usenix
.' THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

Caching Doesn’t Improve Mobile Web
Performance (Much)

Jamshed Vesuna and Colin Scott, University of California, Berkeley; Michael Buettner and
Michael Piatek, Google; Arvind Krishnamurthy, University of Washington; Scott Shenker,
University of California, Berkeley, and International Computer Science Institute

https://www.usenix.org/conference/atc16/technical-sessions/presentation/vesuna

This paper is included in the Proceedings of the

2016 USENIX Annual Technical Conference (USENIC ATC '16).
June 22-24, 2016 - Denver, CO, USA
978-1-931971-30-0

Open access to the Proceedings of the
2016 USENIX Annual Technical Conference
(USENIX ATC "16) is sponsored by USENIX.

Caching Doesn’t Improve Mobile Web Performance (Much)

Jamshed Vesuna' Colin Scott

Arvind Krishnamurthy*

Michael Buettner®

Michael Piatek®
Scott Shenker'*

"UC Berkeley *ICSI °Google *University of Washington

Abstract

A recent NSDI paper [1] reported that increasing the cache hit
ratio for an HTTP proxy from 22% to 32% improved median
page load time (PLT) for mobile clients by less than 2%. We ar-
gue that there are two main causes for this weak improvement:
objects on the critical path are often not cached, and the limited
computational power of mobile devices causes computational
delays to comprise a large portion of the critical path.

Both of these factors were, in fact, outlined by a previous
analysis of desktop web performance [2]. However, we (as the
authors of the HTTP proxy [1]) did not properly understand the
analysis and could have saved ourselves substantial engineer-
ing costs if we had. We therefore argue for the need to highlight
this prior analysis, and extend the analysis to include mobile
devices with slow CPUs, precise cache hit ratios, and a con-
trolled reproduction of the HTTP proxy caching results [1]. In
the extreme case of a perfect cache hit ratio, desktop page load
times are improved notably by 34% compared to no caching,
but mobile page load times only improve by 13% in the me-
dian case. We extract a back-of-envelope performance model
from these results to help understand their underlying causes.

1 Introduction

Web caching is widely used to reduce network link utilization,
decrease server load and data usage, improve reliability for
origin web servers, and improve latency for end hosts. Here,
we focus exclusively on web caching’s effect on latency, as
measured by web page load time.

Flywheel [1], Google’s HTTP proxy for mobile devices,
increased its overall cache hit ratio from 22% to 32%, yet
observed only a 1-2% reduction in page load time in the
median case. As the designers of Flywheel, we were initially
surprised by this weak improvement. If we had been able
to predict that caching would have such negligible effects,
we could have saved ourselves substantial engineering costs.

In Sections 5 and 6 of their paper on measuring the critical
paths of web page loads [2], Wang et al. seek to demonstrate
use cases for their measurement tool. Two of their use
cases—an analysis of varying CPU speeds, and an analysis
of pages loaded with cold vs. warm vs. hot caches—in fact
outline the likely root causes for Flywheel’s result.

In this paper we seek to highlight Wang et al.’s analysis, as
we suspect that we are not alone in holding the misconception
that caching should improve latency. We also extend their
analysis along several dimensions. We present a methodology
for varying cache hit ratios at fine granularity, and measure
caching’s effects on web performance of both a mobile device
and a desktop browser in a controlled and reproducible manner.
In our controlled environment, we reproduce Flywheel’s
reported cache hit ratio increase for a set of 400 Alexa web
pages [3] and find a comparable 1% decrease in PLT in the
median case. In the extreme case of a perfect cache hit ratio,
we find that desktop page load times are reduced notably by
34% compared to no caching, but mobile page load times
are only reduced by 13% in the median case.

We develop a back-of-the-envelope performance model
and fit its parameters to empirical observations to better
understand the underlying causes. Our model indicates that
CPU speed is the key resource bottleneck preventing mobile
devices from benefiting significantly from web caching. The
analysis by Wang et al. seems to further indicate that objects
on the critical path are often not cached (or even cacheable).

Our analysis demonstrates that the generally favorable
desktop latency improvements from caching do not carry over
well to mobile clients. Content providers may want to think
twice about expending resources on caching as a means for
improving latency, especially as the volume of mobile traffic
begins to overtake desktop traffic.

2 Background & Performance Model

Both browsers and mobile applications typically load content
using the HTTP(S) protocol. When a user directs the browser
(or application) to a new URL, the browser’s Object Loader
fetches the root HTML object, as depicted in Figure 1. The
HTML Parser launches additional fetch requests for each
linked resource within the HTML. In this way, the browser
incrementally generates the DOM. As the page loads, the
Rendering component paints the UL

From the user’s perspective, the performance of a website
can be defined according to a number of different metrics [4,5].
Here, we focus on page load time, which is simple to measure
and loosely standardized across browsers [6].

USENIX Association

2016 USENIX Annual Technical Conference 159

Browser Workflow

[User Interface

'

| | Object HTML ReeiEie
Loading Parsing
w Evaluation DOM

Figure 1: How a browser loads a web page. Reproduced from
WProf [2].

Page Load Time. Roughly speaking, page load time (PLT)
is the elapsed time from the moment a user requests a web page

to the moment all resources on the page have been loaded [7].

We measure PLT by listening to the browser’s JavaScript
onload event, which fires in most browsers when all
resources have been added to the DOM, and all images,
scripts, links, and sub-frames have finished loading [6].
Critical Path. Web pages are comprised of many objects,
such as images, JavaScript, CSS, and HTML. Each of these
objects is handled by multiple (possibly concurrent) browser

tasks: it must be fetched, parsed or evaluated, and rendered.

We refer to the non-overlapping delays involved in parsing
and rendering an object as its ‘computational delay, and refer
to the fetch delay as its ‘network delay.’

Critical path analysis is a method for analyzing the
performance of parallel processes such as browsers. Certain
load tasks are dependent on others and must wait until their
predecessor tasks have completed. The critical path of a web
page is the longest chain of dependent browser tasks such that
reducing the length of any task not on the critical path will
not change the page load time [8]. In Figure 2, the network
and computational delay for the HTML, CSS, JS, and JPEG
objects determine the PLT. If we were to decrease the delay
for loading the PNG object, the critical path would remain
the same, and therefore, the PLT would not change.

2.1 Performance Model

We can now develop an understanding of caching’s effect on
PLT with a simple performance model. First, consider the
following terms:

— Let X denote a given cache hit ratio. We define cache hit
ratio as the fraction of all objects in a web page that are served
by a cache. Note that the maximum value of X is the fraction
of cacheable items on the page, which may be less than 1.
—Let K denote the fraction of objects on the critical path that
are cacheable.

— Let N denote the summation of network fetch delays for
all objects on the critical path for a cold (X =0) page load.
— Let C denote the summation of computational delays for
all objects on the critical path for a cold (X =0) page load.

Critical Path and PLT
Page Load Time

= = Critical Path
I:l Fetch Task

N\

HTML

\\ % Render Task
e f--s-7.

Figure 2: Page load time is determined from the critical path.
Objects on the right are dependent on objects to their left, and
objects at the same horizontal position are loaded concurrently.

— Let f(X) denote the overlap between computational
delay and network delay on the critical path. Normally,
dependent objects on the critical path should not overlap.
There are, however, some cases where the browser can begin
concurrently loading an object when its predecessor is only
partially loaded. For most purposes, we can ignore f(X).

For simplicity, let us assume that (i) the critical path does
not change as we vary the cache hit ratio, (ii) the probability
of an object being in cache is uniform across all cacheable
objects, and (iii) cached items incur zero network delay. The
probability of an object on the critical path incurring a network
delay is then:

1 — Pr(cacheable) - Pr(cache hit|cacheable)
The expected value of the PLT for a given X is therefore:
Epir[X]=C+(1-K-X)-N—f(X)

2.2 Fitting the Model

Sections 5 and 6 of the WProf paper [2] contain empirical
measurements of critical paths that allow us to gain a rough
understanding of the values of N, C, and K in our model above.

Fitting N and C. In Figure 3, we reproduce WProf’s “what-
if” analysis (Figure 13 from WProf) for torchbrowser.com.
This experiment investigates the performance impact of vary-
ing network and computation speeds. We first multiply the
computational or network delays for all objects in a web page
by a fixed constant. Then, we recompute the page’s critical
path (based on task dependencies captured by WProf), and ex-
tract a predicted PLT. The comp=1 line represents the (2 GHz)
desktop CPU that loaded the original page, while comp=0
represents an infinitely fast CPU, comp=1/2 represents a CPU
that is twice as fast, and comp=2 (not present in WProf’s
analysis) represents a CPU of half the speed.

For the infinitely fast CPU (comp=0) we see that its
normalized PLT with an unchanged network speed (ratio of
network time = 1) should be ~0.8. As we improve network
delays for this CPU, we should see a theoretically infinite
speedup (tending towards a PLT of 0). Conversely, for the
slowest CPU (comp=2), the normalized PLT for an infinitely
fast network (ratio of network time = 0) is ~0.4. For this
hypothetical CPU (assuming f(-) is close to 0), we can

160 2016 USENIX Annual Technical Conference

USENIX Association

PLT for Hypothetical CPU and Network Speeds

L4 1] 1] |
<%}
E 12
[_4
= 1
5]
o
= 08
)
<] 0.6
[=W
B 04
2
2 02
&,

0

0 0.2 0.4 0.6 0.8 1
Ratio of Network Time

Figure 3: Predicted PLT for torchbrowser.com when

hypothetical computation and network speeds are varied.

estimate that the fraction of the critical path that consists of
computational delays is ~0.4, while the fraction of the critical
path that consists of network delays is ~0.6.

The key takeaway from this analysis is that, as we decrease
the speed of the CPU, the ratio of C: N continues to increase.
For example, our analysis suggests that a typical mobile device
with a ~1 GHz CPU [9] has a C: N ratio of ~2/3 for websites
similar to torchbrowser.com. This makes intuitive sense:
slower CPUs would cause computational delays to make up
larger fractions of the critical path compared to faster CPUs.

Fitting K. To generate Figure 11b in WProf [2], the authors
measured the fraction of objects that were in cache immedi-
ately after loading pages with a cold cache. Although 65%
of all objects were cached, only 20% of all objects on critical
paths were cached, giving us an estimate of K=0.2.

Implications. The analysis by WProf, together with our
model, give us a rough understanding of the performance
effects from caching. We return to our model in §4, where we
seek to gain a deeper empirical understanding.

3 Experimental Apparatus

In order to gain a deeper understanding of the performance
dynamics outlined in §2.1 and §2.2, we need to experimentally
evaluate questions about how caching affects PLT in a
controlled environment. Here, we develop our methodology.

Our experimental apparatus (publicly available at [10])
makes use of Telemetry [11] and Web Page Replay (WPR) [12]
to measure the effects of parameterized levels of network
delays. Both Telemetry and WPR are part of Chromium [13],
the open source components of Google Chrome. Here, we
use the term ‘browser’ interchangeably with Google Chrome.

Web Page Replay. WPR acts as a local DNS and
HTTP(S) proxy cache (depicted in Figure 4a). In record
mode, WPR forwards HTTP(S) requests to the Internet, and
records all requests and responses that it observes, as well
as metadata such as observed network delays. From this, Web

Experimental Apparatus Workflow

(a)

D
(b)
WPR
Archive

(d)

Web

Page
Replay \

©

Telemetry

Desktop Tablet

Browser Browser

Figure 4: Logical units of our apparatus.

Page Replay builds a WPR archive (depicted in Figure 4b),
complete with all HTTP(S) requests, responses, headers, data,
and network delays.

In replay mode, the WPR proxy responds to HTTP(S)
requests with the responses saved in the archive, or a 404 error
response if the corresponding response is not saved in the
archive. We configure WPR to send the matching response
and data only after sleeping for the time duration originally
observed as the network delay between the origin and the
WPR proxy (while it was in record mode). Here, WPR is
emulating an edge cache rather than a browser cache.

Telemetry. Telemetry (Figure 4c) is a browser perfor-
mance testing framework, which orchestrates the behavior of
the browser and WPR. We use Telemetry to control one of two
browsers. The first is a desktop version of Google Chrome
running within a virtual machine (specifications in 3.2). The
second is a mobile version of Google Chrome running on
a USB-tethered mobile device. We use Telemetry to load
requested URLs in the browser (as if the user is entering
URLs into the omnibox) and passively measuring PLT.

3.1 Workflow

Before each experiment, we clear the browser cache to
ensure consistency across trials. For each device (desktop and
mobile), we execute the following steps for each URL:

First, we record the live web page from the Internet using
Telemetry to instruct the browser to fetch the given URL.
The WPR proxy receives this HTTP(S) request, forwards it
to the Internet, and passively inspects and records the two-way
traffic as noted in §3. We store this data as a WPR archive.

Next, we determine the page load time of the web page
with a cold cache. With WPR in replay mode, we load the
URL four times (cf. §3.3) and take the minimum page load
time as our PLT value, to account for variance.

Now, we emulate a “perfect,” fully populated cache. First,
we copy the original WPR archive into a new WPR archive.

USENIX Association

2016 USENIX Annual Technical Conference 161

Cacheable Bytes

CDF of web pages
CDF of web pages

0 -

Total Bytes

Partial Cache Page Load Time

L
!
02 F Mobile: 30% Cached
: Mobile: 20% Cached = ===
A L 1 A

CDF of web pages

1 1] |

0 02 04 06 08 1 0 5e+06
Total response bytes

Fraction of bytes that are cacheable

(@)

le+07 1.5e+07 2e+07 0 2000 4000 6000

8000 10000
Page Load Time (ms)

©

Figure 5: (5a): The majority of web pages are composed mostly of cacheable bytes. (5b): While 95% of web pages are under
6.8 MB, the median web page size is less than 1.2 MB. (5c): Increasing the cache hit ratio from 20% to 30% had negligible

effects on mobile PLT.

For each cacheable response in this new WPR archive, we
set its network delay to O (of course, a “real”” cache response
time of 0 is not possible, but we set this as an absolute lower
bound). Non-cacheable items, as indicated by HTTP headers,
retain their initial network delays. We store this modified
archive alongside the original (Figure 4b).

Lastly, we record the page load time again, however this
time using the modified WPR archive. We determine the PLT
in the same way as the original. We then compare the page
load times of the unmodified replay executions to that of the
modified “perfect cache” executions.

Partial Caching Methodology. To confirm Flywheel’s
findings, we created two additional sets of partially cached
WPR archives: one that caches a randomly chosen set of
30% of all cacheable resources (regardless of byte size), and
another that caches 20%. We ensure that the cached items in
the 20% WPR archive are a strict subset of the cached items
in the 30% WPR archive for consistency.

3.2 Specifications

Each web page was originally fetched over UC Berkeley’s

LAN, which approximates 250 Mbps down and 230 Mbps up.

Our mobile device is a Galaxy Tab 4 with a 1.2 GHz quad-core
processor and 1.5 GB on board RAM running Android 4.4,
KitKat. Desktop results were performed in a virtual machine
with a 3.2 GHz quad-core processor and 6 GB RAM.

3.3 Known Limitations

We identify the following limitations of our apparatus, and
discuss the reasoning behind our choice of tools:

Page Load Time as a Metric. When determining web
page performance, we chose to focus on page load time rather
than SpeedIndex [5] or above-the-fold time [4]. Although
they are arguably preferable metrics (as they do a better
job of capturing the user’s perspective), these metrics are
significantly more difficult to measure.

WPR Measurement Accuracy. The PLT measurements
taken by WPR are not necessarily consistent with PLTs
observed on live web pages, nor are they necessarily consistent
across multiple runs of WPR. First, although WPR attempts
to mitigate non-determinism in JavaScript execution (by
injecting a script into each web page that interposes on
non-deterministic calls such as getTime), JavaScript may
nonetheless exhibit non-determinism across different loads.
Second, the mechanism WPR uses to emulate the original
RTTs observed during record mode (sleeping a fixed number
of milliseconds) may not perfectly match the behavior of the
original page load. We try to mitigate these artifacts by loading
each web page four times and taking the minimum PLT.!

4 Results

Here, we demonstrate empirical performance results we have
found with our apparatus. We also attempt to highlight the
underlying effects that determine our results.

4.1 Workload Characteristics

We first note several key characteristics of our data corpus:

Data Set. We selected a random subset of 400 of the
Alexa top 2000 URLSs [3] and loaded their root URL (/).

Fraction of Cacheable Bytes. Over 90% of web pages in
our workload have more than 90% of their total bytes marked
as cacheable, as shown in Figure Sa.

Total Bytes. Figure 5b shows the spread of web page sizes
in our data set. While 95% of web pages are under 6.8 MB,
the median web page size is less than 1.2 MB.

Initial Network Delays. Across all requests/response
pairs, the median delay between sending the request and
receiving the first response byte was 50ms, with a mean of
151.17ms and standard deviation of 403.77ms.

'We observed that beyond four loads per web page, the minimum PLT
value did not decrease significantly.

162 2016 USENIX Annual Technical Conference

USENIX Association

Reduction? in PLT with Varying RAM vs CPU

Mobile =—
Constrained - 1 GHz CPU «eeeesees
Constrained - 1 GB RAM
Deskto;l) ——

CDF of Web Pages

0 0.2 0.4 0.6 0.8 1

Fraction Reduction in PLT

Figure 6: Reduction in page load time due to (perfect) caching
is significantly less on mobile devices than desktop. Further,
CPU, not RAM, is the primary resource that differentiates
mobile devices from their desktop counterparts.

User Agent. Many web pages are now optimized for
mobile devices. Web servers inspect the user agents (UA)
of incoming HTTP(S) requests to deliver customized content
to the client depending on their device size and computational
resources. We ran all of our experiments twice: once where
the browsers (both desktop and mobile) advertised a mobile
UA, and once where the browsers advertised a desktop UA.
We found that the differences in the results were comparable.
Here, we show only the desktop UA results to make our
graphs more readable.

4.2 Performance Results

As we saw in Figure 5a, 90% of pages are composed of
>90% cacheable bytes. If network delays were dominant
and the fraction of cacheable objects on the critical path
were moderately high, one would conclude that PLT would
become negligible with a perfect cache. As our model predicts
however, this is not the observed outcome.

Caching Doesn’t Significantly Reduce Mobile PLT.
We reproduced Flywheel’s result in our controlled environment
by emulating cache hit ratios of 20% and 30%. As shown
in Figure 5c, we found that increasing the hit ratio by 10
percentage points had negligible effects on mobile page
load time. Consistent with the reported Flywheel result, we
observed only a 1% reduction in PLT in the median case.
With a perfect cache (Figure 6), our mobile device gains only
a 13% PLT reduction in the median case, while its desktop
counterpart sees a PLT reduction of 34%.

Limited RAM Does Not Affect Computational Delays.
It is possible that either limited RAM or limited CPU would
increase computational delays on the critical path. Here, we
seek to isolate which of these resources plays a larger role.

A typical mobile device in the global market today has a 1
GHz processor and 1 GB of RAM [9]. We emulate these condi-
tions and isolate computational resources with virtual machines

Reduction? in PLT with Varying CPU Speeds

).
ngD 08 L
T 07 L
[aW
fia] 0.6 ~
QJ
3 0.5
w04 - ;
- 03 7// (& 0.5GHzCPU ——
a8 L Mobile
SHNS 0 ’ 1 GHz CPU v
01 %% : 3.2 GHz CPU ====
0 L— A 1 . L "1 N

0 0.2 0.4 0.6 0.8 1

Fraction Reduction in PLT

Figure 7: Slower CPU speeds cause increasingly diminished
benefits from (perfect) caching.

that were constrained by different resources (using VirtualBox
to either set a limit on memory usage or emulate a slower CPU
clock speed). With ‘Mobile’ and (unconstrained) ‘Desktop’
as baselines, Figure 6 presents a stark contrast between these
resource constraints: our CPU constrained VM (‘Constrained
- 1 GHz CPU’) behaves very similarly to our tablet (‘Mobile’),
while our RAM constrained VM (‘Constrained - 1 GB RAM’)
is more closely aligned with the ‘Desktop’ results. From this
we conclude that CPU, not RAM, plays the larger role in
determining the performance improvements from caching.

Slow CPU Speeds Increase Computational Delays.
Now that we have isolated CPU as the bottleneck resource,
we seek to measure the extent of its impact. In terms of
our model, we already know that slower CPUs should incur
higher computational delays, but here we seek to understand
the empirically observed ratios of C : N (as opposed to the
hypothetical, predicted ratios in Figure 3). In Figure 7, we
observe that, as predicted, as we throttle CPU constraints,
perfect caching has noticeably smaller effects on PLT.

The Marginal Benefits of Caching Sharply Decrease.
Figure 8 illustrates that for each 10 percentage point increase
in cache hit ratio, there is only a 1 percentage point decrease
in mobile page load time. That is, there is a sharply diminish-
ing marginal performance gain for every additional byte that
is cached. This experimental evidence supports our model:
although we do not directly measure the critical path (since
WProf is not currently available for mobile browsers), it ap-
pears that the fraction of cacheable bytes on the critical path
(K) is significantly smaller than the fraction of cacheable byes
not on the critical path.

4.3 Data Validation

We made several efforts to sanity check our results [14]. To
mitigate non-determinism, we compared the status codes

2The fraction reduction in PLT for a web page is defined as
(Original PLT - PLT with a perfect cache) / (Original PLT).

USENIX Association

2016 USENIX Annual Technical Conference 163

Ratio of Fraction Cacheable Bytes to PLT

09
L B Sl M
17 T s
Sp 07 i Tt
A L S
A 06 - o
2 05k
= 04 L v
-
° o3k Desktop = ===
A 0o Constrained - 1 GB RAM
O R Constrained - 1 GHz CPU +--ssseeees
. Mobile
0 i 1 1 1 i
0 2 4 6 8 10

Fraction Cacheable Bytes : Fraction PLT Reduction

Figure 8: As the percentage of cacheable bytes in a web page
increases, the reduction in page load time due to caching
increases. However, for each additional percentage cached,
there is less than a percentage reduction in page load time.

of all objects loaded in the browser from both original and
perfect/partial cache benchmarks. We filtered out about 9% of
web pages in our 400 URL data set in cases where there were
a high number of 404 error codes due to non-deterministic
requests without responses in the WPR archive. The figures
we present show only these 91% of web pages that passed
our non-determinism filter.

As the ratio of cached to non-cached bytes increases in a
web page, we expect page load time to be less than or equal to
that of its non-cached counterpart. As seen in Figure 8, there
is a positive correlation between the fraction of cached bytes
and the reduction in PLT, albeit asymptotic. However, due
to variance in PLT (discussed in §3.3), we see in Figure 6 that
~10% of web pages perform worse when cached, as indicated
by the data points to the left of X = 0.

5 Related Work

Several papers have analyzed web performance, caching, and
the relationship between CPU speeds and PLT.

WProf. Wang et al. [2] is the closest research to ours.

As we discussed in §2, the experiments WProf ran for their
Figure 11 show that objects on the critical path are often
not cached; and the experiments they ran for their Figure
13 implies that decreasing CPU speed causes computational
delays to comprise a larger fraction of the critical path.

We extend their research along several dimensions. We
develop a model that allows us to predict PLT for a given
cache hit ratio. We show that limited RAM does not increase
computational delays, though slow CPUs do. We also
empirically measure (rather than statically compute, as WProf
does) PLTs using a tablet device, and using CPU-constrained
virtual machines, over a larger data set (400 URLSs, vs. ~50
URLs). Lastly, we extend WProf’s cacheability analysis to

show that the marginal returns from caching sharply diminish.

Concurrently with our work, Nejati et al. ported WProf to
mobile browsers [15]. Although they do not consider caching,
their tool would be invaluable for deepening our analysis.

Web Performance. Related studies [16, 17] focus on
evaluating and optimizing web performance for desktops.
Many techniques such as altering content, data compression,
proxy services, and CDNs have been exploited to reduce
latency for users. These studies focus on high performing
end devices such as desktops. We additionally analyzed and
compared web performance on a mobile device.

Zhen Wang et al. [18, 19] have determined that the largest
delay factor in desktop web page loading is object rendering in
the browser. They went further to show that CPU constraints
are the lead cause of slow resource loading. With a large data
set, we bolster their claim that CPU constraints are the critical
factor in determining page load time. We also demonstrate
that web caching has diminishing benefits due to the limited
CPU speeds of mobile devices.

We are not the first to focus on web performance for
mobile devices [18, 19]. Our main contribution is developing
a performance model for pinpointing the key differences
between desktop and mobile.

Web Caching. Other literature [20-23] has focused on the
benefits of web caching, specifically the reduction of latency
for desktops [24-28]. While these papers make note of the
several benefits of caching, they do not focus on highlighting
caching’s effects on (CPU-constrained) mobile devices.

Proposed Changes to the Web. There are many
papers [29-37] that propose changes to the web that would
improve web latency with better caching schemes. It is
possible that under their proposed changes, caching would
have more of a benefit for mobile latency. In this paper, we
focus only on today’s existing infrastructure.

6 Conclusion

Motivated by our initial surprise at Flywheel’'s weak
performance improvements from smarter caching, we sought
to highlight and extend the analysis done by Wang et al. [2],
which indicates two reasons caching should not significantly
improve page load time for mobile devices: slow CPU speeds,
and sparsity of cached items on the critical path. To make
effective use of caching, content providers should pay careful
attention to whether cached objects are on the critical path.
Going forward, mobile devices are becoming increasingly
powerful, and the bottleneck resources will shift. We hope that
the model we have developed here will help content providers
and network designers make informed decisions about the per-
formance effects of caching for the mobile web of the future.

Acknowledgments. We thank the anonymous reviewers for
their feedback, and especially our shepherd Dan Tsafrir for
helping us develop our performance model. This research
was supported by an NSF Graduate Research Fellowship.

164 2016 USENIX Annual Technical Conference

USENIX Association

References

(1]

(2]

(3]

(4]

(5]

(6]
(7]

(8]

91

(10]

(11]
(12]
(13]

(14]

[15]
[16]
[17]

(18]

(19]

[20]

V. Agababov, M. Buettner, V. Chudnovsky, M. Cogan,
B. Greenstein, S. McDaniel, M. Piatek, C. Scott, M. Welsh,
and B. Yin. Flywheel: Google’s Data Compression Proxy for
the Mobile Web. NSDI 15, 2015.

Xiao Sophia Wang, Aruna Balasubramanian, Arvind
Krishnamurthy, and David Wetherall. Demystifying Page
Load Performance with WProf. NSDI *13, 2013.

Alexa Internet Inc. Alexa Top 500 Global Sites.
http://www.alexa.com/topsites, 2015. Ac-
cessed: 2015-9-12.

Pat Meenan Jake Brutlag, Zoe Abrams. Above the Fold Time:
Measuring Web Page Performance Visually. O’Reilly Media,
Inc., 2011. Accessed: 2016-1-19.
Google. Speed Index.
google.com/a/webpagetest.org/docs/
using-webpagetest/metrics/speed-index.
W3C. Navigation Timing Level 2 Spec. http:
//w3c.github.io/navigation—-timing/.

Google Developers. PageSpeed Insights, 2015. Accessed:
2016-1-11.

Vivek Sarkar. Partitioning and scheduling parallel programs
for execution on multiprocessors. Technical report, Stanford
Univ., CA (USA), 1987.

Statista. Global market share held by leading smartphone
vendors from 4th quarter 2009 to 3rd quarter 2015, 2015.
Accessed: 2016-1-26.

Jamshed Vesuna. Telemetry, Web Page Replay Ex-
perimental Apparatus. https://github.com/
JamshedVesuna/telemetry.

Google. Telemetry. https://catapult.gsrc.io/
telemetry.

Google. Web Page Replay. https://github.com/
chromium/web-page-replay.

Google Chromium. Google. https://www.chromium.
org/.

Jamshed Vesuna. Sanity Checks. https://github.
com/colin-scott/page_load_time/tree/
master/telemetry/sanity_checks.

Javad Nejati and Aruna Balasubramanian. An In-Depth Study
of Mobile Browser Performance. WWW, 2016.

Steve Souders. High-performance web sites. Communications
of the ACM, 2008.

Patrick Killelea. Web Performance Tuning: Speeding up the
Web. “ O’Reilly Media, Inc.”, 2002.

Zhen Wang, Felix Xiaozhu Lin, Lin Zhong, and Mansoor
Chishtie. Why are Web Browsers Slow on Smartphones?
In Proceedings of the 12th Workshop on Mobile Computing
Systems and Applications. ACM, 2011.

Zhen Wang, Felix Xiaozhu Lin, Lin Zhong, and Mansoor
Chishtie. How Far Can Client-only Solutions Go for Mobile
Browser Speed? In Proceedings of the 21st international
conference on World Wide Web. ACM, 2012.

Bernhard Ager, Fabian Schneider, Juhoon Kim, and Anja
Feldmann. Revisiting Cacheability in Times of User Generated
Content. In INFOCOM IEEE Conference on Computer

https://sites.

(21]

(22]

(23]

[24]

(25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

[35]

(36]

(371

Communications Workshops, 2010. IEEE, 2010.

Jia Wang. A Survey of Web Caching Schemes for the Internet.
ACM SIGCOMM Computer Communication Review, 1999.
Lothar Braun, Alexander Klein, Georg Carle, Helmut Reiser,
and Jochen Eisl. Analyzing Caching Benefits for YouTube
Traffic in Edge Networks A Measurement-based Evaluation.
In Network Operations and Management Symposium (NOMS),
2012 IEEE. IEEE, 2012.

Pei Cao and Sandy Irani. Cost-Aware WWW Proxy Caching
Algorithms. In Usenix symposium on internet technologies
and systems, 1997.

David A Patterson. Latency Lags Bandwith. Communications
of the ACM, 2004.

Armando Fox and Eric A Brewer. Reducing WWW Latency
and Bandwidth Requirements by Real-time Distillation.
Computer Networks and ISDN Systems, 28, 1996.
Kun-Lung Wu and S Yu Philip. Latency-sensitive Hashing
for Collaborative Web Caching. Computer Networks, 2000.
Pablo Rodriguez, Keith W Ross, and Erst W Biersack.
Improving the WWW: Caching or Multicast? Computer
Networks and ISDN Systems, 1998.

Swaminathan Sivasubramanian, Guillaume Pierre, Maarten
van Steen, and Gustavo Alonso. Analysis of Caching
and Replication Strategies for Web Applications. Infernet
Computing, IEEE, 2007.

Leo A Meyerovich and Rastislav Bodik. Fast and Parallel
Webpage Layout. In Proceedings of the 19th international
conference on World wide web. ACM, 2010.

Jeffrey Erman, Alexandre Gerber, Mohammad T Hajiaghayi,
Dan Pei, and Oliver Spatscheck. Network-aware Forward
Caching. In Proceedings of the 18th International Conference
on World Wide Web. ACM, 2009.

Kaimin Zhang, Lu Wang, Aimin Pan, and Bin Benjamin Zhu.
Smart Caching for Web Browsers. In Proceedings of the 19th
international conference on World wide web. ACM, 2010.
Li Fan, Pei Cao, Jussara Almeida, and Andrei Z Broder.
Summary Cache: A Scalable Wide-area Web Cache Sharing
Protocol. In ACM SIGCOMM Computer Communication
Review, volume 28. ACM, 1998.

John Dilley and Martin Arlitt. Improving Proxy Cache
Performance: Analysis of Three Replacement Policies. /EEE
Internet Computing, 1999.

Guohong Cao. A Scalable Low-latency Cache Invalidation
Strategy for Mobile Environments. Knowledge and Data
Engineering, IEEE Transactions on, 2003.

Guohong Cao. Proactive Power-aware Cache Management for
Mobile Computing Systems. Computers, IEEE Transactions
on, 2002.

Sunho Lim, Wang-Chien Lee, Guohong Cao, and Chita R Das.
A Novel Caching Scheme for Improving Internet-based Mobile
Ad Hoc Networks Performance. Ad Hoc Networks, 4, 2006.
Chanda Dharap. Semantics-based Caching Policy to Minimize
Latency, 1999. US Patent App. 09/374,694.

USENIX Association

2016 USENIX Annual Technical Conference 165

