usenix
.’ THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

Nitro: A Capacity-Optimized SSD Cache
for Primary Storage

Cheng Li, Rutgers Univerisity; Philip Shilane, Fred Douglis, Hyong Shim,
Stephen Smaldone, and Grant Wallace, EMC Corporation

https://www.usenix.org/conference/atc14/technical-sessions/presentation/li_cheng_1

This paper is included in the Proceedings of USENIX ATC '14:

2014 USENIX Annual Technical Conference.
June 19-20, 2014 . Philadelphia, PA
978-1-931971-10-2

Open access to the Proceedings of
USENIX ATC "14: 2014 USENIX Annual Technical
Conference is sponsored by USENIX.

Nitro: A Capacity-Optimized SSD Cache for Primary Storage

Cheng Li, Philip Shilane, Fred Douglis, Hyong Shim, Stephen Smaldone, and Grant Wallace

TRutgers University

Abstract

For many primary storage customers, storage must bal-
ance the requirements for large capacity, high perfor-
mance, and low cost. A well studied technique is to place
a solid state drive (SSD) cache in front of hard disk drive
(HDD) storage, which can achieve much of the perfor-
mance benefit of SSDs and the cost per gigabyte effi-
ciency of HDDs. To further lower the cost of SSD caches
and increase effective capacity, we propose the addition
of data reduction techniques.

Our cache architecture, called Nitro, has three main
contributions: (1) an SSD cache design with adjustable
deduplication, compression, and large replacement units,
(2) an evaluation of the trade-offs between data re-
duction, RAM requirements, SSD writes (reduced up
to 53%, which improves lifespan), and storage perfor-
mance, and (3) acceleration of two prototype storage sys-
tems with an increase in IOPS (up to 120%) and reduc-
tion of read response time (up to 55%) compared to an
SSD cache without Nitro. Additional benefits of Nitro
include improved random read performance, faster snap-
shot restore, and reduced writes to SSDs.

1 Introduction

IT administrators have struggled with the complexity,
cost, and overheads of a primary storage architecture
as performance and capacity requirements continue to
grow. While high IOPS, high throughput, and low la-
tency are necessary for primary workloads, many cus-
tomers have budget limitations. Therefore, they also
want to maximize capacity and management simplicity
for a given investment. Balancing these requirements is
an ongoing area of storage research.

Fundamentally though, the goals of high performance
and cost-efficient storage are in conflict. Solid state
drives (SSDs) can support high IOPS with low latency,
but their cost will be higher than hard disk drives (HDDs)
for the foreseeable future [24]. In contrast, HDDs have
high capacity at relatively low cost, but IOPS and latency
are limited by the mechanical movements of the drive.
Previous work has explored SSDs as a cache in front of
HDDs to address performance concerns [1, 7, 30], and
the SSD interface has been modified for caching pur-
poses [26], but the cost of SSDs continues to be a large
fraction of total storage cost.

EMC Corporation — Data Protection and Availability Division

Our solution, called Nitro, applies advanced data re-
duction techniques to SSD caches, increasing the effec-
tive cache size and reducing SSD costs for a given sys-
tem. Deduplication (replacing a repeated data block with
a reference) and compression (e.g. LZ) of storage have
become the primary strategies to achieve high space and
energy efficiency, with most research performed on HDD
systems. We refer to the combination of deduplication
and compression for storage as capacity-optimized stor-
age (C0S), which we contrast with traditional primary
storage (TPS) without such features.

Though deduplicating SSDs [4, 13] and compressing
SSDs [10, 19, 31] has been studied independently, us-
ing both techniques in combination for caching intro-
duces new complexities. Unlike the variable-sized output
of compression, the Flash Translation Layer (FTL) sup-
ports page reads (e.g. 8KB). The multiple references in-
troduced with deduplication conflicts with SSD erasures
that take place at the block level (a group of pages, e.g.
2MB), because individual pages of data may be refer-
enced while the rest of a block could otherwise be re-
claimed. Given the high churn of a cache and the lim-
ited erase cycles of SSDs, our technique must balance
performance concerns with the limited lifespan of SSDs.
We believe this is the first study combining deduplication
and compression to achieve capacity-optimized SSDs.

Our design is motivated by an analysis of dedup-
lication patterns of primary storage traces and properties
of local compression. Primary storage workloads vary
in how frequently similar content is accessed, and we
wish to minimize deduplication overheads such as in-
memory indices. For example, related virtual machines
(VMs) have high deduplication whereas database logs
tend to have lower deduplication, so Nitro supports tar-
geting deduplication where it can have the most bene-
fit. Since compression creates variable-length data, Nitro
packs compressed data into larger units, called Write-
Evict Units (WEUs), which align with SSD internal
blocks. To extend SSD lifespan, we chose a cache re-
placement policy that tracks the status of WEUSs instead
of compressed data, which reduces SSD erasures. An im-
portant finding is that replacing WEUs instead of small
data blocks maintains nearly the same cache hit ratio and
performance of finer-grained replacement, while extend-
ing SSD lifespan.

USENIX Association

2014 USENIX Annual Technical Conference 501

To evaluate Nitro, we developed and validated a sim-
ulator and two prototypes. The prototypes place Nitro
in front of commercially available storage products. The
first prototype uses a COS system with deduplication and
compression. The system is typically targeted for stor-
ing highly redundant, sequential backups. Therefore, it
has lower random I/O performance, but it becomes a
plausible primary storage system with Nitro acceleration.
The second prototype uses a TPS system without dedup-
lication or compression, which Nitro also accelerates.

Because of the limited computational power and mem-
ory of SSDs [13] and to facilitate the use of off-the-shelf
SSDs, our prototype implements deduplication and com-
pression in a layer above the SSD FTL. Our evaluation
demonstrates that Nitro improves I/O performance be-
cause it can service a large fraction of read requests from
an SSD cache with low overheads. It also illustrates the
trade-offs between performance, RAM, and SSD lifes-
pan. Experiments with prototype systems demonstrate
additional benefits including improved random read per-
formance in aged systems, faster snapshot restore when
snapshots overlap with primary versions in a cache, and
reduced writes to SSDs because of duplicate content. In
summary, our contributions are:

e We propose Nitro, an SSD cache that utilizes
deduplication, compression, and large replacement
units to accelerate primary I/O.

e We investigate the trade-offs between dedup-
lication, compression, RAM requirements, perfor-
mance, and SSD lifespan.

e We experiment with both COS and TPS prototypes
to validate Nitro’s performance improvements.

2 Background and Discussion

In this section, we discuss the potential benefits of adding
deduplication and compression to an SSD cache and then
discuss the appropriate storage layer to add a cache.
Leveraging duplicate content in a cache. I/O rates for
primary storage can be accelerated if data regions with
different addresses but duplicate content can be reused
in a cache. While previous work focused on memory
caching and replicating commonly used data to minimize
disk seek times [14], we focus on SSD caching.

We analyzed storage traces (described in §5) to under-
stand opportunities to identify repeated content. Figure 1
shows the deduplication ratio (defined in §5.1) for 4KB
blocks for various cache sizes. The deduplication ratios
increase slowly for small caches and then grow rapidly
to ~ 2.0X when the cache is sufficiently large to hold the
working set of unique content. This result confirms that
a cache has the potential to capture a significant fraction
of potential deduplication [13].

This result motivates our efforts to build a dedupli-
cated SSD cache to accelerate primary storage. Adding

25
e}
&“ 0“.....‘.-.". "
c 20 o T S
S pow
[}
2 .
= .
3 15 ® WebVM -l
2 Homes @
- Mail
1.0 = ‘ ‘
o 4 76. 6'7 ?25\
Cache Size (GB)
Figure 1: Caching tens of thousand of blocks will

achieve most of the potential deduplication.

deduplication to a storage system increases complexity,
though, since infrastructure is needed to track the live-
ness of blocks. In contrast, caching requires less com-
plexity, since cache misses do not cause a data loss for
write-through caching, though performance is affected.
Also, the overhead of calculating and managing secure
fingerprints must not degrade overall performance.
Leveraging compression in a cache. Compression, like
deduplication, has the potential to increase cache capac-
ity. Previous studies [5, 10, 29, 31] have shown that lo-
cal compression saves from 10-60% of capacity, with
an approximate mean of 50% using a fast compressor
such as LZ. Potentially doubling our cache size is desir-
able, as long as compression and decompression over-
heads do not significantly increase latency. Using an
LZ-style compressor is promising for a cache, as com-
pared to a HDD system that might use a slower compres-
sor that achieves higher compression. Decompression
speed is also critical to achieve low latency storage, so
we compress individual data blocks instead of concate-
nating multiple data blocks before compression. Our im-
plementation has multiple compression/decompression
threads, which can leverage future advances in multi-
core systems.

A complexity of using compression is that it trans-

forms fixed-sized blocks into variable-sized blocks,
which is at odds with the properties of SSDs. Simi-
lar to previous work [10, 19, 31], we pack compressed
data together into larger units (WEUs). Our contribu-
tion focuses on exploring the caching impact of these
large units, which achieves compression benefits while
decreasing SSD erasures.
Appropriate storage layer for Nitro. Caches have been
added at nearly every layer of storage systems: from
client-side caches to the server-side, and from the proto-
col layer (e.g. NFS) down to caching within hard drives.
For a deduplicated and compressed cache, we believe
there are two main locations for a server-side cache. The
first is at the highest layer of the storage stack, right after
processing the storage protocol. This is the server’s first
opportunity to cache data, and it is as close to the client
as possible, which minimizes latency.

502 2014 USENIX Annual Technical Conference

USENIX Association

VFS,NFS,CIFSRegqs |
Restore Reqgs — | Cache

% Manager —
Cache Recipe !
DRAM Indices Cache =<— | Z
NVRAM for dirty list Extended IS

FTL Interface

L Write-Evict
Units (WEUSs) |]
Solid State Drives (SSDs) nits (s)

‘ COS / TPS systems

Figure 2: SSD cache and disk storage.

The second location to consider is post-deduplication
(and compression) within the system. The advantage
of the post-deduplication layer is that currently existing
functionality can be reused. Of course, deduplication and
compression have not yet achieved wide-spread imple-
mentation in storage systems. An issue with adding a
cache at the post-deduplication layer is that some mech-
anism must provide the file recipe, a structure mapping
from file and offset to fingerprint (e.g. SHA-1 hash of
data), for every cache read. Loading file recipes adds ad-
ditional I/O and latency to the system, depending on the
implementation. While we added Nitro at the protocol
layer, for COS systems, we evaluate the impact of using
file recipes to accelerate duplicate reads (§3.1). We then
compare to TPS systems that do not typically have file
recipes, but do benefit from caching at the protocol layer.

3 Nitro Architecture

This section presents the design of our Nitro architecture.
Starting at the bottom of Figure 2, we use either COS or
TPS HDD systems for large capacity. The middle of the
figure shows SSDs used to accelerate performance, and
the upper layer shows in-memory structures for manag-
ing the SSD and memory caches.

Nitro is conceptually divided into two halves shown
in Figure 2 and in more detail in Figure 3 (steps 1-
6 are described in §3.2). The top half is called the
CacheManager, which manages the cache infrastructure
(indices), and a lower half that implements SSD caching.
The CacheManager maintains a file index that maps the
file system interface (<filehandle, offset>) to internal
SSD locations; a fingerprint index that detects duplicate
content before it is written to SSD; and a dirty list that
tracks dirty data for write-back mode. While our descrip-
tion focuses on file systems, other storage abstractions
such as volumes or devices are supported. The Cache-
Manager is the same for our simulator and prototype im-
plementations, while the layers below differ to either use
simulated or physical SSDs and HDDs (§4).

We place a small amount of NVRAM in front of our
cache to buffer pending writes and to support write-back
caching: check-pointing and journaling of the dirty list.

The CacheManager implements a dynamic prefetching
scheme that detects sequential accesses when the consec-
utive bytes accessed metric (M11 in [17]) is higher than
a threshold across multiple-streams. Our cache is scan-
resistant because prefetched data that is accessed only
once in memory will not be cached. We currently do
not cache file system metadata because we do not expect
it to deduplicate or compress well, and we leave further
analysis to future work.

3.1 Nitro Components

Extent. An extent is the basic unit of data from a file
that is stored in the cache, and the cache indices refer-
ence extents that are compressed and stored in the SSDs.
We performed a large number of experiments to size our
extents, and there are trade-offs in terms of read-hit ra-
tio, SSD erasures, deduplication ratio, and RAM over-
heads. As one example, smaller extents capture finer-
grained changes, which typically results in higher dedup-
lication ratios, but smaller extents require more RAM to
index. We use the median I/O size of the traces we stud-
ied (8KB) as the default extent size. For workloads that
have differing deduplication and I/O patterns than what
we have studied, a different extent size (or dynamic siz-
ing) may be more appropriate.

Write-Evict Unit (WEU). The Write-Evict Unit is our
unit of replacement (writing and evicting) for SSD. File
extents are compressed and packed together into one
WEU in RAM, which is written to an SSD when it is
full. Extents never span WEUs. We set the WEU size
equal to one or multiple SSD block(s) (the unit for SSD
erase operation) depending on internal SSD properties,
to maximize parallelism and reduce internal fragmenta-
tion. We store multiple file extents in a WEU. Each WEU
has a header section describing its contents, which is
used to accelerate rebuilding the RAM indices at start-up.
The granularity of cache replacement is an entire WEU,
thus eliminating copy forward of live-data to other phys-
ical blocks during SSD garbage collection (GC). This re-
placement strategy has the property of reducing erasures
within an SSD, but this decision impacts performance, as
we discuss extensively in §6.1. WEUSs have generation
numbers indicating how often they have been replaced,
which are used for consistency checks as described later.
File index. The file index contains a mapping from
filehandle and offset to an extent’s location in a WEU.
The location consists of the WEU ID number, the offset
within the WEU, and the amount of compressed data to
read. Multiple file index entries may reference the same
extent due to deduplication. Entries may also be marked
as dirty if write-back mode is supported (shown in gray
in Figure 3).

Fingerprint index. To implement deduplication within
the SSDs, we use a fingerprint index that maps from ex-

USENIX Association

2014 USENIX Annual Technical Conference 503

Protocols:

VFS, NFS, CIFS, etc

@ In-memory

Dirty List:
| SSD Loc -> File !
i Index Entry Base @

Dirty , Base

Entry |

5 FP
' ' up Entry
(NVRAM or SSDs):
R R File Index: FP Index:
File HdI:Off -> SSD Loc FP -> SSD Loc

ﬁ File

gen: 3| | "|Extent
Write-Evict Unit (WEU)

¥ In-SSDs

WEUs WEUs
gen: 0 gen: 1
! !

® [| WEU Header

Figure 3: File index with base and duplicate entries, finger-
print index, file extents stored in WEUs, and a dirty list.

tent fingerprint to an extent’s location within the SSD.
The fingerprint index allows us to find duplicate entries
and effectively increase the cache capacity. Since pri-
mary workloads may have a wide range of content re-
dundancy, the fingerprint index size can be limited to
any arbitrary level, which allows us to make trade-offs
between RAM requirements and how much potential
deduplication is discovered. We refer to this as the fin-
gerprint index ratio, which creates a partial fingerprint
index. For a partial fingerprint index, a policy is needed
to decide which extents should be inserted into/evicted
from the fingerprint index. User-specified configura-
tions, folder/file properties, or access patterns could be
used in future work. We currently use LRU eviction,
which performed as well as more complicated policies.
Recipe cache. To reduce misses on the read-path, we
create a cache of file recipes (Figure 2), which repre-
sent a file as a sequence of fingerprints referencing ex-
tents. This allows us to check the fingerprint index for
already cached, duplicate extents. File recipes are a stan-
dard component of COS systems and can be prefetched
to our cache, though this requires support from the COS
system. Since fingerprints are small (20 bytes) relative
to the extent size (KBs), prefetching large lists of fin-
gerprints in the background can be efficient compared to
reading the corresponding data from HDD storage. A
recipe cache can be an add-on for TPS to opportunisti-
cally improve read performance. We do not include a
recipe cache in our current TPS implementation because
we want to isolate the impact of Nitro without changing
other properties of the underlying systems. Its impact on
performance is discussed in §6.2.

Dirty list. The CacheManager supports both write-
through and write-back mode. Write-through mode as-
sumes all data in the cache are clean because writes to
the system are acknowledged when they are stable both
in SSD and the underlying storage system. In contrast,

write-back mode treats writes as complete when data
are cached either in the NVRAM or SSD. In write-back
mode, a dirty list tracks dirty extents, which have not
yet propagated to the underlying disk system. The dirty
list can be maintained in NVRAM (or SSD) for consis-
tent logging since it is a compact list of extent locations.
Dirty extents are written to the underlying storage system
either when they are evicted from the SSD or when the
dirty list reaches a size watermark. When a dirty file in-
dex entry is evicted (base or duplicate), the file recipe is
also updated. The CacheManager then marks the corre-
sponding file index entries as clean and removes the dirty
list entries.

3.2 Nitro Functionality

File read path. Read requests check the file index based
on filehandle and offset. If there is a hit in the file in-
dex, the CacheManager will read the compressed extent
from a WEU and decompress it. The LRU status for the
WEU is updated accordingly. For base entries found in
the file index, reading the extent’s header from SSD can
confirm the validity of the extent. When reading a dupli-
cate entry, the CacheManager confirms the validity with
WEU generation numbers. An auxiliary structure tracks
whether each WEU is currently in memory or in SSD.
If there is a file index miss and the underlying stor-
age system supports file recipes (i.e. COS), the Cache-
Manager prefeteches the file recipe into the recipe cache.
Subsequent read requests reference the recipe cache to
access fingerprints, which are checked against the cache
fingerprint index. If the fingerprint is found to be a du-
plicate, then cached data can be returned, thus avoid-
ing a substantial fraction of potential disk accesses. The
CacheManager updates the LRU status for the fingerprint
index if there is a hit. If a read request misses in both the
file and fingerprint indices, then the read is serviced from
the underlying HDD system, returned to the client, and
passed to the cache insertion path.
File write path. On a write, extents are buffered in
NVRAM and passed to the CacheManager for asyn-
chronous SSD caching.
Cache insertion path. To demonstrate the process of in-
serting an extent into the cache and deduplication, con-
sider the following 6-step walk-through example in Fig-
ure 3: (1) Hash a new extent (either from caching a read
miss or from the file write path) to create a fingerprint.
(2) Check the fingerprint against the fingerprint index.
If the fingerprint is in the index, update the appropriate
LRU status and go to step 5. Otherwise continue with
step 3. (3) Compress and append the extent to a WEU
that is in-memory, and update the WEU header. (4) Up-
date the fingerprint index to map from a fingerprint to
WEU location. (5) Update the file index to map from
file handle and offset to WEU. The first entry for the

504 2014 USENIX Annual Technical Conference

USENIX Association

cached extent is marked as a “Base” entry. Note that
the WEU header only tracks the base entry. (6) When
an in-memory WEU becomes full, increment the gen-
eration number and write it to the SSD. In write-back
mode, dirty extents and clean extents are segregated into
separate WEUs to simplify eviction, and the dirty-list is
updated when a WEU is migrated to SSD.

Handling of duplicate entries is slightly more compli-
cated. Once a WEU is stored in SSD, we do not update
its header because of the erase penalty involved. When
a write consists of duplicate content, as determined by
the fingerprint index, a duplicate entry is created in the
file index (marked as “Dup’’) which points to the extent’s
location in SSD WEU. Note that when a file extent is
over-written, the file index entry is updated to refer to
the newest version. Previous version(s) in the SSD may
still be referenced by duplicate entries in the file index.
SSD cache replacement policy. Our cache replace-
ment policy selects a WEU from the SSD to evict before
reusing that space for a newly packed WEU. The Cache-
Manager initiates cache replacement by migrating dirty
data from the selected WEU to disk storage and remov-
ing corresponding invalid entries from the file and finger-
print indices. To understand the interaction of WEU and
SSDs, we experimented with moving the cache replace-
ment decisions to the SSD, on the premise that the SSD
FTL has more internal knowledge. In our co-designed
SSD version (§4), the CacheManager will query the SSD
to determine which WEU should be replaced based on
recency. If the WEU contains dirty data, the Cache-
Manager will read the WEU and write dirty extents to
underlying disk storage.

Cleaning the file index. When evicting a WEU from
SSD, our in-memory indices must also be updated. The
WEU metadata allows us to remove many file index en-
tries. It is impractical, though, to record back pointers
for all duplicate entries in the SSD, because these dupli-
cates may be read/written hours or days after the extent
is first written to a WEU. Updating a WEU header with
a back pointer would increase SSD churn. Instead, we
use asynchronous cleaning to remove invalid, duplicate
file index entries. A background cleaning thread checks
all duplicate entries and determines whether their gener-
ation number matches the WEU generation number. If
a stale entry is accessed by a client before it is cleaned,
then a generation number mismatch indicates that the en-
try can be removed. All of the WEU generation numbers
can be kept in memory, so these checks are quick, and
rollover cases are handled.

Faster snapshot restore/access. Nitro not only accel-
erates random I/Os but also enables faster restore and/or
access of snapshots. The SSD can cache snapshot data
as well as primary data for COS storage, distinguished by
separate snapshot file handles.

We use the standard snapshot functionality of the stor-

age system in combination with file recipes for COS.
When reading a snapshot, its recipe will be prefetched
from disk into a recipe cache. Using the fingerprint in-
dex, duplicate reads will access extents already in the
cache, so any shared extents between the primary and
snapshot versions can be reused, without additional disk
I/0. To accelerate snapshot restores for TPS, integration
with differential snapshot tracking is needed.
System restart. Our cache contains numerous extents
used to accelerate I/0, and warming up a cache after a
system outage (planned or unplanned) could take many
hours. To accelerate cache warming, we implemented a
system restart/crash recovery technique [26]. A journal
tracks the dirty and invalid status of extents. When recov-
ering from a crash, the CacheManager reads the journal,
the WEU headers from SSD (faster than reading all ex-
tent headers), and recreates indices. Note that our restart
algorithm only handles base entries and duplicate entries
that reference dirty extents (in write-back mode). Dupli-
cate entries for clean extents are not explicitly referenced
from WEU headers, but they can be recovered efficiently
by fingerprint lookup when accessed by a client, with
only minimal disk I/O to load file recipes.

4 Nitro Implementation

To evaluate Nitro, we developed a simulator and two pro-
totypes. The CacheManager is shared between imple-
mentations, while the storage components differ. Our
simulator measures read-hit ratios and SSD churn, and
its disk stub generates synthetic content based on finger-
print. Our prototypes measure performance and use real
SSDs and HDDs.

Potential SSD customization. Most of our experi-
ments use standard SSDs without any modifications, but
it is important to validate our design choices against
alternatives that modify SSD functionality. Previous
projects [1, 3, 13] showed that the design space of the
FTL can lead to diverse SSD characteristics, so we would
like to understand how Nitro would be affected by poten-
tial SSD changes. Interestingly, we found through simu-
lation that Nitro performs nearly as well with a commer-
cial SSD as with a customized SSD.

We explored two FTL modifications, as well as
changes to the standard GC algorithm. First, the FTL
needs to support aligned allocation of contiguous physi-
cal pages for a WEU across multiple planes in aligned
blocks, similar to vertical and horizontal super-page
striping [3]. Second, to quantify the best-case of using
SSD as a cache, we push the cache replacement func-
tionality to the FTL, since the FTL has perfect informa-
tion about page state. Thus, a new interface allows the
CacheManager to update indices and implement write-
back mode before eviction. We experimented with mul-

USENIX Association

2014 USENIX Annual Technical Conference 505

tiple variants and present WEU-LRU, an update to the
greedy SSD GC algorithm that replaces WEUSs.

We also added the SATA TRIM command [28] in
our simulator, which invalidates a range of SSD logi-
cal addresses. When the CacheManager issues TRIM
commands, the SSD performs GC without copying for-
ward data. Our SSD simulator is based on well-studied
simulators [1, 3] with a hybrid mapping scheme [15]
where blocks are categorized into data and log blocks.
Page-mapped log blocks will be consolidated into block-
mapped data blocks through merge operations. Log
blocks are further segregated into sequential regions and
random areas to reduce expensive merge operations.
Prototype system. We have implemented a prototype
Nitro system in user space, leveraging multi-threading
and asynchronous I/O to increase parallelism and with
support for replaying storage traces. We use real SSDs
for our cache, and either a COS or TPS system with hard
drives for storage (§ 5). We confirmed the cache hit ra-
tios are the same between the simulator and prototypes.
When evicting dirty extents from SSD, they are moved
to a write queue and written to disk storage before their
corresponding WEU is replaced.

5 Experimental Methodology

In this section, we first describe our analysis metrics.
Second, we describe several storage traces used in our
experiments. Third, we discuss the range of parameters
explored in our evaluation. Fourth, we present the plat-
form for our simulator and prototype systems.

5.1 Metrics

Our results present overall system IOPS, including both
reads and writes. Because writes are handled asyn-
chronously and are protected by NVRAM, we further
focus on read-hit ratio and read response time to validate
Nitro. The principal evaluation metrics are:

IOPS: Input/Output operations per second.

Read-hit ratio: The ratio of read I/O requests satisfied
by Nitro over total read requests.

Read response time (RRT): The average elapsed time
from the dispatch of one read request to when it finishes,
characterizing the user-perceivable latency.

SSD erasures: The number of SSD blocks erased, which
counts against SSD lifespan.

Deduplication and compression ratios: Ratio of the
data size versus the size after deduplication or compres-
sion (> 1X). Higher values indicate more space savings.

5.2 Experimental Traces

Most of our experiments are with real-world traces, but
we also use synthetic traces to study specific topics.

FIU traces: Florida International University (FIU) col-
lected storage traces across multiple weeks, including
WebVM (a VM running two web-servers), Mail (an

email server with small I/Os), and Homes (a file server
with a large fraction of random writes). The FIU traces
contain content fingerprint information with small gran-
ularity (4KB or 512B), suitable for various extent size
studies. The FIU storage systems were reasonably sized,
but only a small region of the file systems was accessed
during the trace period. For example, WebVM, Homes
and Mail have file system sizes of 70GB, 470GB and
500GB in size, respectively, but we measured that the
traces only accessed 5.3%, 5.8% and 11.5% of the stor-
age space, respectively [14]. The traces have more writes
than reads, with write-to-read ratios of 3.6, 4.2, and 4.3,
respectively. To our knowledge, the FIU traces are the
only publicly available traces with content.

Boot-storm trace: A “boot-storm” trace refers to many
VMs booting up within a short time frame from the same
storage system [8]. We first collected a trace while boot-
ing up one 18MB VM kernel in Xen hypervisor. The
trace consisted of 99% read requests, 14% random I/O,
and 1.2X deduplication ratio. With this template, we syn-
thetically produced multiple VM traces in a controlled
manner representing a large number of cloned VMs with
light changes. Content overlap was set at 90% between
VMs, and the addresses of duplicates were shifted by 0-
15% of the address space.

Restore trace: To study snapshot restore, we collected
100 daily snapshots of a 38GB workstation VM with
a median over-write rate of 2.3%. Large read I/Os
(512KB) were issued while restoring the entire VM.

Fingerprint generation. The FIU traces only contain
fingerprints for one block size (e.g. 4KB), and we want
to vary the extent size for experiments (4-128KB), so it is
necessary to process the traces to generate extent finger-
prints. We use a multi-pass algorithm, which we briefly
describe. The first pass records the fingerprints for each
block read in the trace, which is the initial state of the file
system. The second pass replays the trace and creates
extent fingerprints. An extent fingerprint is generated
by calculating a SHA-1 hash of the concatenated block
fingerprints within an extent, filling in unspecified block
fingerprints with unique values as necessary. Write I/Os
within the trace cause an update to block fingerprints and
corresponding extent fingerprints. A final pass replays
the modified trace for a given experiment.

Synthetic compression information. Since the FIU
traces do not have compression information, we synthet-
ically generate content with intermingled unique and re-
peated data based on a compression ratio parameter. Un-
less noted, the compression ratio is set for each extent
using a normal distribution with mean of 2 and variance
of 0.25, representing a typical compression ratio for pri-
mary workloads [29]. We used LZ4 [9] for compression
and decompression in the prototype.

506 2014 USENIX Annual Technical Conference

USENIX Association

Variable Values
Fingerprint index ratio (%) 100, 75, 50, 25, 0 (off)
Compression on, off

Extent size (KB) 4,8, 16, 32,64, 128
Write/Evict granularity WEU, extent
Cache size (% of volume) 0.5,1,2,5

WEU size (MB) 0.5,1,2,4
Co-design standard SSD, modified SSD
Write-mode write-through, write-back
Prefetching dynamic up to 128KB
Backend storage COS, TPS

Table 1: Parameters for Nitro with default values in bold.

5.3 Parameter Space

Table 1 lists the configuration space for Nitro, with de-
fault values in bold. Due to space constraints, we in-
terleave parameter discussion with experiments in the
evaluation section. While we would like to compare the
impact of compression using WEU-caching versus plain
extent-based caching, it is unclear how to efficiently store
compressed (variable-sized) extents to SSDs without us-
ing WEUs or an equivalent structure [10, 19, 31]. For
that reason, we show extent caching without compres-
sion, but with or without deduplication, depending on
the experiment. The cache is sized as a fraction of the
storage system size. For the FIU traces, a 2% cache
corresponds to 1.4GB, 9.4GB, and 10GB for WebVM,
Homes and Mail traces respectively. Most evaluations
are with the standard SSD interface except for a co-
design evaluation. We use the notation Deduplicated
(D), Non-deduplicated (ND), Compressed (C) and Non-
compressed (NC). Nitro uses the WEU (D, C) configura-
tion by default.

5.4 Experimental Platform

Our prototype with a COS system is a server equipped
with 2.33GHz Xeon CPUs (two sockets, each with two
cores supporting two hardware threads). The system has
36GB of DRAM, 960MB of NVRAM, and two shelves
of hard drives. One shelf has 12 1TB 7200RPM SATA
hard drives, and the other shelf has 15 7200RPM 2TB
drives. Each shelf has a RAID-6 configuration includ-
ing two spare disks. For comparison, the TPS system
is a server equipped with four 1.6GHz Xeon CPUs and
8GB DRAM with battery protection. There are 11 1TB
7200RPM disk drives in a RAID-5 configuration. Before
each run, we reset the initial state of the HDD storage
based on our traces.

Both prototypes use a Samsung 256GB SSD, though
our experiments use a small fraction of the available
SSD, as controlled by the cache capacity parameter. Ac-
cording to specifications, the SSD supports >100K ran-
dom read IOPS and >90K random write IOPS. Using a
SATA-2 controller (3.0 Gbps), we measured 8KB SSD

100

Read-hit Ratio (%)

Extent (ND, NC) WEU (ND, C)
Extent (D, NC) mmmmm WEU (D, NC) zzzzza
WEU (ND, NC) ez WEU (D, C)

Figure 4: Read-hit ratio of WEU-based vs. Extent-based for
all workloads. Y-axis starts at 50%.

random reads and writes at 18.7K and 4.2K IOPS, re-
spectively. We cleared the SSD between experiments.
We set the SSD simulation parameters based on the
Micron MLC SSD specification [23]. We vary the size
of each block or flash chip to control the SSD capacity.
Note that a larger SSD block size has longer erase time
(e.g., 2ms for 128KB and 3.8ms for 2MB). For the un-
modified SSD simulation, we over-provision the SSD ca-
pacity by 7% for garbage collection, and we reserve 10%
for log blocks for the hybrid mapping scheme. No space
reservation is used for the modified SSD WEU variants.

6 Evaluation

This section presents our experimental results. We first
measure the impact of deduplication and compression on
caching as well as techniques to reduce in-memory in-
dices and to extend SSD lifespan. Second, we evaluate
Nitro performance on both COS and TPS prototype sys-
tems and perform sensitivity and overhead analysis. Fi-
nally, we study Nitro’s additional advantages.

6.1 Simulation Results

We start with simulation results, which demonstrate
caching improvements with deduplication and compres-
sion and compare a standard SSD against a co-design
that modifies an SSD to specifically support caching.
Read-hit ratio. We begin by showing Nitro’s effective-
ness at improving the read-hit ratio, which is shown in
Figure 4 for all three FIU traces. The trend for all traces
is that adding deduplication and compression increases
the read-hit ratio.

WEU (D, C) with deduplication (fingerprint index ra-
tio set to 100% of available SSD extent entries) and com-
pression represents the best scenario with improvements
of 25%, 14% and 20% across all FIU traces as compared
to a version without deduplication or compression (WEU
(ND, NC)). Adding compression increases the read-hit
ratio for WEU by 5-9%, and adding deduplication in-
creases the read-hit ratio for WEU by 8-19% and extents
by 6-17%. Adding deduplication consistently offers a
greater improvement than adding compression, suggest-
ing deduplication is capable of increasing the read-hit ra-
tio for primary workloads that contain many duplicates

USENIX Association

2014 USENIX Annual Technical Conference 507

—
o
o

o
o o
T

N
o

Read-hit Ratio (%)

N
o o

Homes Mail

Fingerprint Index Ratio
100% 50%]
75% — 25%

(a) Impact of fingerprint index ratio on read-hit ratio

%

0% zzzzza

0% zzzzza

1.5
1k
0.5
0

Deduplication Ratio

Homes Mail

Fingerprint Index Ratio
100% E====3 50%
75% — 25%

(b) Impact of fingerprint index ratio on deduplication ratio

Figure 5: Fingerprint index ratio impact on read-hit ratio and
deduplication for WEU (D, NC).

like the FIU traces. Comparing WEU and extent-based
caching with deduplication, but without compression (D,
NC), extent-based caching has a slightly higher hit-ratio
by 1-4% due to finer-grained evictions. However, the ad-
vantages of extent-based caching are offset by increased
SSD erasures, which are presented later. In an experi-
ment that increased the cache size up to 5% of the file
system size, the combination of deduplication and com-
pression (D, C) showed the largest improvement. These
results suggest Nitro can extend the caching benefits of
SSDs to much larger disk storage systems.

Impact of fingerprint index ratio. To study the impact
of deduplication, we adjust the fingerprint index ratio for
WEU (D, NC). 100% means that all potential duplicates
are represented in the index, while 0% means dedup-
lication is turned off. Decreasing the fingerprint index
ratio directly reduces the RAM footprint (29 bytes per
entry) but also likely decreases the read-hit ratio as the
deduplication ratio drops.

Figure 5(a) shows the read-hit ratio drops gradually as
the fingerprint index ratio decreases. Figure 5(b) shows
that the deduplication ratio also slowly decreases with
the fingerprint index ratio. Homes and Mail have higher
deduplication ratios (>1.5X) than WebVM, as shown in
Figure 1. Interestingly, higher deduplication ratios in the
Homes and Mail traces do not directly translate to higher
read-hit ratios because there are more writes than reads
(~4 W/R ratio), but do increase IOPS (§6.2). Nitro users
could limit their RAM footprint by setting the fingerprint
index ratio to 75% or 50%, which results in a 16-22%
RAM savings respectively and a decrease in read-hit ra-
tio of 5-11%. For example, when reducing the finger-
print index from 100% to 50% for the Mail trace (10GB

Normalized
SSD Erasures

WebVM Homes Mail

WEU-LRU-mod ===
WEU-LRU-TRIM

Extent-LRU-mod
Extent-LRU-TRIM

Figure 6: Number of SSD erasures for modified and unmodi-
fied SSD variants.

cache size), >131,000 duplicate extents are not cached
by Nitro, on average.

WEU vs. SSD co-design. So far, we considered sce-
narios where the SSD is unmodified. Next we compare
our current design to an alternative that modifies an SSD
to directly support WEU caching. In this experiment,
we study the impact of silent eviction and the WEU-
LRU eviction policy (discussed in §4) on SSD erasures.
Our co-design specifically aligns WEUs to SSD blocks
(WEU-LRU-mod). We also compare our co-design to
variants using the TRIM command (WEU/extent-LRU-
TRIM), which alerts the FTL that a range of logical ad-
dresses can be released. Figure 6 plots SSD erasures
normalized relative to WEU-LRU without SSD modi-
fications (1.0 on the vertical axis) and compares WEU
versus extent caching.

SSD erasures are 2-4X higher for the extent-LRU-mod
approach (i.e. FlashTier [26] extended to use an LRU
policy) and extent-LRU-TRIM approach as compared to
both WEU versions. This is because the CacheManager
lacks SSD layout information so that extent-based evic-
tion cannot completely avoid copying forward live SSD
data. Interestingly, utilizing TRIM with the WEU-LRU-
TRIM approach has similar results to WEU-LRU-mod,
which indicates the CacheManager could issue TRIM
commands before overwriting WEUSs instead of modi-
fying the SSD interface. We also analyzed the impact
of eviction policy on read-hit ratio. WEU-LRU-mod
achieves a 5-8% improvement in read-hit ratio compared
to an unmodified version across the FIU traces.

Depending on the data set, the number of SSD era-
sures varied for the FTL and TRIM alternatives, with
results between 9% fewer and 20% more erasures than
using WEUs. So, using WEUSs for caching is a strong
alternative when it is impractical to modify the SSD or
when the TRIM command is unsupported. Though not
shown, caching extents without SSD modifications or
TRIM (naive caching) resulted in several orders of mag-
nitude more erasures than using WEUs.

6.2 Prototype System Results

Next, we report the performance of Nitro for primary
workloads on both CcOS and TPS systems. We then

508 2014 USENIX Annual Technical Conference

USENIX Association

Metric Trace Extent Nitro WEU Variants
(%) ND, NC | ND, NC [ND, C [D, NC [D,C
COS system
WebVM | 251 307 393 532 | 661
IOPS | Homes 259 341 432 556 | 673
Mail 213 254 292 320 | 450
WebVM 52 54 63 72 78
RRT | Homes 46 49 55 57 62
Mail 50 53 61 67 72
TPS system
WebVM 93 113 148 198 | 264
IOPS | Homes 90 130 175 233 | 287
Mail 56 75 115 122 | 165
WebVM 39 41 49 58 64
RRT | Homes 39 42 47 49 54
Mail 41 44 51 57 61

Table 2: Performance evaluation of Nitro and its variants. We
report IOPS improvement and read response time (RRT) re-
duction percentage relative to COS and TPS systems without an
SSD cache. The standard deviation is <7.5%.

present sensitivity and overheads analysis of Nitro. Note
that the cache size for each workload is 2% of the file
system size for each dataset unless otherwise stated.
Performance in COS system. We first show how a high
read-hit ratio in our Nitro prototype translates to an over-
all performance boost. We replayed the FIU traces at an
accelerated speed to use ~95% of the system resources,
(reserving 5% for background tasks), representing a sus-
tainable high load that Nitro can handle. We setup a
warm cache scenario where we use the first 16 days to
warm the cache and then measure the performance for
the following 5 days.

Table 2 lists the improvement of total IOPS (reads and
writes), and read response time reduction relative to a
system without an SSD cache for all FIU traces. For ex-
ample, a decrease in read response time from 4ms to 1ms
implies a 75% reduction. For all traces, IOPS improve-
ment is >254%, and the read response time reduction is
>49% for Nitro WEU variants. In contrast, the Extent
(ND, NC) column shows a baseline SSD caching sys-
tem without the benefit of deduplication, compression,
or WEU. The read-hit ratio is consistent with Figure 4.

We observe that with deduplication enabled (D, NC),
our system achieves consistently higher IOPS compared
to the compression-only version (ND, C). This is be-
cause finding duplicates in the SSD prevents expen-
sive disk storage accesses, which have a larger impact
than caching more data due to compression. Nitro (D,
C) achieves the highest IOPS improvement (673%) in
Homes using COS. As explained before, a high dedup-
lication ratio indicates that duplicate writes are canceled,
which contributes to the improved IOPS. For Mail, the
increase of deduplication relative to compression-only
version is smaller because small I/Os (29% of 1/Os are

< the 8KB extent size) can cause more reads from disk
on the write path, thus negating some of the benefits of
duplicate hits in the SSDs.

Compared to extent-based caching, WEU (D, C) im-
proves non-normalized IOPS up to 120% and reduces
read response time up to 55%. Compared to WEU (ND,
NC), extent-based caching decreases IOPS 13-22% and
increases read response time 4-7%. This is partially
because extent-based caching increases the SSD write
penalty due to small SSD overwrites. From SSD ran-
dom write benchmarks, we found that 2MB writes (WEU
size) have ~60% higher throughput than 8KB writes (ex-
tent size), demonstrating the value of large writes to SSD.

We also performed cold cache experiments that replay
the trace from the last 5 days without warming up Nitro.
Nitro still improves IOPS up to 520% because of sequen-
tial WEU writes to the SSD. Read response time reduc-
tions are 2-29% for Nitro variants across all traces be-
cause fewer duplicated extents are cached in the SSD.
Performance in TPS system. Nitro also can benefit a
TPS system (Table 2). Note that Nitro needs to com-
pute extent fingerprints before performing deduplication,
which is computation that can be reused in COS but not
TPS. In addition, Nitro cannot leverage a recipe cache for
TPS to accelerate read requests, which causes 5-14% loss
in read hit-ratio for our WEU variants.

For all traces, the improvement of total IOPS (reads

and writes) is >75%, and the read response time reduc-
tion is >41% for Nitro WEU variants. While dedup-
lication and compression improve performance, the im-
provement across Nitro variants is lower relatively than
for our COS system because storage systems without
capacity-optimized techniques (e.g. deduplication and
compression) have shorter processing paths, thus bet-
ter baseline performance. For example, overwrites in
existing deduplication systems can cause performance
degradation because metadata updates need to propagate
changes to an entire file recipe structure. For these rea-
sons, the absolute IOPS is higher than COS with faster
read response times. Cold cache results are consistent
with warm cache results.
Sensitivity analysis. To further understand the impact of
deduplication and compression on caching, we use syn-
thetic traces to investigate the impact on random read
performance, which represents the worst-case scenario
for Nitro. Note that adding non-duplicate writes to the
traces would equivalently decrease the cache size (e.g.
multi-stream random reads and non-duplicate writes).
Two parameters control the synthetic traces: (1) The ra-
tio of working set size versus the cache size and (2) the
deduplication ratio. We vary both parameters from 1 to
10, representing a large range of possible scenarios.

Figure 7 shows projected 2D contour graphs from a
3D plot for (D, NC) and (D, C). The metric is read re-

USENIX Association

2014 USENIX Annual Technical Conference 509

Normalized Response Time (X) Normalized Response Time (X)

90

o
tio
o

]
]
D
o

I
IS

w

=}

-

Deduplication Ratio
Deduplication Ra

1 4 7 10 1 4 7 10

Working Set Size v Cache Size
(a) No compression

Figure 7: Sensitivity analysis of (D, NC) and (D, C).

Working Set Size v Cache Size
(b) 2X compression

sponse time in COS with Nitro normalized against that of
fitting the entire data set in SSD (lower values are better).
The horizontal axis is the ratio of working set size versus
cache size, and the vertical axis is the deduplication ra-
tio. The bottom left corner (1, 1) is a working set that is
the same size as the cache with no deduplication. We can
derive the effective cache size from the compression and
deduplication ratio. For example, the effective cache size
for a 16GB cache in this experiment expands to 32GB
with a 2X deduplication ratio configuration, and further
to 64GB when adding 2X compression.

First, both deduplication and compression are effec-
tive techniques to improve read response time. For ex-
ample, when the deduplication ratio is high (e.g. >5X
such as for multiple, similar VMs), Nitro can achieve re-
sponse times close to SSD even when the working set
size is 5X larger than the cache size. The combina-
tion of deduplication and compression can support an
even larger working set size. Second, when the dedup-
lication ratio is low (e.g.<2X), performance degrades
when the working set size is greater than twice the cache
size. Compression has limited ability to improve re-
sponse time, and only a highly deduplicated scenario
(e.g. VM boot-storm) can counter a large working set
situation. Third, there is a sharp transition from high re-
sponse time to low response time for both (D, NC) and
(D, C) configurations (values jump from 1 to > 8), which
indicates that (slower) disk storage has a greater impact
on response time than (faster) SSDs. As discussed be-
fore, the performance for Nitro in the TPS system is al-
ways better than the COS system.

Nitro overheads. Figure 8 illustrates the performance
overheads of Nitro with low and high hit-ratios. We per-
formed a boot-storm experiment using a real VM boot
trace (§5) synthetically modified to create 60 VM traces.
For the 59 synthetic versions, we set the content over-
lap ratio to 90%. We set the cache size to achieve 0%
(0OGB) and 100% (1.2GB) hit-ratios in the SSD cache.
With these settings, we expect Nitro’s performance to ap-
proach the performance of disk storage and SSD storage.

In both cos and TPS 0% hit-ratio configurations,
we normalized against corresponding systems without
SSDs. All WEU variants impose <7% overhead in re-

1.2

Normalized
Response Time

cos TPS
(0%) (0%)
WEU (ND, NC) === WEU (D, NC)

WEU (ND, C) s WEU (D, C)

Figure 8: Overheads of Nitro prototypes with the cache
sized to have 0% and 100% hit-ratios. Y-axis starts at
0.8. The standard dev. is <3.8% in all cases.

sponse time because extent compression and fingerprint
calculation are performed off the critical path. In the
100% hit-ratio scenario, we normalize against a sys-
tem with all data fitting in SSD without WEUs. WEU
(ND, NC) imposes a 2% increase in response time.
Compression-only (ND, C) and deduplication-only (D,
NC) impose 11% and 6.2% overhead on response time
respectively. WEU (D, C) overhead (<18%) mainly
comes from decompression, which requires additional
time when reading compressed extents from SSD. Al-
though we are not focused on comparing compression
algorithms, we did quantify that gzip achieves 23-47%
more compression than LZ4 (our default), which im-
proves the read-hit ratio, though decompression is 380%
slower for gzip.

6.3 Nitro Advantages

There are additional benefits because Nitro effectively
expands a cache: improved random read performance in
aged COs, faster snapshot restore performance, and write
reductions to SSD.

Random read performance in aged COS system. For
HDD storage systems, unfortunately, deduplication can
lead to storage fragmentation because a file’s content
may be scattered across the storage system. A previ-
ous study considered sequential reads from large backup
files [18], while we study the primary storage case with
random reads across a range of I/O sizes.

Specifically, we wrote 100 daily snapshots of a 38GB
desktop VM to a standard COS system, a system aug-
mented with the addition of a Nitro cache, and a TPS
system. To age the system, we implemented a retention
policy of 12 weeks to create a pattern of file writes and
deletions. After writing each VM, we measured the time
to perform 100 random reads for I/O sizes of 4KB to
IMB. The Nitro cache was sized to achieve a 50% hit ra-
tio (19GB). Figure 9 shows timing results for the 1st gen-
eration (low-gen) and 100th generation (high-gen) nor-
malized to the response time for COS low-gen at 4KB.
For the TPS system, we only plot the high-gen numbers,
which were similar to the low-gen results, since there
was no deduplication-related fragmentation.

510 2014 USENIX Annual Technical Conference

USENIX Association

COS high-gen response time —&
COS low-gen response time &
Nitro COS high-gen response time --©-
Nitro COS low-gen response time @
TPS high-gen response time

rgirapEreEY CY

ONPAOOONADOOO

Norm. Response Time

u . i ;
G & g R, O, o % S
o T My Ve e Y B 9 %

Read Size (logscale)

Figure 9: Response time diverges for random I/Os.

As the read size grows from 4KB to around 128KB,
the response times are stable and the low-gen and high-
gen results are close to each other for all systems. How-
ever, for larger read sizes in the COS high-gen system,
the response time grows rapidly. The COS system’s logs
indicate that the number of internal I/Os for the COS sys-
tem is consistent with the high response times. In com-
parison to the COS system, the performance gap between
low-gen and high-gen is smaller for Nitro. For IMB ran-
dom reads, Nitro COS high-gen response times (76ms)
are slightly faster than cOS low-gen, and Nitro COS low-
gen response times (39ms) are slightly faster than a TPS
high-gen system. By expanding an SSD cache, Nitro
can reduce performance differences across random read
sizes, though the impact of generational differences is
not entirely removed.

Snapshot restore. Nitro can also improve the perfor-
mance of restoring and accessing standard snapshots and
clones, because of shared content with a cached primary
version. Figure 10 plots the restore time for 100 daily
snapshots of a 38GB VM (same sequence of snapshots
as the previous test). The restore trace used 512KB read
I/Os, which generate random HDD I/Os in an aged, COS
system described above.

We reset the cache before each snapshot restore exper-
iment to the state when the 100th snapshot is created. We
evaluate the time for restoring each snapshot version and
report the average for groups of 25 snapshots with the
cache sized at either 2% or 5% of the 38GB volume. The
standard deviation for each group was <7s. Group 1-25
has the oldest snapshots, and group 76-100 has the most
recent. For all cache sizes, WEU (D, C) has consistently
faster restore performance than a compression-only ver-
sion (ND, C). For the oldest snapshot group (1-25) with
a 5% cache size, WEU (D, C) achieves a shorter restore
time (374s) when deduplication and compression are en-
abled as compared to the system with compression only
(513s). The recent snapshot group averages 80% content
overlap with the primary version, while the oldest group
averages 20% content overlap, as plotted against the right
axis. Clearly, deduplication assists Nitro in snapshot re-
store performance.

800 =m 1005
o 700 80 =
= 600 . 60 }‘:B'
oo [——— S0 5
s
& 300 B ‘ .
76-100 51-75 26-50 105
(recent) Snapshot Groups (oldest)
WEU (2%, ND, C) - WEU (5%, D, G) 0

WEU (2%, D, C) —&—
WEU (5%, ND, C) --®

Avg. content overlap

Figure 10: Nitro improves snapshot restore performance.

Reducing writes to SSD. Another important issue is
how effective our techniques are at reducing SSD writes
compared to an SSD cache without Nitro. SSDs do
not support in-place update, so deduplication can pre-
vent churn for repeated content to the same, or a differ-
ent, address. For WebVM and Mail, deduplication-only
and compression-only reduces writes to SSD (>22%),
in which compression produces more savings compared
to deduplication. In the Homes, deduplication reduces
writes to SSD by 39% because of shorter fingerprint
reuse distance. Deduplication and compression (D, C)
reduces writes by 53%. Reducing SSD writes directly
translates to extending the lifespan.

7 Related Work

SSD as storage or cache. Many studies have focused
on incorporating SSDs into the existing hierarchy of a
storage system [2, 7, 12, 16, 30]. In particular, several
works propose using flash as a cache to improve perfor-
mance. For example, Intel Turbo Memory [21] adds a
nonvolatile disk cache to the hierarchy of a storage sys-
tem to enable fast start-up. Kgil et al. [11] splits a flash
cache into separate read and write regions and uses a
programmable flash memory controller to improve both
performance and reliability. However, none of these sys-
tems combine deduplication and compression techniques
to increase the effective capacity of an SSD cache.
Several recent papers aim to maximize the perfor-
mance potential of flash devices by incorporating new
strategies into the established storage I/O stack. For
example, SDF [25] provides a hardware/software co-
designed storage to exploit flash performance potentials.
FlashTier [26] specifically redesigned SSD functionality
to support caching instead of storage and introduced the
idea of silent eviction. As part of Nitro, we explored
possible interface changes to the SSD including aligned
WEU writes and TRIM support, and we measured the
impact on SSD lifespan.
Deduplication and compression in SSD. Deduplication
has been applied to several primary storage systems. iD-
edup [27] selectively deduplicates primary workloads in-
line to strike a balance between performance and ca-
pacity savings. ChunkStash [6] designed a fingerprint

USENIX Association

2014 USENIX Annual Technical Conference 511

index in flash, though the actual data resides on disk.
Dedupv1 [22] improves inline deduplication by leverag-
ing the high random read performance of SSDs. Unlike
these systems, Nitro performs deduplication and com-
pression within an SSD cache, which can enhance the
performance of many primary storage systems.

Deduplication has also been studied for SSD storage.
For example, CAFTL [4] is designed to achieve best-
effort deduplication using an SSD FTL. Kim et al. [13]
examined using the on-chip memory of an SSD to in-
crease the deduplication ratio. Unlike these systems,
Nitro performs deduplication at the logical level of file
caching with off-the-shelf SSDs. Feng and Schindler [8]
found that VDI and long-term CIFS workloads can be
deduplicated with a small SSD cache. Nitro leverages
this insight by allowing our partial fingerprint index to
point to a subset of cached entries. Another distinction
is that since previous deduplicated SSD projects worked
with fixed-size (non-compressed) blocks, they did not
have to maintain multiple references to variable-sized
data. Nitro packs compressed extents into WEUs to ac-
celerate writes and reduce fragmentation. SAR [20] stud-
ied selective caching schemes for restoring from dedu-
plicated storage. Our technique uses recency instead of
frequency for caching.

8 Conclusion

Nitro focuses on improving storage performance with a
capacity-optimized SSD cache with deduplication and
compression. To deduplicate our SSD cache, we present
a fingerprint index that can be tuned to maintain dedup-
lication while reducing RAM requirements. To support
the variable-sized extents that result from compression,
our architecture relies upon a Write-Evict Unit, which
packs extents together and maximizes the cache hit-ratio
while extending SSD lifespan. We analyze the impact
of various design trade-offs involving cache size, finger-
print index size, RAM usage, and SSD erasures on over-
all performance. Extensive evaluation shows that Nitro
can improve performance in both COS and TPS systems.

Acknowledgments

We thank Windsor Hsu, Stephen Manley and Darren
Sawyer for their guidance on Nitro. We also thank our
shepherd Vivek Pai and the reviewers for their feedback.

References

[1] N. Agrawal et al. Design Tradeoffs for SSD Performance.
USENIX ATC, 2008.

[2] A. Badam and V. S. Pai. SSDAlloc: Hybrid SSD/RAM
Memory Management Made Easy. NSDI, 2011.

[3] A. M. Caulfield, L. M. Grupp, and S. Swanson. Gordon:
Using Flash Memory to Build Fast, Power-efficient Clus-
ters for Data-intensive Applications. ASPLOS, 2009.

[4] F. Chen, T. Luo, and X. Zhang. CAFTL: A Content-aware
Flash Translation Layer Enhancing the Lifespan of Flash
Memory Based Solid State Drives. FAST, 2011.

(5]

(6]

(7]
(8]

(9]
[10]
[11]

[12]

[13]

[14]

[15]

[16]
[17]

(18]

[19]

[20]

[21]

(22]

(23]
[24]
[25]

[26]

[27]
(28]
[29]
(30]

[31]

C. Constantinescu, J. Glider, and D. Chambliss. Mix-
ing Deduplication and Compression on Active Data Sets.
DCC, 2011.

B. Debnath, S. Sengupta, and J. Li. ChunkStash: Speed-
ing Up Inline Storage Deduplication Using Flash Mem-
ory. USENIX ATC, 2010.

Facebook Inc. Facebook FlashCache, 2013. https://
github.com/facebook/flashcache.

J. Feng and J. Schindler. A Deduplication Study for Host-
side Caches in Virtualized Data Center Environments.
MSST, 2013.

Google LZ4: Extremely Fast Compression Algorithm.
Google, 2013. http://code.google.com/p/1z4.

W. Huang et al. A Compression Layer for NAND Type
Flash Memory Systems. ICITA, 2005.

Kgil, Taecho and Roberts, David and Mudge, Trevor. Im-
proving NAND Flash Based Disk Caches. ISCA, 2008.
H. Kim and S. Ahn. BPLRU: A Buffer Management
Scheme for Improving Random Writes in Flash Storage.
FAST, 2008.

J. Kim et al. Deduplication in SSDs: Model and Quanti-
tative Analysis. MSST, 2012.

R. Koller and R. Rangaswami. I/O Deduplication: Utiliz-
ing Content Similarity to Improve I/O Performance. ACM
T0S, 2010.

S. Lee et al. A Log Buffer-based Flash Translation Layer
Using Fully-associative Sector Translation. ACM TECS,
2007.

C. Li et al. Quantifying and Improving I/O Predictability
in Virtualized Systems. IWQoS, 2013.

C. Lietal. Assert(!Defined(Sequential I/0)). HotStorage,
2014.

M. Lillibridge, K. Eshghi, and D. Bhagwat. Improv-
ing Restore Speed for Backup Systems that Use Inline
Chunk-Based Deduplication. FAST, 2013.

T. Makatos et al. Using Transparent Compression to Im-
prove SSD-based 1/0 Caches. EuroSys, 2010.

B. Mao et al. Read Performance Optimization for Dedup-
lication Based Storage Systems in the Cloud. ACM TOS,
2014.

J. Matthews et al. Intel Turbo Memory: Nonvolatile Disk
Caches in the Storage Hierarchy of Mainstream Com-
puter Systems. ACM TOS, 2008.

D. Meister and A. Brinkmann. Dedupvl: Improv-
ing Deduplication Throughput Using Solid State Drives
(SSD). MSST, 2010.

Micron MLC SSD Specification, 2013. http://www.
micron.com/products/nand-flash/.

D. Narayanan et al. Migrating Server Storage to SSDs:
Analysis of Tradeoffs. EuroSys, 2009.

J. Ouyang et al. SDF: Software-defined Flash for Web-
scale Internet Storage Systems. ASPLOS, 2014.

M. Saxena, M. M. Swift, and Y. Zhang. FlashTier: A
Lightweight, Consistent and Durable Storage Cache. Eu-
roSys, 2012.

K. Srinivasan et al. iDedup: Latency-aware, Inline Data
Deduplication for Primary Storage. FAST, 2012.

TRIM Specification. ATA/ATAPI Command Set- 2 (ACS-
2). http://www.t13.o0rg, 2007.

G. Wallace et al. Characteristics of Backup Workloads in
Production Systems. FAST, 2012.

Q. Yang and J. Ren. I-CASH: Intelligently Coupled Array
of SSD and HDD. HPCA, 2011.

K. S. Yim, H. Bahn, and K. Koh. A Flash Compression
Layer for Smartmedia Card Systems. IEEE TOCE, 2004.

512 2014 USENIX Annual Technical Conference

USENIX Association

