
This paper is included in the Proceedings of the
2016 USENIX Annual Technical Conference (USENIC ATC ’16).

June 22–24, 2016 • Denver, CO, USA

978-1-931971-30-0

Open access to the Proceedings of the
2016 USENIX Annual Technical Conference
(USENIX ATC ’16) is sponsored by USENIX.

MEANTIME: Achieving Both Minimal Energy
and Timeliness with Approximate Computing

Anne Farrell and Henry Hoffmann, University of Chicago

https://www.usenix.org/conference/atc16/technical-sessions/presentation/farrell

USENIX Association 2016 USENIX Annual Technical Conference 421

MEANTIME: Achieving Both Minimal Energy and Timeliness with

Approximate Computing

Anne Farrell Henry Hoffmann

Department of Computer Science, University of Chicago

{amfarrell, hankhoffmann}@cs.uchicago.edu

Abstract

Energy efficiency and timeliness (i.e., predictable job la-

tency) are two essential – yet opposing – concerns for

embedded systems. Hard timing guarantees require con-

servative resource allocation while energy minimization

requires aggressively releasing resources and occasion-

ally violating timing constraints. Recent work on ap-

proximate computing, however, opens up a new dimen-

sion of optimization: application accuracy. In this pa-

per, we use approximate computing to achieve both hard

timing guarantees and energy efficiency. Specifically,

we propose MEANTIME: a runtime system that delivers

hard latency guarantees and energy-minimal resource us-

age through small accuracy reductions. We test MEAN-

TIME on a real Linux/ARM system with six applica-

tions. Overall, we find that MEANTIME never violates

real-time deadlines and sacrifices a small amount (typi-

cally less than 2%) of accuracy while reducing energy to

54% of a conservative, full accuracy approach.

1 Introduction

Embedded systems require both predictable timing and

energy-efficiency. When predictability takes the form of

hard real-time constraints, these two goals are conflict-

ing [16]. The conflict arises because hard timing guaran-

tees require reserving resources sufficient for worst case

latency. In contrast, energy efficiency requires allocating

resources that just meet the needs of the current job. Even

if worst case resource allocation is coupled with aggres-

sive energy reduction (e.g., in the form of voltage scal-

ing [20] or sleep states [31]), this strategy is less energy-

efficient than allocating for the current case, a fact which

has been demonstrated both analytically [1, 8, 35] and

empirically [17, 32, 38, 45].

Recent research on approximate computing examines

applications that can trade accuracy for reduced energy

consumption [4, 6, 18, 21, 29, 55]. These approximate

Figure 1: Conceptual model of MEANTIME compared

to worst-case and energy-aware resource allocation.

computations open a third dimension for optimization,

making it possible to simultaneously trade timing, en-

ergy, and accuracy [26]. Many embedded computations

are well-suited for approximation as they involve large

amounts of signal, image, media, and data processing,

where it is easy to quantify application accuracy (e.g., as

signal-to-noise-ratio) and carefully trade it for other ben-

efits. This process is often done statically; e.g., by using

fixed point arithmetic instead of floating point. While ap-

proximate computing frameworks produce a large trade-

off space [4, 29, 51], they provide (at best) soft timing

guarantees, and are thus unsuitable for hard real-time

constraints. This paper addresses the challenge of meet-

ing both hard timing constraints and low energy through

careful application of approximate computing.

Specifically, we develop MEANTIME1, which cou-

ples a state-of-the-art resource allocator [42] – that op-

timizes for the current job, sometimes missing deadlines

– with a novel governor which monitors timing and re-

configures the application to avoid any timing violations.

The resource allocator uses control theory to allocate for

the current case, an approach which, by itself, will vi-

olate timing constraints. Therefore, the governor deter-

mines how much to manipulate application accuracy to

ensure that the timing constraints are never violated de-

spite the dynamics of the underlying controller and any

application-level fluctuations.

Figure 1 illustrates the intuition behind MEANTIME

1The name stands for Minimal Energy ANd TIMEliness.

1

422 2016 USENIX Annual Technical Conference USENIX Association

Table 1: Embedded Platform Resources.
Platform Processor Cores Core Types Speeds (GHz) Configurations

ODROID-XU3 Samsung Exynos5 Octa 8 2 (A15 & A7) .2–2.0 (A15) .2-1.4 (A7) 128

and compares it to other resource allocation approaches.

The figure shows time, with a deadline, on the x-axis

and performance on the y-axis. Allocating for worst

case execution time (wcet) requires using all resources

in the system and then idling (no performance) until the

deadline. Energy-aware allocation estimates the resource

needs of the current job, but it may miss the deadline due

to job timing variance.

In contrast, MEANTIME reasons about wcet for both

the application’s nominal behavior and its acceptable

approximate variants. Given this information, MEAN-

TIME allocates for the current case, while computing

two temporal regions within the deadline: an efficiency

region and a safety region (shown in Figure 1). The ef-

ficiency region represents the time to run in the appli-

cation’s full-accuracy configuration using the resources

specified by the energy-aware allocator. The safety re-

gion represents the time for which the application must

switch to an approximate configuration (still using the

assigned resources). Note that switching to an approx-

imate configuration does not require computation to be

restarted; rather there are times while an application

is running that it can be switched to an approximate

configuration before the deadline. Approximation al-

lows MEANTIME to potentially have even higher per-

formance in the safety region than allocating for worst

case execution time, as shown in Figure 1. MEAN-

TIME’s key idea is using timing analysis and approxi-

mate computation to determine the efficiency and safety

regions, ensuring both energy efficiency and timeliness.

We implement MEANTIME on a Linux/ARM system.

We test its timing guarantees, energy, and accuracy for

six different applications, including media, image, sig-

nal processing, and financial analysis. These applications

were not originally designed to provide any timing pre-

dictability, still MEANTIME achieves:

• Efficacy with a range of behaviors: The bench-

marks include both high and low variance job laten-

cies (see Section 4.3).

• Predictable timing: MEANTIME never misses a

deadline for any benchmark (see Section 5.1).

• Energy Savings: MEANTIME requires only 46%

of the energy of allocating for worst case and ag-

gressively sleeping the system (see Section 5.2).

These energy savings are comparable to a state-of-

the-art energy-aware approach that provides only

soft timing guarantees but near-optimal energy sav-

ings.

• High Accuracy: MEANTIME achieves accuracies

that are typically very close to the nominal behavior

(i.e., almost no accuracy loss, see Section 5.3).

• Adaptability: MEANTIME automatically reacts to

changing user goals (see Section 5.4) and fluctua-

tions in application workload (see Section 5.5).

MEANTIME is not designed for all embedded ap-

plications, but for those that 1) have viable perfor-

mance/accuracy trade-offs, 2) must satisfy hard real-time

constraints and minimize energy consumption despite

large fluctuations in application workload, and 3) have

progress indicators and models of completion. We be-

lieve many embedded applications meet these criteria (as

evidenced by our use of existing benchmarks).

MEANTIME makes the following contributions:

• Design of a runtime system that provides both hard

real-time guarantees and energy efficiency by sacri-

ficing computation accuracy.

• Experimental evaluation of the runtime on a real

system with six different benchmarks showing

mean energy reductions of over 2× compared to al-

locating for worst case.

2 Motivational Example

We motivate MEANTIME’s combination of hard timing

guarantees and energy efficiency through a radar pro-

cessing example similar to what might be found on an

unmanned autonomous vehicle (UAV). The radar must

process frames with a strict latency or the system cannot

respond to external events. The UAV, however, is energy

limited. Radar processing is amenable to approximate

computation – it can trade reduced signal-to-noise ratio

for performance.

The radar processing consists of four blocks of pro-

cessing. The first block (LPF) performs a low-pass fil-

ter to eliminate high-frequency noise. The second block

(BF) does beam-forming, steering the radar to ”look” in

a particular direction. The third block (PC) performs

pulse compression, which concentrates energy. The fi-

nal block is constant false alarm rate (CFAR) detection,

which identifies targets. Several parameters control the

tradeoff between signal-to-noise ratio (SNR) and perfor-

mance (see Section 4). The radar processes frames in

batches of 8. Each batch is one job.

Our experimental platform is an 8-core Linux/ARM

big.LITTLE system, which has four high power, high

performance “big” cores, and four low power, low per-

formance “LITTLE” cores. The radar application is par-

allelized, so that each processing block can be executed

2

USENIX Association 2016 USENIX Annual Technical Conference 423

L
a
te
n
c
y

(s
)

E
n
e
rg
y

(J
)

A
c
c
u
ra
c
y

0.25

0.3

0.35

0.4

0.5

1

1.5

2

wcet cross energy−aware MEANTIME

0 5 10 15 20 25
0.90
0.92
0.94
0.96
0.98
1.00

time [8-frame job]

Figure 2: Comparison of techniques for the radar.

across multiple threads. Different resource configura-

tions achieve different power/performance tradeoffs; Ta-

ble 1 lists available configurations.

Table 2: Radar timing.
Latency Measurement (s)

Mean 0.032

Minimum 0.031

Maximum 0.048

STDEV/Mean 0.025

We run the radar

application on the

ARM with all re-

sources allocated and

empirically determine

the worst case latency

for a single radar frame

(this is technically

worst observed latency). Additionally, we report the

minimum, mean, and standard deviation over mean

latency in Table 2.

The timing data demonstrates the classic conflict be-

tween timeliness and energy efficiency. For timeliness,

we can allocate for worst-case execution time. The table,

however, shows that the average latency is very close to

the minimum latency. So most jobs are not close to worst

case. If a job finishes early (i.e., it is not a worst case),

then we can simply sleep (or idle) the processor until the

next job is available [17, 38, 45]. To allocate for energy

efficiency and meet average case timing, we could use a

state of the art energy-aware approach (e.g., [42]).

The key idea behind MEANTIME is using energy-

aware techniques to allocate for the average case, but

avoid timing violations by quickly switching the applica-

tion to an approximate configuration that is guaranteed to

meet timing even for a worst case frame. Section 3 dis-

cusses in detail how MEANTIME calculates the times to

spend in different configurations.

We demonstrate the benefits of MEANTIME for the

radar application by comparing its latency, energy, and

accuracy to three other approaches: allocating resources

for worst case (wcet), allocating both resources and algo-

rithm parameters for worst case based on existing cross-

layer approaches (cross) [21, 58], and allocating for aver-

age case using an energy-aware resource allocator based

on control theory [33, 42]. Figure 2 shows the results.

Each chart shows time (measured in 8-frame jobs) on the

x-axis. The top chart shows latency compared to the tar-

get latency (0.384 seconds per 8-frame job, the worst la-

tency measured on our system). The middle chart shows

the energy per job in Joules. The bottom chart shows the

SNR normalized to the default configuration; i.e., unity

represents no accuracy loss.

The results demonstrate that MEANTIME achieves

both timeliness and energy efficiency. Indeed, MEAN-

TIME achieves the same timing as allocating for worst

case, the same energy consumption as the energy-aware

system, and the same accuracy as the cross-layer ap-

proach. All approaches except for the energy-aware ap-

proach have flat latency curves because they always meet

the deadline (possibly finishing early and idling until the

next job starts) – these techniques are hard to distin-

guish in the latency chart because all three are on top

of each other.. Specifically, the energy-aware approach

consumes 20.2 Joules, allocating for wcet consumes 46.1

Joules, the cross-layer approach consumes 36.7 Joules,

and MEANTIME consumes 20.3 Joules. These results

come at the cost of a small amount of accuracy; in this

case the SNR falls to 99.7% of the original application.

3 The MEANTIME Framework

This section provides the technical details on MEAN-

TIME, illustrated in Figure 3. As shown in the fig-

ure, MEANTIME couples a governor with an energy-

aware controller. The controller allocates system re-

sources (e.g., cores, clockspeed, memory bandwidth) and

the governor ensures that the application’s timing re-

quirements are met. The controller receives a latency tar-

get from the governor and computes the minimal energy

set of resources needed to meet that target. The gov-

ernor receives, from the user, timing requirements and

application’s timing analysis in both its default and ap-

proximate configurations. The user has complete control

over which set of approximations MEANTIME consid-

ers. The governor translates these timing requirements

and analysis into a latency target, which is passed to

the controller. The governor calculates the efficiency and

safety regions. The efficiency region is the time to spend

in the application’s default configuration using the re-

source configuration suggested by the controller. The

safety region is the time to spend in an approximate con-

figuration, ensuring the job meets its deadline.

This section describes MEANTIME’s controller and

governor. The controller itself is not a contribution

of MEANTIME; we make use of existing research on

energy-aware control for soft real-time requirements.

MEANTIME’s contributions are 1) the governor which

ensures timeliness, and 2) the integration of the gover-

3

424 2016 USENIX Annual Technical Conference USENIX Association

Figure 3: Overview of the MEANTIME approach.

nor with existing control techniques. The remainder of

this section provides an overview of energy-aware con-

trol schemes, then describes the governor.

3.1 Approximate Computing

Many approximate computing frameworks exist (see

Section 6) that expose application-level tradeoffs be-

tween accuracy and resource usage (almost always quan-

tified as execution time). Execution time is straightfor-

ward. Accuracy, however, is defined in an application-

specific manner. In a radar, accuracy is signal-to-noise

ratio. In a search engine, it is the precision and recall of

results returned. We discuss the accuracy metrics used

for our test applications in Section 4. The essential thing

for MEANTIME is that the framework exposes the per-

formance and accuracy tradeoffs for a particular applica-

tion. Performance gains can be quantified in a standard

way. Accuracy need only be a total order; MEANTIME

works even if the exact accuracy of a configuration can-

not be specified, as long as it can be ranked relative to

other configurations. MEANTIME requires this ordering

so that it can choose the highest accuracy configuration

that meets a constraint.

3.2 Control for Energy Efficiency

Control theory provides formal guarantees about how a

controlled system responds to dynamic events [24, 59].

Control theoretic techniques have been used to meet soft

real-time deadlines while minimizing resource use. Ex-

amples can be found controlling latency in multi-tier

webservers [11, 30] and in media processing [56, 58].

To minimize energy for a latency constraint, the con-

troller is given a target latency. It then measures the cur-

rent latency, computes the error between the target and

current, and determines the most efficient resource allo-

cation that will eliminate the error. Different control im-

plementations have different tradeoffs between how fast

they react and how stable they are in the face of noise.

The important thing for MEANTIME is that control ap-

proaches have repeatedly proven capable of near optimal

resource allocation [11, 25, 30, 33, 58].

The drawback is that these techniques, by themselves,

cannot provide both hard real-time latency and energy

efficiency. One might attempt to use control theoretic

techniques to meet hard real-time constraints by reduc-

ing the target latency, but this does not guarantee hard

real-time and may not provide optimal energy savings.

MEANTIME, therefore, relies on a control system to al-

locate resources for the current case and minimize en-

ergy. Several existing control systems might be appro-

priate for this task, but MEANTIME builds on POET, a

portable, open-source energy-aware control implementa-

tion [33]. The concept is general, however, and could be

applied to many different control systems.

Within MEANTIME, the controller is responsible for

reacting to application phases; e.g., reducing resource us-

age if the workload gets easier and increasing resources

if it gets harder. Control systems are well-suited to this

task, as their whole purpose is managing system dynam-

ics. Of course, control systems react to changes by de-

tecting errors between a target latency and an achieved

latency. Such latency errors represent missed deadlines

and are not acceptable for hard real-time. Therefore,

MEANTIME’s governor ensures that the user’s target la-

tency requirement is not violated.

3.3 Governor for Timeliness

The governor’s primary responsibility is deriving the effi-

ciency and safety regions. To perform this task, the gov-

ernor requires the following inputs:

1. Worst case timing for the application in its full ac-

curacy configuration.

2. Worst case timing (expressed as speedup) for re-

duced accuracy configurations.

3. Worst case timing analysis for switching application

or system configurations.

While timing information may vary, we only require in-

formation for the worst case, which is conservative and

does not vary. This section shows how the governor de-

rives the efficiency and safety regions from these inputs.

3.3.1 Notation

Table 3 summarizes the notation used in this section. We

assume an application comprised of many jobs, where

each has a workload representing its processing require-

ments. We assume we know the worst case workload

W and the deadline for completing the work t. We la-

bel the worst case latency and computation rate as twc

and rwc and best case values are tbc and rbc. Internally,

MEANTIME records the relationship between the best

and worst case as ∆ = tbc/twc. Note that 0 < ∆ ≤ 1.

Both the machine and application are configurable.

The machine’s resources can be allocated and the appli-

cation’s accuracy can be changed. Application speedups

4

USENIX Association 2016 USENIX Annual Technical Conference 425

Table 3: Notation.
Variable Meaning

In
p

u
t

W job workload in worst case

t deadline for completing work

twc worst case latency

tbc best case latency

rwc worst case computation rate with full accuracy

rbc best case computation rate with full accuracy

s0 minimum speedup from approximation

tswitch worst case time to switch app. & sys. config.

In
te

rn
a

l ts time to spend in safety region

te time to spend in efficiency region

rs computation rate in safety region

re computation rate in efficiency region

∆ ratio of best to worst case, tbc/twc

are measured relative to the full accuracy application run-

ning with all machine resources. We assume we know s0,

the maximum worst case speedup available from chang-

ing application accuracy; i.e., the minimum speedup that

will be observed from approximation.

3.3.2 Goal

Given the above assumptions and notation, the governor

computes the safety and efficiency regions such that the

workload of all jobs is completed by their deadlines. We

write these requirements as three constraints:

ts · rs + te · re ≥ W (1)

ts + te ≤ t (2)

ts, te ≥ 0 (3)

Eqn. 1 states that total capacity for work should be

greater or equal to the worst case workload2. This con-

straint is conservative, but if it holds then we know the

worst case work will be accomplished. The second con-

straint ensures that the total time is less than or equal to

the deadline time. The third constraint ensures that the

times are non-negative, which means the deadline can be

met in practice. The governor determines the values of te
and ts such that the constraints will be respected, ensur-

ing hard real-time guarantees.

3.3.3 Deriving Efficiency and Safety Regions

MEANTIME considers the most difficult situation,

which occurs when the application transitions from a best

case latency job to a worst case job. The controller will

detect the best case and allocate a commensurate amount

of resources. Thus, the controller allocated resources for

best case. The combination of worst case workload and

resources allocated for best case will severely degrade

measured performance. MEANTIME calculates this de-

graded performance as ∆rwc. Therefore, the computation

2In practice, we can always idle or sleep if we reserve too much

capacity and finish early.

rate in the efficiency region can be as low as re = ∆rwc.

Furthermore, we can rewrite rs in terms of known quanti-

ties by recognizing that the worst case speed in the safety

region is rs = ∆rwc · s0. To ensure the constraints are sat-

isfied even in this situation, we substitute into Eqns. 1

and 2 to obtain:

ts ·∆rwc · s0 + te ·∆rwc = W (4)

ts + te + tswitch = t (5)

We now have a system of two equations with two

unknowns: ts and te, the time to spend in the safety

and efficiency regions, respectively. All other quanti-

ties are known based on timing analysis as stated in

the above assumptions. We therefore rewrite Eqn. 5 as

ts = t − te − tswitch and substitute into Eqn. 4 to obtain:

W = (t − te − tswitch) ·∆rwc · s0 + te ·∆rwc (6)

twc =
W

∆rwc

= (t − te − tswitch) · s0 + te (7)

te =
twc − s0 · (t − tswitch)

1− s0
(8)

Thus, Eqn. 8 gives the efficiency region; i.e., the largest

amount of time we can spend using the resources spec-

ified by the controller. We then transition to the vari-

able accuracy configuration (keeping resource usage the

same) for ts = t − te − tswitch time. A negative value of

either ts or te indicates that the application is not schedu-

lable.

An additional quick check for schedulability can be

done by checking whether s0 ≥
1

∆
. If the available

speedup cannot overcome the potential difference be-

tween best and worst case, then this approach may miss

deadlines. If this is the case, MEANTIME sets a stricter

latency goal than the user specified, forcing the controller

to be more conservative. MEANTIME then aggressively

sleeps or idles so that the user sees the desired latency.

3.3.4 Minimizing Accuracy Loss for Schedulability

The prior section derived the time to spend in the effi-

ciency region for an application with a single approxi-

mate configuration. In practice, however, approximate

computations expose a wide range of tradeoffs between

accuracy and speedup [29, 53]. We denote the accuracy

and speedup of application configuration i as ai and si, re-

spectively. To maximize the accuracy and maintain hard

real-time constraints, we formulate the following opti-

5

426 2016 USENIX Annual Technical Conference USENIX Association

mization problem:

maximize∑
i

t i
s

t
·ai (9)

s.t.

∑
i

t i
s · rwc · s

i + te ·∆rwc ≥ W (10)

tswitch +∑
i

t i
s + te ≤ t (11)

ti
s, te ≥ 0 (12)

Here, we assume that the user has supplied some set of

approximations, all of which are acceptable, if not prefer-

able. The goal is to find the maximum accuracy that

guarantees the constraints in Eqns. 10–12. If this lin-

ear program has no feasible solution, the application is

not schedulable on the system. MEANTIME, in general,

does not need to solve this program often. If the accept-

able accuracy never changes, then the program can be

solved once at initialization time. If acceptable accuracy

may change as the program runs, MEANTIME will solve

a new program with a new set of variable accuracy con-

figurations each time it changes.

Eqns. 10–12 have two non-trivial constraints. By the

theory of linear programming, that means that there is an

optimal solution with at most two ti
s greater than 0 and all

other equal to 0 [15]. Thus, during any interval, MEAN-

TIME will switch configurations at most twice. This lim-

itation on switching time means that we can provide a

fairly tight bound on tswitch, meaning that switching time

will have little impact on energy efficiency in practice.

3.3.5 Providing Feedback to the Controller

Control systems have been widely used to improve en-

ergy efficiency because control theory provides formal

guarantees concerning how the system will react to dy-

namic events. For example, when an application shifts

from a computationally intensive phase to an easy phase,

the controller reacts to this change by reducing resource

usage. The problem for hard real-time guarantees is that

the control system reacts by detecting an error between

the desired behavior and observed behavior. If the be-

havior under control is job latency, this error may result

in missed deadlines.

This is an example of the fundamental tension between

hard real-time and energy efficiency. We would like the

runtime to reduce resource usage, but the control sys-

tem will not detect the phase shift if every deadline is

respected. MEANTIME overcomes this drawback by in-

tercepting the latency feedback and altering it. Instead of

providing the actual latency feedback (which will always

be the same as all deadlines are guaranteed), MEAN-

TIME estimates what the latency would have been if the

application had not switched to a less accurate configura-

Table 4: System configurations.
Configuration Settings Max Speedup Max Powerup

big cores 4 4.52 2.00

big core speeds 19 10.23 10.42

LITTLE cores 4 4.52 1.32

LITTLE core speeds 13 7.11 2.62

idle - 0 .6

tion and passes this latency to the controller. This latency

estimate is denoted as t̂ and calculated as:

t̂ = te + ts · s0 + tswitch (13)

Passing this estimated latency to the controller allows

MEANTIME to maintain responsiveness and energy-

efficiency while still meeting hard real-time deadlines.

3.4 MEANTIME Summary

MEANTIME works with existing control theoretic ap-

proaches that provide soft real-time support while min-

imizing energy consumption. MEANTIME augments

these control based approaches in two novel ways. First,

it computes the safety and efficiency regions as described

above – thus combining hard real-time with energy effi-

ciency. Second, it alters the feedback passed to the con-

troller to maintain responsiveness to application phases

despite the fact that deadlines are never violated.

4 Experimental Setup

4.1 Hardware Platform

Our hardware platform is an ODROID-XU3 from Hard-

Kernel. It runs Ubuntu Linux 14.04 using a modified ker-

nel 3.10.58+. We use the taskset utility for managing

processor core assignment and cpufrequtils for man-

aging DVFS settings. This system supports five config-

urable resources that alter performance and power trade-

offs. Additionally, it has an extremely low-power idle

state (about 0.1 Watt).

Table 4 summarizes system resources, showing the

maximum increase in speed and power measured on the

machine for any benchmark. Embedded INA-231 power

sensors [34] provide power data for the big Cortex-A15

cluster, the LITTLE Cortex-A7 cluster, the DRAM and

the GPU. The system sleeps at .1 Watts. The maximum

measured power consumption is just under 6 Watts. All

energy and power numbers reported in this paper con-

sider total usage as measured with the INA-321.

4.2 Applications

We use six benchmark applications: x264, bodytrack,

swaptions, ferret, and streamcluster (from the PARSEC

6

USENIX Association 2016 USENIX Annual Technical Conference 427

1 2 3 4

0.94
0.96
0.98

1

Speedup

A
c
c
u
ra
c
y

x264

2 4 6
0.85

0.9

0.95

1

Speedup

bodytrack

50 100
0.98

0.99

1.0

Speedup

swaptions

1.0 1.12 1.24
0.8

0.85
0.9

0.95
1

Speedup

ferret

2 4
0.99

1.0

Speedup

streamcluster

1 2 3 4

0.4
0.6
0.8

1

Speedup

radar

Figure 4: Speedup and accuracy tradeoffs for test applications.

Table 5: Approximate Application configurations.
App. Configs. Min. Spdup Max Acc. Loss (%)

x264 560 3.96 6.2

bodytrack 200 5.24 14.4

swaptions 100 50.43 1.5

ferret 8 1.24 30.24

streamcluster 16 3.82 54.8

radar 512 3.95 73.4

benchmark suite [12]); as well as a radar processing ap-

plication [28]. We use the PowerDial framework to mod-

ify all seven benchmarks so they support dynamic ap-

proximation [29]. PowerDial turns static configuration

parameters into a data structure controlling the applica-

tion’s runtime behavior. PowerDial also instruments the

applications, providing latency feedback for every outer

loop iteration [29].

We measure application accuracy as a normalized dis-

tance from full accuracy. This is a standard metric al-

lowing comparison across applications [49]. Changes

in application performance are measured as speedup, the

factor by which latency decreases when moving from the

nominal setting. Unlike previous work on approximation

that maximized average achievable speedup, MEAN-

TIME cares about the worst case speedup. Thus, we

measure the minimum speedup achievable with these

transformations. This section describes the tradeoffs ex-

posed by each of these applications. Table 5 summarizes

the application-level configurations, showing the total

number of available configurations as well as the mini-

mum speedup and maximum accuracy loss. These appli-

cations represent a range of workloads which might be

run on an embedded system with both timing and energy

constraints. None of these applications were originally

intended to be run with hard-timing constraints making

them a real test of the proposed technique.

x264: This video encoder compresses a raw input ac-

cording to the H.264 standard. It can decrease the frame

latency at a cost of increased noise. x264 searches for re-

dundancy both within a frame and between frames. The

accuracy-aware x264 trades the work performed to find

redundancy for the amount of redundancy identified. The

total number of distinct application-level configurations

is 560. The encoder’s accuracy is measured by recording

both the peak signal-to-noise ratio (PSNR) and the en-

coded bitrate, and weighting these two quantities equally.

Table 6: Application Input Details.
Application Input Jobs

x264 native 512 frames

bodytrack sequenceB 261 frames

swaptions randomized parameters 256 swaptions

ferret corel 2000 queries

streamcluster 7 card poker hands 1000 hands

radar radar pulses 100 pulses

bodytrack: This application uses an annealed particle

filter to track a human moving through a space. The fil-

ter parameters trade the track’s quality and the frame la-

tency. The application exposes two knobs, one changes

the number of annealing layers and another changes the

number of particles. In total, the application supports

200 different configurations.

ferret: This application performs similarity search for

images; i.e., it finds images similar to a query image.

Both the image analysis and the location sensitive hash

used to find similar images support approximation. In

total, ferret supports 8 different approximate configura-

tions. The search accuracy is evaluated using F-measure,

the harmonic mean of precision and recall3.

streamcluster: This application is an online approxi-

mation of the k-means clustering algorithm. It has two

parameters which trade clustering accuracy (measured

using the B3 score [2]) and clustering latency. The first

changes the number of iterations used in the approxima-

tion, the second changes the distance metric used to as-

sign a sample to a cluster. Together, they expose 16 dif-

ferent configurations.

swaptions: This financial analysis application uses

Monte Carlo simulation to price a portfolio of swap-

tions. This application can reduce accuracy in the swap-

tion price for decreased pricing latency. The application

has a single parameter, with 100 settings, controlling the

number of simulations per swaption.

radar: This application is the front-end of a radar

signal processor and it turns raw antenna data into a tar-

get list. The application supports four different parame-

ters that tradeoff signal-to-noise ratio (SNR) 4. The first

3Precision is the number of returned documents relevant to a query

divided by the total number of returned documents. Recall is the num-

ber of relevant documents returned divided by the total number of rele-

vant documents.
4Higher SNR makes targets easier to detect, lower SNR makes tar-

7

428 2016 USENIX Annual Technical Conference USENIX Association

Table 7: Application Timing Statistics.
Latency Statistics (s)

Application Mean Min Max STDEV/Mean

x264 1.33 0.14 2.97 0.59

bodytrack 0.75 0.64 0.92 0.11

swaptions 0.26 0.01 4.32 1.96

ferret 0.44 0.19 1.09 0.30

streamcluster 0.06 0.03 0.09 0.23

radar 0.03 0.03 0.05 0.03

two change the strength of the low-pass filter. The third

changes the number of distinct directions the phased ar-

ray antenna can “look.” The fourth changes the range

resolution. The radar can enter 512 separate configura-

tions by changing these parameters.

All applications expose timing/accuracy tradeoffs. We

illustrate the tradeoff spaces in Figure 4. Each chart’s

x-axis shows speedup and y-axis shows the resulting ac-

curacy. Speedup and accuracy are both reported normal-

ized to the default configuration. For clarity, we show

only Pareto-optimal tradeoffs. Note that the y-axes show

the range of accuracy tradeoffs for each application, and

the x-axes show the range of possible speedups. Each

application has a different range of both speedup and ac-

curacy, so the axes also have different ranges.

4.3 Statistical Timing Characteristics

Table 6 shows the inputs for each benchmark. These

benchmarks were not originally designed to provide pre-

dictable timing. We quantify this inherent unpredictabil-

ity by measuring the latency of each job and computing

the mean, minimum, maximum, and standard deviation

over mean for all jobs in a benchmark. This data – sum-

marized in Table 7 – shows that our benchmarks have

a range of natural behavior from low variance (natural

predictability; e.g., bodytrack) to high variance (widely

distributed job latencies; e.g., swaptions).

This timing variability further motivates the need for

MEANTIME, which meets hard real-time guarantees

even for such off-the-shelf applications. The inherent

variability means that allocating resources for worst case

execution time requires reserving resources that are not

used much of the time – the worst case is typically far

from the average case. MEANTIME adapts to this vari-

ability by allocating for the average case to save energy

and using a (typically) small amount of approximation to

meet the hard real-time deadlines.

5 Experimental Evaluation

This section evaluates MEANTIME’s ability to provide

hard timing guarantees and energy savings. We first mea-

gets harder to detect. All configurations used in this paper still detect

all targets with more than 10dB of margin.

sure both latency and deadline misses. Next, we quantify

MEANTIME’s energy savings and then the effect of ap-

proximation. Next, we show how MEANTIME reacts to

both changes in user goals (e.g., transitioning to perfect

accuracy) and application workload phases. We end by

measuring MEANTIME’s overhead.

We compare MEANTIME’s timeliness, energy, and

accuracy to the following approaches:

• wcet: meets hard real-time constraints by reserving

resources sufficient for worst case latency and intel-

ligently sleeping if a job finishes early [31]. We do

not have a tool that can accurately estimate worst

case latency on our test platform, so we use worst

observed latency as a proxy.

• PowerDial: uses control theory to adjust

application-level parameters and meet perfor-

mance constraints with maximum accuracy [29].

PowerDial, however, cannot adjust system-level

resource usage, so it cannot proactively lower

system energy consumption. In fact, the only

way to proactively achieve energy savings with

PowerDial is to trade increased performance for

reduced accuracy. The increased performance

allows each job to finish earlier and then the system

can spend more time in the idle state.

• cross: Extends existing cross-layer techniques (e.g.,

[21, 58]) which combine application accuracy and

system resource management. These prior works

do not provide hard guarantees, but we extend them

in a simple way by using worst case timing for both

the application accuracy and system resource usage.

This approach is much simpler than MEANTIME.

• energy-aware: uses state-of-the-art control and op-

timization techniques to allocate minimal energy re-

sources for the current job [33, 42].

• optimal: is the true optimal energy-aware approach

if we knew the future and the could instantly con-

figure the system for each task. We compute the

optimal by running each application in each system

configuration and logging the latency of each job

within the application. We then post-process these

logs to determine the minimal energy configuration

for each job that would have met the latency goal.

This approach is obviously not practical, but we be-

lieve it represents the true energy savings available.

To test MEANTIME, we deploy it on our ODROID

platform and run each application with a target latency

equal to its maximum latency (as reported in Table 7).

We measure missed deadlines and the average latency,

energy, and accuracy for each job.

8

USENIX Association 2016 USENIX Annual Technical Conference 429

D
ea

d
li

n
e

M
is

se
s

(%
)

N
o

rm
al

iz
ed

L
at

en
cy

0

20

40

60

80

100

wcet PowerDial cross

energy−aware MEANTIME

x2
64

bo
dy
tra

ck

sw
ap
tio
ns

fer
re
t

str
ea
m
clu

ste
r

ra
da
r

Geo
M

ea
n

0.9

1.0

1.1

1.2

1.3

1.4

Figure 5: Deadline misses (top) and normalized latency (bot-

tom) for different resource techniques.

N
o

rm
al

iz
ed

E
n

er
g

y

x2
64

bo
dy
tra

ck

sw
ap
tio
ns

fer
re
t

str
ea
m
clu

ste
r

ra
da
r

Geo
M

ea
n

0

.2

.4

.6

.8

1.0

wcet PowerDial cross

energy−aware MEANTIME optimal

Figure 6: Energy consumption normalized to wcet. Lower

numbers represent reduced energy consumption.

5.1 Timing Properties

Figure 5 shows the timing results with deadline misses

on the top and latency (normalized to the target) on the

bottom. These results confirm that none of wcet, cross,

nor MEANTIME miss deadlines, thus they provide hard

real-time guarantees. This agrees with the mathematical

basis for MEANTIME established in Section 3, which

should never miss deadlines as long as it is provided with

accurate (or conservative) worst case timing information.

PowerDial and energy-aware approach do not provide

hard guarantees, so it is not surprising that they miss

deadlines. Instead, these approaches support soft real-

time goals, reflected by the average latency results in the

bottom of Figure 5. Overall, these approaches provides

good average timing; they are just not as predictable as

wcet and MEANTIME.

5.2 Energy

Figure 6 shows each benchmark’s energy consumption

normalized to wcet. We normalize so that results are

comparable across benchmarks. The results show that

the energy-aware approach saves significant energy com-

pared to wcet (confirming prior results [17, 32, 38]). By

geometric mean, MEANTIME consumes only 54% of

the energy of the wcet approach. MEANTIME’s energy

savings is comparable to the energy-aware approach,

which consumes only 52% of wcet’s energy, while the

optimal approach consumes just 49% of wcet’s energy.

The cross approach presented here consumes 86% of

wcet’s energy, which is a significant savings, but not

close to MEANTIME. This cross layer approach is con-

servative in both system resource usage and application

configuration, while MEANTIME is aggressive in re-

source allocation and conservative (for timing) in appli-

cation configuration. The result show MEANTIME’s

combination achieves much better energy reductions.

Similarly, PowerDial’s energy savings is small – only

about a 5% reduction – because PowerDial cannot proac-

tivel alter system energy consumption. This result for

PowerDial confirms previous work demonstrating that

significant additional energy savings arises by coordi-

nating application behavior with system resource usage

[27].

Some benchmarks exhibit greater energy savings than

others. In general, two factors predict the energy sav-

ings compared to wcet. First, the greater the variance in

timing, the greater the energy saving potential – if an ap-

plication spends most of its time near worst case latency,

then there is limited opportunity to reduce resource us-

age. Second, if an application’s approximate configu-

rations do not provide much speedup, then the potential

for energy savings is also reduced. Comparing the timing

statistics (Table 7) and the speedups from approximation

(Table 5) to the energy reduction in Figure 6 validates

these observations. For instance, swaptions has much

higher timing variance and speedups from approxima-

tion than bodytrack, and consequently, it exhibits better

energy savings.

MEANTIME achieves large energy savings because

allocating for worst case and idling after the job com-

pletes is one of the worst things to do on these processors.

One study demonstrates that it is best to keep low-power

multicores busy as much as possible [17]. Another shows

that the Exynos Octa processor is more energy efficient

at lower clockspeeds (and using the LITTLE cores) [32].

MEANTIME uses a control system in an attempt to keep

the cores as busy as possible (and use the LITTLE cores

as much as possible). On this architecture, the policy re-

sults in tremendous savings. On a another system where

racing-to-idle is energy efficient, the MEANTIME ap-

proach would provide no benefit. We believe, however,

that future embedded architectures will tend to look more

like the processor used in this study and present a range

of performance and energy tradeoffs.

9

430 2016 USENIX Annual Technical Conference USENIX Association

A
cc

u
ra

cy

x2
64

bo
dy
tra

ck

sw
ap
tio
ns

fer
re
t

str
ea
m
clu

ste
r

ra
da
r

Geo
M

ea
n

0

.20

.40

.60

.80

1.00

PowerDial cross MEANTIME

Figure 7: Accuracy, 1.0 represents full accuracy.

5.3 Accuracy

Figure 7 shows accuracy for PowerDial, cross, and

MEANTIME. These results are normalized to nominal

application behavior, so unity represents full accuracy.

The results show generally high accuracy. Five of the six

benchmarks have accuracies above 0.98 representing ac-

curacy loss of less than 2%. The one exception is ferret,

whose accuracy is 0.78. This is also the application for

which the cross layer approach provides clear benefit.

While it may be hard to see, the accuracy for Power-

Dial is always higher than for MEANTIME. PowerDial

really represents a technique for exposing and control-

ling performance/accuracy tradeoff spaces. In this case,

we have configured PowerDial to produce the highest

possible accuracy. An alternative could run in the low-

est accuracy configuration to produce the highest possi-

ble performance, finish each task as early as possible,

and spend the maximum time in the idle state. Doing

so would produce the lowest accuracy output, but have

significant energy savings. Prior work shows that the en-

ergy savings available in this case is always worse than

coordinating between application and system [27].

Ferret’s low accuracy is due to several factors. The

first is the application’s high variance (see Table 7).

While this may at first appear beneficial, as it provides

more room for high energy savings, adding the sec-

ond factor creates problems. The second factor is the

low speedup relative to the difference between mini-

mum and maximum measured latency (see Table 5).

The combination of high-variance (which is generally

good for MEANTIME) and low speedup available at the

application-level lead the application to spend much of

its time in a reduced accuracy state. In contrast, because

it is conservative in resource usage, cross spends less

time in the reduced resource states that put more pressure

on the application. MEANTIME’s accuracy reduction

results in fewer matches returned for a given search. The

top (most relevant) matches are still returned, but less

relevant ones are dropped. We emphasize that for users

who do not want to lose this level of accuracy, they could

simply specify fewer application knobs. The energy con-

sumption would be higher, but that might be the tradeoff

the user wants. The next section shows an example tran-

L
a
te
n
c
y

(s
)

E
n
e
rg
y

(J
)

A
c
c
u
ra
c
y

0

0.5

1

0.5

1

1.5

2

0 5 10 15 20 25 30 35 40 45 50
0.90
0.92
0.94
0.96
0.98
1.00

time [job]

Figure 8: MEANTIME reacting to changing radar accuracy

goals.

sitioning from reduced accuracy to perfect accuracy to

support changing user goals.

Table 8: Required Speedup.
Application Speedup

x264 1.18

bodytrack 1.06

swaptions 1.19

ferret 1.14

streamcluster 1.09

radar 1.03

In general, for all

approaches the accura-

cies are so high because

very little speedup is

needed most of the

time; i.e., most applica-

tions worst case behav-

ior is far from the nor-

mal case so many jobs

terminate in the safety

zone. From our calculations of the true optimal energy

savings available, we know the speedup required to meet

the latency target for each job in each application. Ta-

ble 8 shows the geometric mean of required speedup for

each application across all its jobs. For most applica-

tions, the mean speedups required are quite small com-

pared to the available speedups at the largest accuracy

loss (compare Tables 5 and 8), so the accuracy losses

are correspondingly small. The one exception is ferret,

which has an achievable speedup of about 1.24×, but the

mean required speedup is close to 1.14. This comparison

helps explain ferret’s lower accuracy.

5.4 Adapting to Changing Requirements

We transition a running application from energy mini-

mization to accuracy maximization. To demonstrate this

capability, we extend the radar example from Section 2.

We now launch the radar application using MEANTIME

to meet real-time goals and minimize energy consump-

tion. After 25 jobs we change the radar’s goal to real-

time with maximum accuracy.

Figure 8 shows the results. The figure has three charts

which show latency, energy, and accuracy as functions

of time (measured in jobs). The vertical dashed lines

represent the time when the acceptable approximation

changes. The first half of the input is processed exactly

as in the example section. The second half transitions

10

USENIX Association 2016 USENIX Annual Technical Conference 431

L
a
te
n
c
y

(s
)

E
n
e
rg
y

(J
)

A
c
c
u
ra
c
y

18

20

22

24

0

20

40

0 15 30
0.8

0.85
0.9

0.95
1

time [30 frame job]

Figure 9: MEANTIME reacting to phases in x264.

to a higher energy configuration, but with no approxima-

tion. This demonstrates that the accuracy loss incurred

by MEANTIME is optional and can be eliminated as

needed. In this sense, MEANTIME represents a strictly

greater set of capabilities than wcet.

5.5 Adapting to Phases

We run the x264 video encoder on an input consisting

of three distinct video scenes (each of 450 frames). The

difficulty (computational resources required to meet the

target latency) varies from frame to frame, but on aver-

age, the first scene is the hardest, the second scene is the

easiest, and the third scene is close to the first, but with a

lower variance in frame-to-frame performance.

Figure 9 shows the results with latency, energy, and

accuracy as a function of time (measured in 30 frame

jobs). The latency target here is high, as it is hard to

encode HD frames at high-quality on the test platform.

MEANTIME achieves perfect timeliness, equivalent to

wcet. These results demonstrate that MEANTIME pro-

vides predictable timing even as the application transi-

tions through phases, something that prior energy-aware

approaches which only support soft real-time cannot do

[33]. Finally, these results show that the accuracy and

energy are tailored to the application workload. During

the middle scene (between jobs 15 and 29) the resource

demand is lessened and the average accuracy improves

slightly and the energy decreases. These results demon-

strate that MEANTIME does not reduce accuracy need-

lessly, but tailors it to the workload requirements.

5.6 Overhead

MEANTIME’s runtime is of constant – O(1) – computa-

tional complexity. To make the system work in practice,

however, it needs to know its own worst case latency

so that it can ensure it does not interfere with the ap-

plication’s timing. To measure MEANTIME’s latency,

we deploy the runtime with no application to manage

and “dummy resources” which are allocated through the

same system calls, but do not change the timing. We

execute 1000 iterations of the runtime and measure the

worst case latency as approximately 100 µs. In practice,

we account for this as part of the switching overhead as

discussed in Section 3.

6 Related Work

The problem of scheduling for timeliness and energy ef-

ficiency has been widely studied in the literature. A com-

plete survey is beyond the scope of this paper, but we

mention some related highlights. At the coarsest level,

scheduling and resource allocation can be done to pro-

vide either hard (e.g., [3, 7, 9, 13, 20, 31, 37, 39, 47,

50, 52]) or soft (e.g., [10, 11, 23, 25, 30, 33, 46]) tim-

ing guarantees, and in both cases it is beneficial to save

as much energy as possible. While all these techniques

differ in terms of the mechanisms they manipulate and

the assumptions they make, we can draw some general

conclusions. First, all techniques (whether hard or soft)

manipulate slack – the time when the system is not busy.

Some approaches scale voltage and frequency to reduce

slack (e.g., [13, 20, 25]); others manipulate processor

sleep states (e.g., [9, 31]). Still others work on general

sets of resources specified at runtime (e.g., [33, 44, 48,

54, 59]). For this paper, however, the important distinc-

tion is that soft guarantees allow the system to be much

more aggressive about eliminating slack as they have the

freedom to occasionally miss deadlines. Hard real-time

guarantees, in contrast, require conservative allocation

and never remove so much slack that timing might be vi-

olated [16]. It has even been noted that, in mixed critical-

ity systems, aggressively removing slack for non-critical

jobs can cause critical jobs to violate timing [57].

MEANTIME does not overturn these prior results.

Rather, MEANTIME is based on the observation that we

can achieve timing and energy efficiency if we make sac-

rifices in a third dimension. Specifically, MEANTIME

exploits the growing domain of approximate comput-

ing. Approximate applications trade accuracy for per-

formance, power, energy, or other benefits. Such ap-

proaches include both static, compile-time analysis of

tradeoffs [5, 51, 53] and dynamic, runtime support for

tradeoff management [4, 6, 18, 29, 49, 55]. Static anal-

ysis guarantees that accuracy bounds are never violated,

but it is conservative and may miss chances for additional

savings through dynamic customization.

Dynamic systems tailor behavior online. For exam-

ple, Green maintains accuracy goals while minimizing

energy [6], while Eon meets energy goals while maxi-

mizing accuracy [55]. Both Green and Eon use heuris-

tic techniques for managing the tradeoff space. Pow-

erDial [29], uses control theoretic techniques to pro-

vide performance guarantees while maximizing accu-

11

432 2016 USENIX Annual Technical Conference USENIX Association

racy. PowerDial is the only technique that attempts

to guarantee performance. Its control-theoretic guaran-

tees may be appropriate for soft real-time, but it cannot

provide hard real-time guarantees. None of these ap-

proaches combine hard real-time with energy reduction.

In contrast to these application-level approaches,

many system-level designs reduce energy consumption

by tailoring resource usage. To reduce total system

power, most of these approaches coordinate multiple re-

sources [19]. For example, Meisner et al. propose coor-

dinating CPU power states, memories, and disks to meet

soft latency goals while minimizing power consump-

tion [43]. Bitirgen et al. coordinate clockspeed, cache,

and memory bandwidth in a multicore [14]. Still other

approaches focus on managing general sets of system-

level components [33, 44, 48, 54, 59]. Finally, recent ap-

proaches manage system resources to provide both real-

time and temperature guarantees, but do not minimize

energy [22]. In fact, these systems provide either hard

real-time guarantees (making no claims about energy), or

they provide soft real-time guarantees (enforced through

a variety of mechanisms) with energy savings.

Cross-layer optimization combines application-level

approximation and system-level resource allocation. In

that sense, MEANTIME most resembles other cross-

layer approaches. Early cross-layer systems were de-

signed for media processing on mobile systems. For ex-

ample, Flinn and Satyanarayanan build a framework for

coordinating operating systems and applications to meet

user defined energy goals [21]. This system trades appli-

cation quality for reduced energy consumption. GRACE

[58] and GRACE-2 [56] use hierarchy to provide soft

real-time guarantees for multimedia applications, mak-

ing system-level adaptations first and then application-

level adaptations. Like GRACE-2, Agilos uses hierarchy,

combined with fuzzy control, to coordinate multimedia

applications and systems to meet a performance goal

[40]. Maggio et al. propose a game-theoretic approach

for a decentralized coordination of application and sys-

tem adaptation which provides soft real-time guaran-

tees [41]. xTune uses static analysis to model application

and system interaction and then refines that model with

dynamic feedback [36]. CoAdapt allows users to pick

two out of three of performance, power, and accuracy;

it then provides soft guarantees in those two dimensions

while optimizing the third [26].

Prior cross-layer approaches coordinate application

accuracy and system energy, but none provide both hard

real-time and energy minimization. Our empirical results

show that a straightforward extension of existing cross

layer approaches can meet hard real-time deadlines and

saves energy compared to allocating for worst case and

maximum accuracy, but it still consumes much more en-

ergy than MEANTIME (see Figure 6). The combination

of hard timing guarantees with the energy efficiency of

an optimistic soft-timing system is the unique contribu-

tion of MEANTIME.

7 Conclusion

This paper presents MEANTIME, a runtime control

methodology. Its unique contribution is using applica-

tion approximation to provide both hard real-time guar-

antees and energy efficiency. While not appropriate for

all applications, MEANTIME provides a large benefit

for those that can reduce accuracy. Our experimental

results verify the claims made in the paper’s introduc-

tion: MEANTIME achieves the timeliness of allocating

for worst case and the energy efficiency of allocating for

current case (actually, MEANTIME does slightly bet-

ter). The capability provided by MEANTIME is strictly

greater than allocating for worst case and racing to sleep.

Therefore, we believe this is an important contribution,

which can greatly increase energy efficiency for a class

of embedded applications that must meet hard real-time

constraints but can sacrifice a small amount of accuracy.

Acknowledgments The effort on this project is

funded by the U.S. Government under the DARPA PER-

FECT program, the DARPA BRASS program, by the

Dept. of Energy under DOE DE-AC02-06CH11357, by

the NSF under CCF 1439156, and by a DOE Early Ca-

reer Award. Additional funding for Anne Farrell comes

from a GAANN fellowship.

12

USENIX Association 2016 USENIX Annual Technical Conference 433

References

[1] S. Albers. “Algorithms for Dynamic Speed

Scaling”. In: STACS. 2011, pp. 1–11.

[2] E. Amig, J. Gonzalo, J. Artiles, and F. Verdejo.

“A comparison of extrinsic clustering evalua-

tion metrics based on formal constraints”. En-

glish. In: Information Retrieval 12.4 (2009),

pp. 461–486. ISSN: 1386-4564. DOI: 10.1007/

s10791- 008- 9066- 8. URL: http://dx.

doi.org/10.1007/s10791-008-9066-8.

[3] J. Anderson and S. Baruah. “Energy-efficient

synthesis of periodic task systems upon iden-

tical multiprocessor platforms”. In: ICDCS.

2004.

[4] J. Ansel, M. Pacula, Y. L. Wong, C. Chan,

M. Olszewski, U.-M. O’Reilly, and S. Ama-

rasinghe. “Siblingrivalry: online autotuning

through local competitions”. In: CASES. 2012.

[5] J. Ansel, Y. L. Wong, C. Chan, M. Olszewski,

A. Edelman, and S. Amarasinghe. “Language

and compiler support for auto-tuning variable-

accuracy algorithms”. In: CGO. 2011.

[6] W. Baek and T. Chilimbi. “Green: A Frame-

work for Supporting Energy-Conscious Pro-

gramming using Controlled Approximation”.

In: PLDI. June 2010.

[7] M. Bambagini, M. Bertogna, and G. Buttazzo.

“On the effectiveness of energy-aware real-

time scheduling algorithms on single-core plat-

forms”. In: ETFA. 2014.

[8] N. Bansal, D. P. Bunde, H.-L. Chan, and K.

Pruhs. “Average Rate Speed Scaling”. In: Algo-

rithmica 60.4 (2011).

[9] P. Baptiste. “Scheduling Unit Tasks to Mini-

mize the Number of Idle Periods: A Polynomial

Time Algorithm for Offline Dynamic Power

Management”. In: SODA. 2006.

[10] M. Becker, A. Schmidt, M. Orehek, and T.

Nolte. “Saving energy by means of dynamic

load management in embedded multicore sys-

tems”. In: SIES. 2014.

[11] L. Bertini, J. Leite, and D. Mosse. “Statistical

QoS Guarantee and Energy-Efficiency in Web

Server Clusters”. In: ECRTS. 2007.

[12] C. Bienia, S. Kumar, J. P. Singh, and K. Li.

“The PARSEC Benchmark Suite: Characteriza-

tion and Architectural Implications”. In: PACT.

2008.

[13] E. Bini, G. Buttazzo, and G. Lipari. “Mini-

mizing CPU Energy in Real-time Systems with

Discrete Speed Management”. In: ACM Trans.

Embed. Comput. Syst. 8.4 (July 2009), 31:1–

31:23.

[14] R. Bitirgen, E. Ipek, and J. F. Martinez. “Co-

ordinated management of multiple interacting

resources in chip multiprocessors: A machine

learning approach”. In: MICRO. 2008.

[15] S. Bradley, A. Hax, and T. Magnanti. Applied

mathematical programming. 1977.

[16] G. C. Buttazzo, G. Lipari, L. Abeni, and M.

Caccamo. Soft Real-Time Systems: Predictabil-

ity vs. Efficiency: Predictability vs. Efficiency.

Springer, 2006.

[17] A. Carroll and G. Heiser. “Mobile multicores:

use them or waste them”. In: Operating Systems

Review 48.1 (2014), pp. 44–48. DOI: 10.1145/

2626401.2626411. URL: http://doi.acm.

org/10.1145/2626401.2626411.

[18] F. Chang and V. Karamcheti. “Automatic Con-

figuration and Run-time Adaptation of Dis-

tributed Applications”. In: HPDC. 2000.

[19] H. Cheng and S. Goddard. “SYS-EDF: a

system-wide energy-efficient scheduling algo-

rithm for hard real-time systems”. In: Interna-

tional Journal of Embedded Systems 4.2 (2009).

[20] A. Dudani, F. Mueller, and Y. Zhu. “Energy-

conserving Feedback EDF Scheduling for Em-

bedded Systems with Real-time Constraints”.

In: LCTES/SCOPES ’02. 2002.

[21] J. Flinn and M. Satyanarayanan. “Managing

battery lifetime with energy-aware adaptation”.

In: ACM Trans. Comp. Syst. 22.2 (May 2004).

[22] Y. Fu, N. Kottenstette, C. Lu, and X. D. Kout-

soukos. “Feedback thermal control of real-

time systems on multicore processors”. In: EM-

SOFT. 2012.

[23] R. Guerra, J. C. B. Leite, and G. Fohler. “At-

taining soft real-time constraint and energy-

efficiency in web servers”. In: SAC. 2008.

[24] J. L. Hellerstein, Y. Diao, S. Parekh, and D.

M. Tilbury. Feedback Control of Computing

Systems. John Wiley & Sons, 2004. ISBN:

047126637X.

[25] J. Heo, P. Jayachandran, I. Shin, D. Wang, T.

Abdelzaher, and X. Liu. “OptiTuner: On Per-

formance Composition and Server Farm Energy

Minimization Application”. In: IEEE Transac-

tions on Parallel and Distributed Systems 22.11

(2011).

13

434 2016 USENIX Annual Technical Conference USENIX Association

[26] H. Hoffmann. “CoAdapt: Predictable Behavior

for Accuracy-Aware Applications Running on

Power-Aware Systems”. In: ECRTS. 2014.

[27] H. Hoffmann. “JouleGuard: Energy Guaran-

tees for Approximate Applications”. In: SOSP.

2015.

[28] H. Hoffmann, A. Agarwal, and S. Devadas.

“Selecting Spatiotemporal Patterns for Devel-

opment of Parallel Applications”. In: IEEE

Trans. Parallel Distrib. Syst. 23.10 (2012),

pp. 1970–1982. DOI: 10 . 1109 / TPDS .

2011 . 298. URL: http : / / doi .

ieeecomputersociety . org / 10 . 1109 /

TPDS.2011.298.

[29] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Mis-

ailovic, A. Agarwal, and M. Rinard. “Dynamic

Knobs for Responsive Power-Aware Comput-

ing”. In: ASPLOS. 2011.

[30] T. Horvath, T. Abdelzaher, K. Skadron, and

X. Liu. “Dynamic Voltage Scaling in Multi-

tier Web Servers with End-to-End Delay Con-

trol”. In: Computers, IEEE Transactions on

56.4 (2007), pp. 444 –458.

[31] K. Huang, L. Santinelli, J.-J. Chen, L. Thiele,

and G. Buttazzo. “Adaptive Dynamic Power

Management for Hard Real-Time Systems”. In:

RTSS. 2009.

[32] C. Imes and H. Hoffmann. “Minimizing en-

ergy under performance constraints on em-

bedded platforms: resource allocation heuris-

tics for homogeneous and single-ISA heteroge-

neous multi-cores”. In: SIGBED Review 11.4

(2014), pp. 49–54. DOI: 10.1145/2724942.

2724950. URL: http://doi.acm.org/10.

1145/2724942.2724950.

[33] C. Imes, D. H. K. Kim, M. Maggio, and H.

Hoffmann. “POET: A Portable Approach to

Minimizing Energy Under Soft Real-time Con-

straints”. In: RTAS. 2015.

[34] T. Instruments. http : / / www . ti . com /

product/ina231.

[35] S. Irani, S. Shukla, and R. Gupta. “Algorithms

for Power Savings”. In: ACM Trans. Algorithms

3.4 (Nov. 2007).

[36] M. Kim, M.-O. Stehr, C. Talcott, N. Dutt,

and N. Venkatasubramanian. “xTune: A Formal

Methodology for Cross-layer Tuning of Mobile

Embedded Systems”. In: ACM Trans. Embed.

Comput. Syst. 11.4 (Jan. 2013).

[37] F. Kong, Y. Wang, Q. Deng, and W. Yi. “Min-

imizing Multi-resource Energy for Real-Time

Systems with Discrete Operation Modes”. In:

ECRTS. 2010.

[38] E. Le Sueur and G. Heiser. “Slow Down or

Sleep, That is the Question”. In: USENIX ATC.

2011. URL: http://dl.acm.org/citation.

cfm?id=2002181.2002197.

[39] Y.-H. Lee, K. Reddy, and C. Krishna. “Schedul-

ing techniques for reducing leakage power in

hard real-time systems”. In: ECRTS. 2003.

[40] B. Li and K. Nahrstedt. “A control-based mid-

dleware framework for quality-of-service adap-

tations”. In: IEEE Journal on Selected Areas in

Communications 17.9 (Sept. 1999).

[41] M. Maggio, E. Bini, G. C. Chasparis, and K.-E.

Årzén. “A Game-Theoretic Resource Manager

for RT Applications”. In: ECRTS. 2013.

[42] M. Maggio, H. Hoffmann, M. D. Santambro-

gio, A. Agarwal, and A. Leva. “Power Op-

timization in Embedded Systems via Feed-

back Control of Resource Allocation”. In: IEEE

Trans. on Control Systems Technology 21.1

(2013).

[43] D. Meisner, C. M. Sadler, L. A. Barroso, W.-

D. Weber, and T. F. Wenisch. “Power man-

agement of online data-intensive services”. In:

ISCA (2011).

[44] N. Mishra, H. Zhang, J. D. Lafferty, and H.

Hoffmann. “A Probabilistic Graphical Model-

based Approach for Minimizing Energy Under

Performance Constraints”. In: ASPLOS. 2015.

[45] A. Miyoshi, C. Lefurgy, E. Van Hensber-

gen, R. Rajamony, and R. Rajkumar. “Criti-

cal Power Slope: Understanding the Runtime

Effects of Frequency Scaling”. In: ICS. 2002.

ISBN: 1-58113-483-5. DOI: 10.1145/514191.

514200. URL: http://doi.acm.org/10.

1145/514191.514200.

[46] R. Nassiffe, E. Camponogara, and G. Lima.

“Optimizing QoS in Energy-aware Real-time

Systems”. In: SIGBED Rev. 10.2 (July 2013).

[47] R. Racu, A. Hamann, R. Ernst, B. Mochocki,

and X. S. Hu. “Methods for power optimization

in distributed embedded systems with real-time

requirements”. In: CASES. 2006.

[48] R. Rajkumar, C. Lee, J. Lehoczky, and D.

Siewiorek. “A resource allocation model for

QoS management”. In: RTSS. 1997.

14

USENIX Association 2016 USENIX Annual Technical Conference 435

[49] M. Rinard. “Probabilistic accuracy bounds for

fault-tolerant computations that discard tasks”.

In: ICS. 2006.

[50] S. Saha, J. S. Deogun, and Y. Lu. “Adaptive

energy-efficient task partitioning for heteroge-

neous multi-core multiprocessor real-time sys-

tems”. In: HPCS. 2012.

[51] A. Sampson, W. Dietl, E. Fortuna, D.

Gnanapragasam, L. Ceze, and D. Gross-

man. “EnerJ: approximate data types for safe

and general low-power computation”. In:

PLDI. 2011.

[52] A. Shrivastava, E. Earlie, N. Dutt, and A. Nico-

lau. “Aggregating Processor Free Time for En-

ergy Reduction”. In: CODES+ISSS. 2005.

[53] S. Sidiroglou-Douskos, S. Misailovic, H. Hoff-

mann, and M. Rinard. “Managing performance

vs. accuracy trade-offs with loop perforation ”.

In: ESEC/FSE. 2011.

[54] M. Sojka, P. Pı́sa, D. Faggioli, T. Cucinotta, F.

Checconi, Z. Hanzálek, and G. Lipari. “Mod-

ular software architecture for flexible reserva-

tion mechanisms on heterogeneous resources”.

In: Journal of Systems Architecture 57.4 (2011).

[55] J. Sorber, A. Kostadinov, M. Garber, M. Bren-

nan, M. D. Corner, and E. D. Berger. “Eon: a

language and runtime system for perpetual sys-

tems”. In: SenSys. 2007.

[56] V. Vardhan, W. Yuan, A. F. H. III, S. V. Adve,

R. Kravets, K. Nahrstedt, D. G. Sachs, and D. L.

Jones. “GRACE-2: integrating fine-grained ap-

plication adaptation with global adaptation for

saving energy”. In: IJES 4.2 (2009).

[57] M. Volp, M. Hahnel, and A. Lackorzynski.

“Has energy surpassed timeliness? Scheduling

energy-constrained mixed-criticality systems”.

In: RTAS. 2014.

[58] W. Yuan and K. Nahrstedt. “Energy-efficient

soft real-time CPU scheduling for mobile mul-

timedia systems”. In: ACM SIGOPS Operating

Systems Review 37.5 (2003), pp. 149–163.

[59] R. Zhang, C. Lu, T. Abdelzaher, and J.

Stankovic. “ControlWare: A middleware archi-

tecture for Feedback Control of Software Per-

formance”. In: ICDCS. 2002.

15

