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Abstract
Web services from search to games to stock trading im-
pose strict Service Level Objectives (SLOs) on tail latency.
Meeting these objectives is challenging because the com-
putational demand of each request is highly variable and
load is bursty. Consequently, many servers run at low
utilization (10 to 45%); turn off simultaneous multithread-
ing (SMT); and execute only a single service — wasting
hardware, energy, and money. Although co-running batch
jobs with latency critical requests to utilize multiple SMT
hardware contexts (lanes) is appealing, unmitigated shar-
ing of core resources induces non-linear effects on tail
latency and SLO violations.

We introduce principled borrowing to control SMT
hardware execution in which batch threads borrow core
resources. A batch thread executes in a reserved batch
SMT lane when no latency-critical thread is executing
in the partner request lane. We instrument batch threads
to quickly detect execution in the request lane, step out
of the way, and promptly return the borrowed resources.
We introduce the nanonap system call to stop the batch
thread’s execution without yielding its lane to the OS
scheduler, ensuring that requests have exclusive use of
the core’s resources. We evaluate our approach for co-
locating batch workloads with latency-critical requests
using the Apache Lucene search engine. A conservative
policy that executes batch threads only when request lane
is idle improves utilization between 90% and 25% on
one core depending on load, without compromising re-
quest SLOs. Our approach is straightforward, robust, and
unobtrusive, opening the way to substantially improved
resource utilization in datacenters running latency-critical
workloads.

1 Introduction
Latency-critical web services, such as search, trading,
games, and social media, must consistently deliver low-
latency responses to attract and satisfy users. This
requirement translates into Service Level Objectives
(SLOs) governing latency. For example, an SLO may
include an average latency constraint and a tail con-
straint, such as that 99% of requests must complete within
100 ms [6, 7, 13, 34]. Many such services, such as Google
Search and Twitter [6, 8, 18], systematically underuti-
lize the available hardware to meet SLOs. Furthermore,

servers often execute only one service to ensure that
latency-critical requests are free from interference. The
result is that server utilizations are as low as 10 to 45%.
Since these services are widely deployed in large num-
bers of datacenters, their poor utilization incurs enormous
commensurate capital and operating costs. Even small
improvements substantially improve profitability.

Meeting SLOs in these highly engineered systems is
challenging because: (1) requests often have variable
computational demands and (2) load is unpredictable
and bursty. Since computation demands of requests may
differ by factors of ten or more and load bursts induce
queuing delay, overloading a server results in highly non-
linear increases in tail-latency. The conservative solution
providers often take is to significantly over-provision.

Interference arises in chip multiprocessors (CMPs)
and in simultaneous multithreading (SMT) cores when
contending for shared resources. A spate of recent re-
search explores how to predict and model interference
between different workloads executing on distinct CMP
cores [8, 23, 25, 28], but these approaches target and
exploit large scale diurnal patterns of utilization, e.g., co-
locating batch workloads at night when load is low. Lo et
al. explicitly rule out SMT because of the highly unpre-
dictable and non-linear impact on tail latency (which we
confirm) and the inadequacy of high-latency OS schedul-
ing [23]. Zhang et al. do not attempt to reduce SMT-
induced overheads, but rather they accommodate them us-
ing a model of interference for co-running workloads [35].
Their approach requires ahead-of-time profiling of all co-
located workloads and over-provisioning. Prior work
lacks dynamic mechanisms to monitor and control batch
workloads on SMT with low latency.

This research exploits SMT resources to increase
utilization without compromising SLOs. We introduce
principled borrowing, which dynamically identifies idle
cycles and borrows these resources. We implement bor-
rowing in the ELFEN1 scheduler, which co-runs batch
threads and latency-critical requests, and meets request
SLOs. Our work is complementary to managing shared
cache and memory resources. We first show that latency-
critical workloads impose many idle periods and they are
short. This result confirms that scheduling at OS granu-

1In the Grimm fairy tale, Die Wichtelmänner, elves borrow a cob-
bler’s tools while he sleeps, making him beautiful shoes.
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larities is inadequate, motivating fine-grain mechanisms.
ELFEN introduces mechanisms to control thread exe-

cution and a runtime that monitors and schedules threads
on distinct hardware contexts (lanes) of an SMT core.
ELFEN pins latency-critical requests to one SMT lane
and batch threads to N − 1 partner SMT lanes on a N-
way SMT core. A batch thread monitors a paired lane
reserved for executing latency-critical requests. (We use
‘requests’ for concision.) The simplest borrow idle pol-
icy in ELFEN ensures mutual exclusion — requests ex-
ecute without interference. Batch threads monitor the
request lane and when the request lane is occupied, they
release their resources. When the request lane is idle,
batch threads execute. We introduce nanonap, a new
system call, that disables preemption and invokes mwait
to release hardware resources quickly — within ~3 000
cycles. This mechanism provides semantics that neither
yielding, busy-waiting, nor futex offer. After calling
nanonap, the batch thread stays in this new kernel state
without consuming microarchitecture resources until the
next interrupt arrives or the request lane becomes idle.
These semantics ensure that requests incur no interfer-
ence from batch threads and pose no new security risks.
Since the batch thread is never out of the control of the
OS, the OS may preempt it as needed. The shared system
state that ELFEN exploits is already available to applica-
tions on the same core, and ELFEN reveals no additional
information about co-runners to each other.

We inject scheduling and profiling mechanisms into
batch applications at compile-time. A binary re-writer
could also implement this functionality. The instrumenta-
tion frequently checks for a request running on the paired
SMT lane by examining a shared memory location. When
the batch thread observes a request, it immediately in-
vokes nanonap to release hardware resources. This pol-
icy ensures that the core is always busy, but it only utilizes
one SMT lane on a two-way SMT core at a time.

More aggressive borrowing policies use both lanes at
once by giving batch threads a budget that limits over-
heads imposed on requests, ensuring that SLOs are met.
The budget is shaped by the SLO, the batch workload’s
impact on the latency-critical workload, and the length of
the request queue. These policies monitor the request in
various ways, via lightweight fine-grain profiling [32].

We implement ELFEN in the Linux kernel and in
compile-time instrumentation that self-schedules batch
workloads, using both C and Java applications, demon-
strating generality. For our latency-sensitive workload,
we use the widely deployed Apache Lucene open-source
search engine [3]. Prior work shows Lucene has per-
formance characteristics and request demand distribu-
tions similar to the Bing search engine [10]. We evaluate
ELFEN co-executing a range of large complex batch work-
loads on two-way SMT hardware. On one core, ELFEN’s

borrow idle policy achieves peak utilization with essen-
tially no impact on Lucene’s 99th percentile latency SLO.
ELFEN improves core utilization by 90% at low load and
25% at high loads compared to a core dedicated only to
Lucene requests. It consistently achieves close to 100%
core utilization, the peak for this policy — one of the
two hardware contexts always busy. On an eight core
CMP, the borrow idle policy usually has no impact or
slightly improves 99th percentile latency because cores
never go to sleep. Occasional high overheads at high load
may require additional interference detecting techniques.
Improvements in CMP utilization are more substantial
than for one core because at low load, many cores may be
idle. ELFEN consistently achieves close to 100% of the
no-SMT peak, which is also the borrow idle policy’s peak
utilization.

Choosing a policy depends on provider workloads,
capacity, and server economics, including penalties
for missed SLOs and costs for provisioning servers.
Providers currently provide excess capacity for load bursts
and SLOs slack for each request. Our approach handles
both. Our most conservative borrow idle policy steps out
of the way during load bursts and suits a setting where the
penalties for missed SLOs are very high. Our more agres-
sive policies can soak up slack and handle load bursts.
They offer as much as two times better utilization but at
the cost of higher median latencies and higher probability
of SLO violations. For server providers with latency-
critical and batch workloads, the main benefit of our work
is to substantially reduce the required number of servers
for batch workloads.

In summary, contributions of this paper include:

• analysis of why latency-critical workloads system-
atically underutilize hardware and the opportunities
afforded by idle periods;

• nanonap, a system call for fine-grain thread control;
• ELFEN, a scheduler that borrows idle cycles from un-

derutilized SMT cores for batch workloads without
interfering with latency-critical requests;

• a range of scheduling policies;
• an evaluation that shows ELFEN can substantially

increase processor utilization by co-executing batch
threads, yet still meet request SLOs; and

• an open-source implementation on github [33].

Our approach requires only a modest change to the kernel
and no changes to application source code, making it easy
to adopt in diverse systems and workloads.

2 Background and Motivation
We motivate our work with workload characteristics of
latency-critical services; the non-linear effects on latency
from uncontrolled interference with SMT; the opportu-
nity to improve utilization availed by idle resources; and
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Figure 1. Highly variable demand is typical for
latency-critical workloads. Lucene demand distribution
with request processing time on x-axis in 1 ms buckets,
fraction of total on left y-axis, and cumulative distribution
red line on right y-axis.
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Figure 2. Overloading causes non-linear increases in
latency. Lucene percentile latencies and utilization on
one core. Highly variable demand induces queuing delay,
which results in non-linear increases in latency.

requirements on responsiveness dictated by idle periods.
Section 4 describes our evaluation methodologies.

Processing demand The popular industrial-strength
Apache Lucene enterprise search engine is our represen-
tative service [3]. Prior work shows that services such as
Bing search, Google search, financial transactions, and
personal assistants have similar computational character-
istics [6, 8, 10, 12, 29]. Figure 1 plots the distribution of
request processing times for Lucene executing in isola-
tion on a single hardware context. The bars (left y-axis)
show that most requests are short, but a few are very long.
This high variance of one to two orders of magnitude is
common in such systems.

Load sensitivity This experiment shows that high load
induces non-linear increases on latency. We assume a
100 ms service level objective (SLO) on 99th percentile
latency for requests. A front end on separate hardware
issues search requests at random intervals following an
exponential distribution around the prescribed requests
per second (RPS) mean rate. As soon as Lucene com-
pletes a request, it processes the next request in the queue.
If no requests are pending, it idles. We show results for a
single Lucene worker thread running on one core.

Figure 2 shows Lucene percentile latencies and utiliza-
tion as a function of RPS only on one lane of a two-way
SMT core using one Lucene task. The two graphs share
the same x-axis. The top graph shows median, 95th, and
99th percentile latency for requests, the bottom graph
shows CPU utilization which is the sum of the fraction
of time the lanes are busy normalized to the theoretical
peak for a system with SMT disabled. The maximum
utilization is 2.0, but the utilization in Figure 2 never ex-
ceeds 1.0 because only one thread handles requests, so
only one lane is used. As RPS increases, median, 95th,
and 99th percentile latencies first climb slowly and then
quickly accelerate. The 99th percentile hits a wall when
RPS rise above 120 RPS, while the request lane utilization
is only 70% at 120 RPS, leaving the two-way SMT core
substantially underutilized when operating at a practical
load for a 100 ms 99th percentile tail latency target.

Random request arrival times and the high variability
of processing times combine to produce high variability
in queuing times and non-linear increases in latencies
at high RPS. As we show next, adding a co-runner on
the same core using SMT has the effect of throttling the
latency-critical workload, effectively moving to the right
in Figure 2. Movements to the right lead to increasingly
unpredictable latencies, and likely violations of the SLO.
Simultaneous Multithreading (SMT) This section
gives SMT background and shows that simultaneously
executing requests on one lane of a 2-way SMT core and
a batch thread on the other lane degrades request latencies.
This result confirms prior work [8, 23, 35] and explains
why service providers often disable SMT. We measure
core idle cycles to show that the opportunity for improve-
ment is large, if the system can exploit short idle periods.

We illustrate the design and motivation of SMT in
Figure 3. Figure 3(a) shows that when only one thread
executes on a core at a time, hardware resources such
as the issue queue and functional units are underutilized
(white). Figure 3(b) shows two threads sharing an SMT-
enabled core. The hardware implements different sharing
policies for various resources. For example, instruction
issue may be performed round-robin unless one thread
is unable to issue, and the load-store queue partitioned
in half, statically, while other functional units are shared
fully dynamically. It is important to note that such policies
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Figure 3. Simultaneous Multithreading (SMT) A sin-
gle thread often underutilizes core resources. SMT dy-
namically shares the resources among threads.
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Figure 4. Unfettered SMT sharing substantially de-
grades tail latency. Lucene 99th percentile latency and
lane utilization with IPC 1 and IPC 0.01 batch workloads.

mean that a co-running thread consumes considerable
core resources even when that thread has low IPC.

To measure lower bounds on SMT interference, we
consider two microbenchmarks as batch workloads ex-
ecuting on an Intel 2-way SMT core. The first uses a
non-temporal store and memory fence to continuously
block on memory, giving an IPC of 0.01. For instance,
the Intel PAUSE instruction has a similar IPC. The other
performs a tight loop doing nothing (IPC=1) when run-
ning alone. Neither consume cache or memory resources.
Figure 4 shows the impact of co-running batch workloads
on the 99% percentile latency of requests and lane utiliza-
tion. Utilization improves over no co-runner significantly
since the batch thread keeps the batch lane busy, but re-
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Figure 5. Lucene Inter-request idle times are highly
variable and are frequently short. Histogram (left y-
axis) shows the distribution of request idle times. The
line (right y-axis) shows the cumulative time between
completing one request and arrival of the next request at
0.71 lane utilization on one core at RPS = 120.

quest latency degrades substantially, even when the batch
thread has very low resource requirements (IPC = 0.01).
For instance, at 100 RPS without a co-runner, 99th per-
centile latency is 76 ms. RPS must fall to around 40 RPS
to meet the same 99th percentile latency with a low IPC
co-runner.

Co-running moves latencies to the right on RPS curves,
into the steep exponential, with devastating effect on
SLOs. Because SMT hardware shares resources such as
issue logic, the load store queue (LSQ), and store buffers,
tail latency suffers even when the batch workload has an
IPC as low as 0.01. If a request is short, a co-runner may
substantially slow it down without breaching SLOs. Un-
fortunately request demand is not known a priori. More-
over, request demand is hard to predict [15, 17, 19, 24]
and the prediction is never free or perfect, thus we do not
consider request prediction further.

To increase utilization without imposing any degra-
dations on latency-critical requests cannot use multi-
ple SMT lanes simultaneously. The strategies we ex-
plore are thus (1) to enforce mutual exclusion, executing
a batch thread only when the partner lane is idle (bor-
row idle), and (2) to give the batch thread a budget for
how much it may overlap execution with requests. These
strategies require observing requests, detecting idle peri-
ods, and controlling batch threads.

Idle cycle opportunities Now we explore the frequency
and length of idle periods to understand the requirements
on the granularity of observing requests and controlling
batch threads. Figure 5 shows the fraction of all idle time
(y-axis) due to periods of a given length (x-axis). The
histogram (blue) indicates the fraction of all idle time
due to idle times of a specific period, while the line (red)
shows a cumulative distribution function. For example,
this shows that 2.3% of idle time is contributed by idle
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times of 15 ms in length (blue), and 53% of total idle time
is due to idle times of 15 ms or less (red). Highly variable
and short idle periods dictate low-latency observation
and control mechanisms.

3 ELFEN Design and Implementation
This section describes the design and implementation
of ELFEN, in which latency-critical requests and batch
threads execute in distinct SMT hardware contexts (lanes)
on the same core to improve server utilization. Given
an N-way SMT, N −1 SMT lanes execute batch threads,
batch lanes, and one SMT lane executes latency-critical
requests, the request lane. We restrict our exposition
below to 2-way SMT for simplicity and because our eval-
uation Intel hardware is 2-way SMT.

As Figure 4 shows, unfettered interference on SMT
hardware quickly leads to SLO violations. ELFEN con-
trols batch threads to limit their impact on tail latency. We
explore borrowing policies applying the principle of ei-
ther eliminating interference or limiting it based on some
budget. The simplest policy enforces mutual exclusion
by forcing batch threads to relinquish their lane resources
whenever the request lane is executing a request. More ag-
gressive borrowing policies add overlaping the execution
of batch threads and requests, governed by a budget.

The ELFEN design uses two key ideas: (1) high-
frequency, low-overhead monitoring to identify oppor-
tunities, and (2) low-latency scheduling to exploit these
opportunities. The implementation instruments batch
workloads at compile time with code that performs both
monitoring and self-scheduling. The simple borrow-idle
policy requires no change to the latency-critical work-
load. More aggressive policies require the latency-critical
framework to expose the request queue length and a cur-
rent request identifier via shared memory. Batch threads
use nanonap to release hardware resources rapidly with-
out relinquishing their SMT hardware context.

Our current design assumes an environment consisting
of a single latency-critical workload, and any number of
instrumented batch workloads. (Scheduling two or more
distinct latency-critical services simultaneously on one
server is a different and interesting problem that is beyond
our scope.) Our instrumentation binds threads to cores
with setaffinity() to force all request threads onto
the identifiable request lane and batch threads onto partner
batch lane(s). The underlying OS is free to schedule batch
threads on batch lanes. Each batch thread will then fall
into a monitoring and self-scheduling rhythm.

3.1 Nanonap
This section introduces the system call nanonap to mon-
itor and schedule threads at a fine granularity. The key
semantics nanonap delivers is to put the hardware con-
text to sleep without releasing the hardware to the OS
scheduler. We first explain why existing mechanisms,

such as mwait, WRLOS, and hotplug do not directly de-
liver the necessary semantics.

The mwait instruction releases the resources of a hard-
ware context with low latency. This instruction is avail-
able in user-space on SPARC and is privileged on x86.
The IBM PowerEN user-level WRLOS instruction has sim-
ilar semantics [26]. Calls to mwait are normally paired
with a monitor instruction that specifies a memory lo-
cation that mwait monitors. The OS or another thread
wakes up the sleeping thread by writing to the monitored
location or sending it an interrupt. The Linux scheduler
uses mwait to save energy. It assigns each core a privi-
leged idle task when there are no ready tasks. Idle tasks
call mwait to release resources, putting the hardware in
to a low-power state. Unfortunately, simply building upon
any of these mechanisms in user space is insufficient be-
cause the OS may, and is likely to, schedule other ready
threads to the released hardware context. In contrast,
because it disables preemption, nanonap ensures that
no other thread runs on the lane, releasing all hardware
resources to its partner lane.

Another mechanism that seems appealing, but does
not work, is hotplug, which prohibits any task from
executing in specified SMT lanes. The OS first disables
interrupts, moves all threads in the lane(s), including the
thread that invoked hotplug, to other cores, and switches
the lane(s) to the idle task which then calls the mwait

instruction. While hotplug moves threads off a lane to
other cores, user-space calls such as futex yield the lane,
so other threads may execute in it. Therefore, neither
the hotplug interface nor user-space locking nor calls
to mwait are designed to release and acquire SMT lanes
to and from each other because a thread does not retain
exclusive ownership of a lane while it pauses.

We design a new system call, nanonap, to control the
SMT microarchitecture hardware resources directly. Any
application that wants to release a lane invokes nanonap,
which enters the kernel, disables preemption, and sleeps
on a per-CPU nanonap flag. From the kernel’s perspec-
tive, nanonap is a normal system call and it accounts
for the thread as if the thread is still executing. Because
nanonap does not disable interrupts and the kernel does
not preempt the thread that invoked the nanonap, the
SMT lane stays in a low-power sleep state until the OS
wakes the thread up with an interrupt or the ELFEN sched-
uler sets the nanonap flag. After the SMT lane wakes
up, it enables preemption and returns from the system
call. Figure 6 shows the pseudocode of nanonap, which
we implement as a wrapper that invokes a virtual device
using the Linux OS’s ioctl interface for devices.
No starvation or new security state The nanonap sys-
tem call and monitoring of request lanes do not cause
starvation or pose additional opportunities for security
breaches. Starvation does not occur because nanonap
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does not disable interrupts. The scheduler may wake up
any napping threads and schedule a different batch thread
on the lane at the end of a time quanta, as usual. When
a batch thread wakes up or a new one starts executing, it
tests whether its request lane partner is occupied and if
so, puts itself to sleep. Since the OS accrues CPU time to
batch threads waiting due to a nanonap, user applications
cannot perform a denial of service attack simply by con-
tinuously calling nanonap, since the OS will schedule a
napping thread away after they exhaust their time slice.

The ELFEN instrumentation monitors system state to
make decisions. It reads memory locations and perfor-
mance counters that reveal if the core has multiple threads
executing. All of this system state is already available to
threads on the same core — ELFEN reveals no additional
information about co-runners to each other.

3.2 Latency of Thread Control
This section presents an experiment that measures the
latency of sleeping and waking up with nanonap, mwait,
and futex. Measuring these latencies is challenging
because detecting exactly when a lane releases hardware
resources must be inferred, rather than measured directly.

When a batch thread executes mwait on our Intel hard-
ware, the lane first enters the shallow sleeping C1 state
immediately. If no other thread executes in the lane for
a while, it then enters a deep sleep state and releases its
hardware resources to the active request lane. We mea-
sure how long it takes the lane to enter the deep sleeping
state indirectly as follows. The CPU executes a few µops
to transition an SMT lane from the shallow to the deep
sleep state. For measurement purposes, we thus configure
the measurement thread to continuously record how many
µops the measurement thread has retired and how many
µops the whole core retires every 150 cycles. When the
measurement thread notices that the sleeping SMT lane
does not retire any µops for a while, then retires a few
more µops, and then stops retiring µops, it infers that the
SMT lane is in the deep sleep state.

Figure 7 shows a microbenchmark that measures the la-
tencies of sleeping and waking up with nanonap, mwait,
and futex. The microbenchmark has two threads: a
measurement thread and another thread, T2. The mea-
surement thread puts T2 to sleep and wakes it up. The
two threads execute on the same core but different SMT
lanes. The measurement thread sets a flag, forcing
T2 to sleep (line 5). T2 then executes sleep which
either calls nanonap or futex to put the SMT lane
to sleep, according to which is being measured. The
wait_until_t2_goes_to_sleep() (line 6) call per-
forms the deep sleep detection process described in the
above paragraph. We measure wake-up latency directly
(lines 10 to 13). The measurement thread sets a flag (line
11) and then detects when T2 starts executing instructions

1 /******************* USER *********************/
2 void nanonap() {
3 ioctl(/dev/nanonap);
4 }
5 /******************* KERNEL *******************/
6 nanonap virtual device: /dev/nanonap;
7 per_cpu_variable: nap_flag;
8 ioctl(/dev/nanonap) {
9 disable_preemption();

10 my_nap_flag = this_cpu_flag(nap_flag);
11 monitor(my_nap_flag);
12 mwait();
13 enable_preemption();
14 }

Figure 6. Pseudo code for nanonap.

1 /***** MEASUREMENT THREAD ON ONE SMT LANE *****/
2 void measure() {
3 /* measure send-to-sleep latency */
4 start_sleep_request = timestamp();
5 ask_t2_sleep();
6 wait_until_t2_goes_to_sleep();
7 finish_sleep_request = timestamp();
8

9 /* measure wake-up latency */
10 start_wakeup_request = timestamp();
11 wakeup_t2();
12 wait_until_t2_wakes_up();
13 finish_wakeup_request = timestamp();
14

15 if (measuring_futex || measuring_nanonap) {
16 sleep_latency =
17 finish_sleep_request - start_sleep_request;
18 wakeup_latency =
19 finish_wakeup_request - start_wakeup_request;
20 }
21 if (measuring_mwait) {
22 sleep_latency = finish_sleep_request - mwait_start;
23 wakeup_latency = mwait_finish - start_wakeup_request;
24 }
25 }
26 /************ T2 ON OTHER SMT LANE ************/
27 void sleep() {
28 if (measuring_futex)
29 wait_on_futex();
30 else if (measuring_nanonap || measuring_mwait)
31 nanonap();
32 }
33 void nanonap() {
34 ...
35 mwait_start = timestamp();
36 monitor(flag);
37 mwait();
38 mwait_finish = timestamp();
39 ...
40 }

Figure 7. Microbenchmark that measures time to sleep
with nanonap, mwait, and futex.

(line 12).

We execute each configuration 100 times. Figure 8
presents the time and the 95% confidence interval for
using nanonap, mwait, and futex to sleep and wake-up
a thread executing in a partner SMT lane. The time to
put a lane to sleep for mwait is 2 443 cycles, is 3 285
cycles for nanonap, and is 11 518 cycles for futex, 3.5
times slower than nanonap. Waking up a lane directly
with mwait takes 1 036 cycles — essentially the hardware
latency of wake-up. The latency of nanonap’s wake-up is
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Figure 8. Time to sleep and wake-up SMT partner lanes.

similar to mwait’s at 1438 cycles. However, futex takes
3 968 cycles, which is 2.72 times slower than nanonap.
Although futex is substantially slower, this latency is
likely tolerable, since most idle periods are more than
1 million cycles on our 2 GHz machine (1 ms in Figure 5).
However, as explained above, neither the semantics of
locks nor user-space calls to mwait are adequate for our
purposes.

3.3 Continuous Monitoring and Signaling
Sleeping and waking up fast is necessary but not sufficient.
The scheduler has to know when to act. We further exploit
the nanonap mechanism to improve over our SHIM [32]
fine-grain profiling tool. SHIM views time-varying soft-
ware and hardware events as continuous ‘signals’ (in the
signal processing sense of the word). Rather than using
interrupts to examine request threads, as many profiling
tools do, we configure our batch threads to continuously
reads signals from memory locations and hardware perfor-
mance counters to profile request threads. In the simplest
case, the profiling observes whether the request thread is
executing. Our prior work shows that SHIM accurately
observes events at granularities as fine as 100s to 1000s of
cycles with overheads of a few percent when executing on
another core. However, when threads share an SMT core,
we saw similar overheads from SMT sharing as shown in
Figure 4. In this paper, we use the nanonap mechanism
to essentially eliminate this overhead.

Whereas SHIM observes signals from a dedicated
thread, here we (1) use GCC -pg instrumentation [9]
to insert checks at method prologues into C batch work-
loads and (2) piggyback on the default Java VM checks
at every method entry/exit and loop backedge [22]. These
mechanisms add minimal overhead as shown by Lin et
al. [22] and, most importantly, remove the need for a third
profiling thread to observe request threads.

At each check, the fast-path consists of a few instruc-
tions to check monitored signals. For efficiency, this fast
path is inlined to the body of compiled methods. If the
observed signal matches the condition (e.g., the scheduler

sets the memory location that indicates the request lane is
idle), the batch thread jumps to an out-of-line function to
handle the task of putting itself to sleep.

3.4 ELFEN Scheduling
We design and implement four policies that borrow un-
derutilized resources without compromising SLOs.
Borrowing Idle Cycles The simplest way to improve
utilization is to run the batch workload only when the
latency-critical workload is idle. Section 2 analyzed
the maximum CPU utilization of Lucene while meet-
ing a practical SLO at ~70% of one SMT lane, which
corresponds with prior analysis of latency-critical work-
loads [6, 8, 10, 12, 29]. Therefore even when the latency-
sensitive workload is executing at the maximum utiliza-
tion at which it can meet SLOs, there is an opportunity
to improve utilization by 30% if the batch workload can
borrow this excess capacity. At lower loads, there is even
more opportunity.

This policy enforces mutual exclusion. Batch threads
execute only when the request lane is empty. When a
request starts executing, the batch thread immediately
sleeps, relinquishing its hardware resources to the latency-
critical request. When the request lane becomes idle, the
batch thread wakes up and executes in the batch lane.

Figure 9(a) shows the simple modifications to the ker-
nel and batch workloads required to implement this pol-
icy. We add an array called cpu_task_map that maps
a lane identifier to the current running task. At ev-
ery context switch, the OS updates the map, as shown
in task_switch_to(). By observing this signal, the
scheduler knows which threads are executing in the SMT
lanes. At each check, the scheduler determines whether
the idle_task is executing in the request lane. If the
request lane is idle, the scheduler either continues execut-
ing the batch thread in its lane or starts a batch thread. If
the request lane is occupied, the scheduler immediately
forces the batch thread to sleep with nanonap.
Fixed Budget Borrowing idle cycles is simple and as we
show, effective, but we can further exploit underutilized
resources when requests may incur some overhead and
still meet their SLO. In particular, short requests, which
typically dominate, easily meet the SLO under moderate
loads. We consider the maximum slowdown requests
can incur under a certain load as a budget for the batch
workload. As an example, consider an SLO latency of
100 ms for 99% of requests. If 99% of requests executing
exclusively on the core complete in 53 ms at some RPS,
then there exists headroom of 100− 53 = 47 ms. We
thus could take a budget of 47 ms for executing batch
tasks. (We leave more sophisticated policies that also
incorporate load along the lines of Haque et al. [10] to
future work.)

Given a budget, the fixed-budget scheduler will execute
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1 /******************* KERNEL *******************/
2 /* maps lane IDs to the running task */
3 exposed SHIM signal: cpu_task_map
4

5 task_switch(task T) { cpu_task_map[thiscpu] = T; }
6 idle_task() { // wake up any waiting batch thread
7 update_nap_flag_of_partner_lane();
8 ......
9 mwait();

10 }
11 /**************** BATCH TASKS *****************/
12 /* fast path check injected into method body */
13 check:
14 if (!request_lane_idle) slow_path();
15

16 slow_path() { nanonap(); }

(a) Borrow idle policy.
1 /********** LATENCY CRITICAL WORKLOAD *********/
2 exposed SHIM signal: queue_len
3

4 /**************** BATCH THREADS ***************/
5 per_cpu_variable: lane_status = NORMAL;
6 per_cpu_variable: start_stamp;
7 check:
8 if (request_lane_idle && queue_len == 0) {
9 lane_status = NEW_PERIOD;

10 } else if (!request_lane_idle) {
11 slow_path();
12 }
13 slow_path() {
14 switch (lane_status) {
15 case NORMAL:
16 nanonap();
17 break;
18 case NEW_PERIOD:
19 lane_status = CO_RUNNING;
20 start_stamp = rdtsc();
21 break;
22 case CO_RUNNING:
23 now = rdtsc();
24 if (now - start_stamp >= budget) // expired
25 lane_status = NORMAL;
26 } }

(b) Fixed budget policy.
1 /********** LATENCY CRITICAL WORKLOAD *********/
2 exposed SHIM signals: queue_len, running_request
3

4 /**************** BATCH THREADS ***************/
5 /* Same as the fixed budget policy, except... */
6 per_cpu_variable: last_request
7 ...
8 case NEW_PERIOD:
9 ...

10 last_request = running_request;
11 ...
12 case CO_RUNNING:
13 if (running_request != last_request &&
14 queue_len == 0) {
15 last_request = running_request;
16 start_stamp = rdtsc();
17 }
18 ...

(c) Refresh budget policy.
1 /**************** BATCH THREADS ***************/
2 /* Same as the refresh budget policy, except... */
3 ...
4 case CO_RUNNING:
5 ...
6 /* calculate IPC of LC lane */
7 ratio = ref_IPC / (ref_IPC - LC_IPC)
8 real_budget = budget * ratio;
9 if (now - start_stamp >= real_budget)

10 lane_status = NORMAL;
11 ...

(d) Dynamic refresh policy.

Figure 9. The pseudocode of four scheduling policies.

batch threads concurrently with requests in their respec-
tive SMT lanes when the scheduler is confident that the
batch threads will not slow down any request longer than
the given budget. Co-running with a request for T ms
slows down the processing time of the request less than
T ms. For requests that never wait in the queue, the pro-
cessing time is the same as the request latency. So, it
is safe to co-run with these requests for a budget period.
Figure 9(b) shows the implementation of this policy. Line
7 detects when the request queue is empty and renews the
budget period, such that the next request will co-execute
with the batch thread for the fixed budget.

As we showed in Section 2, the request lane is fre-
quently idle for short periods because after one request
finishes there are no pending requests, and most requests
are short. The fixed-budget scheduler only uses its budget
when a new request that never waits in the queue starts
executing in the request lane. When the scheduler detects
that a new request starts executing and the lane_status
is set to NEW_PERIOD because the request queue was
empty before this requests started, it co-schedules the
batch thread in its lane for the budget period. If the re-
quest is finished in the period and there are no waiting
requests, the scheduler resets the budget and uses it for
the next request. When the budget expires, the scheduler
puts the batch thread to sleep. When another idle period
begins because the request terminates, the request queue
is empty, and no other request is executing, the scheduler
restarts the batch thread and repeats this process. Note
that if N requests execute in quick succession without idle
gaps, this simple scheduler only co-executes the batch
thread with the first request that begins after an idle pe-
riod. This conservative strategy ensures that each request
is only impacted for the budget period of its execution.
Refresh Budget The refresh budget policy extends the
fixed budget policy based on the observation that once a
request has completed and the queue is empty, the bud-
get may be refreshed. The rationale is that the original
budget was calculated based on avoiding a slowdown that
could prevent the just-completed task from meeting the
SLO. Once that task completes, then the budget may be
recalculated with respect to the new task meeting the SLO.
However, because the slowdown imposed by the batch
workload is imparted not just on the running request, but
on all requests behind it in the queue, we only refresh
the budget if the task changes and the queue is empty.
Figure 9(c) shows the code.
Dynamic Budget The dynamic budget policy is the
most aggressive policy and builds upon the refresh bud-
get policy. It uses a dynamic budget that is continuously
adjusted according to the base budget and the IPC of the
latency-critical request. This policy requires us first to
profile the IPC with no interference and then to monitor
the impact of co-running on request IPC. We implement
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the monitoring based on the sampling ideas in SHIM [32].
We read the IPC hardware performance counter of the
request lane from the batch lane, at high frequency with
low overhead. When the latency-critical request’s IPC is
high, it will be proportionately less affected by the batch
workload, so we adjust the dynamic budget accordingly.

4 Methodology
Hardware & OS We use a 2.0 GHz Intel Xeon-D 1540
Broadwell [16] processor with eight two-way SMT cores,
a 12 MB shared L3. Each core has a private 256 KB L2, a
32 KB L1D and a 32 KB L1I. The TurboBoost maximum
frequency is 2.6 Ghz, TDP is 45 W. The machine has
16 GB of memory and two Gigabit Ethernet ports. We
disable deep sleep and TurboBoost.

We use Ubuntu 15.04, Linux version 4.3.0, and the perf
subsystem to access the hardware performance counters.
We implement the nanonap mechanism as a virtual de-
vice as shown in Figure 6. We modify the idle task to
wake up sleeping batch lanes as shown in Figure 9(a). We
expose a memory buffer to user space to determine which
tasks are running on which cores.
Latency-Critical Workload We use the industrial-
strength open-source Lucene framework to model be-
havior similar to the commercial Bing web search en-
gine [10] and other documented latency-critical ser-
vices [6, 8, 12, 29]. Load variation results from both the
number of documents that match a request and from rank-
ing calculations. We considered using memcached, a key-
value store application, because it is an important latency-
critical workload for Facebook [11, 27] and a popular
choice in the OS and architecture communities. However,
each request offers the same uniformly very low demand
(<10 K instructions) [11], which means requests satu-
rate the network before they saturate the CPU resources
on many servers. Recent work offers OS and hardware
solutions to these network scalability problems [4, 21],
which we believe if combined with our work would be
complementary. We leave such investigations to future
work.

We execute Lucene (svn r1718233) in the Open JDK
64 bit server VM (build 25.45-b02, mixed mode). We
use the Lucene performance regression framework to
build indexes of the first 10 M files from Wikipedia’s En-
glish XML export [31] and use 1141 term requests from
wikimedium.10M.nostopwords.tasks as the search
load. The indexes are small enough to be cached in mem-
ory on our machine. We warm up the server before run-
ning any experiments.

We send Lucene requests from another machine that
has the same specifications as the server. The two ma-
chines are connected via an isolated Gigabit switch. For
each experiment, we perform 20 invocations. For each
invocation, the client loads 1141 requests, shuffles the

requests, and sends requests 5 times. The client issues
search requests at random intervals following an exponen-
tial distribution around the prescribed RPS mean rate. We
report the median result of the 20 invocations. The 95%
confidence interval is consistently lower than ±0.02.
Batch Workloads We use 10 real-world Java bench-
marks from the DaCapo 2006 release [5] and three micro
C benchmarks, Loop, Matrix, and Flush. The DaCapo
benchmarks are popular open-source applications with
non-trivial memory loads that have active developers and
users. Using DaCapo as batch workloads represents a
real world setting. The C micro benchmarks demonstrate
the generality of our approach and give us control over
the interference pattern. Loop calls an empty function
and has an IPC of 1. It consumes front-end pipeline re-
sources. Matrix calls a function that multiplies a 5×5
matrix, a computationally intensive high IPC workload. It
consumes both front-end pipeline and functional-unit re-
sources. Flush calls a function that zeros a 32 KB buffer,
a disruptive co-runner that flushes the L1D cache.

We run Java benchmarks with JikesRVM [1], release
3.1.4 + git commit fd68163, a Java-in-Java high perfor-
mance Virtual Machine, using a large 200 MB heap. The
JIT compiler in JikesRVM already inserts checkpoints for
thread control and garbage collection into function pro-
logues, epilogues and loop back-edges. We add to these
a check for co-runner state, as shown in Figure 9. For C
micro benchmarks, we use GCC’s -pg instrumentation
option [9] to add checks to method prologues.
Measurements We use a target, 100 ms request latency
for 99% of requests, as our SLO in all of our experiments,
which is a practical SLO target for the search engine.

5 Evaluation
This section evaluates the ability of ELFEN to improve
server utilization while meeting Service Level Objectives
(SLOs) and ELFEN overheads.
Borrow idle We first present ELFEN configurations that
use the borrow idle policy with DaCapo as the batch
workload. This policy minimizes the impact on request
latencies. Figure 10(a) plots latency (top) and utilization
(bottom) versus requests per second (RPS) on the x-axis
for Lucene without (black) and with each of the ten Da-
Capo batch workloads (colors) executing on one two-way
SMT core of the eight-core Broadwell CPU. Figure 10(b)
presents these same configurations executing seven in-
stances of each DaCapo benchmark on seven cores. The
eighth core manages network communication (receiving
requests and returning results), queuing, and starting re-
quests for the latency-sensitive workload. We plot median
latency; error bars indicate 10th and 90th percentiles.

The results in Figure 10(a) and 10(b) show that exe-
cuting these batch workloads in idle cycles imposes very
little impact on Lucene’s SLO on a single core or a CMP.
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(c) Dynamic refresh budget, seven cores

Figure 10. 99th percentile latency (top) and utilization (bottom) for Lucene co-running with DaCapo batch workloads.

ELFEN achieves essentially the same 99th percentile la-
tency at the same requests per second (RPS) with or with-
out batch execution. In fact on one core, ELFEN some-
times delivers slightly lower latencies for Lucene when
executing each of the batch workloads in the other lane
during idle periods. This results occur because running
the batch thread in the other lane causes the core never to
enter any of its sleep states. When a new request arrives,
the core is guaranteed not to be sleeping, its request lane
is empty, and thus the core will service requests slightly
faster. With the borrow idle policy, the peak utilization
of the core is 100% out of 200% since each core has 2
hardware contexts, but by design, only one is active at
a time. Because ELFEN keeps the core busy, executing
requests as they arrive in one lane and batch threads with
mutual exclusion in the other, it often achieves its peak
potential of 100% utilization, but when the utilization of
the batch workload is low, the total utilization may be less
than 100%.

The chip multiprocessor (CMP) results in Figure 10(b)
show better throughput scaling than just a factor of seven.
For example, at 60 ms, the single core system can sustain
about 70 RPS, while the seven-core system can sustain
as much as 1000 RPS. Remember that most requests are
short, and long requests contribute most to tail latencies.
CMPs better tolerate long request latencies than a single
core by executing multiple other short requests on other
cores, so fewer short requests incur queuing delay when
a long request monopolizes a core. At moderate loads,
we again see some improvements to request latency when
co-running with batch workloads because the cores never

sleep, whereas cores are sometimes idle long enough with-
out co-runners to sleep. However, continuously and fully
utilizing all seven cores on the chip incurs more inter-
ference, and thus we see some notable degradations in
the 99%ile latency at high load. There are two sources of
increased latency. First, the effects of managing the queue
and request assignment, which shows some non-scalable
results. For example, even small amounts of contention
for the request queue impacts tail latency independent of
ELFEN. ELFEN slightly exacerbates this problem. Sec-
ond, as prior work has noted and addressed [14, 23, 25],
requests and batch threads can contend for shared chip-
level resources on CMPs, such as memory and bandwidth.
Adding such techniques to ELFEN should further improve
its effectiveness.

Increasing Utilization on a Budget Figure 11 presents
latency (top graphs) and utilization (bottom) for the four
ELFEN scheduling policies described in Section 3: borrow
idle, fixed budget, refresh budget, and dynamic refresh on
one core. The budget-based policies all borrow idle cy-
cles and trade latency for utilization, slowing the latency-
critical requests to increase utilization. Comparing the
top row in the figure shows that increasingly aggressive
policies cause more degradations in the 99th percentile
latency. In these RPS ranges, Lucene’s requests meet the
100 ms SLO latency target, but are degraded.

Borrowing idle cycles and co-executing batch threads
with requests increases utilization significantly. Compar-
ing across the utilization figures reveals that the budget-
based policies further improve utilization compared to
borrowing idle cycles. Core utilization rises as load in-
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Figure 11. 99th percentile latency (top) and utilization (bottom) for Lucene co-running with C microbenchmarks under
four ELFEN policies on a single two-way SMT core.

creases. At moderate loads, ELFEN achieves utilizations
over 1.4 for the fixed budget policy and 1.5 for the dy-
namic refresh policy. All budget-based policies achieve
utilizations of at least 1.2. When the system becomes
highly loaded with requests, ELFEN adjusts by executing
the co-runners less, and thus total utilization drops. While
all of the ELFEN policies are effective at trading off uti-
lization for SLOs, the most aggressive dynamic refresh
policy consistently runs at higher utilization. The dynamic
refresh policy is performing precise, fine grain monitoring
of request IPC to more accurately and effectively manage
this tradeoff. Although we study IPC, ELFEN may mon-
itor and partition other resources, such as memory and
cache. Although higher utilization is appealing, some ser-
vice providers may not be willing to sacrifice throughput
of latency-critical tasks, so for them the most practical
policy may be to borrow idle cycles.

Figure 10(c) shows the latency and utilization results
for the most aggressive dynamic refresh policy on our
CMP with DaCapo as the batch workload. This policy de-
grades the 99th percentile latency by 20 ms before reach-
ing a peak utilization of 1.75 at around 600 RPS. At larger
RPS, ELFEN schedules the batch less, system utilization
drops and the latency approaches to the same level of the
borrow idle policy.

Overhead on Batch Workload Overhead on the batch
workload comes from instrumentation, interference with
the latency-sensitivity requests, and being frequently
paused and restarted. As we pointed out above, Lin et al.
[22] show the instrumentation overheads are low, at most
a couple percent.

Figure 12 measures these other overheads. It presents

the execution time, user time utilization, and user level
IPC of each DaCapo benchmark co-running with Lucene
normalized to its execution alone on one core. When
co-running, we use the borrow idle policy and load the
Lucene at 80 RPS, which leads to about 50% utiliza-
tion for both Lucene and each DaCapo benchmark. The
execution time of co-running each DaCapo benchmark
increases by 49% on average as predicted by the 50%
utilization. There are small variations in these slowdowns,
but none of them are due to DaCapo programs executing
more instructions when co-running — the number of re-
tired instruction at user level is the same. Furthermore,
DaCapo does not execute instructions less efficiency, be-
cause IPC decreases are only 1%.

Variation in execution times is due to variations in uti-
lization already present in the DaCapo benchmarks. If the
batch workload is idle for some other reason (e.g., wait-
ing on I/O or a lock), then a request that forces it to stop
executing will affect it less. The more idle periods the
batch workload has, the less execution is degraded. This
effect causes normalized execution time and utilization
to be strongly correlated. For instance, the pmd bench-
mark incurs the largest slowdown in execution time, 59%,
and the largest utilization reduction, 36%. The fop bench-
mark has the lowest native utilization in these benchmarks.
Consequently, it has both the smallest slowdown and the
smallest utilization reduction, 47% and 26%.

6 Related Work
Exploiting SMT Lo et al. [23] demonstrate that naively
co-running batch workloads with latency-critical work-
loads violates Google’s SLO, even under light load. They
show that for many latency-critical workloads, uncon-
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Figure 12. Normalized DaCapo benchmark execution time, user space CPU utilization, and IPC.

trolled interference due to SMT co-location is unaccept-
ably high, and conclude that it is not practical to share
cores with SMT. Our results contradict this conclusion.

Ren et al. [29] exploit SMT for a server that exclu-
sively handles latency-sensitive requests (no co-location)
and thus requires over-provisioning to handle load spikes.
Herdrich et al. [14] note that achieving latency objectives
with current SMT hardware is challenging because the
shared resources introduce contention that make it hard
to reason about and meet SLOs. They propose SMT rate
control as a building block to improve fairness and deter-
minism in SMT, which dynamically partitions resources
and implements biased scheduling. These mechanisms
should help limit interference on requests and comple-
ment our approach. They do not evaluate latency-critical
workloads, seek to borrow idle cycles, or offer a fine-grain
thread-switching mechanism, as we do here.

Accommodating Overheads Zhang et al. [35] use of-
fline profiling of batch workloads to precisely predict
the overhead due to co-running with latency-critical re-
quests on SMT. They then carefully provision resources
to co-run batch workloads whilst maintaining SLOs for
latency-critical workloads. Unlike our work, they do not
attempt to minimize the overhead of co-running batch
workloads. Rather, they predict and then accommodate
it. They measured interference due to co-run batch work-
loads in the range of 30%-50%.

POSIX Real-Time Scheduling Leverich and
Kozyrakis [20] propose using POSIX real-time
scheduling disciplines to prioritize requests over co-run
batch threads. When hardware contexts are scarce, this
approach ensures that latency-critical requests have
priority — batch threads will be the first to block. When
given sufficient hardware contexts however, the approach
does not control for interference due to co-running. Thus
it does not address the problem we address here: avoiding
interference due to co-running while utilizing SMT.

Exposing and Evaluating mwait Anastopoulos and
Koziris [2] use mwait to release resources to another
SMT thread when waiting on a lock. Wamhoff et al. [30]
make mwait user-level visible and then use it to put cores
into sleep states so as to provide power headroom for

DVFS to boost performance on other cores which are
executing threads on the program’s critical path. They
measure the latency of putting an entire core into a C1
sleep state on an Intel Haswell 4 770 and found that it was
4 655 cycles. This result is broadly consistent with our
measurements, which are for a single hardware context
on a more recent processor. With regard to semantics,
Meneghin et al. [26] claim fine-grain thread communica-
tion requires user-level mechanisms, whereas we offer an
intermediate point that involves the OS, but not the OS
scheduler. None of this prior work has the same semantics
as nanonap for hardware control, which we exploit for
both fine-grain monitoring and scheduling.

7 Conclusion
This paper shows how to use SMT to execute latency-
critical and batch workloads on the same server to in-
crease utilization without degrading the SLOs of the
latency-critical workloads. We show, given a budget,
how to control latency degradations to further increase
utilization while meeting SLOs. Our policies borrow idle
cycles and control interference by reserving one lane for
requests and one for batch threads. By reserving SMT
lanes, ELFEN always immediately executes the next re-
quest when the previous one completes or a new one
arrives. Using low-overhead monitoring and nanonap,
ELFEN responds promptly to release core resources to
requests or to control interference from batch threads.
Our principled borrowing approach is extremely effective
at increasing core utilization. Whereas current systems
achieve utilizations of 5% to 35% of a 2-way core (by
only using one lane at 10% to 70%) while meeting SLOs,
ELFEN’s borrow idle policy uses both lanes to improve
utilization at low load by 90% and at high load by 25%,
delivering consistent and full utilization of a core at the
same SLO. On CMPs, ELFEN with the borrow idle policy
is extremely effective as well, achieving its peak utiliza-
tion without degrading SLOs for all but the highest loads.
No prior work has managed this level of consistent server
utilization without degrading SLOs.
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