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Abstract

File systems that manage magnetic disks have long rec-
ognized the importance of sequential allocation and large
transfer sizes for file data. Fast random access has dom-
inated metadata lookup data structures with increasing
use of B-trees on-disk. Yet our experiments with work-
loads dominated by metadata and small file access in-
dicate that even sophisticated local disk file systems like
Ext4, XFS and Btrfs leave a lot of opportunity for perfor-
mance improvement in workloads dominated by meta-
data and small files.

In this paper we present a stacked file system,
TABLEFS, which uses another local file system as an ob-
ject store. TABLEFS organizes all metadata into a sin-
gle sparse table backed on disk using a Log-Structured
Merge (LSM) tree, LevelDB in our experiments. By
stacking, TABLEFS asks only for efficient large file al-
location and access from the underlying local file sys-
tem. By using an LSM tree, TABLEFS ensures metadata
is written to disk in large, non-overwrite, sorted and in-
dexed logs. Even an inefficient FUSE based user level
implementation of TABLEFS can perform comparably to
Ext4, XFS and Btrfs on data-intensive benchmarks, and
can outperform them by 50% to as much as 1000% for
metadata-intensive workloads. Such promising perfor-
mance results from TABLEFS suggest that local disk file
systems can be significantly improved by more aggres-
sive aggregation and batching of metadata updates.

1 Introduction

In the last decade parallel and Internet service file sys-
tems have demonstrated effective scaling for high band-
width, large file transfers [48, 13, 17, 25, 38, 39]. The
same, however, is not true for workloads that are domi-
nated by metadata and tiny file access [34, 49]. Instead
there has emerged a class of scalable small-data stor-
age systems, commonly called key-value stores, that em-

phasize simple (NoSQL) interfaces and large in-memory
caches [2, 24, 33].

Some of these key-value stores feature high rates
of change and efficient out-of-memory Log-structured
Merge (LSM) tree structures [8, 23, 32]. An LSM tree
can provide fast random updates, inserts and deletes
without scarificing lookup performance [5]. We be-
lieve that file systems should adopt LSM tree techniques
used by modern key-value stores to represent metadata
and tiny files, because LSM trees aggressively aggregate
metadata. Moreover, today’s key-value store implemen-
tations are “thin” enough to provide the performance lev-
els required by file systems.

In this paper we present experiments in the most ma-
ture and restrictive of environments: a local file sys-
tem managing one magnetic hard disk. We used a Lev-
elDB key-value store [23] to implement TABLEFS, our
POSIX-compliant stacked file system, which represents
metadata and tiny files as key-value pairs. Our results
show that for workloads dominated by metadata and tiny
files, it is possible to improve the performance of the
most modern local file systems in Linux by as much as
an order of magnitude. Our demonstration is more com-
pelling because it begins disadvantaged: we use an in-
terposed file system layer [1] that represents metadata
and tiny files in a LevelDB store whose LSM tree and
log segments are stored in the same local file systems we
compete with.

2 Background

Even in the era of big data, most things in many file
systems are small [10, 28]. Inevitably, scalable sys-
tems should expect the numbers of small files to soon
achieve and exceed billions, a known challenge for both
the largest [34] and most local file systems [49]. In this
section we review implementation details of the systems
employed in our experiments: Ext4, XFS, Btrfs and Lev-
elDB.
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2.1 Local File System Structures

Ext4[26] is the fourth generation of Linux ext file sys-
tems, and, of the three we study, the most like traditional
UNIX file systems. Ext4 divides the disk into block
groups, similar to cylinder groups in traditional UNIX,
and stores in each block group a copy of the superblock,
a block group descriptor, a bitmap describing free data
blocks, a table of inodes and a bitmap describing free
inodes, in addition to the actual data blocks. Inodes con-
tain a file’s attributes (such as the file’s inode number,
ownership, access mode, file size and timestamps) and
four extent pointers for data extents or a tree of data ex-
tents. The inode of a directory contains links to a HTree
(similar to B-Tree) that can be one or two levels deep,
based on a 32 bit hash of the directory entry’s name. By
default only changes to metadata are journaled for dura-
bility, and Ext4 asynchronously commits its journal to
disk every five seconds. When committing pending data
and metadata, data blocks are written to disk before the
associated metadata is written to disk.

XFS[47], originally developed by SGI, aggressively
and pervasively uses B+ trees to manage all file struc-
tures: free space maps, file extent maps, directory entry
indices and dynamically allocated inodes. Because all
file sizes, disk addresses and inode numbers are 64 bits
in XFS, index structures can be large. To reduce the size
of these structures XFS partitions the disk into alloca-
tion groups, clusters allocation in an allocation group and
uses allocation group relative pointers. Free extents are
represented in two B+ trees: one indexed by the start-
ing address of the extent and the other indexed by the
length of the extent, to enable efficient search for an ap-
propriately sized extent. Inodes contain either a direct
extent map, or a B+ tree of extent maps. Each allocation
group has a B+ tree indexed by inode number. Inodes
for directories have a B+ tree for directory entries, in-
dexed by a 32 bit hash of the entry’s file name. XFS also
journals metadata for durability, committing the journal
asynchronously when a log buffer (256 KB by default)
fills or synchronously on request.

Btrfs[22, 36] is the newest and most sophisticated
local file system in our comparison set. Inspired by
Rodeh’s copy-on-write B-tree[35], as well as features
of XFS, NetApp’s WAFL and Sun’s ZFS[3, 18], Btrfs
copies any B-tree node to an unallocated location when
it is modified. Provided the modified nodes can be allo-
cated contiguously, B-tree update writing can be highly
sequential; however more data must be written than is
minimally needed (write amplification). The other sig-
nificant feature of Btrfs is its collocation of different
metadata components in the same B-tree, called the FS
tree. The FS tree is indexed by (inode number, type, off-
set) and it contains inodes, directory entries and file ex-

tent maps, distinguished by a type field: INODE ITEM
for inodes, DIR ITEM and DIR INDEX for directory en-
tries, and EXTENT DATA REF for file extent maps. Di-
rectory entries are stored twice so that they can be or-
dered differently: in one the offset field of the FS tree
index (for the directory’s inode) is the hash of the en-
try’s name, for fast single entry lookup, and in the other
the offset field is the child file’s inode number. The lat-
ter allows a range scan of the FS tree to list the inodes of
child files and accelerate user operations such as ls+stat.
Btrfs, by default, delays writes for 30 seconds to increase
disk efficiency, and metadata and data are in the same de-
lay queue.

2.2 LevelDB and its LSM Tree

Inspired by a simpler structure in BigTable[8], LevelDB
[23] is an open-source key-value storage library that fea-
tures an Log-Structured Merge (LSM) tree [32] for on-
disk storage. It provides simple APIs such as GET, PUT,
DELETE and SCAN (an iterator). Unlike BigTable, not
even single row transactions are supported in LevelDB.
Because TABLEFS uses LevelDB, we will review its de-
sign in greater detail in this section.

In a simple understanding of an LSM tree, an mem-
ory buffer cache delays writing new and changed entries
until it has a significant amount of changes to record
on disk. Delay writes are made more durable by re-
dundantly recording new and changed entries in a write-
ahead log, which is pushed to disk periodically and asyn-
chronously by default.

In LevelDB, by default, a set of changes are spilled
to disk when the total size of modified entries exceeds
4 MB. When a spill is triggered, called a minor com-
paction, the changed entries are sorted, indexed and writ-
ten to disk in a format known as SSTable[8]. These en-
tries may then be discarded by the memory buffer and
can be reloaded by searching each SSTable on disk, pos-
sibly stopping when the first match occurs if the SSTa-
bles are searched from most recent to oldest. The number
of SSTables that need to be searched can be reduced by
maintaining a Bloom filter[7] on each, but with increas-
ing numbers of records the disk access cost of finding
a record not in memory increases. Scan operations in
LevelDB are used to find neighbor entries, or to iterate
through all key-value pairs within a range. When per-
forming a scan operation, LevelDB first searches each
SSTable to place a cursor; it then increments cursors
in the multiple SSTables and merges key-value pairs in
sorted order. Compaction is the process of combining
multiple SSTables into a smaller number of SSTables by
merge sort. Compaction is similar to online defragmen-
tation in traditional file systems and cleaning process in
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Figure 1: LevelDB represents data on disk in multiple SSTables
that store sorted key-value pairs. SSTables are grouped into
different levels with lower-numbered levels containing more re-
cently inserted key-value pairs. Finding a specific pair on disk
may search up to all SSTables in level 0 and at most one in each
higher-numbered level. Compaction is the process of combin-
ing SSTables by merge sort into higher-numbered levels.

LFS [37].
As illustrated in Figure 1, LevelDB extends this simple

approach to further reduce read costs by dividing SSTa-
bles into sets, or levels. Levels are numbered starting
from 0, and levels with a smaller number are referenced
as “lower” levels. The 0th level of SSTables follows a
simple formulation: each SSTable in this level may con-
tain entries with any key/value, based on what was in
memory at the time of its spill. LevelDB’s SSTables
in level L > 0 are the results of compacting SSTables
from level L or L− 1. In these higher levels, LevelDB
maintains the following invariant: the key range span-
ning each SSTable is disjoint from the key range of all
other SSTables at that level and each SSTable is limited
in size (2MB by default). Therefore querying for an en-
try in the higher levels only need to read at most one
SSTable in each level. LevelDB also sizes each level dif-
ferentially: all SSTables have the same maximum size
and the sum of the sizes of all SSTables at level L will
not exceed 10L MB. This ensures that the number of lev-
els, that is, the maximum number of SSTables that need
to be searched in the higher levels, grows logarithmically
with increasing numbers of entries.

When LevelDB decides to compact an SSTable at level
L, it picks one, finds all other SSTables at the same level
and level L+ 1 that have an overlapping key range, and
then merge sorts all of these SSTables, producing a set
of SSTables with disjoint ranges at the next higher level.
If an SSTable at level 0 is selected, it is not unlikely that
many or all other SSTables at level 0 will also be com-
pacted, and many SSTables at level 1 may be included.
But at higher levels most compactions will involve a
smaller number of SSTables. To select when and what
to compact there is a weight associated with compacting
each SSTable, and the number of SSTables at level 0 is
held in check (by default compaction will be triggered if
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Figure 2: (a) The architecture of TABLEFS. A FUSE kernel
module redirects file system calls from a benchmark process to
TABLEFS, and TABLEFS stores objects into either LevelDB or
a large file store. (b) When we benchmark a local file system,
there is no FUSE overhead to be paid.

there are more than four SSTables at level 0). There are
also counts associated with SSTables that are searched
when looking for an entry, and hotter SSTables will be
compacted sooner. Finally, only one compaction runs at
a time.

3 TABLEFS

As shown in Figure 2(a), TABLEFS exploits the FUSE
user level file system infrastructure to interpose on top
of the local file system. TABLEFS represents directo-
ries, inodes and small files in one all-encompassing ta-
ble, and only writes large objects (such as write-ahead
logs, SSTables, and large files) to the local disk.

3.1 Local File System as Object Store
There is no explicit space management in TABLEFS. In-
stead, it uses the local file system for allocation and stor-
age of objects. Because TABLEFS packs directories, in-
odes and small files into a LevelDB table, and LevelDB
stores sorted logs (SSTables) of about 2MB each, the lo-
cal file system sees many fewer, larger objects. We use
Ext4 as the object store for TABLEFS in all experiments.

Files larger than T bytes are stored directly in the ob-
ject store named according to their inode number. The
object store uses a two-level directory tree in the lo-
cal file system, storing a file with inode number I as
“/LargeFileStore/J/I” where J = I ÷ 10000. This is to
circumvent any scalability limits on directory entries in
the underlying local file systems. In TABLEFS today,
T , the threshold for blobbing a file is 4KB, which is the
median size of files in desktop workloads [28], although
others have suggested T be at least 256KB and perhaps
as large as 1MB [41].
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3.2 Table Schema
TABLEFS’s metadata store aggregates directory entries,
inode attributes and small files into one LevelDB table
with a row for each file. To link together the hierar-
chical structure of the user’s namespace, the rows of the
table are ordered by a variable-length key consisting of
the 64-bit inode number of a file’s parent directory and its
filename string (final component of its pathname). The
value of a row contains inode attributes, such as inode
number, ownership, access mode, file size and times-
tamps (struct stat in Linux). For small files, the file’s
row also contains the file’s data.

Figure 3 shows an example of storing a sample file
system’s metadata into one LevelDB table.

All entries in the same directory have rows that share
the same first 64 bits of their table key. For readdir oper-
ations, once the inode number of the target directory has
been retrieved, a scan sequentially lists all entries hav-
ing the directory’s inode number as the first 64 bits of
their table key. To resolve a single pathname, TABLEFS
starts searching from the root inode, which has a well-
known inode number (0). Traversing the user’s directory
tree involves constructing a search key by concatenating
the inode number of current directory with the hash of
next component name in the pathname. Unlike Btrfs,
TABLEFS does not need the second version of each di-
rectory entry because the entire attributes are returned in
the readdir scan.

3.3 Hard Links
Hard links, as usual, are a special case because two or
more rows must have the same inode attributes and data.
Whenever TABLEFS creates the second hard link to a
file, it creates a separate row for the file itself, with a
null name, and its own inode number as its parent’s in-
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<1, “foo”> 2, struct stat 

<1, “bar”> 3, struct stat 
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Figure 3: An example illustrates table schema used by
TABLEFS’s metadata store. The file with inode number 4 has
two hard links, one called “apple” from directory foo and the
other called “pear” from directory bar.

ode number in the row key. As illustrated in Figure 3,
creating a hard link also modifies the directory entry such
that each row naming the file has an attribute indicating
the directory entry is a hard link to the file object’s inode
row.

3.4 Scan Operation Optimization

TABLEFS utilizes the scan operation provided by Lev-
elDB to implement readdir() system call. The scan op-
eration in LevelDB is designed to support iteration over
arbitrary key ranges, which may require searching SSTa-
bles at each level. In such a case, Bloom filters cannot
help to reduce the number of SSTables to search. How-
ever, in TABLEFS, readdir() only scans keys sharing the
common prefix — the inode number of the searched di-
rectory. For each SSTable, an additional Bloom filter is
maintained, to keep track of all inode numbers that ap-
pear as the first 64 bit of row keys in the SSTable. Before
starting an iterator in an SSTable for readdir(), TABLEFS
can first check its Bloom filter to find out whether it con-
tains any of the desired directory entries. Therefore, un-
necessary iterations over SSTables that do not contain
any of the requested directory entries can be avoided.

3.5 Inode Number Allocation

TABLEFS uses a global counter for allocating inode
numbers. The counter increments when creating a new
file or a new directory. Since we use 64-bit inode num-
bers, it will not soon be necessary to recycle the inode
number of deleted entries. Coping with operating sys-
tems that use 32 bit inode numbers may require frequent
inode number recycling, a problem beyond the scope of
this paper and addressed by many file systems.

3.6 Locking and Consistency

LevelDB provides atomic insertion of a batch of writes
but does not support atomic row read-modify-write op-
erations. The atomic batch write guarantees that a se-
quence of updates to the database are applied in order,
and committed to the write-ahead log atomically. Thus
the rename operation can be implemented as a batch
of two operations: insert the new directory entry and
delete the stale entry. But for operations like chmod and
utime, since all of an inode’s attributes are stored in a sin-
gle key-value pair, TABLEFS must read-modify-write at-
tributes atomically. We implemented a light-weight lock-
ing mechanism in the TABLEFS core layer to ensure cor-
rectness under concurrent access.
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Figure 4: Three different implementations of TABLEFS:
(a) the kernel-native TABLEFS, (b) the FUSE version of
TABLEFS, and (c) the library version of TABLEFS. In the fol-
lowing evaluation section, (b) and (c) are presented to bracket
the performance of (a), which was not implemented.

3.7 Journaling
TABLEFS relies on LevelDB and the local file system
to achieve journaling. LevelDB has its own write-ahead
log that journals all updates to the table. LevelDB can
be set to commit the log to disk synchronously or asyn-
chronously. To achieve a consistency guarantee similar
to “ordered mode” in Ext4, TABLEFS forces LevelDB
to commit the write-ahead log to disk periodically (by
default it is committed every 5 seconds).

3.8 TABLEFS in the Kernel
A kernel-native TABLEFS file system is a stacked file
system, similar to eCryptfs [14], treating a second local
file system as an object store, as shown in Figure 4(a). An
implementation of a Log-Structured Merge (LSM) tree
[32] used for storing TABLEFS in the associated object
store, such as LevelDB [23], is likely to have an asyn-
chronous compaction thread that is more conveniently
executed at user level in a TABLEFS daemon, as illus-
trated in Figure 4(b).

For the experiments in this paper, we bracket the
performance of a kernel-native TABLEFS (Figure 4(a)),
between a FUSE-based user-level TABLEFS (Figure
4(b)) with no TABLEFS function in the kernel and all
of TABLEFS in the user level FUSE daemon) and an
application-embedded TABLEFS library, illustrated in
Figure 4(c).

TABLEFS entirely at user-level in a FUSE daemon
is unfairly slow because of the excess kernel crossings
and scheduling delays experienced by FUSE file systems
[6, 45]. TABLEFS embedded entirely in the benchmark
application as a library is not sharable, and unrealistically
fast because of the infrequency of system calls. We ap-
proximate the performance of a kernel-native TABLEFS

using the library version and preceding each reference to
the TABLEFS library with a write( “/dev/null”, N bytes)
to account for the system call and data transfer overhead.
N is chosen to match the size of data passed through each
system call. More details on these models will be dis-
cussed in Section 4.3.

4 Evaluation

4.1 Evaluation System
We evaluate our TABLEFS prototype on Linux desktop
computers equipped as follows:

Linux Ubuntu 12.10, Kernel 3.6.6 64-bit version
CPU AMD Opteron Processor 242 Dual Core
DRAM 16GB DDR SDRAM
Hard Disk Western Digital WD2001FASS-00U0B0

SATA, 7200rpm, 2TB
Random Seeks 100 seeks/sec peak
Sequential Reads 137.6 MB/sec peak
Sequential Writes 135.4 MB/sec peak

We compare TABLEFS with Linux’s most sophisti-
cated local file systems: Ext4, XFS, and Btrfs. Ext4 is
mounted with “ordered” journaling to force all data to be
flushed out to disk before its metadata is committed to
disk. By default, Ext4’s journal is asynchronously com-
mitted to disks every 5 seconds. XFS and Btrfs use simi-
lar policies to asynchronously update journals. Btrfs, by
default, duplicates metadata and calculates checksums
for data and metadata. We disable both features (un-
available in the other file systems) when benchmarking
Btrfs to avoid penalizing it. Since the tested filesystems
have different inode sizes (Ext4 and XFS use 256 bytes
and Btrfs uses 136 bytes), we pessimistically penalize
TABLEFS by padding its inode attributes to 256 bytes.
This slows down TABLEFS doing metadata-intensive
workloads significantly, but it still performs quite well.
In some benchmarks, we also changed the Linux boot
parameters to limit the machines’ available memory be-
low certain threshold, in order to test out-of-RAM per-
formance.

4.2 Data-Intensive Macrobenchmark
We run two sets of macrobenchmarks on the FUSE ver-
sion of TABLEFS, which provides a full featured, trans-
parent application service. Instead of using a metadata-
intensive workload, emphasized in the previous and later
sections of this paper, we emphasize data-intensive work
in this section. Our goal is to demonstrate that TABLEFS
is capable of reasonable performance for the traditional
workloads that are often used to test local file systems.
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Kernel build is a macrobenchmark that uses a Linux
kernel compilation and related operations to compare
TABLEFS’s performance to the other tested file systems.
In the kernel build test, we use the Linux 3.0.1 source
tree (whose compressed tar archive is about 73 MB in
size). In this test, we run four operations in this order:

• untar: untar the source tarball;

• grep: grep “nonexistent pattern” over all of the
source tree;

• make: run make inside the source tree;

• gzip: gzip the entire source tree.

After compilation, the source tree contains 45,567 files
with a total size of 551MB. The machine’s available
memory is set to be 350MB, and therefore compilation
data are forced to be written to the disk.

Figure 5 shows the average runtime of three runs of
these four macro-benchmarks using Ext4, XFS, Btrfs
and TABLEFS-FUSE. For each macro-benchmark, the
runtime is normalized by dividing the minimum value.
Summing the operations, TABLEFS-FUSE is about 20%
slower, but it is also paying significant overhead caused
by moving all data through the user-level FUSE daemon
and the kernel twice, instead of only through the kernel
once, as illustrated in Figure 4. Table 5 also shows that
the degraded performance of Ext4, XFS, and Btrfs when
they are accessed through FUSE is about the same as
TABLEFS-FUSE.

Postmark was designed to measure the performance
of a file system used for e-mail, and web based services
[20]. It creates a large number of small randomly-sized
files between 512B and 4KB, performs a specified num-
ber of transactions on them, and then deletes all of them.
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Figure 5: The normalized elapsed time for unpacking, search-
ing building and compressing the Linux 3.0.1 kernel package.
All elapsed time in each operation is divided by the minimum
value (1.0 bar). The legends above each bar show the actual
minimum value in seconds.

��������� ���������

����������
���������

��������� ���������
��������� ���������

������

���������

���������

���������

���������

����������

����������

������ �
����
�	������

��
�
��
��
��
��

��
��

����� ��
��� ���� �������������

Figure 6: The elapsed time for both the entire run of Postmark
and the transactions phase of Postmark for the four tested file
systems.
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Figure 7: Average throughput of each type of operation in Post-
mark benchmark.

Each transaction consists of two sub-transactions, with
one being a create or delete and the other being a read
or append. The configuration used for these experiments
consists of two million transactions on one million files,
and the biases for transaction types are equal. The ex-
periments were run with the available memory set to be
1400 MB, too small to fit the entire datasets (about 3GB)
in memory.

Figure 6 shows the Postmark results for the four tested
file systems. TABLEFS outperforms other tested file sys-
tems by at least 23% during the transctions phase. Fig-
ure 7 gives the average throughput of each type of oper-
ations individually. TABLEFS runs faster than the other
tested filesystems for read, append and deletion, but runs
slower for the creation. In Postmark, creation phase
is to create files in the alphabatical order of their file-
names. Thus the creation phase is a sequential insertion
workload for all file systems, and Ext4 and XFS perform
very efficiently in this workload. TABLEFS-FUSE pays
for the overhead from FUSE and writing file data at least
twice: LevelDB first time writes it to the write-ahead log,
and second time to an SSTable during compaction.

4.3 TABLEFS-FUSE Overhead Analysis
To understand the overhead of FUSE in TABLEFS-
FUSE, and estimate the performance of an in-
kernel TABLEFS, we ran a micro-benchmark against
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TABLEFS-FUSE and TABLEFS-Library ((b) and (c) in
Figure 4). This micro-benchmark creates one million
zero-length files in one directory starting with an empty
file system. The amount of memory available to the
evaluation system is 1400 MB, almost enough to fit the
benchmark in memory.

Figure 8 shows the total runtime of the experiment.
TABLEFS-FUSE is about 3 times slower than TABLEFS-
Libary.
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Figure 8: The elapsed time for creating 1M zero-length files on
three versions of TABLEFS (See Figure 4)

.

Figure 9 shows the total disk traffic gathered from the
Linux proc file system (/proc/diskstats) during the test.
Relative to TABLEFS-Library, TABLEFS-FUSE writes
almost as twice as many bytes to the disk, and reads al-
most 100 times as much. This additional disk traffic re-
sults from two sources: 1) under a slower insertion rate,
LevelDB tends to compact more often; and 2) the FUSE
framework populates the kernel’s cache with its own ver-
sion of inodes, competing with the local file system for
cache memory.
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Figure 9: Total disk traffic associated with Figure 8

To illustrate the first point, we show LevelDB’s com-
paction process during this test in Figure 10. Figure 10
shows the total size of SSTables in each Level over time.
The compaction process will move SSTables from one
level to the next level. For each compaction in Level
0, LevelDB will compact all SSTables with overlapping

(a) TABLEFS-FUSE

(b) TABLEFS-Library

(c) TABLEFS-Sleep

Figure 10: Changes of total size of SSTables in each level
over time during the creation of 1M zero-length files for three
TABLEFS models. TABLEFS-Sleep illustrates similar com-
paction behavior as does TABLEFS-FUSE.

ranges (which in this benchmark will be almost all SSTa-
bles in level 0 and 1). At the end of a compaction,
the next compaction will repeat similar work, except the
number of level 0 SSTables will be proportional to the
data insertion rate. When the insertion rate is slower
(Figure 10(a)), compaction in Level 0 finds fewer over-
lapping SSTables than TABLEFS-Library (Figure 10(b))
in each compaction. In Figure 10(b), the level 0 size
(blue line) exceeds 20MB for much of the test, while
in 10(a) it never exceeds 20MB after the first com-
paction. Therefore, LevelDB does more compactions to
integrate the same arriving log of changes when insertion
is slower.

To negate the different compaction work, we deliber-
ately slow down TABLEFS-Library to run at the same

7
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speed as TABLEFS-FUSE by adding sleep 80ms ev-
ery 1000 operations (80ms was empirically derived to
match the run time of TABLEFS-FUSE). This model of
TABLEFS is called TABLEFS-Sleep and is shown in Fig-
ure 9 and 10 (c). TABLEFS-Sleep causes almost the same
pattern of compactions as does TABLEFS-FUSE and in-
duces about the same write traffic (Figure 9). But un-
like TABLEFS-FUSE, TABLEFS-Sleep can use more of
the kernel page cache to store SSTables than TABLEFS-
FUSE. Thus, as shown in Figure 9, TABLEFS-Sleep
writes the same amount of data as TABLEFS-FUSE but
does much less disk reading.

To estimate TABLEFS performance without FUSE
overhead, we use TABLEFS-Library to avoid double
caching and perform a write( “/dev/null”, N bytes) on
every TABLEFS invocation to model the kernel’s system
call and argument data transfer overhead. This model
is called TABLEFS-Predict and is used in the follow-
ing sections to predict metadata efficiency of a kernel
TABLEFS.

4.4 Metadata-Intensive Microbenchmark
Metadata-only Benchmark

In this section, we run four micro-benchmarks of the
efficiency of pure metadata operations. Each micro-
benchmark consists of two phases: a) create and b) test.
For all four tests, the create phase is the same:

• a) create: In “create”, the benchmark application
generates directories in depth first order, and then
creates one million zero-length files in the appropri-
ate parent directories in a random order, according
to a realistic or synthesized namespace.

The test phase in the benchmark are:

• b1) null: In test 1, the test phase is null because
create is what we are measuring.

• b2) query: This workload issues one million read or
write queries to random (uniform) files or directo-
ries. A read query calls stat on the file, and a write
query randomly does either a chmod or utime to up-
date the mode or the timestamp attributes.

• b3) rename: This workload issues a half million re-
name operations to random (uniform) files, moving
the file to another randomly chosen directory.

• b4) delete: This workload issues a half million
delete operations to randomly chosen files.

The captured file system namespace used in the ex-
periment was taken from one author’s personal Ubuntu
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Figure 11: Average throughput during four different workloads
for five tested systems.
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Figure 12: Total number of disk read/write requests during
50%Read+50%Write query workload for five tested systems.

desktop. There were 172,252 directories, each with 11
files on average, and the average depth of the namespace
is 8 directories. We also used the Impressions tool [4] to
generate a “standard namespace”. This synthetic names-
pace yields similar results, so its data is omitted from this
paper. Between the create and test phase of each run,
we umount and re-mount local filesystems to clear ker-
nel caches. To test out-of-RAM performance, we limit
the machine’s available memory to 350MB which does
not fit the entire test in memory. All tests were run for
three times, and the coefficient of variation is less than
1%.

Figure 11 shows the test results averaged over three
runs. The create phase of all tests had the same per-
formance so we show it only once. For the other tests,
we show only the second, test phase. Both TABLEFS-
Predict and TABLEFS-FUSE runs are almost 2 to 3 times
faster than the other local file systems in all tests.

Figure 12 shows the total number of disk read and
write requests during the query workload, the test in
which TABLEFS has the least advantage. Both versions
of TABLEFS issue many fewer disk writes, effectively
aggregating changes into larger sequential writes. For
read requests, because of bloom filtering and in-memory

8
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indexing, TABLEFS issues fewer read requests. There-
fore TABLEFS’s total number of disk requests is smaller
than the other tested file systems.

Scan Queries

In addition to point queries such as stat, chmod and
utime, range queries such as readdir are important meta-
data operations. To test the performance of readdir, we
modify the micro-benchmark to perform multiple read-
dir operations in the generated directory tree. To show
the trade-offs involved in embedding small files, we cre-
ate 1KB files (with random data) instead of zero byte
files. For the test phase, we use the following three oper-
ations:

• b5) readdir: The benchmark application performs
readdir() on 100,000 randomly picked directories.

• b6) readdir+stat: The benchmark application per-
forms readdir() on 100,000 randomly picked direc-
tories, and for each returned directory entry, per-
forms a stat operation. This simulates “ls -l”.

• b7) readdir+read: Similar to readdir+stat, but for
each returned directory entry, it reads the entire file
(if returned entry is a file) instead of stat.

Figure 13 shows the total time needed to complete
each readdir workload (the average of three runs). In the
pure readdir workload, TABLEFS-Predict is slower than
Ext4 because of read amplification, that is, for each read-
dir operation, TABLEFS fetches directory entries along
with unnecessary inode attributes and file data. How-
ever, in the other two workloads when at least one of the
attributes or file data is needed, TABLEFS is faster than
Ext4, XFS, and Btrfs, since many random disk accesses
are avoided by embedding inodes and small files.
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Figure 13: Total run-time of three readdir workloads for five
tested file systems.

Figure 14: Throughput of all four tested file systems while cre-
ating 100 million zero-length files. TABLEFS-FUSE is almost
10× faster than the other tested file systems in the later stage
of this experiment. The data is sampled in every 10 seconds
and smoothed over 100 seconds. The vertical axis is shown on
a log scale.

Benchmark with Larger Directories

Because the scalability of small files is of topical interest
[49], we modified the zero-byte file create phase to create
100 million files (a number of files rarely seen in the local
file system today). In this benchmark, we allowed the
memory available to the evaluation system to be the full
16GB of physical memory.

Figure 14 shows a timeline of the creation rate for
four file systems. In the beginning of this test, there is
a throughput spike that is caused by everything fitting in
the cache. Later in the test, the creation rate of all tested
file systems slows down because the non-existence test
in each create is applied to ever larger on-disk data struc-
tures. Btrfs suffers the most serious drop, slowing down
to 100 operations per second at some points. TABLEFS-
FUSE maintains more steady performance with an aver-
age speed of more than 2,200 operations per second and
is 10 times faster than all other tested file systems.

All tested file systems have throughput fluctuations
during the test. This kind of fluctuation might be caused
by on disk data structure maintenance. In TABLEFS, this
behavior is caused by compactions in LevelDB, in which
SSTables are merged and sequentially written back to
disk.

Solid State Drive Results

TABLEFS reduces disk seeks, so you might expect it
to have less benefit on solid state drives, and you’d be
right. We applied the “create-query” microbenchmark
to a 120GB SATA II 2.5in Intel 520 Solid State Drive
(SSD). Random read throughput is 15,000 IO/s at peak,
and random write throughput peaks at 3,500 IO/s. Se-
quential read throughput peaks at 245MB/sec, and se-
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Figure 15: Average throughput in the create and query work-
loads on an Intel 520 SSD for five tested file systems.

quential write throughput peaks at 107MB/sec. Btrfs has
a “ssd” optimization mount option which we enabled.

Figure 15 shows the throughput averaged over three
runs of the create and query phases. In comparison to
Figure 11, all results are about 10 times faster. Although
TABLEFS is not the fastest, TABLEFS-Predict is com-
parable to the fastest. Figure 16 shows the total number
of disk requests and disk bytes moved during the query
phase. While TABLEFS achieves fewer disk writes, it
reads much more data from SSD than XFS and Btfs. For
use with solid state disks, LevelDB can be further opti-
mized to reduce read amplification. For example, using
SILT-like fine-grained in-memory indexing [24] can re-
duce the amount of data read from SSD, and using VT-
Tree compaction stitching [45] can reduce compaction
works for sequential workloads.

5 Related Work

File system metadata is structured data, a natural fit for
relational database techniques. However, because of
their large size, complexity and slow speed, file sys-
tem developers have long been reluctant to incorpo-
rate traditional databases into the lower levels of file
systems [31, 46]. Modern stacked file systems often
expand on the limited structure in file systems, hid-
ing structures inside directories meant to represent files
[6, 14, 15, 21], even though this may increase the number
of small files in the file system. In this paper, we return
to the basic premise, file system metadata is a natural
fit for table-based representation, and show that today’s
lightweight data stores may be up to the task. We are con-
cerned with an efficient representation of huge numbers
of small files, not strengthening transactional semantics
[16, 19, 40, 45, 50].

Early file systems stored directory entries in a linear
array in a file and inodes in simple on-disk tables, sep-
arate from the data of each file. Clustering within a file
was pursued aggressively, but for different files cluster-
ing was at the granularity of the same cylinder group. It
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Figure 16: Total number of disk requests and disk bytes moved
in the query workload on an Intel 520 SSD for five tested file
systems.

has long been recognized that small files can be packed
into the block pointer space in inodes [29]. C-FFS [12]
takes packing further and clusters small files, inodes and
their parent directory’s entries in the same disk reada-
head unit, the track. A variation on clustering for effi-
cient prefetching is replication of inode fields in direc-
tory entries, as is done in NTFS[9]. TABLEFS pursues
an aggressive clustering strategy; each row of a table is
ordered in the table with its parent directory, embedding
directory entries, inode attributes and the data of small
files. This clustering manifests as adjacency for objects
in the lower level object store if these entries were cre-
ated/updated close together in time, or after compaction
has merge sorted them back together.

Beginning with the Log-Structured File System
(LFS)[37], file systems have exploited write alloca-
tion methods that are non-overwrite, log-based and de-
ferred. Variations of log structuring have been imple-
mented in NetApp’s WAFL, Sun’s ZFS and BSD UNIX
[3, 18, 44]. In this paper we are primarily concerned
with the disk access performance implications of non-
overwrite and log-based writing, although the potential
of strictly ordered logging to simplify failure recovery in
LFS has been emphasized and compared to various write
ordering schemes such as Soft Updates and Xsyncfs
[27, 30, 43]. LevelDB’s recovery provisions are con-
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sistent with delayed periodic journalling, but could be
made consistent with stronger ordering schemes. It is
worth noting that the design goals of Btrfs call for non-
overwrite (copy-on-write) updates to be clustered and
written sequentially[36], largely the same goals of Lev-
elDB in TABLEFS. Our measurements indicate, how-
ever, that the Btrfs implementation ends up doing far
more small disk accesses in metadata dominant work-
loads.

Partitioning the contents of a file system into two
groups, a set of large file objects and all of the meta-
data and small files, has been explored in hFS[51]. In
their design large file objects do not float as they are
modified, and hFS uses modified log-structured file sys-
tem approach and an in-place B-Tree to manage meta-
data, directory entries and small files. TABLEFS has this
split as well, with large file objects handled directly by
the backing object store, and metadata updates approxi-
mately log structured in LevelDB’s partitioned LSM tree.
However, TABLEFS uses a layered approach and does
not handle disk allocation, showing that metadata perfor-
mance of widely available and trusted file systems can
be greatly improved even in a less efficient stacked ap-
proach. Moreover, hFS’s B-Tree layered on LFS ap-
proach is similar to Btrfs’ copy-on-write B-Tree, and our
experiments show that the LSM approach is faster than
the Btrfs approach.

Log-Structured Merge trees [32] were inspired in part
by LFS, but focus on representing a large B-tree of small
entries in a set of on-disk B-trees constructed of recent
changes and merging these on-disk B-trees as needed for
lookup reads or in order to merge on-disk trees to re-
duce the number of future lookup reads. LevelDB [23]
and TokuFS [11] are LSM trees. Both are partitioned in
that the on-disk B-trees produced by compaction cover
small fractions of the key space, to reduce unneces-
sary lookup reads. TokuFS names its implementation
a Fractal Tree, also called streaming B-trees[5], and its
compaction may lead to more efficient range queries
than LevelDB’s LSM tree because LevelDB uses Bloom
filters[7] to limit lookup reads, a technique appropriate
for point lookups only. If bounding the variance on in-
sert response time is critical, compaction algorithms can
be more carefully scheduled, as is done in bLSM[42].
TABLEFS may benefit from all of these improvements to
LevelDB’s compaction algorithms, which we observe to
sometimes consume disk bandwidth injudiciously (See
Section 4.3).

Recently, VT-trees [45] were developed as a modifica-
tion to LSM trees to avoid always copying old SSTable
content into new SSTables during compaction. These
trees add another layer of pointers so new SSTables can
point to regions of old SSTables, reducing data copying
but requiring extra seeks and eventual defragmentation.

6 Conclusion

File systems for magnetic disks have long suffered low
performance when accessing huge collections of small
files because of slow random disk seeks. TABLEFS
uses modern key-value store techniques to pack small
things (directory entries, inode attributes, small file data)
into large on-disk files with the goal of suffering fewer
seeks when seeks are unavoidable. Our implementation,
even hampered by FUSE overhead, LevelDB code over-
head, LevelDB compaction overhead, and pessimisti-
cally padded inode attributes, performs as much as 10
times better than state-of-the-art local file systems in ex-
tensive metadata update workloads.

Acknowledgment

This research is supported in part by The Gor-
don and Betty Moore Foundation, National Sci-
ence Foundation under awards, SCI-0430781, CCF-
1019104, CNS-1042537 and CNS-1042543 (PRObE
http://www.nmc-probe.org/), Qatar National Re-
search Foundation 09-1116-1-172, DOE/Los Alamos
National Laboratory, under contract number DE-AC52-
06NA25396/161465-1, by Intel as part of ISTC-CC. We
thank the member companies of the PDL Consortium for
their feedback and support.

References
[1] FUSE. http://fuse.sourceforge.net/.

[2] Memcached. http://memcached.org/.

[3] ZFS. http://www.opensolaris.org/os/community/zfs.

[4] AGRAWAL, N., ARPACI-DUSSEAU, A. C., AND ARPACI-
DUSSEAU, R. H. Generating realistic impressions for file-system
benchmarking. In Proccedings of the 7th conference on file and
storage technologies (2009).

[5] BENDER, M. A., FARACH-COLTON, M., FINEMAN, J. T., FO-
GEL, Y. R., KUSZMAUL, B. C., AND NELSON, J. Cache-
oblivious streaming B-trees. In Proceedings of annual ACM sym-
posium on parallel algorithms and architectures (2007).

[6] BENT, J., GIBSON, G., GRIDER, G., MCCLELLAND, B.,
NOWOCZYNSKI, P., NUNEZ, J., POLTE, M., AND WINGATE,
M. PLFS: a checkpoint filesystem for parallel applications. In
Proceedings of the ACM/IEEE conference on Supercomputing
(2009).

[7] BLOOM, B. Space/time trade-offs in hash coding with allow-
able errors. Communication of ACM 13, 7 (1970).

[8] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W. C., WAL-
LACH, D. A., BURROWS, M., CHANDRA, T., FIKES, A., AND
GRUBER, R. E. Bigtable: a distributed storage system for struc-
tured data. In Proceedings of the 7th USENIX Symposium on
Operating Systems Design and Implementation (2006).

[9] CUSTER, H. Inside the windows NT file system. Microsoft Press
(1994).

[10] DAYAL, S. Characterizing HEC storage systems at rest. In
Carnegie Mellon University, CMU-PDL-08-109 (2008).

11



156 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

[11] ESMET, J., BENDER, M., FARACH-COLTON, M., AND KUSZ-
MAUL, B. The TokuFS streaming file system. Proceedings of the
USENIX conference on Hot Topics in Storage and File Systems
(2012).

[12] GANGER, G. R., AND KAASHOEK, M. F. Embedded inodes and
explicit grouping: Exploiting disk bandwidth for small files. In
Proceedings of the annual conference on USENIX Annual Tech-
nical Conference (1997).

[13] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The Google
file system. In Proceedings of the 19th ACM symposium on Op-
erating systems principles (2003).

[14] HALCROW, M. A. eCryptfs: An Enterprise-class Encrypted
Filesystem for Linux. Proc. of the Linux Symposium, Ottawa,
Canada (2005).

[15] HARTER, T., DRAGGA, C., VAUGHN, M., ARPACI-DUSSEAU,
A. C., AND ARPACI-DUSSEAU, R. H. A file is not a file: un-
derstanding the I/O behavior of Apple desktop applications. In
Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles (2011).

[16] HASKIN, R., MALACHI, Y., SAWDON, W., AND CHAN,
G. Recovery management in quicksilver. In Proceedings of
the Eleventh ACM Symposium on Operating System Principles
(1987).

[17] HDFS. Hadoop file system. http://hadoop.apache.org/.

[18] HITZ, D., LAU, J., AND MALCOLM, M. File system design
for an NFS file server appliance. In USENIX Winter Technical
Conference (1994).

[19] KASHYAP, A. File system extensibility and reliability using an
in-kernel database. Master Thesis, Computer Science Depart-
ment, Stony Brook University (2004).

[20] KATCHER, J. Postmark: A new file system benchmark. In Ne-
tApp Technical Report TR3022 (1997).

[21] KIM, H., AGRAWAL, N., AND UNGUREANU, C. Revisiting
storage for smartphones. In Proceedings of the 10th USENIX
conference on File and Storage Technologies (2012).

[22] KRA, J. Ext4, BTRFS, and the others. In Proceeding of Linux-
Kongress and OpenSolaris Developer Conference (2009).

[23] LEVELDB. A fast and lightweight key/value database library.
http://code.google.com/p/leveldb/.

[24] LIM, H., FAN, B., ANDERSEN, D. G., AND KAMINSKY, M.
SILT: a memory-efficient, high-performance key-value store. In
Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles (2011).

[25] LUSTRE. Lustre file system. http://www.lustre.org/.

[26] MATHUR, A., CAO, M., AND BHATTACHARYA, S. The new
Ext4 lesystem: current status and future plans. In Ottawa Linux
Symposium (2007).

[27] MCKUSICK, M. K., AND GANGER, G. R. Soft updates: A tech-
nique for eliminating most synchronous writes in the fast filesys-
tem. Proceedings of the annual conference on USENIX Annual
Technical Conference, FREENIX Track (1999).

[28] MEYER, D. T., AND BOLOSKY, W. J. A study of practical dedu-
plication. In Proceedings of the 9th USENIX conference on File
and Storage Technologies (2011).

[29] MULLENDER, S. J., AND TANENBAUM, A. S. Immediate files.
SoftwarePractice and Experience (1984).

[30] NIGHTINGALE, E. B., VEERARAGHAVAN, K., CHEN, P. M.,
AND FLINN, J. Rethink the sync. ACM Transactions on Com-
puter Systems, Vol.26, No.3 Article 6 (2008).

[31] OLSON, M. A. The design and implementation of the Inversion
file system. In USENIX Winter Technical Conference (1993).

[32] O’NEIL, P., CHENG, E., GAWLICK, D., AND O’NEIL, E. The
log-structured merge-tree (LSM-tree). Acta Informatica (1996).

[33] ONGARO, D., RUMBLE, S. M., STUTSMAN, R., OUSTER-
HOUT, J., AND ROSENBLUM, M. Fast crash recovery in RAM-
Cloud. In Proceedings of the 23rd ACM symposium on Operating
systems principles (2011).

[34] PATIL, S., AND GIBSON, G. Scale and concurrency of GIGA+:
File system directories with millions of files. In Proceedings of
USENIX Conference on File and Storage Technologies (2011).

[35] RODEH, O. B-trees, shadowing, and clones. Transactions on
Storage (2008).

[36] RODEH, O., BACIK, J., AND MASON, C. BRTFS: The Linux B-
tree Filesystem. IBM Research Report RJ10501 (ALM1207-004)
(2012).

[37] ROSENBLUM, M., AND OUSTERHOUT, J. K. The design and
implementation of a log-structured file system. In Proceedings of
the thirteenth ACM symposium on Operating systems principles
(1991).

[38] ROSS, R., AND LATHAM, R. PVFS: a parallel file system. In
Proceedings of the ACM/IEEE conference on Supercomputing
(2006).

[39] SCHMUCK, F. B., AND HASKIN, R. L. GPFS: A shared-disk
file system for large computing clusters. In Proceedings of the
1st USENIX conference on file and storage technologies (2002).

[40] SEARS, R., AND BREWER, E. A. Stasis: Flexible transactional
storage. In Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (2006).

[41] SEARS, R., INGEN, C. V., AND GRAY, J. To BLOB or Not
To BLOB: Large Object Storage in a Database or a Filesystem?
Microsoft Technical Report (2007).

[42] SEARS, R., AND RAMAKRISHNAN, R. bLSM: a general purpose
log structured merge tree. Proceedings of the ACM SIGMOD
International Conference on Management of Data (2012).

[43] SELTZER, M., GANGER, G., MCKUSICK, K., SMITH, K.,
SOULES, C., AND STEIN, C. Journaling versus soft updates:
Asynchronous meta-data protection in file systems. Proceedings
of the annual conference on USENIX Annual Technical Confer-
ence (2000).

[44] SELTZER, M. I., BOSTIC, K., MCKUSICK, M. K., AND
STAELIN, C. An implementation of a log-structured file system
for UNIX. USENIX Winter Technical Conference (1993).

[45] SHETTY, P., SPILLANE, R., MALPANI, R., ANDREWS, B.,
SEYSTER, J., AND ZADOK, E. Building workload-independent
storage with VT-Trees. In Proccedings of the 11th conference on
file and storage technologies (2013).

[46] STONEBRAKER, M. Operating System Support for Database
Management. Commun. ACM (1981).

[47] SWEENEY, A. Scalability in the XFS file system. In Proceedings
of the 1996 USENIX Annual Technical Conference (1996).

[48] WELCH, B., UNANGST, M., ABBASI, Z., GIBSON, G.,
MUELLER, B., SMALL, J., ZELENKA, J., AND ZHOU, B. Scal-
able performance of the panasas parallel file system. In Proceed-
ings of the 6th USENIX conference on File and Storage Technolo-
gies (2008).

[49] WHEELER, R. One billion files: pushing scalability limits of
linux filesystem. In Linux Foudation Events (2010).

[50] WRIGHT, C. P., SPILLANE, R., SIVATHANU, G., AND
ZADOK, E. Extending ACID Semantics to the File System.
ACM Transactions on Storage (2007).

[51] ZHANG, Z., AND GHOSE, K. hFS: A hybrid file system proto-
type for improving small file and metadata performance. In Pro-
ceedings of the 2nd ACM SIGOPS/EuroSys European Conference
on Computer Systems (2007).

12




