III, and M. Kandemir. Physically
addressed queueing (paq): improving parallelism in solid state
disks. In Proceedings of the 39th ACM/IEEE International
Symposium on Computer Architecture (ISCA), pages 404–415,
2012.

[25] J.-U. Kang, J. Hyun, H. Maeng, and S. Cho. The multi-
streamed solid-state drive. In Proceedings of the 6th USENIX
conference on Hot Topics in Storage and File Systems, pages 13–
13. USENIX Association, 2014.

[26] J. Katcher. Postmark: A new file system benchmark. Technical
report, Technical Report TR3022, Network Appliance, 1997.

[27] R. Konishi, Y. Amagai, K. Sato, H. Hifumi, S. Kihara, and
S. Moriai. The linux implementation of a log-structured file
system. ACM SIGOPS Operating Systems Review, 40(3):102–
107, 2006.

[28] C. Lee, D. Sim, J. Hwang, and S. Cho. F2FS: A new file system
for flash storage. In Proceedings of the 13th USENIX Conference
on File and Storage Technologies (FAST), Santa Clara, CA, Feb.
2015. USENIX.

[29] S. Lee, M. Liu, S. Jun, S. Xu, J. Kim, and Arvind. Application-
managed flash. In Proceedings of the 14th Usenix Conference
on File and Storage Technologies (FAST), pages 339–353, Santa
Clara, CA, 2016. USENIX Association.

[30] C. Li, P. Shilane, F. Douglis, H. Shim, S. Smaldone, and G. Wal-
lace. Nitro: A capacity-optimized ssd cache for primary storage.
In Proceedings of 2014 USENIX Annual Technical Conference
(USENIX ATC), pages 501–512, Philadelphia, PA, June 2014.
USENIX Association.

[31] C. Li, P. Shilane, F. Douglis, and G. Wallace. Pannier: A
container-based flash cache for compound objects. In Proceed-
ings of the 16th Annual Middleware Conference, pages 50–62,
Vancouver, Canada, 2015. ACM.

[32] Y. Lu, J. Shu, and W. Wang. ReconFS: A reconstructable file
system on flash storage. In Proceedings of the 12th USENIX
Conference on File and Storage Technologies (FAST), pages 75–
88, Berkeley, CA, 2014. USENIX.

[33] Y. Lu, J. Shu, and W. Zheng. Extending the lifetime of flash-based
storage through reducing write amplification from file systems. In
Proceedings of the 11th USENIX Conference on File and Storage
Technologies (FAST), Berkeley, CA, 2013. USENIX.

13

100 2016 USENIX Annual Technical Conference USENIX Association

[34] C. Min, K. Kim, H. Cho, S.-W. Lee, and Y. I. Eom. SFS: random
write considered harmful in solid state drives. In Proceedings of
the 10th USENIX Conference on File and Storage Technologies
(FAST), Berkeley, CA, 2012. USENIX.

[35] J. Ouyang, S. Lin, S. Jiang, Z. Hou, Y. Wang, and Y. Wang. SDF:
Software-defined flash for web-scale internet storage systems.
In Proceedings of the 19th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 471–484, New York, NY, USA, 2014.
ACM.

[36] X. Ouyang, D. Nellans, R. Wipfel, D. Flynn, and D. K. Panda.
Beyond block I/O: Rethinking traditional storage primitives. In
Proceedings of the 17th IEEE International Symposium on High
Performance Computer Architecture (HPCA), pages 301–311.
IEEE, 2011.

[37] S. Park and K. Shen. Fios: a fair, efficient flash i/o scheduler. In
Proceedings of the 10th USENIX Conference on File and Storage
Technologies (FAST), Berkeley, CA, 2012. USENIX.

[38] M. Rosenblum and J. K. Ousterhout. The design and imple-
mentation of a log-structured file system. ACM Transactions on
Computer Systems (TOCS), 10(1):26–52, 1992.

[39] K. Shen and S. Park. Flashfq: A fair queueing i/o scheduler
for flash-based ssds. In Proceedings of 2013 USENIX Annual
Technical Conference (USENIX ATC), pages 67–78, Berkeley,
CA, 2013. USENIX.

[40] L. Tang, Q. Huang, W. Lloyd, S. Kumar, and K. Li. Ripq:
Advanced photo caching on flash for facebook. In Proceedings of
the 13th USENIX Conference on File and Storage Technologies
(FAST), pages 373–386, Santa Clara, CA, Feb. 2015. USENIX
Association.

[41] P. Wang, G. Sun, S. Jiang, J. Ouyang, S. Lin, C. Zhang, and
J. Cong. An efficient design and implementation of LSM-tree
based key-value store on open-channel SSD. In Proceedings of
the Ninth European Conference on Computer Systems (EuroSys),
pages 16:1–16:14, New York, NY, USA, 2014. ACM.

[42] W. Wang, Y. Lu, and J. Shu. p-OFTL: an object-based semantic-
aware parallel flash translation layer. In Proceedings of the
Conference on Design, Automation and Test in Europe (DATE),
page 157. European Design and Automation Association, 2014.

[43] J. Yang, D. B. Minturn, and F. Hady. When poll is better than
interrupt. In Proceedings of the 10th USENIX Conference on File
and Storage Technologies (FAST), Berkeley, CA, 2012. USENIX.

[44] J. Yang, N. Plasson, G. Gillis, N. Talagala, and S. Sundararaman.
Dont stack your log on my log. In USENIX Workshop on In-
teractions of NVM/Flash with Operating Systems and Workloads
(INFLOW), 2014.

[45] Y. Zhang, L. P. Arulraj, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. De-indirection for flash-based SSDs with nameless
writes. In Proceedings of the 10th USENIX Conference on File
and Storage Technologies (FAST), Berkeley, CA, 2012. USENIX.

14

