
This paper is included in the Proceedings of USENIX ATC ’14:
2014 USENIX Annual Technical Conference.

June 19–20, 2014 • Philadelphia, PA

978-1-931971-10-2

Open access to the Proceedings of
USENIX ATC ’14: 2014 USENIX Annual Technical

Conference is sponsored by USENIX.

ELF: Efficient Lightweight Fast Stream
Processing at Scale

Liting Hu, Karsten Schwan, Hrishikesh Amur, and Xin Chen, Georgia Institute of Technology

https://www.usenix.org/conference/atc14/technical-sessions/presentation/hu

USENIX Association 2014 USENIX Annual Technical Conference 25

ELF: Efficient Lightweight Fast Stream Processing at Scale

Liting Hu, Karsten Schwan, Hrishikesh Amur, Xin Chen
Georgia Institute of Technology

{foxting,amur,xchen384}@gatech.edu, schwan@cc.gatech.edu

Abstract
Stream processing has become a key means for gaining
rapid insights from webserver-captured data. Challenges
include how to scale to numerous, concurrently running
streaming jobs, to coordinate across those jobs to share
insights, to make online changes to job functions to adapt
to new requirements or data characteristics, and for each
job, to efficiently operate over different time windows.

The ELF stream processing system addresses these new
challenges. Implemented over a set of agents enriching
the web tier of datacenter systems, ELF obtains scalabil-
ity by using a decentralized “many masters” architecture
where for each job, live data is extracted directly from
webservers, and placed into memory-efficient compressed
buffer trees (CBTs) for local parsing and temporary stor-
age, followed by subsequent aggregation using shared
reducer trees (SRTs) mapped to sets of worker processes.
Job masters at the roots of SRTs can dynamically cus-
tomize worker actions, obtain aggregated results for end
user delivery and/or coordinate with other jobs.

An ELF prototype implemented and evaluated for a
larger scale configuration demonstrates scalability, high
per-node throughput, sub-second job latency, and sub-
second ability to adjust the actions of jobs being run.

1 Introduction
Stream processing of live data is widely used for applica-
tions that include generating business-critical decisions
from marketing streams, identifying spam campaigns for
social networks, performing datacenter intrusion detec-
tion, etc. Such diversity engenders differences in how
streaming jobs must be run, requiring synchronous batch
processing, asynchronous stream processing, or combin-
ing both. Further, jobs may need to dynamically adjust
their behavior to new data content and/or new user needs,
and coordinate with other concurrently running jobs to
share insights. Figure 1 exemplifies these requirements,
where job inputs are user activity logs, e.g., clicks, likes,
and buys, continuously generated from say, the Video
Games directory in an e-commerce company.

In this figure, the micro-promotion application ex-
tracts user clicks per product for the past 300 s, and lists

{"created_at":"Fri Feb 08
01:10:17 +0000 2013",
"product":"Angry Birds"...}
...

Filter
@buys

Filter
@item

In

Sort
#clicks

Out

Query?
"Angry Birds"

Out

 0
#

2
3

1

Final Fatency V

Angry Birds
Star Wars

Angry Birds
Seasons

Final Fatency X
Top k

 Angry Birds
Seasons

Product
Angry Birds Star Wars,
Angry Birds Trilogy

Bundles

Batch per 5 minute

Stream
per minute

App 1 App 2
App 3

Yes/No

Figure 1: Examples of diverse concurrent applications.

the top-k products that have the most clicks. It can then
dispatch coupons to those “popular” products so as to in-
crease sales. A suitable model for this job is synchronous
batch processing, as all log data for the past 300 s has
to be on hand before grouping clicks per product and
calculating the top-k products being viewed.

For the same set of inputs, a concurrent job performs
product-bundling, by extracting user likes and buys
from logs, and then creating ‘edges’ and ‘vertices’ linking
those video games that are typically bought together. One
purpose is to provide online recommendations for other
users. For this job, since user activity logs are generated in
realtime, we will want to update these connected compo-
nents whenever possible, by fitting them into a graph and
iteratively updating the graph over some sliding time win-
dow. For this usage, an asynchronous stream processing
model is preferred to provide low latency updates.

The third sale-prediction job states a product
name, e.g., Angry Birds, which is joined with the product-
bundling application to find out what products are sim-
ilar to Angry Birds (indicated by the ‘typically bought
together’ set). The result is then joined with the micro-
promotion application to determine whether Angry Birds
and its peers are currently “popular”. This final result can
be used to predict the likely market success of launching
a new product like Angry Birds, and obtaining it requires
interacting with the first and second application.

Finally, all of these applications will run for some con-
siderable amount of time, possibly for days. This makes
it natural for the application creator to wish to update
job functions or parameters during ongoing runs, e.g., to

1

26 2014 USENIX Annual Technical Conference USENIX Association

change the batching intervals to adjust to high vs. low traf-
fic periods, to flush sliding windows to ‘reset’ job results
after some abnormal period (e.g., a flash mob), etc.

Distributed streaming systems are challenged by the
requirements articulated above. First, concerning flex-
ibility, existing systems typically employ some fixed
execution model, e.g., Spark Streaming [28] and oth-
ers [11, 12, 17, 22] treat streaming computations as a
series of batch computations, whereas Storm [4] and
others [7, 21, 24] structure streaming computations as
a dataflow graph where vertices asynchronously process
incoming records. Further, these systems are not designed
to be naturally composable, so as to simultaneously pro-
vide both of their execution models, and they do not offer
functionality to coordinate their execution. As a result,
applications desiring the combined use of their execution
models must use multiple platforms governed via external
controls, at the expense of simplicity.

A second challenge is scaling with job diversity. Many
existing systems inherit MapReduce’s “single master/-
many workers” infrastructure, where the centralized mas-
ter is responsible for all scheduling activities. How to
scale to hundreds of parallel jobs, particularly for jobs
with diverse execution logics (e.g., pipeline or cyclic
dataflow), different batch sizes, differently sized sliding
windows, etc? A single master governing different per-job
scheduling methods and carrying out cross-job coordina-
tion will be complex, creating a potential bottleneck.

A third challenge is obtaining high performance for
incremental updates. This is difficult for most current
streaming systems, as they use an in-memory hashtable-
like data structure to store and aggressively integrate past
states with new state, incurring substantial memory con-
sumption and limited throughput when operating across
large-sized history windows.

The ELF (Efficient, Lightweight, Flexible) stream pro-
cessing system presented in this paper implements novel
functionality to meet the challenges listed above within
a single framework: to efficiently run hundreds of con-
current and potentially interacting applications, with di-
verse per-application execution models, at levels of per-
formance equal to those of less flexible systems.

As shown in Figure 2, each ELF node resides in each
webserver. Logically, they are structured as a million-
node overlay built with the Pastry DHT [25], where each
ELF application has its own respective set of master and
worker processes mapped to ELF nodes, self-constructed
as a shared reducer tree (SRT) for data aggregation. The
system operates as follows: (1) each line of logs received
from webserver is parsed into a key-value pair and contin-
uously inserted into ELF’s local in-memory compressed
buffer tree (CBT [9]) for pre-reducing; (2) the distributed
key-value pairs from CBTs “roll up” along the SRT, which
progressively reduces them until they reach the root to

Flume/
Chukwa/
Kafka

HBase HDFS

MapReduce

Spark/Storm

ELF's DHT

Master 1
for App 1Master 2

for App 2

Master 4
for App 4

Master 3
for App 3

Dataflow of Elf
Dataflow of typical
log processing
systems

Webservers

Elf node

Figure 2: Dataflow of ELF vs. a typical realtime web log
analysis system, composed of Flume, HBase, HDFS, Hadoop
MapReduce and Spark/Storm.

output the final result. ELF’s operation, therefore, entirely
bypasses the storage-centric data path, to rapidly process
live data. Intuitively, with a DHT, the masters of differ-
ent applications will be mapped to different nodes, thus
offering scalability by avoiding the potential bottleneck
created by many masters running on the same node.

ELF is evaluated experimentally over 1000 logical
webservers running on 50 server-class machines, using
both batched and continuously streaming workloads. For
batched workload, ELF can process millions of records
per second, outperforming general batch processing sys-
tems. For a realistic social networking application, ELF
can respond to queries with latencies of tens of millisec-
ond, equaling the performance of state-of-the-art, asyn-
chronous streaming systems. New functionality offered
by ELF is its ability to dynamically change job functions
at sub-second latency, while running hundreds of jobs
subject to runtime coordination.

This paper makes the following technical contributions:
1. A decentralized ‘many masters’ architecture assign-

ing each application its own master capable of indi-
vidually controlling its workers. To the best of our
knowledge, ELF is the first to use a decentralized
architecture for scalable stream processing (Sec. 2).

2. A memory-efficient approach for incremental up-
dates, using a B-tree-like in-memory data structure,
to store and manage large stored states (Sec. 2.2).

3. Abstractions permitting cyclic dataflows via feed-
back loops, with additional uses of these abstrac-
tions including the ability to rapidly and dynamically
change job behavior (Sec. 2.3).

4. Support for cross-job coordination, enabling interac-
tive processing that can utilize and combine multiple
jobs’ intermediate results (Sec. 2.3).

5. An open-source implementation of ELF and a com-
prehensive evaluation of its performance and func-
tionality on a large cluster using real-world web-
server logs (Sec. 3, Sec. 4).

2

USENIX Association 2014 USENIX Annual Technical Conference 27

 cbt_ii cbt_i ...
Agent 1

Webserver 1

 cbt_ii cbt_i ...
Agent i

Webserver 1

 cbt_ii cbt_i ...
Agent n

Webserver 1

......

Cloud

Group 1
for App 1

Master 1
Group 2
for App 2

Master 2

ELF API

Master 1 Master 2

Aggregate Multicast

Le
ve

l 2
Le

ve
l 1

Le
ve

l 3

Figure 3: High-level overview of the ELF system.

2 Design
This section describes ELF’s basic workflow, introduces
ELF’s components, shows how applications are imple-
mented with its APIs, and explains the performance, scal-
ability and flexibility benefits of using ELF.

2.1 Overview
As shown in Figure 3, the ELF streaming system
runs across a set of agents structured as an over-
lay built using the Pastry DHT. There are three ba-
sic components. First, on each webserver produc-
ing data required by the application, there is an agent
(see Figure 3 bottom) locally parsing live data logs
into application-specific key-value pairs. For exam-
ple, for the micro-promotion application, batches of
logs are parsed as a map from product name (key) to
the number of clicks (value), and groupby-aggregated
like 〈(a,1),(b,1),(a,1),(b,1),(b,1)〉 → 〈(a,2),(b,3)〉,
labelled with an integer-valued timestamp for each batch.

The second component is the middle-level, application-
specific group (Figure 3 middle), composed of a mas-
ter and a set of agents as workers that jointly imple-
ment (1) the data plane: a scalable aggregation tree
that progressively ‘rolls up’ and reduces those local key-
value pairs from distributed agents within the group,
e.g., 〈(a,2),(b,3)..〉,〈(a,5)..〉,〈(b,2),(c,2)..〉 from tree
leaves are reduced as 〈(a,7),(b,5),(c,2)..〉 to the root;
(2) the control plane: a scalable multicast tree used by the
master to control the application’s execution, e.g., when
necessary, the master can multicast to its workers within
the group, to notify them to empty their sliding windows
and/or synchronously start a new batch. Further, different
applications’ masters can exchange queries and results
using the DHT’s routing substrate, so that given any appli-
cation’s name as a key, queries or results can be efficiently
routed to that application’s master (within O(logN) hops),

without the need for coordination via some global entity.
The resulting model supports the concurrent execution
of diverse applications and flexible coordination between
those applications.

The third component is the high-level ELF program-
ming API (Figure 3 top) exposed to programmers for
implementing a variety of diverse, complex jobs, e.g.,
streaming analysis, batch analysis, and interactive queries.
We next describe these components in more detail.

2.2 CBT-based Agent
Existing streaming systems like Spark [28], Storm [4] typ-
ically consume data from distributed storage like HDFS
or HBase, incurring cross-machine data movement. This
means that data might be somewhat stale when it arrives
at the streaming system. Further, for most realworld jobs,
their ‘map’ tasks could be ‘pre-reduced’ locally on web-
servers with the most parallelism, and only the interme-
diate results need to be transmitted over the network for
data shuffling, thus decreasing the process latency and
most of unnecessary bandwidth overhead.

ELF adopts an ‘in-situ’ approach to data access in
which incoming data is injected into the streaming system
directly from its sources. ELF agents residing in each
webserver consume live web logs to produce succinct
key-value pairs, where a typical log event is a 4-tuple of
〈timestamp,src ip, prority,body〉: the timestamp is used
to divide input event streams into batches of different
epochs, and the body is the log entry body, formatted as
a map from a string attribute name (key) to an arbitrary
array of bytes (value).

Each agent exposes a simple HiveQL-like [26] query
interface with which an application can define how to filter
and parse live web logs. Figure 4 shows how the micro-
promotion application uses ELF QL to define the top-k
function, which calculates the top-10 popular products
that have the most clicks at each epoch (30 s), in the Video
Game directory of the e-commerce site.

Each ELF agent is designed to be capable of holding a
considerable number of ‘past’ key-value pairs, by storing
such data in compressed form, using a space-efficient,
in-memory data structure, termed a compressed buffer
tree (CBT) [9]. Its in-memory design uses an (a,b)-tree
with each internal node augmented by a memory buffer.
Inserts and deletes are not immediately performed, but
buffered in successive levels in the tree allowing better

{"created_at":"23:48:22 +0000 2013",
"id":299665941824950273,
"product":"Angry Birds Season",
"clicks_count":2,
"buys_count":0,
"user":{"id":343284040,
"name":"@Curry",
"location":"Ohio", ...} ...}

SELECT product,SUM(clicks_count)
FROM *
WHERE store == `video_games'
GROUP BY product
SORT BY SUM(clicks_count) DESC
LIMIT 10
WINDOWING 30 SECONDS;

ELF QL ->
Example log event

Figure 4: Example of ELF QL query.

3

28 2014 USENIX Annual Technical Conference USENIX Association

...... ...

10
Angry Birds 100

150

Time Product

Angry Birds

#Clicks

Angry Birds
5

15 250

...

New k-v pairs
from [0,5),[5,10),
[10,15)...

flush

insert

PAOs_5,
PAOs_10,
PAOs_15,
...

In-memory
CBT

Agent
Compressed

PAOs

Uncompressed
PAOs

Structured
buffer (can

include both
above)

[0,5)

[0,10)
[0,15)

flush=PAOs_5
flush=PAOs_10

flush=PAOs_15

Keep inserting new key-value pairs to CBT

Ti
m

e

... ...
`query sliding window [5,10)' = PAOs_10 PAOs_5 = 50
`query sliding window [5,15)' = PAOs_15 PAOs_5 = 150

(a) Compressed buffer tree (CBT)

(b) Arbitrary sliding windows using CBT

Figure 5: Between intervals, new k-v pairs are inserted into
the CBT; the root buffer is sorted and aggregated; the buffer is
the split into fragments according to hash ranges of children,
and each fragment is compressed and copied into the respective
children node; at each interval, the CBT is flushed.

I/O performance.
As shown in Figure 5(a), first, each newly parsed key-

value pair is represented as a partial aggregation ob-
ject (PAO). Second, the PAO is serialized and the tuple
〈hash,size,serializedPAO〉 is appended to the root node’s
buffer, where hash is a hash of the key, and size is the
size of the serialized PAO. Unlike a binary search tree in
which inserting a value requires traversing the tree and
then performing the insert to the right place, the CBT
simply defers the insert. Then, when a buffer reaches
some threshold (e.g., half the capacity), it is flushed into
the buffers of nodes in the next level. To flush the buffer,
the system sorts the tuples by hash value, decompresses
the buffers of the nodes in the next level, and partitions
the tuples into those receiving buffers based on the hash
value. Such an insertion behaves like a B-tree: a full leaf
is split into a new leaf and the new leaf is added to the
parent of the leaf. More detail about the CBT and its
properties appears in [9].

Key for ELF is that the CBT makes possible the rapid
incremental updates over considerable time windows, i.e.,
extensive sets of historical records. Toward that end, the
following APIs are exposed for controlling the CBT: (i)
“insert” to fill, (ii) “flush” to fetch the tree’s entire groupby-
aggregate results, and (iii) “empty” to empty the tree’s
buffers, which is necessary when the application wants to
start a new batch. By using a series of “insert”, “flush”,
“empty” operations, ELF can implement many of standard
operations in streaming systems, such as sliding windows,
incremental processing, and synchronous batching.

For example, as shown in Figure 3(b), let the interval
be 5 s, a sale-prediction application tracks the up-to-date

#clicks for the product Angry Birds, by inserting new
key-value pairs, and periodically flushing the CBT. The
application obtains the local agent’s results in intervals
[0,5), [0,10), [0,15), etc. as PAO5, PAO10, PAO15, etc. If
the application needs a windowing value in [5,15), rather
than repeatedly adding the counts in [5,10) with multiple
operations, it can simply perform one single operation
PAO15 �PAO5, where � is an “invertible reduce”. In
another example using synchronous batching, an appli-
cation can start a new batch by erasing past records, e.g.,
tracking the promotion effect when a new advertisement
is launched. In this case, all agents’ CBTs coordinate to
perform a simultaneous “empty” operation via a multicast
protocol from the middle-level’s DHT, as described in
more detail in Sec.2.3.

Why CBTs? Our concern is performance. Consider us-
ing an in-memory binary search tree to maintain key-value
pairs as the application’s states, without buffering and
compression. In this case, inserting an element into the
tree requires traversing the tree and performing the in-
sert — a read and a write operation per update, leading
to poor performance. It is not necessary, however, to ag-
gregate each new element in such an aggressive fashion:
integration can occur lazily. Consider, for instance, an
application that determines the top-10 most popular items,
updated every 30 s, by monitoring streams of data from
some e-commerce site. The incoming rate can be as high
as millions per second, but CBTs need only be flushed
every 30 s to obtain the up-to-date top-10 items. The key
to efficiency lies in that “flush” is performed in relatively
large chunks while amortizing the cost across a series of
small “inserting new data” operations: decompression
of the buffer is deferred until we have batched enough
inserts in the buffer, thus enhancing the throughput.

2.3 DHT-based SRT
ELF’s agents are analogous to stateful vertices in dataflow
systems, constructed into a directed graph in which data
passes along directed edges. Using the terms vertex and
agent interchangeably, this subsection describes how we
leverage DHTs to construct these dataflow graphs, thus
obtaining unique benefits in flexibility and scalability. To
restate our goal, we seek a design that meets the following
criteria:

1. capability to host hundreds of concurrently running
applications’ dataflow graphs;

2. with each dataflow graph including minion vertices,
as our vertices reside in distributed webservers; and

3. where each dataflow graph can flexibly interact with
others for runtime coordination of its execution.

ELF leverages DHTs to create a novel ‘many master’
decentralized infrastructure. As shown in Figure 6, all
agents are structured into a P2P overlay with DHT-based

4

USENIX Association 2014 USENIX Annual Technical Conference 29

2080c3

(a,)
(b,<a>)

(a,<c>)(c,<f>)
(d,<e>)

(d,<g>)
(d,<h>)

(a,<b,c>) (d,<e,g,h>)

(a,<b,c>)
(b,<a>)
(c,<f>)
(d,<e,g,h>)

Product-bundling App
43bc3c

Sale-predication App

route query
route query

Agent
Master
App1's path
App2's path
App3's path

hash(`product-bundling')

hash(`sale-predication')

d4213f

d462ba

d13da3

98fc35

d502fb

d70A6A

fe4156

2080c3

hash(`micro-promotion')

43bc3c

JOIN

JOIN

JOIN

d462ba

(a,2)
(b,3)

(a,5) (b,2)
(c,2)

(c,1)
(d,7)

(a,7)
(b,3)

(d,7)
(c,3)
(b,2)

(a,7)
(d,7)
(b,5)
(c,3)

multicast 'flush'

Micro-promotion App

(b,<a>)
(c,<f>)

Figure 6: Shared Reducer Tree Construction for many jobs.

routings. Each agent has a unique, 128-bit nodeId in a
circular nodeId space ranging from 0 to 2128-1. The set
of nodeIds is uniformly distributed; this is achieved by
basing the nodeId on a secure hash (SHA-1) of the node’s
IP address. Given a message and a key, it is guaranteed
that the message is reliably routed to the node with the
nodeId numerically closest to that key, within �log2bN�
hops, where b is a base with typical value 4. SRTs for
many applications (jobs) are constructed as follows.

The first step is to construct application-based groups
of agents and ensure that these groups are well balanced
over the network. For each job’s group, this is done as
depicted in Figure 6 left: the agent parsing the applica-
tion’s stream will route a JOIN message using appId as
the key. The appId is the hash of the application’s tex-
tual name concatenated with its creator’s name. The hash
is computed using the same collision resistant SHA-1
hash function, ensuring a uniform distribution of appIds.
Since all agents belonging to the same application use the
same key, their JOIN message will eventually arrive at a
rendezvous node, with nodeId numerically close to ap-
pId. The rendezvous node is set as the job’s master. The
unions of all messages’ paths are registered to construct
the group, in which the internal node, as the forwarder,
maintains a children table for the group containing an
entry (IP address and appId) for each child. Note that the
uniformly distributed appId ensures the even distribution
of groups across all agents.

The second step is to “draw” a directed graph within
each group to guide the dataflow computation. Like other
streaming systems, an application specifies its dataflow
graph as a logical graph of stages linked by connectors.
Each connector could simply transfer data to the next
stage, e.g., filter function, or shuffle the data using a
portioning function between stages, e.g., reduce function.
In this fashion, one can construct the pipeline structures
used in most stream processing systems, but by using
feedback, we can also create nested cycles in which a new
epoch’s input is based on the last epoch’s feedback result,
explained in more detail next.

Pipeline structures. We build aggregation trees using
DHTs for pipeline dataflows, in which each level of the

tree progressively ‘aggregates’ the data until the result ar-
rives at the root. For a non-partitioning function, the agent
as a vertex simply processes the data stream locally us-
ing the CBT. For a partitioning function like TopKCount
in which the key-value pairs are shuffled and gradually
truncated, we build a single aggregation tree, e.g., Fig-
ure 6 middle shows how the groupby, aggregate, sort
functions are applied for each level-i subtree’s root for
the micro-promotion job. For partitioning functions like
WordCount, we build m aggregation trees to divide the
keys into m ranges, where each tree is responsible for the
reduce function of one range, thus avoiding the root over-
load when aggregating a large key space. Figure 6 right
shows how the ‘fat-tree’-like aggregation tree is built for
the product-bundling job.

Cycles. Naiad [20] uses timestamp vectors to realize
dataflow cycles, whereas ELF employs multicast services
operating on a job’s aggregation tree to create feedback
loops in which the results obtained for a job’s last epoch
are re-injected into its sources. Each job’s master has com-
plete control over the contents of feedback messages and
how often they are sent. Feedback messages, therefore,
can be used to go beyond supporting cyclic jobs to also
exert application-specific controls, e.g., set a new thresh-
old, synchronize a new batch, install new job functionality
for agents to use, etc.

Why SRTs? The use of DHTs affords the efficient con-
struction of aggregation trees and multicast services, as
their converging properties guarantee aggregation or mul-
ticast to be fulfilled within only O(logN) hops. Further,
a single overlay can support many different independent
groups, so that the overheads of maintaining a proximity-
aware overlay network can be amortized over all those
group spanning trees. Finally, because all of these trees
share the same set of underlying agents, each agent can
be an input leaf, an internal node, the root, or any combi-
nation of the above, causing the computation load well
balanced. This is why we term these structures “shared
reducer trees” (SRTs).

Implementing feedback loops using DHT-based multi-
cast benefits load and bandwidth usage: each message is
replicated in the internal nodes of the tree, at each level,

5

30 2014 USENIX Annual Technical Conference USENIX Association

so that only m copies are sent to each internal node’s
m children, rather than having the tree root broadcast N
copies to N total nodes. Similarly, coordination across
jobs via the DHT’s routing methods is entirely decen-
tralized, benefiting scalability and flexibility, the latter
because concurrent ELF jobs use event-based methods to
remain responsive to other jobs and/or to user interaction.

2.4 ELF API
Subscribe(Id appid)
Vertex sends JOIN message to construct SRT with the root’s nodeid equals
to appid.
OnTimer()
Callback. Invoked periodically. This handler has no return value. The
master uses it for its periodic activities.
SendTo(Id nodeid, PAO paos)
Vertex sends the key-value pairs to the parent vertex with nodeid, resulting
in a corresponding invocation of OnRecv.
OnRecv(Id nodeid, PAO paos)
Callback. Invoked when vertex receives serialized key-value pairs from the
child vertex with nodeid.
Multicast(Id appid, Message message)
Application’s master publishes control messages to vertices, e.g., synchro-
nizing CBTs to be emptied; application’s master publishes last epoch’s
result, encapsulated into a message, to all vertices for iterative loops; or
application’s master publishes new functions, encapsulated into a message,
to all vertices for updating functions.
OnMulticast(Id appid, Message message)
Callback. Invoked when vertex receives the multicast message from appli-
cation’s master.

Table 1: Data plane API

Route(Id appid, Message message)
Vertex or master sends a message to another application. The appid is the
hash value of the target application’s name concatenated with its creator’s
name.
Deliver(Id appid, Message message)
Callback. Invoked when the application’s master receives an outsider mes-
sage from another application with appid. This outsider message is usually
a query for the application’s status such as results.

Table 2: Control plane API

Table 1 and Table 2 show the ELF’s data and control
plane APIs, respectively. The data plane APIs concern
data processing within a single application. The control
plane APIs are for coordination between different appli-
cations.

ArrayList<String> topk;
void OnTimer () {
if (this.isRoot()) {
this.Multicast(hash("micro-promotion"), new topk(topk));
this.Multicast(hash("micro-promotion"), new update()); }
}

void OnMulticast(Id appid, Message message) {
if (message instanceof topk) {
for(String product: message.topk) {
if(this.hasProduct(product))
//if it is an topk message, appear discount ... }
}

//if it is an update message, start a new batch
else if (message instanceof update) {
//if leaves, flush CBT and update to the parent vertex
if (!this.containsChild(appid)) {
PAO paos = cbt.get(appid).flush();
this.SendTo (this.getParent(appid), paos);
cbt.get(appid).empty(); }
}

}

Figure 7: ELF implementation of micro-promotion application

Fault

Job coordinator

Job tracker
Job feedback

Job1's Master Process

Job builder

Straggler

Agent 1
CBT

SRT proxy
Paos execution

Job parser
Input receiver

CBT

Worker Process

Agent 3

streams

CBT
SRT proxy

Paos execution
Job parser

Input receiver

CBT

Worker Process

Agent 2

streams

Job2's Master Process
Agent 95......

Job3's Master Process
Agent 32...... Worker Process

Agent 252......

Worker Process
Agent 1070......

......
Figure 8: Components of ELF.

A sample use shown in Figure 7 contains partial code
for the micro-promotion application. It multicasts up-
date messages periodically to empty agents’ CBTs for
synchronous batch processing. It multicasts top-k results
periodically to agents. Upon receiving the results, each
agent checks if it has the top-k product, and if true, the
extra discount will appear on the web page. To implement
the product-bundling application, the agents subscribe to
multiple SRTs to separately aggregate key-value pairs,
and agents’ associated CBTs are flushed only (without
being synchronously emptied), to send a sliding window
value to the parent vertices for asynchronously processing.
To implement the sale-predication application, the master
encapsulates its query and routes to the other two applica-
tions to get their intermediate results using Route.

3 Implementation
This section describes ELF’s architecture and prototype
implementation, including its methods for dealing with
faults and with stragglers.

3.1 System Architecture
Figure 8 shows ELF’s architecture. We see that unlike
other streaming systems with static assignments of nodes
to act as masters vs. workers, all ELF agents are treated
equally. They are structured into a P2P overlay, in which
each agent has a unique nodeId in the same flat circu-
lar 128-bit node identifier space. After an application
is launched, agents that have target streams required by
the application are automatically assembled into a shared
reducer tree (SRT) via their routing substrates. It is only
at that point that ELF assigns one or more of the following
roles to each participating agent:

Job master is SRT’s root, which tracks its own job’s
execution and coordinates with other jobs’ masters. It has
four components:

• Job builder constructs the SRT to roll up and aggre-
gate the distributed PAOs snapshots processed by

6

USENIX Association 2014 USENIX Annual Technical Conference 31

local CBTs.
• Job tracker detects key-value errors, recovers from

faults, and mitigates stragglers.
• Job feedback is continuously sent to agents for iter-

ative loops, including last epoch’s results to be iter-
ated over, new job functions for agents to be updated
on-the-fly, application-specific control messages like
‘new discount’, etc.

• Job coordinator dynamically interacts with other
jobs to carry out interactive queries.

Job worker uses a local CBT to implement some
application-specific execution model, e.g., asynchronous
stream processing with a sliding window, synchronous
incremental batch processing with historical records, etc.
For consistency, job workers are synchronized by the job
master to ‘roll up’ the intermediate results to the SRT for
global aggregation. Each worker has five components:

• Input receiver observes streams. Its current imple-
mentation assumes logs are collected with Flume [1],
so it employs an interceptor to copy stream events,
then parses each event into a job-specified key-value
pair. A typical Flume event is a tuple with times-
tamp, source IP, and event body that can be split into
columns based on different key-based attributes.

• Job parser converts a job’s SQL description into a
workflow of operator functions f, e.g., aggregations,
grouping, and filters.

• PAOs execution: each key-value pair is represented
as a partial aggregation object (PAO) [9]. New PAOs
are inserted into and accumulated in the CBT. When
the CBT is “flushed”, new and past PAOs are ag-
gregated and returned, e.g., 〈argu,2,f : count()〉
merges with 〈argu,5,f : count()〉 to be a PAO
〈agru,7,f : count()〉.

• CBT resides in local agent’s memory, but can be
externalized to SSD or disk, if desired.

• SRT proxy is analogous to a socket, to join the P2P
overlay and link with other SRT proxies to construct
each job’s SRT.

A key difference to other streaming systems is that ELF
seeks to obtain scalability by changing the system archi-
tecture from 1 : n to m : n, where each job has its own
master and appropriate set of workers, all of which are
mapped to a shared set of agents. With many jobs, there-
fore, an agent act as one job’s master and another job’s
worker, or any combination thereof. Further, using DHTs,
jobs’ reducing paths are constructed with few overlaps,
resulting in ELF’s management being fully decentralized
and load balanced. The outcome is straightforward scal-
ing to large numbers of concurrently running jobs, with
each master controls its own job’s execution, including
to react to failures, mitigate stragglers, alter a job as it is
running, and coordinate with other jobs at runtime.

3.2 Consistency
The consistency of states across nodes is an issue in
streaming systems that eagerly process incoming records.
For instance, in a system counting page views from male
users on one node and females on another, if one of the
nodes is backlogged, the ratio of their counts will be
wrong [28]. Some systems, like Borealis [6], synchronize
nodes to avoid this problem, while others, like Storm [4],
ignore it.

ELF’s consistency semantics are straightforward, lever-
aging the fact that each CBT’s intermediate results (PAOs
snapshots) are uniquely named for different timestamped
intervals. Like a software combining tree barrier, each
leaf uploads the first interval’s snapshot to its parent. If
the parent discovers that it is the last one in its direct list
of children to do so, it continues up the tree by aggregat-
ing the first interval’s snapshots from all branches, else
it blocks. Figure 9 shows an example in which agent1
loses snapshot0, and thus blocks agent5 and agent7. Pro-
ceeding in this fashion, a late-coming snapshot eventually
blocks the entire upstream path to the root. All snapshots
from distributed CBTs are thus sequentially aggregated.

3.3 Fault Recovery
ELF handles transmission faults and agent failures, tran-
sient or permanent. For the former, the current implemen-
tation uses a simple XOR protocol to detect the integrity
of records transferred between each source and destina-
tion agent. Upon an XOR error, records will be resent.
We deal with agent failures by leveraging CBTs and the
robust nature of the P2P overlay. Upon an agent’s failure,
the dataset cached in the agent’s CBT is re-issued, the
SRT is re-constructed, and all PAOs are recomputed using
a new SRT from the last checkpoint.

In an ongoing implementation, we also use hot repli-
cation to support live recovery. Here, each agent in
the overlay maintains a routing table, a neighborhood
set, and a leaf set. The neighborhood set contains the
nodeIds hashed from the webservers’ IP addresses that
are closest to the local agent. The job master periodi-
cally checkpoints each agent’s snapshots in the CBT, by
asynchronously replicating them to the agent’s neighbors.

2

1

3

4

5

6

7

...

...

...

...

PAOs' snapshots
sequentially sent Current Timestamp: 3

012

01

22

012 3. Resend
1.K-V error

2. Blocked

Blocked

Job master

4. Leap

nodeId

0

Figure 9: Example of the leaping straggler approach. Agent1
notifies all members to discard snapshot0.

7

32 2014 USENIX Annual Technical Conference USENIX Association

ELF’s approach to failure handling is similar to that
of Spark and other streaming systems, but has potential
advantages in data locality because the neighborhood
set maintains geographically close (i.e., within the rack)
agents, which in turn can reduce synchronization over-
heads and speed up the rebuild process, particularly in
datacenter networks with limited bi-section bandwidths.

3.4 Straggler Mitigation
Straggler mitigation, including to deal with transient slow-
down, is important for maintaining low end-to-end delays
for time-critical streaming jobs. Users can instruct ELF
jobs to exercise two possible mitigation options. First, as
in other stream processing systems, speculative backup
copies of slow tasks could be run in neighboring agents,
termed the “mirroring straggler” option. The second
option in actual current use by ELF is the “leaping strag-
gler” approach, which skips the delayed snapshot and
simply jumps to the next interval to continue the stream
computation.

Straggler mitigation is enabled by the fact that each
agent’s CBT states are periodically checkpointed, with a
timestamp at every interval. When a CBT’s Paos snap-
shots are rolled up from leaves to root, the straggler will
cause all of its all upstream agents to be blocked. In the
example shown in Figure 9, agent1 has a transient failure
and fails to resend the first checkpoint’s data for some
short duration, blocking the computations in agent5 and
agent7. Using a simple threshold to identify it as a strag-
gler – whenever its parent determines it to have fallen
two intervals behind its siblings – agent1 is marked as a
straggler. Agent5, can use the leaping straggler approach:
it invalidates the first interval’s checkpoints on all agents
via multicast, and then jumping to the second interval.

The leaping straggler approach leverages the streaming
nature of ELF, maintaining timeliness at reduced levels of
result accuracy. This is critical for streaming jobs operat-
ing on realtime data, as when reacting quickly to changes
in web user behavior or when dealing with realtime sensor
inputs, e.g., indicating time-critical business decisions or
analyzing weather changes, stock ups and downs, etc.

4 Evaluation
ELF is evaluated with an online social network
(OSN) monitoring application and with the well-known
WordCount benchmark application. Experimental evalu-
ations answer the following questions:

• What performance and functionality benefits does
ELF provide for realistic streaming applications
(Sec.4.1)?

• What is the throughput and processing latency seen
for ELF jobs, and how does ELF scale with number
of nodes and number of concurrent jobs (Sec.4.2)?

• What is the overheads of ELF in terms of CPU, mem-
ory, and network load (Sec.4.3)?

4.1 Testbed and Application Scenarios
Experiments are conducted on a testbed of 1280 agents
hosted by 60 server blades running Linux 2.6.32, all con-
nected via Gigabit Ethernet. Each server has 12 cores
(two 2.66GHz six-core Intel X5650 processors), 48GB of
DDR3 RAM, and one 1TB SATA disk.

ELF’s functionality is evaluated by running an actual
application requiring both batch and stream processing.
The application’s purpose is to identify social spam cam-
paigns, such as compromised or fake OSN accounts used
by malicious entities to execute spam and spread mal-
ware [13]. We use the most straightforward approach to
identify them – by clustering all spam containing the same
label, such as an URL or account, into a campaign. The
application consumes the events, all labeled as “sales”,
from the replay of a previously captured data stream from
Twitter’s public API [3], to determine the top-k most fre-
quently twittering users publishing “sales”. After listing
them as suspects, job functions are changed dynamically,
to investigate further, by setting different filtering condi-
tions and zooming in to different attributes, e.g., locations
or number of followers.

The application is implemented to obtain online results
from live data streams via ELF’s agents, while in addi-
tion, also obtaining offline results via a Hadoop/HBase
backend. Having both live and historical data is crucial
for understanding the accuracy and relevance of online
results, e.g., to debug or improve the online code. ELF
makes it straightforward to mix online with offline pro-
cessing, as it operates in ways that bypass the storage tier
used by Hadoop/HBase.

Specifically, live data streams flow from webservers
to ELF and to HBase. For the web tier, there are 1280
emulated webservers generating Twitter streams at a rate
of 50 events/s each. Those streams are directly intercepted
by ELF’s 1280 agents, that filter tuples for processing, and
concurrently, unchanged streams are gathered by Flume
to be moved to the HBase store. The storage tier has 20
servers, in which the name node and job tracker run on a
master server, and the data node and task trackers run on
the remaining machines. Task trackers are configured to
use two map and two reduce slots per worker node. HBase
coprocessor, which is analogous to Google’s BigTable
coprocessor, is used for offline batch processing.

Comparison with Muppet and Storm. With ad-hoc
queries sent from a shell via ZeroMQ [5], comparative
results are obtained for ELF, Muppet, and Storm, with
varying sizes of sliding windows. Figure 10a shows that
ELF consistently outperforms Muppet. It achieves per-
formance superior to Storm for large window sizes, e.g.,
300 s, because the CBT’s data structure stabilizes ‘flush’

8

USENIX Association 2014 USENIX Annual Technical Conference 33

Storm Muppet Elf0

30

60

90

120

150
P

ro
ce

ss
in

g
tim

e
(m

s)
5s window
10s window
30s window
60s window
300s window

(a) Comparison of processing times.

Message Filter func Map/Reduce func0

100

200

300

400

500

600

New-updated function

Fu
nc

tio
n

ch
an

gi
ng

 ti
m

e
(m

s)

7.3ms

204.6ms

561.3msAverage latency

(b) Latency for job function changes.

1 2 4 8 16 32 64 1280
2000
4000
6000
8000

#Fault agents

La
te

nc
y

(m
s)

Fault recovery

1 2 4 8 16 32 64 1280
50

100
150
200

#Straggler agents

La
te

nc
y

(m
s) Leap straggler

(c) Fault and straggler recovery.
Figure 10: Processing times, latency of function changes, and recovery results of ELF on the Twitter application.

cost by organizing the compressed historical records in
an (a,b) tree, enabling fast merging with large numbers
of past records.

Job function changes. Novel in ELF is the ability to
change job functions at runtime. As Figure 10b shows,
it takes less than 10 ms for the job master to notify all
agents about some change, e.g., to publish discounts in
the microsale example. To zoom in on different attributes,
the job master can update the filter functions on all agents,
which takes less than 210 ms, and it takes less than 600
ms to update user-specified map/reduce functions.

Fault and Straggler Recovery. Fault and straggler re-
covery are evaluated with methods that use human inter-
vention. To cause permanent failures, we deliberately
remove some working agents from the datacenter to eval-
uate how fast ELF can recover. The time cost includes
recomputing the routing table entries, rebuilding the SRT
links, synchronizing CBTs across the network, and re-
suming the computation. To cause stragglers via tran-
sient failures, we deliberately slow down some working
agents, by collocating them with other CPU-intensive
and bandwidth-aggressive applications. The leap ahead
method for straggler mitigation is fast, as it only requires
the job master to send a multicast message to notify ev-
eryone to drop the intervals in question.

Figure 10c reports recovery times with varying num-
bers of agents. The top curve shows that the delay for
fault recovery is about 7 s, with a very small rate of in-
crease with increasing numbers of agents. This is due to
the DHT overlay’s internally parallel nature of repairing
the SRT and routing table. The bottom curve shows that
the delay for ELF’s leap ahead approach to dealing with
stragglers is less than 100 ms, because multicast and sub-
sequent skipping time costs are trivial compared to the
cost of full recovery.

4.2 Performance
Data streams propagate from ELF’s distributed CBTs as
leaves, to the SRT for aggregation, until the job master at
the SRT’s root has the final results. Generated live streams

are first consumed by CBTs, and the SRT only picks up
truncated key-value pairs from CBTs for subsequent shuf-
fling. Therefore, the CBT, as the starting point for parallel
streaming computations, directly influences ELF’s overall
throughput. The SRT, as the tree structure for shuffling
key-value pairs, directly influences total job processing
latency, which is the time from when records are sent to
the system to when results incorporating them appear at
the root. We first report the per-node throughput of ELF
in Figure 11, then report data shuffling times for different
operators in Figure 12a 12b. The degree to which loads
are balanced, an important ELF property when running a
large number of concurrent streaming jobs, is reported in
Figure 12c.

Throughput. ELF’s high throughput for local aggrega-
tion, even with substantial amounts of local state, is
based in part on the efficiency of the CBT data struc-
ture used for this purpose. Figure 11 compares the
aggregation performance and memory consumption of
the Compressed Buffer Tree (CBT) with a state-of-the-
art concurrent hashtable implementation from Google’s
sparsehash [2]. The experiment uses a microbenchmark
running the WordCount application on a set of input files
containing varying numbers of unique keys. We measure
the per-unique-key memory consumption and throughput
of the two data structures. Results show that the CBT con-
sumes significantly less memory per key, while yielding
similar throughput compared to the hashtable. Tests are
run with equal numbers of CPUs (12 cores), and hashtable

0

30

60

90

120

150

M
em

or
y

pe
rk

ey
(B

) CBT

20 60 100 140 180

Number of unique keys
(×106)

0

4

8

12

16

20

Th
ro

ug
hp

ut
(×

1
0
6

ke
ys

/s
)

CBT

0

30

60

90

120

150
Sparsehash

20 60 100 140 180

Number of unique keys
(×106)

0

4

8

12

16

20

Sparsehash

Figure 11: Comparison of CBT with Google Sparsehash.

9

34 2014 USENIX Annual Technical Conference USENIX Association

10 20 40 80 160 320 640 12800

20

40

60

80

100

#Agents in datacenter

D
at

a-
sh

uf
fli

ng
 ti

m
e

(m
s)

max operator
min operator
sum operator
avg operator

50 ms

(a) Running operators separately.

10 20 40 80 160 320 640 12800

20

40

60

80

100

#Agents in datacenter

D
at

a-
sh

uf
fli

ng
 ti

m
e

(m
s)

max operator
min operator
sum operator
avg operator

50 ms

(b) Running operators simultaneously.

0 5 10 15
0.0001
0.001
0.01

0.1

0.5

0.9

0.99
0.999

0.9999

Average #roots of SRTs per agent

N
or

m
al

 p
er

ce
nt

ile
s

Deploying 500 SRTs
Deploying 1000 SRTs
Deploying 2000 SRTs
Reference line

0 5 10 15
0.0001
0.001
0.01

0.1

0.5

0.9

0.99
0.999

0.9999

Average #roots of SRTs per agent

N
or

m
al

 p
er

ce
nt

ile
s

(c) Normal probability plot of #roots.
Figure 12: Performance evaluation of ELF on data-shuffling time and load balance.

SPS CPU Memory I/O C-switch
%used %used wtps cswsh/s

ELF 2.96% 5.73% 3.39 780.44
Flume 0.14% 5.48% 2.84 259.23
S-master 0.06% 9.63% 2.96 652.22
S-worker 1.17% 15.91% 11.47 11198.96
SPS: stream processing system.
wtps: write transactions per second.
cswsh/s: context switches per second.

(a) Runtime overheads of ELF vs. others.

10 20 40 80 160 320 640 12800

0.5

1

1.5

2

2.5

3

#Agents in datacenter

#P
ac

ke
ts

 p
er

 a
ge

nt
 p

er
 s

ec
on

d

5s interval
10s interval
30s interval

(b) Additional #packets overhead.

10 20 40 80 160 320 640 12800

100

200

300

400

500

600

#Agents in datacenter

B
yt

es
 p

er
 a

ge
nt

 p
er

 s
ec

on
d

5s interval
10s interval
30s interval

(c) Additional bytes overhead.
Figure 13: Overheads evaluation of ELF on runtime cost and network cost.

performance scales linearly with the number of cores.
ELF’s per-node throughput of over 1000,000 keys/s

is in a range similar to Spark Streaming’s reported best
throughput (640,000 records/s) for Grep, WordCount,
and TopKCount when running on 4-core nodes. It is
also comparable to the speeds reported for commercial
single-node streaming systems, e.g., Oracle CEP reports a
throughput of 1 million records/s on a 16-core server and
StreamBase reports 245,000 records/s on a 8-core server.

Operators. Figure 12a 12b reports ELF’s data shuffling
time of ELF when running four operators separately vs.
simultaneously. By data shuffling time, we mean the time
from when the SRT fetches a CBT’s snapshot to the result
incorporating it appears in the root. max sorts key-value
pairs in a descending order of value, and min sorts in an
ascending order. sum is similar to WordCount, and avg
refers to the frequency of words divided by the occurrence
of key-value pairs. As sum does not truncate key-value
pairs like max or min, and avg is based on sum, naturally,
sum and avg take more time than max and min.

Figure 12a 12b demonstrates low performance inter-
ference between concurrent operators, because both data
shuffling times seen for separate operators and concurrent
operators are less than 100 ms. Given the fact that concur-
rent jobs reuse operators if processing logic is duplicated,
the interference between concurrent jobs is also low. Fi-
nally, these results also demonstrate that SRT scales well
with the datacenter size, i.e., number of webservers, as
the reduce times increase only linearly with exponential
increase in the number of agents. This is because reduce

times are strictly governed by an SRT’s depth O(log16N),
where N is the number of agents in the datacenter.

Balanced Load. Figure 12c shows the normal probabil-
ity plot for the expected number of roots per agent. These
results illustrate a good load balance among participating
agents when running a large number of concurrent jobs.
Specifically, assuming the root is the agent with the high-
est load, results show that 99.5% of the agents are the
roots of less than 3 trees when there are 500 SRTs total;
99.5% of the agents are the roots of less than 5 trees when
there are 1000 SRTs total; and 95% of the agents are the
roots of less than 5 trees when there are 2000 SRTs total.
This is because of the independent nature of the trees’ root
IDs that are mapped to specific locations in the overlay.

4.3 Overheads
We evaluate ELF’s basic runtime overheads, particularly
those pertaining to its CBT and SRT abstractions, and
compare them with Flume and Storm. The CBT requires
additional memory for maintaining intermediate results,
and the SRT generates additional network traffic to main-
tain the overlay and its tree structure. Table 13a and
Figure 13b 13c present these costs, explained next.

Runtime overheads. Table 13a shows the per-node run-
time overheads of ELF, Flume, Storm master, and Storm
worker. Experiments are run on 60 nodes, each with 12
cores and 48GB RAM. As Table 13a shows, ELF’s run-
time overheads is small, comparable to Flume, and much
less than that of Storm master and Storm worker. This

10

USENIX Association 2014 USENIX Annual Technical Conference 35

is because both ELF and Flume use a decentralized ar-
chitecture that distributes the management load across
the datacenter, which is not the case for Storm master.
Compared to Flume, which only collects and aggregates
streams, ELF offers the additional functionality of pro-
viding fast, general stream processing along with per-job
managemen mechanisms.

Network overheads. Figure 13b 13c show the additional
network traffic imposed by ELF with varying update in-
tervals, when running the Twitter application. We see that
the number of packets and number of bytes sent per agent
increase only linearly, with an exponential increase in the
number of agents, at a rate less than the increase in up-
date frequency (from 1/30 to 1/5). This is because most
packets are ping-pong messages used for overlay and SRT
maintenance (initialization and keep alive), for which any
agent pings to a limited set of neighboring agents. We
estimate from Figure 13b that when scaling to millions of
agents, the additional #package is still bounded to 10.

5 Related Work
Streaming Databases. Early systems for stream process-
ing developed in the database community include Au-
rora [29], Borealis [6], and STREAM [10]. Here, a query
is composed of fixed operators, and a global scheduler de-
cides which tuples and which operators to prioritize in ex-
ecution based on different policies, e.g., interesting tuple
content, QoS values for tuples, etc. SPADE [14] provides
a toolkit of built-in operators and a set of adapters, target-
ing the System S runtime. Unlike SPADE or STREAM
that use SQL-style declarative query interfaces, Aurora
allows query activity to be interspersed with message
processing. Borealis inherits its core stream processing
functionality from Aurora.

MapReduce-style Systems. Recent work extends the
batch-oriented MapReduce model to support continuous
stream processing, using techniques like pipelined paral-
lelism, incremental processing for map and reduce, etc.

MapReduce Online [12] pipelines data between map
and reduce operators, by calling reduce with partial data
for early results. Nova [22] runs as a workflow manager
on top of an unmodified Pig/Hadoop software stack, with
data passes in a continuous fashion. Nova claims itself as
a tool more suitable for large batched incremental process-
ing than for small data increments. Incoop [11] applies
memorization to the results of partial computations, so
that subsequent computations can reuse previous results
for unchanged inputs. One-Pass Analytics [17] optimizes
MapReduce jobs by avoiding expensive I/O blocking op-
erations such as reloading map output.

iMR [19] offers the MapReduce API for continuous
log processing, and similar to ELF’s agent, mines data
locally first, so as to reduce the volume of data crossing

the network. CBP [18] and Comet [15] run MapReduce
jobs on new data every few minutes for “bulk incremental
processing”, with all states stored in on-disk filesystems,
thus incurring latencies as high as tens of seconds. Spark
Streaming [28] divides input data streams into batches
and stores them in memory as RDDs [27]. By adopt-
ing a batch-computation model, it inherits powerful fault
tolerance via parallel recovery, but any dataflow modifi-
cation, e.g., from pipeline to cyclic, has to be done via
the single master, thus introducing overheads avoided
by ELF’s decentralized approach. For example, it takes
Spark Streaming seconds for iterating and performing
incremental updates, but milliseconds for ELF.

All of the above systems inherit MapReduce’s “single
master” infrastructure, in which parallel jobs consist of
hundreds of tasks, and each single task is a pipeline of
map and reduce operators. The single master node places
those tasks, launches those tasks, maybe synchronizes
them, and keeps track of their status for fault recovery
or straggler mitigation. The approach works well when
the number of parallel jobs is small, but does not scale to
hundreds of concurrent jobs, particularly when these jobs
differ in their execution models and/or require customized
management.

Large-scale Streaming Systems. Streaming systems
like S4 [21], Storm [4], Flume [1], and Muppet [16] use
a message passing model in which a stream computation
is structured as a static dataflow graph, and vertices run
stateful code to asynchronously process records as they
traverse the graph. There are limited optimizations on
how past states are stored and how new states are inte-
grated with past data, thus incurring high overheads in
memory usage and low throughput when operating over
larger time windows. For example, Storm asks users to
write codes to implement sliding windows for trend top-
ics, e.g., using Map<>, Hashmap<> data structure. Muppet
uses an in-memory hashtable-like data structure, termed a
slate, to store past keys and their associated values. Each
key-value entry has an update trigger that is run when
new records arrive and aggressively inserts new values to
the slate. This creates performance issues when the key
space is large or when historical windowsize is large. ELF,
instead, structures sets of key-value pairs as compressed
buffer trees (CBTs) in memory, and uses lazy aggregation,
so as to achieve high memory efficiency and throughput.

Systems using persistent storage to provide full fault-
tolerance. MillWheel [7] writes all states contained in ver-
tices to some distributed storage system like BigTable or
Spanner. Percolator [23] structures a web indexing com-
putation as triggers that run when new values are written
into a distributed key-value store, but does not offer con-
sistency guarantees across nodes. TimeStream [24] runs
the continuous, stateful operators in Microsoft’s StreamIn-
sight [8] on a cluster, scaling with load swings through

11

36 2014 USENIX Annual Technical Conference USENIX Association

repartitioning or reconfiguring sub-DAGs with more or
less operators. ELF’s CBT resides in a local agent’s mem-
ory, but can be externalized to SSD or disk, if desired, to
also fully support fault-tolerance.

ELF is most akin to Naiad [20], which uses vec-
tor timestamps to implement cyclic dataflows and also
achieves tens of milliseconds for iterations and incremen-
tal updates. We differ from Naiad, which sends only data
feedback, in that ELF’s application-customized master
can send feedback messages that can concern data, job
control, and new job functions.

In contrast to all of the systems reviewed above, ELF
obtains scalability in terms of the number of concurrent
jobs run on incoming data via its fully decentralized
“many masters” infrastructure. ELF’s jobs can differ in
their execution models, yet interact to coordinate their
actions and/or build on each others’ results.

6 Conclusion
ELF implements a novel decentralized model for stream
processing that can simultaneously run hundreds of con-
current jobs, by departing from the common “one master
many workers” architecture to instead, using a “many
masters many workers” approach. ELF’s innovations go
beyond the consequent scalability improvements, to also
providing powerful programming abstraction for iterative,
batch, and streaming processing, and to offer new func-
tionalities that include support for runtime job function
change and for cross-job coordination.

Experimental evaluations demonstrate ELF’s scalabil-
ity to up to a thousand concurrent jobs, high per-node
throughput, sub-second job latency, and sub-second abil-
ity to adjust the actions of jobs being run.

Future work on ELF will go beyond additional imple-
mentation steps, e.g., to enhance SRTs for fast aggrega-
tion of non-truncated key-value pairs, to further optimize
performance and to add robustness by extending and ex-
perimenting with additional methods for fault recovery.

References
[1] Flume. http://flume.apache.org/, 2013.
[2] Sparsehash. http://code.google.com/p/sparsehash/.
[3] Twitter streaming apis. https://dev.twitter.com/docs/
streaming-apis, 2012.

[4] Storm. https://github.com/nathanmarz/storm.git.
[5] Zeromq. http://zeromq.org/, 2012.
[6] D. J. Abadi, Y. Ahmad, M. Balazinska, M. Cherniack, J. hyon

Hwang, W. Lindner, A. S. Maskey, E. Rasin, E. Ryvkina, N. Tat-
bul, Y. Xing, and S. Zdonik. The design of the borealis stream
processing engine. In CIDR, pages 277–289, 2005.

[7] T. Akidau, A. Balikov, K. Bekiroglu, S. Chernyak, J. Haberman,
R. Lax, S. McVeety, D. Mills, P. Nordstrom, and S. Whittle. Mill-
wheel: Fault-tolerant stream processing at internet scale. In VLDB,
2013.

[8] M. H. Ali, C. Gerea, B. S. Raman, B. Sezgin, and e. Tarnavski.

Microsoft cep server and online behavioral targeting. Proc. VLDB
Endow., 2(2):1558–1561, Aug. 2009.

[9] H. Amur, W. Richter, D. G. Andersen, M. Kaminsky, K. Schwan,
A. Balachandran, and E. Zawadzki. Memory-efficient groupby-
aggregate using compressed buffer trees. In SOCC. 2013.

[10] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Mod-
els and issues in data stream systems. In PODS, 2002.

[11] P. Bhatotia, A. Wieder, R. Rodrigues, U. A. Acar, and R. Pasquin.
Incoop: Mapreduce for incremental computations. In SOCC,
pages 7:1–7:14. 2011.

[12] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy,
and R. Sears. Mapreduce online. In NSDI. 2010.

[13] H. Gao, J. Hu, C. Wilson, Z. Li, Y. Chen, and B. Y. Zhao. Detecting
and characterizing social spam campaigns. In IMC. 2010.

[14] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo. Spade:
the system s declarative stream processing engine. In SIGMOD,
pages 1123–1134. 2008.

[15] B. He, M. Yang, Z. Guo, R. Chen, B. Su, W. Lin, and L. Zhou.
Comet: batched stream processing for data intensive distributed
computing. In SOCC, pages 63–74. 2010.

[16] W. Lam, L. Liu, S. Prasad, A. Rajaraman, Z. Vacheri, and A. Doan.
Muppet: Mapreduce-style processing of fast data. Proc. VLDB
Endow., 5(12):1814–1825, Aug. 2012.

[17] B. Li, E. Mazur, Y. Diao, A. McGregor, and P. Shenoy. A platform
for scalable one-pass analytics using mapreduce. In SIGMOD,
pages 985–996. 2011.

[18] D. Logothetis, C. Olston, B. Reed, K. C. Webb, and K. Yocum.
Stateful bulk processing for incremental analytics. In SOCC, pages
51–62. 2010.

[19] D. Logothetis, C. Trezzo, K. C. Webb, and K. Yocum. In-situ
mapreduce for log processing. In USENIXATC. 2011.

[20] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and
M. Abadi. Naiad: a timely dataflow system. In SOSP. 2013.

[21] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4: Distributed
stream computing platform. In ICDMW, pages 170–177. 2010.

[22] C. Olston, G. Chiou, L. Chitnis, F. Liu, Y. Han, M. Larsson,
A. Neumann, V. B. Rao, V. Sankarasubramanian, S. Seth, C. Tian,
T. ZiCornell, and X. Wang. Nova: continuous pig/hadoop work-
flows. In SIGMOD, pages 1081–1090. 2011.

[23] D. Peng and F. Dabek. Large-scale incremental processing using
distributed transactions and notifications. In OSDI. 2010.

[24] Z. Qian, Y. He, C. Su, Z. Wu, H. Zhu, T. Zhang, L. Zhou, Y. Yu,
and Z. Zhang. Timestream: reliable stream computation in the
cloud. In Eurosys, pages 1–14. 2013.

[25] A. I. T. Rowstron and P. Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems.
In Middleware, pages 329–350. 2001.

[26] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony,
H. Liu, P. Wyckoff, and R. Murthy. Hive: a warehousing solution
over a map-reduce framework. Proc. VLDB Endow., 2(2):1626–
1629, 2009.

[27] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica. Resilient distributed
datasets: a fault-tolerant abstraction for in-memory cluster com-
puting. In NSDI, pages 2–2. 2012.

[28] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica.
Discretized streams: Fault-tolerant streaming computation at scale.
In SOSP. ACM, Sept. 2013.

[29] S. Zdonik, M. Stonebraker, M. Cherniack, U. Çetintemel, M. Bal-
azinska, and H. Balakrishnan. The aurora and medusa projects.
Data Engineering, 51:3, 2003.

12

