
USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 13

Hyper-Switch: A Scalable Software Virtual Switching Architecture

Kaushik Kumar Ram, Alan L. Cox, Mehul Chadha and Scott Rixner

Rice University

Abstract
In virtualized datacenters, the last hop switching hap-

pens inside a server. As the number of virtual machines
hosted on the server goes up, the last hop switch can
be a performance bottleneck. This paper presents the
Hyper-Switch, a highly efficient and scalable software-
based network switch for virtualization platforms that
support driver domains. It combines the best of the ex-
isting I/O virtualization architectures by hosting device
drivers in a driver domain to isolate faults and placing
the packet switch in the hypervisor for efficiency. In ad-
dition, this paper presents several optimizations that en-
hance performance. They include virtual machine (VM)
state-aware batching of packets to mitigate the costs of
hypervisor entries and guest notifications, preemptive
copying and immediate notification of blocked VMs to
reduce packet arrival latency, and, whenever possible,
packet processing is dynamically offloaded to idle pro-
cessor cores. These optimizations enable efficient packet
processing, better utilization of the available CPU re-
sources, and higher concurrency.

We implemented a Hyper-Switch prototype in the Xen
virtualization platform. This prototype’s performance
was then compared to Xen’s default network I/O archi-
tecture and KVM’s vhost-net architecture. The Hyper-
Switch prototype performed better than both, especially
for inter-VM network communication. For instance, in
one scalability experiment measuring aggregate inter-
VM network throughput, the Hyper-Switch achieved a
peak of ∼81 Gbps as compared to only ∼31 Gbps under
Xen and ∼47 Gbps under KVM.

1 Introduction

Machine virtualization is now used extensively in data-
centers. This has led to considerable change to both the
datacenter network and the I/O subsystem within virtual-
ized servers. In particular, the communication endpoints
within the datacenter are now virtual machines (VMs),
not physical servers. Consequently, the datacenter net-
work now extends into the server and last hop switching
occurs within the physical server.

At the same time, thanks to increasing core counts
on processors, server VM densities is on the rise. This

trend is placing enormous pressure on the network I/O
subsystem and the last-hop virtual switch to support effi-
cient communication—especially between VMs—in vir-
tualized servers.

There are many I/O architectures for network commu-
nication in virtualized systems. Of these, software device
virtualization is the most widely used. This preference
for software over specialized hardware devices is due in
part to the rich set of features—including security, isola-
tion, and mobility—that the software solutions offer.

The software solutions can be further divided
into driver domain and hypervisor-based architectures.
Driver domains are dedicated VMs that host the drivers
that are used to access the physical devices. It provides
a safe execution environment for the device drivers. Ar-
guably, the hypervisors that support driver domains are
more robust and fault tolerant, as compared to the alter-
nate solutions that locate the device drivers within the
hypervisor. However, on the flip side, they incur signifi-
cant software overheads that not only reduce the achiev-
able I/O performance but also severely limit I/O scalabil-
ity [29, 31].

In existing I/O architectures, the virtual switch is im-
plemented inside the same software domain where the
virtual devices are implemented and the device drivers
are hosted. For instance, all of these components are im-
plemented inside a driver domain in Xen [13] and the
hypervisor in KVM [26]. This collocation is purely a
matter of convenience since packets must be switched
when they are moved between the virtual devices and the
device drivers.

In this paper, we introduce the Hyper-Switch, which
challenges the existing convention by separating the vir-
tual switch from the domain that hosts the device drivers.
The Hyper-Switch is a highly efficient and scalable
software-based switch for virtualization platforms that
support driver domains. In particular, the hypervisor in-
cludes the data plane of a flow-based software switch,
while the driver domain continues to safely host the de-
vice drivers. Since the data plane is small relative to the
size of the switch control plane, it does not significantly
increase the size of the hypervisor or the platform’s over-
all trusted computing base (TCB). The Hyper-Switch ex-
plores a new point in the virtual switching design space.

1

14 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Another contribution of this paper is a set of optimiza-
tions that increase performance. They enable the Hyper-
Switch to efficiently support both bulk and latency sensi-
tive network traffic. They include VM state-aware batch-
ing of packets to mitigate the costs of hypervisor entries
on the transmit side and guest notifications on the receive
side. Preemptive copying is employed at the receiving
VM, when it is being notified of packet arrival, to reduce
latency. Further, whenever possible, packet processing
is dynamically offloaded to idle processor cores. The of-
floading is performed using a low-overhead mechanism
that takes into account CPU cache locality, especially in
NUMA systems.

These optimizations enable efficient packet process-
ing, better utilization of the available CPU resources, and
higher concurrency. They take advantage of the Hyper-
Switch data plane’s integration within the hypervisor and
its proximity to the scheduler. As a result, the Hyper-
Switch enables much improved and scalable network
performance, while maintaining the robustness and fault
tolerance that derive from the use of driver domains. Fur-
ther, we believe that these optimizations can and should
be a part of any virtual switching solution that aims to
deliver high performance.

We evaluated the Hyper-Switch using a prototype
that was implemented in the Xen virtualization plat-
form [4]. The prototype was built by modifying Open
vSwitch [24], a multi-layer software switch for com-
modity servers. In this evaluation, the Hyper-Switch’s
performance was compared to that of KVM’s vhost-net
and Xen’s default network I/O architectures. The results
show that the Hyper-Switch enables much better scala-
bility and peak throughput than both of these existing ar-
chitectures.

The rest of this paper is organized as follows. Sec-
tion 2 further motivates the Hyper-Switch by discussing
some of the issues with existing architectures. Section 3
explains the Hyper-Switch’s design. Section 4 describes
the implementation of the Hyper-Switch prototype. Sec-
tion 5 presents a detailed evaluation of the Hyper-Switch.
Section 6 discusses related work. Finally, Section 7 sum-
marizes the conclusions.

2 Motivation

The need for efficient and scalable network communica-
tion within virtualized servers is increasing. Intel already
claims to have an architecture that can scale to 1000 cores
on a single chip [15]. Furthermore, the number of cores
on a chip is predicted to grow to 64 in a few years and
to 256–512 by the end of the decade [12]. If this last
prediction is borne out, then in 2020 a single 1U server
will have as many cores as an entire rack of servers does
today.

In addition, communication between servers within
the same datacenter already accounts for a significant
fraction of the datacenter’s total network traffic [14].
Moreover, Benson et al.’s study of multiple datacenter
networks reported that 80% of the traffic originating at
servers in cloud datacenters never leaves the rack [5]. If
the predictions for the growing number of cores come
to pass, then a rack of servers may be replaced by VMs
within a single physical server, and the network traffic
that today never leaves the rack may instead never leave
the server. Consequently, the Hyper-Switch has been
heavily optimized to enable high performance inter-VM
communication.

Modern multi-core systems enable concurrent pro-
cessing of network packets. Under Xen’s default net-
work architecture, the driver domain can run in parallel
to the transmitting and receiving VMs. Consequently, it
is possible to perform packet switching in parallel with
packet transmission and reception. However, there are
several fundamental problems with traditional driver do-
main architectures that limit I/O performance scalability.
Fundamentally, the driver domain must be scheduled to
run whenever packets are waiting to be processed. This
might involve scheduling multiple virtual processors de-
pending on the number of threads used for packet pro-
cessing in the driver domain. As a result, scheduling
overheads are incurred while processing network pack-
ets. Further, the driver domain must be scheduled in a
timely manner to avoid unpredictable delays in the pro-
cessing of network packets.

Today, it is standard practice in real-world virtualiza-
tion deployments to dedicate processor cores to the driver
domain. This avoids scheduling delays, but often leaves
cores idle. In fact, dedicating CPU resources for back-
end processing is not limited to just driver domain-based
architectures. There have also been several proposals
to offload some of the packet processing to dedicated
cores—including Kumar et al.’s sidecore approach [17],
and Landau et al.’s split execution (SplitX) model [18].
But, this can lead to underutilization of these cores. Fur-
ther, this goes against one of the fundamental tenets of
virtualization, which is to enable the most efficient uti-
lization of the server resources. Hence the Hyper-Switch
has been designed to smartly and dynamically utilize the
available resources.

At the same time, reliability cannot be ignored, es-
pecially as servers in datacenters move toward multi-
tenancy. Hypervisors that support driver domains are
potentially more robust and fault tolerant. However,
driver domains incur significant overheads. These over-
heads are due to the costs of moving packets between
the guest VMs and the driver domain [21, 29, 31], be-
cause the driver domain cannot trivially access a packet
in the guest VM’s memory. The driver domain is just

2

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 15

NIC

physical
driver

Guest VM Driver Domain

Hardware

Management
Domain

Hyper-Switch
control plane

Hyper-Switch data plane

control vNIC vNIC

Hyper-Switch
ext driverPV network

driver

vNIC

Guest VM

Virtualized Server

PV network
driver

Hypervisor

Figure 1: The Hyper-switch architecture. The last
hop virtual switch is implemented partly in the hy-
pervisor (data plane) and partly in the management
layer (control plane). The device drivers are hosted
in the driver domain.

Guest VM Driver Domain

Hardware

physical
driver

NIC

vNICPV network
driver

Guest VM

Virtualized Server

PV network
driver

virtual switch

vNIC

Hypervisor

Figure 2: Traditional driver domain architecture.
The driver domain hosts the device drivers and the
last hop virtual switch.

another VM and the hypervisor maintains memory iso-
lation between VMs. So, the driver domain must use an
expensive memory sharing mechanism provided to ac-
cess the packet. Hypervisor-based architectures do not
incur these memory sharing overheads since the packets
in the guest VMs’ memory can be directly accessed from
the hypervisor. The Hyper-Switch has been designed to
take advantage of driver domains without incurring the
associated memory sharing overheads.

3 Hyper-Switch Design

Figure 1 illustrates the Hyper-Switch architecture.
There are two fundamental aspects to this architecture.
First, unlike existing systems that use driver domains,
the Hyper-Switch architecture—as the name implies—
implements the virtual switch inside the hypervisor. So
internal network traffic between virtual machines (VMs)
that are collocated on the same server is handled entirely
within the hypervisor. Incoming external network traffic
is initially handled by the driver domain, since it hosts
the device drivers, and then is forwarded to the destina-
tion VM through the Hyper-Switch. For outgoing ex-
ternal traffic, these two steps are simply reversed. In
essence, from the Hyper-Switch’s perspective, two guest
VMs form the endpoints for internal network traffic, and
the driver domain and a guest VM form the endpoints for
external network traffic. Contrast this with the traditional
driver domain architecture as illustrated in Figure 2.

Second, the hypervisor implements just the data-plane
of the virtual switch that is used to forward network
packets between VMs. The switch’s control plane is
implemented in the management layer. So the vir-
tual switch implementation is distributed across virtu-
alization software layers with only the bare essentials
implemented inside the hypervisor. The separation of

control and data planes is achieved using a flow-based
switching approach. This approach has been previously
used in other virtual switching solutions such as Open
vSwitch [24]. However, Open vSwitch’s control and data
planes are both implemented inside the driver domain.

The rest of this section describes the Hyper-Switch’s
design in detail. First, the basics are explained by de-
scribing the path taken by a network packet. This is
followed by several performance optimizations that im-
prove upon the basic design.

3.1 Basic Design
Packet processing by the Hyper-Switch begins at the
transmitting VM (or driver domain) where the packet
originates and ends at the receiving VM (or driver do-
main) where the packet has to be delivered. It proceeds
in four stages: (1) packet transmission, (2) packet switch-
ing, (3) packet copying, and (4) packet reception.
Packet Transmission . In the first stage, the transmit-
ting VM pushes the packet to the Hyper-Switch for pro-
cessing. Packet transmission begins when the guest
VM’s network stack forwards the packet to its para-
virtualized network driver. Then the packet is queued
for transmission by setting up descriptors in the trans-
mit ring. A single packet can potentially span multiple
descriptors depending on its size. Typically, packets are
never segmented in the transmitting guest VM. So the
packets belonging to internal network traffic can be for-
warded as is. The external packets are segmented either
in the driver domain or the network hardware. Today,
segmentation offload is a standard feature in most net-
work devices.
Packet Switching . In the second stage of packet pro-
cessing, the packet is switched to determine its desti-
nation. Switching is triggered by a hypercall from the

3

16 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

transmitting VM. It begins with reading the transmit ring
to find new packets. Each packet is then pushed to the
Hyper-Switch’s data plane where it is processed using
flow-based packet switching. The data plane must be
able to read the packet’s headers in order to switch it.
Since the data plane is located in the hypervisor, which
has direct access to every VM’s memory, it can read the
headers directly from the transmitting VM’s memory.

Packet switching by the data plane proceeds as fol-
lows: (1) The packet header fields are parsed to identify
the corresponding packet flow. (2) The packet flow is
used to lookup a matching flow rule in a software flow
table. When this lookup fails, the packet is forwarded to
the control plane in the management layer. (3) A suc-
cessful flow table lookup identifies a flow rule, which
specifies one or more actions to be performed. Typically,
the action is to forward the packet to one or more destina-
tion ports or to drop the packet. Each port has an internal
receive queue where the switched packet is temporarily
placed. This port corresponds to a virtual network inter-
face (vNIC) within the destination VM.

When the flow table lookup fails, the packet is for-
warded to the control plane through a separate control
interface. The control plane decides how the packet must
be forwarded based on packet filtering rules, forwarding
entries from an Ethernet address learning service, and/or
other protocol specific tables. This is composed into a
new flow rule that specifies the actions to be performed
on packets belonging to this flow. Then the packet is
re-injected into the hypervisor’s data plane and the as-
sociated actions are executed. Finally, the control plane
adds the new flow rule to the flow table. This allows the
flow’s subsequent packets to be handled entirely within
the hypervisor’s data plane.
Packet Copying . In the third stage of packet process-
ing, the switched packet is copied into the receiving
VM’s memory. Empty buffers for receiving new packets
are provided through the vNIC. Specifically, the descrip-
tors in the receive ring provide the address of the empty
buffers in the VM’s memory.

By default, the destination VM is responsible for per-
forming packet copies. Once switching is completed, the
destination VM is notified via a virtual interrupt. Subse-
quently, that VM issues a hypercall. While in the hyper-
visor, it dequeues the packet from the port’s internal re-
ceive queue, and copies the packet into the memory given
by the next descriptor in the receive ring. The packet
is copied directly from the transmitting VM’s memory
to the receiving VM’s memory. After which, the mem-
ory that was allocated for this packet at various places—
inside the hypervisor and in the transmitting VM—is re-
leased.

Packet Reception . In the fourth and final stage, the
para-virtualized network driver in the receiving VM re-
constructs the packet from the descriptors in the receive
ring. Typically, the receiving OS is notified, through in-
terrupts, that there are new packets to be processed in the
receive ring. However, under the Hyper-Switch, the re-
ceiving VM was already notified in the previous stage.
So packet reception can happen as soon as the hypercall
for copying the packet is complete. The new packet is
then pushed into the receiving VM’s network stack.

3 .2 Preemptive Packet Copying
Packet copies are performed by default in a receiving
VM’s context. When a packet is placed in the internal
receive queue, after it has been switched, the receiving
VM is notified. Eventually, the receiving VM calls into
the hypervisor to copy the packet. However, delivering a
notification to a VM already requires entry into the hy-
pervisor. Under Xen, when there is a pending notification
to a VM, the VM is interrupted and pulled inside the hy-
pervisor. Since hypercalls are expensive operations, the
Hyper-Switch tries to avoid them. In this case, it takes
advantage of the hypervisor entry upon event notifica-
tion to avoid a separate hypercall to perform the packet
copy. Instead, the packet copy is performed preemptively
when the receiving VM is being notified. In essence, the
packet copy operation is combined with the notification
to the receiving VM. This optimization avoids one hy-
pervisor entry for every packet that is delivered to a VM.

3 .3 Batching Hypervisor Entries
In the Hyper-Switch architecture, as described thus far,
the transmitting VM enters the hypervisor every time
there is a packet to send. Moreover, the receiving VM is
notified every time there is a packet pending in the inter-
nal receive queue. As mentioned before, even this notifi-
cation requires hypervisor intervention.1 Therefore, de-
spite the preemptive packet copy optimization, the over-
head of entering the hypervisor is incurred multiple times
on every packet.

To mitigate this overhead, we use VM state-aware
batching, which amortizes the cost of entering the hyper-
visor across several packets. This approach to batching
shares some features with the interrupt coalescing mech-
anisms of modern network devices. Typically, in net-
work devices, the interrupts are coalesced irrespective
1In Xen, notifying a running guest VM involves two entries into the
hypervisor. First, the running VM is interrupted via an IPI and forced
to enter the hypervisor. Then the hypervisor runs a special exception
context where the guest VM handles all pending notifications. Finally,
the guest VM again enters the hypervisor to return from the exception
context.

4

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 17

of whether the host processor is busy or not. But, un-
like those devices the Hyper-Switch is integrated within
the hypervisor, where it can easily access the scheduler
to determine when and where a VM is running. So a
blocked VM can be notified immediately when there are
packets pending to be received by that VM. This enables
the VM to wake up and process the new packets without
delay. On the other hand, the notification to a running
VM may be delayed if it was recently interrupted.

3.4 Offloading Packet Processing
In Hyper-Switch, by default, packet switching is per-
formed in the transmitting VM’s context and packet
copying is performed in the receiving VM’s context. As
a result, asynchronous packet switching does not occur
with respect to the transmitting VM, and asynchronous
packet copying does not occur with respect to the receiv-
ing VM. However, concurrent and asynchronous packet
processing can significantly improve performance.

Concurrent packet processing can be achieved by
polling: (1) all the internal receive queues, looking for
packets waiting to be copied, and (2) all the transmit
rings, looking for packets waiting to be switched. This
can be performed by processor cores that are currently
idle. Packet copying is prioritized over switching be-
cause packet copying is typically the more expensive op-
eration and the receiving VM is more likely to be perfor-
mance bottlenecked than a transmitting VM.

Instead, the idle cores are woken up just when there is
work to be done. On the receive side, this can be ascer-
tained precisely when packets are placed in an internal
receive queue of a vNIC. Then one of the idle cores is
chosen and woken up to perform the packet copy. A low-
overhead mechanism is used to offload work to the idle
cores. It uses a simple interprocessor messaging facility
to request a specific idle core to copy packets at a spe-
cific vNIC. Further, this mechanism attempts to spread
the work across many idle cores. Otherwise, if all the
work is offloaded to a single idle core, it might become a
bottleneck.

The offloading to idle cores is delayed if the receiv-
ing VM is going to be notified immediately. As ex-
plained previously, this typically happens when the re-
ceiving VM is not running. Subsequently, the receiv-
ing VM copies a bounded number of packets sufficient
to keep it busy, and then if packets are still pending in
the internal receive queue, the remaining copies are of-
floaded to an idle core. The rationale is to immediately
copy some packets so that the receiver can start process-
ing them, while the remaining packets are concurrently
copied at an idle core.

Unfortunately, offloading packet switching to idle
cores is not trivial. In the common case, packets are

asynchronously queued by the transmitting VM with-
out entering the hypervisor. So it is not possible to
offload the switching tasks precisely when packets are
queued. Therefore, packet switching is performed at
the idle cores only as a side effect of offloading packet
copies. In other words, when an idle core is woken up to
perform packet copies, it also polls all the transmit rings
looking for packets pending to be switched.

Further, when packets are being processed by an idle
core, the Hyper-Switch checks for any other work that
might need that core. If so, it aborts the packet process-
ing. This ensures that the offloaded packet processing
happens at the lowest possible priority and does not pre-
vent other tasks from using that processor.
CPU Cache Awareness . CPU cache locality can have
a significant impact on the cost of packet copying under
Hyper-Switch. Essentially, the packet data is accessed in
three places:2 (1) The transmitting VM, (2) the packet
copier, and (3) the receiving VM. So the packet data can
be potentially brought into three different CPU caches
depending on the system’s cache hierarchy and where the
two VMs and the packet copier are run.

If the receiving VM is also the packet copier, then
the packet data is brought into the receiving VM’s CPU
cache while the copy is performed. Subsequently, when
the packet is accessed in the receiving VM, it can be read
with low latency from the cache. But if the packet copier
runs on an idle core, the access latency will depend on
whether the idle core shares any cache with the receiving
VM’s core. Therefore, under Hyper-Switch, the offload
mechanism for packet processing is optimized to take ad-
vantage of CPU cache locality. At the same time, it en-
sures that the offloaded work does not unfairly affect the
performance of other VMs running on cores that share
their CPU cache with the idle cores.
Hysteresis . Waking up an idle core takes a non-trivial
amount of time, particularly when the idle core is us-
ing deeper sleep states to save power. Further, the inter-
processor interrupts (IPIs) that are used to wake up cores
are not cheap. Therefore, a small hysteresis period is in-
troduced to ensure that the idle cores stay awake longer
than they normally would. The idea is to keep the cores
running, after they are woken up, until there is a period—
the hysteresis time period—during which no packets are
processed. In other words, the idle cores are kept running
as long as there is a steady stream of packets to process.

3 .5 More Packet Processing Opportunities
A packet that is queued in the transmit ring at a vNIC will
eventually be switched by either the transmitting VM or
2Packet switching is ignored here since it only accesses the packet
headers.

5

18 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

an idle core. This might happen immediately if an idle
core polls this interface looking for packets waiting to be
switched or it might happen only when the transmit timer
period that is implemented by VM-state aware batching
elapses.3

Consider a VM that queues some packets for transmis-
sion at its vNIC and then blocks. Let’s assume that there
are no other idle cores. If another VM is scheduled to
run on this core, then the queued packets are not going
to be switched until the blocked VM is scheduled to run
again. But this might happen only at the end of the trans-
mit timer period. Even if the core becomes idle after the
VM blocks, there is no guarantee that the blocked VM’s
packets will be switched at that idle core. In fact, the idle
core can end up copying packets destined for other VMs.
In essence, a VM can block despite its packets waiting to
be switched.

When a VM’s virtual processor blocks, it has to en-
ter the hypervisor to give up its core. Since the VM is
already inside the hypervisor, it might as well as check
if there are packets pending to be switched or copied.
This allows any packet processing work to be completed
before the VM stops running. Also, new packet copies
result in a notification to the VM. Consequently, instead
of blocking, the VM returns to process the packets that
were just received.

4 Implementation Details

We implemented a prototype of the Hyper-Switch archi-
tecture, which is depicted in Figure 3. We implemented
the switch’s data plane by porting parts of Open vSwitch
to the Xen hypervisor. Open vSwitch’s control plane
was used without modification. We also developed a
new para-virtualized (PV) network interface for the guest
VMs to communicate with the data plane. The same in-
terface was also used by the driver domain to forward ex-
ternal network traffic. The rest of this section describes
each part of the Hyper-Switch prototype in detail.
Open vSwitch Overview . Open vSwitch [24] is an
OpenFlow compatible, multi-layer software switch for
commodity servers. The control and data planes are
separated. While the data plane is implemented inside
the OS kernel, the control plane is implemented in user
space. It uses the flow-based approach for switching
packets in its data plane. In a typical deployment of Open
vSwitch as a last hop virtual switch, it is implemented
entirely inside a driver domain (Xen) or the hypervisor
(KVM). In the common case, the network traffic between
the guest VMs is directly switched by Open vSwitch’s
data plane within the kernel. Open vSwitch provides a
vport abstraction that can be bound to any network inter-
3The maximum delay is bounded by the transmit timer period.

datapath glue

Open vSwitch
control plane

User space

Kernel

Driver Domain

Open vSwitch

datapath
vport

vportvport

Guest VM

Xen
Hypercalls

Xen Hypervisor

control

Guest VMGuest VM

Figure 3: Hyper-Switch prototype. It was built by porting
essential parts of Open vSwitch’s datapath to the Xen
hypervisor.

face in the driver domain. In addition, there is one vport
for every vNIC in the system.
Porting Open vSwitch’s Datapath. We implemented
the Hyper-Switch’s data plane by porting Open
vSwitch’s datapath to the Xen hypervisor. The vports
on the datapath were bound to a newly developed para-
virtualized network interface that allowed guest VMs to
communicate with the Hyper-Switch’s data plane.

The driver domain kernel also included a datapath glue
layer to enable communication between the control and
data planes. This layer converted the commands from
Open vSwitch’s control plane into a new set of Xen hy-
percalls to manipulate the flow tables in the datapath.
The glue layer also transferred the packets that are punted
to the control plane.
Para-virtualized Network Interface . The guest VMs
and the driver domain communicated with the Hyper-
Switch through a para-virtualized network interface
(vNIC). The interface included two transmit rings—one
for queueing packets for transmission and another for re-
ceiving transmission completion notifications—and one
receive ring to deliver incoming packets. The rings
were fixed circular buffers where the producer and con-
sumer(s) could access the ring descriptors concurrently.
The interface also included an internal receive queue that
contained packets that were yet to be copied into the re-
ceiving VM’s memory.
Hypervisor Integration . As explained in Section 3.2,
packet copying was preemptively performed by combin-
ing it with the notification to the receiving VM. We im-
plemented this by checking for packets to copy when the
associated virtual interrupt was delivered by the Xen hy-
pervisor to a VM. Further, packet switching and copy-
ing were also performed when a VM voluntarily blocked.

6

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 19

Thus the VM’s vNIC was polled for packets to be copied
or switched, just before the scheduler was invoked to
yield the processor and find another VM to run.
Offloading Packet Processing. We implemented the
offloading of packet processing inside Xen’s idle do-
main. The idle domain contains one idle vCPU for ev-
ery physical CPU core in the system. The idle vCPUs
have the lowest priority among all the vCPUs and there-
fore, they are scheduled to run on a physical CPU core
only when none of the VMs’ vCPUs are runnable on that
core. The idle vCPUs execute an idle loop that checks
for pending softirqs and tasklets, and executes the corre-
sponding handlers. Finally, when there is no more work
to be done, it enters one of the sleep states to save power.

In the Hyper-Switch architecture, we extended Xen’s
idle loop to copy and switch packets. A simple, low-
overhead mechanism was used to offload packet process-
ing to idle cores. The mechanism identified a suitable
idle core based on an offload criteria. The criteria were
chosen to select an idle core that made the best use of
the CPU caches. Further, this mechanism also ensured
that the offloaded work was distributed across multiple
idle cores using a simple hash function. The mecha-
nism included a lightweight interprocessor messaging fa-
cility that was implemented using small fixed circular
buffers. There was one buffer for every processor core
in the system. It was used to communicate the vNICs
that were being offloaded to a specific idle core. The
Hyper-Switch-related packet processing was performed
only at the lowest priority. The pending softirqs and
tasklets were checked after each packet was processed.
If there was ever higher priority work to be done, then
the offloaded packet processing was aborted.

5 Evaluation

This section presents a detailed evaluation of the Hyper-
Switch architecture. The evaluation was performed using
the Hyper-Switch prototype in Xen. The primary goal of
this evaluation was to compare Hyper-Switch with ex-
isting architectures that implement the virtual switch ei-
ther entirely within the driver domain or entirely within
the hypervisor. Toward this end, the end-to-end perfor-
mance under Hyper-Switch was compared to that un-
der Xen’s default driver domain-based architecture and
KVM’s hypervisor-based architecture.

5 .1 Experimental Setup and Methodology
The experiments were run on a 32-core server with two
2.2 GHz AMD Opteron 6274 processors and 64 GB of
memory. This processor is based on AMD’s Bulldozer
micro-architecture where two cores (called a module)

share the second level data cache (L2) and the instruc-
tion caches (L1i and L2i). Further, four modules (called
a node) share the unified third level cache (L3). And
each Opteron 6274 processor includes two such nodes.
Under Xen,4 the server was configured to run up to 32
para-virtualized (PV) Linux guest VMs (v2.6.38 pvops)
and one PV Linux driver domain (v2.6.38 pvops), in ad-
dition to the privileged management domain 0 (Linux
v3.4.4 pvops). The PV linux guests use a specialized
network driver which is optimized for the virtual net-
work interface that the hypervisor provides to the VMs.
The guest VMs were each configured with a single vir-
tual CPU (vCPU) and 1 GB of memory. The driver do-
main was configured with up to 8 vCPUs and 2 GB of
memory. But under Hyper-Switch the driver domain was
given only a single vCPU since it only handled external
network traffic. The server was directly connected to an
external client using a 10 Gbps Ethernet link. The client
consisted of a 2.67 GHz Intel Xeon W3520 quad-core
CPU and 6 GB of memory. It ran an Ubuntu distribution
of native Linux kernel v2.6.32. The CPUs at the external
client were never a performance bottleneck in any of the
experiments.

The netperf microbenchmark [2] was used in all the
experiments to generate network traffic. In particular,
netperf was used to create two types of network traf-
fic: (1) TCP stream and (2) UDP request/response traffic.
The TCP stream traffic was used to measure the achiev-
able throughput. The UDP request/response traffic was
used to measure the packet processing latency. Unless
otherwise specified, the sendfile option was used on
the transmit side in all experiments. The performance
of Hyper-Switch was compared to the performance of
Open vSwitch under both Xen [13] and KVM [26]. Para-
virtualized network interfaces were used in all these sys-
tems. In the rest of this section, we use “KVM” to refer
to the performance of Open vSwitch under KVM. Simi-
larly, we use “Xen” to refer to the performance of Open
vSwitch under Xen’s default network I/O architecture.
This should not be confused with the Hyper-Switch pro-
totype that is also implemented in Xen.
Open vSwitch under Xen . In Xen, Open vSwitch is
implemented entirely in the driver domain. Under Xen,
all network packets are forwarded to the driver domain,
where they are switched. Xen’s backend driver called
netback acts as an intermediary between the guest VMs
and the virtual switching module in the driver domain.
Netback is multi-threaded, and there is one netback (ker-
nel) thread for every vCPU in the driver domain. Each
guest VM’s vNIC is bound to one of these threads. The
packets associated with a specific vNIC are processed
only by the thread to which it is bound. The recom-
4Xen v4.2 - mainline git repository (xen-unstable.git) May 2012.

7

20 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

64K 16K 4K 1K 256

TCP Payload Size (bytes)

0

2

4

6

8

10

12

14

16

18
T

h
ro

u
g
h

p
u

t
(G

b
p

s)
Hyper-Switch Xen KVM

Figure 4: Throughput results from TCP stream traffic be-
tween a single pair of VMs under different payload sizes.

64K 16K 4K 1K 256

TCP Payload Size (bytes)

0

50

100

150

200

250

300

350

400

T
h

o
u

sa
n

d
s

o
f

C
y
cl

e
s/

P
k

t

Hyper-Switch Xen KVM

Figure 5: CPU load results from TCP stream traffic be-
tween a single pair of VMs under different payload sizes.

mended practice is to dedicate cores for running the
driver domain’s vCPUs. In this evaluation, the driver do-
main was configured with up to 8 vCPUs.
Open vSwitch under KVM . In KVM, Open vSwitch
is implemented entirely in the hypervisor (also referred
to as the KVM host). Under KVM’s vhost-net architec-
ture, all network packets are forwarded to the vhost-net
driver in the host, which is similar to Xen’s netback.
But unlike netback, there is a separate vhost-net (kernel)
thread for every vNIC in the system. The vhost-net’s
threads can also be run on dedicated cores.

5 .2 Experimental Results
5 .2 .1 Inter-VM Performance and Scalability

In these experiments, network performance was studied
under different loads by setting up network traffic be-
tween VMs collocated on the same server.
Single VM Pair . In the first set of experiments, traffic
was set up between just a single pair of VMs. Each guest
VM’s vCPU was pinned to a separate core within the
same processor node to avoid any potential VM schedul-
ing effects. Xen’s driver domain was configured with 2
vCPUs. Recall that there is one netback kernel thread
for every vCPU in Xen’s driver domain. The driver do-

64K 16K 4K 1K 256 1

UDP Payload Size (bytes)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

T
ra

n
sa

ct
io

n
s

p
e
r

S
e
co

n
d

Hyper-Switch Xen KVM

Figure 6: Latency results from UDP request/response
traffic between a single pair of VMs under different pay-
load sizes.

main’s vCPUs were also pinned to separate processor
cores, but on the same processor node where the cor-
responding guest VMs’ vCPUs were pinned. Similarly,
under KVM, the two vhost-net kernel threads (one per
guest VM) were also pinned.

First, as shown in Figure 4, higher throughput was
achieved under Hyper-Switch than under both the ex-
isting architectures in the experiments where the TCP
payload was between 4 KB and 64 KB, with stream-
based traffic. On average, the throughput under Hyper-
Switch, in these cases, was ∼56% higher than that under
Xen and ∼61% higher than that under KVM. But there
was not much performance difference at smaller packet
sizes since in those experiments the transmitting VM was
the performance bottleneck. Figure 5 shows the average
CPU load (cycles/packet) in each of these experiments.
Clearly, the Hyper-Switch is more efficient in processing
packets than both the existing architectures in KVM and
Xen.

Second, as shown in Figure 6, higher transactions
per second was achieved under Hyper-Switch, across
all UDP payload sizes, with request-response traffic. A
transaction comprises of a single request followed by a
single response in the opposite direction. So these re-
sults indicate that the round-trip packet latencies were
the lowest under the Hyper-Switch among all the three
architectures. On average, the transactions per second
under Hyper-Switch was ∼117% higher than that under
Xen and ∼222% higher than that under KVM. So the
Hyper-Switch architecture is suited for both bulk as well
as latency sensitive network traffic. Further, these results
show the benefit from optimizations such as preemptive
copying and immediate notification of blocked VMs that
enable timely delivery of packets.
Pairwise Scalability Experiments . In the next set of
experiments, the performance scalability of the three ar-
chitectures was studied by setting up TCP stream-based
traffic flows between 1–16 pairs of VMs in one direc-
tion. TCP payload size of 64 KB was used in all the sub-

8

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 21

2 4 6 8 10 12 14 16

Number of VM Pairs

0

20

40

60

80

100
T

h
ro

u
g
h

p
u

t
(G

b
p

s)
Hyper-Switch KVM Xen

Figure 7: Pairwise performance scalability results.
Multiple concurrent TCP streams set up between
pairs of VMs. Figure shows aggregate inter-VM
throughput as the number of VM pairs is increased.

2 6 10 14 18 22 26 30

Number of VMs

0

20

40

60

80

100

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

Hyper-Switch KVM Xen

Figure 8: All-to-all performance scalability results.
Multiple concurrent TCP streams set up between all
VMs. Figure shows aggregate inter-VM throughput
as the number of VMs is increased.

sequent experiments. Again, the guest VMs’ vCPUs, the
vhost-net kernel threads (KVM), and the driver domains’
vCPUs (Xen) were pinned to specific processor cores.
Also, the VMs that were communicating with each other
were always pinned to the same processor node. The
pinning was done such that, in each experiment, the load
was uniformly distributed across all the processor mod-
ules and nodes in the system. For instance, one core
from each module was used for pinning VMs across the
system, before the other cores were used. Under KVM,
the guest VMs’ vCPUs and the vhost-net kernel threads
were pinned. As a result, when the system was scaled
beyond 8 pairs of VMs, each processor core had to run
one of the guest VM’s vCPUs and one of the vhost-net
threads. Under Xen, the driver domain was configured
with 8 vCPUs. The driver domain’s vCPUs were dis-
tributed by pinning two of them to each processor node
in the system. Then the guest VMs’ vCPUs were evenly
distributed across the remaining processor cores.

The results in Figure 7 show that the Hyper-Switch ar-
chitecture exhibited much better performance scalability
than both the existing architectures. Specifically, under
Hyper-Switch, the performance reached a peak through-
put of ∼81 Gbps before it started to flatten out. But
the peak throughput was only ∼47 Gbps and ∼31 Gbps
under KVM and Xen respectively. Further, the perfor-
mance under these existing architectures did not scale
beyond 4 pairs of VMs. On average, the throughput
under Hyper-Switch was ∼55% higher than that under
KVM and ∼146% higher than that under Xen. Fig-
ure 7 also shows three distinct regions in Hyper-Switch’s
performance curve: (1) The performance scaled almost
linearly, from ∼16.2 Gbps to ∼62.7 Gbps, between 1
and 4 pairs of VMs. (2) The performance continued to
scale linearly but at a lower rate, from ∼62.7 Gbps to
∼81 Gbps, between 5 and 7 pairs of VMs. (3) The per-
formance did not scale beyond 8 pairs of VMs.

Fundamentally, the network performance is deter-

mined by the number of packets that can be transferred
between the source and destination VMs in a given time.
A typical packet transfer involves switching and packet
copying overheads. But there are limits to how many
packets that can be processed by a single processor. This
is determined in part by the underlying hardware archi-
tecture. The hardware determines how efficiently the
available processor time is used to process—switch and
copy—packets. Today’s processors are incredibly com-
plex and therefore, there are several factors that impact
this efficiency. In particular, the structure of the mem-
ory subsystem can have a significant impact on per-
formance [25]. This includes the size and levels of
the CPU caches, the maximum number of outstanding
reads/writes/cache misses, the available memory band-
width, the number of channels to the system memory,
and so on. One can scale the performance beyond the
limits imposed by a single processor core by increas-
ing concurrency, i.e. by using multiple processor cores.
But some of the system resources could be shared be-
tween processor cores—such as CPU caches, memory
channels, etc.—that could potentially reduce the avail-
able concurrency. When additional VMs are added to the
system, there is a natural increase in concurrency since
many of the switching tasks can be concurrently per-
formed under each VM’s context. Further, under Hyper-
Switch, the offloading of packet processing adds to this
concurrency. When choosing an idle core for offload-
ing packet processing, preference is given to idle pro-
cessor cores that are on the same node as the receiving
VM’s vCPU, to take advantage of any CPU cache local-
ity. Further, the packet processing is offloaded only to
a processor core in an idle module, i.e. a module where
both the processor cores are idle, to avoid potential cache
interference effects [3].

In the first region of the curve (Figure 7), each pair
of VMs were run in a separate processor node. So
the packet processing could be offloaded to other cores

9

22 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

within the same node. As a result, under these condi-
tions, the best scalability was achieved. In the second re-
gion, some of the packet processing had to be offloaded
to idle modules on other nodes in the system. This was
not as efficient since packets had to be copied across pro-
cessor nodes. Hence the performance scalability was
reduced. In the third region, the performance stopped
scaling in part due to the reduction in the offloading of
packet processing since most of the processor modules
were busy. Also, some of the VMs’ vCPUs were run-
ning on two cores within the same processor module.
So the cache interference effects also came into effect.
Finally, as more VMs were added to the system, there
was increased contention for the system resources such
as CPU caches. So, effectively, all these factors offset
the increase in packet processing concurrency and hence
the performance stopped scaling.
All-to-all Scalability Experiments . In the second set
of scalability experiments, TCP stream-based traffic was
set up between every pair of VMs in the system in both
directions. These experiments were designed to generate
significant load on the network by having tens of VMs
concurrently communicating with each other. For in-
stance, when there were 30 VMs in the system, there
were as many as 870 concurrent TCP flows. The con-
figuration and setup was similar to the previous set of
experiments.

Figure 8 shows the results from these experiments.
The performance again scaled much better under Hyper-
Switch than under KVM or Xen. Specifically, un-
der Hyper-Switch, the performance reached a peak
throughput of ∼65 Gbps as compared to ∼55 Gbps and
∼31 Gbps under KVM and Xen respectively. Similar to
the previous set of experiments, the performance curve
under Hyper-Switch scaled up very well at the beginning
before tapering off. The performance analysis presented
with the previous results is applicable here as well. In
fact, the contention for system resources is even higher
in this case, due to the significant load placed on the sys-
tem.

5 .2 .2 External Performance

In the external experiments, the network traffic was set
up between guest VM(s) and the external client. The
driver domain, under Hyper-Switch and Xen, was con-
figured with only a single vCPU. In the TX and RX ex-
periments, there were one or two guest VMs (concur-
rently) sending and receiving packets respectively. The
guest VMs’ vCPUs and the driver domain’s vCPU were
again pinned.

The results from these experiments showed that the
Hyper-Switch’s performance was comparable and in
some cases even better than the performance under KVM

and Xen. In the TX experiments, with a single guest
VM transmitting packets, line rate of ∼9.4 Gbps was
achieved under both Hyper-Switch and Xen. But under
KVM, the TX VM’s vCPU was a performance bottle-
neck. Therefore, only ∼7.8 Gbps was possible in this
case. In the RX experiments, with one guest VM re-
ceiving packets, the CPU at the guest VM was the bot-
tleneck. So line rate was not achieved under any of
the architectures. But the performance was better under
Hyper-Switch (7.5 Gbps) and KVM (7.8 Gbps) than Xen
(4.1 Gbps). But with two guest VMs receiving packets,
line rate of ∼9.4 Gbps was achieved under both Hyper-
Switch and KVM. Under Xen, the driver domain’s vCPU
was the performance bottleneck. Therefore, having a
second guest VM receive packets had no positive impact
on the aggregate throughput. These results show that the
driver domain under Hyper-Switch can send and receive
packets at 10 GbE line rate using a single CPU core. So
the driver domain consumes minimal resources.

TCP request-response traffic was also set up between a
single guest VM and the external client. In these exper-
iments, the Hyper-Switch achieved 13,243 transactions
per second of as compared to 10,721 and 11,342 under
KVM and Xen respectively. As explained before, higher
transactions per second indicate lower round trip latency.
Therefore, despite the “longer” route taken by packets
under Hyper-Switch due to their forwarding through both
the hypervisor and the driver domain, the packet laten-
cies were still the lowest under Hyper-Switch.

5.2.3 Design Evaluation

Experiments were also run to determine the offload crite-
ria under Hyper-Switch. In these experiments, the packet
processing was offloaded to different CPU cores relative
to where the transmitting and receiving VMs’ vCPUs
were running. The results from these experiments5 indi-
cated that, for best performance, packet processing must
be offloaded to a processor module where both the cores
were idle. Further, while searching for idle modules, first
the processor node on which the receiving VM’s vCPU
was running must be searched, before searching the other
nodes in the system. However, the offload criteria could
vary depending on a processor’s cache hierarchy. So the
exact criteria must be determined based on the particular
hardware platform on which Hyper-Switch is run.

6 Related Work

The current state-of-the-art network subsystem architec-
tures for virtualized servers can be broadly classified
5Due to lack of space, the results from these experiments are not pre-
sented here.

10

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 23

into three categories. The first category of systems in-
cludes a simple network card (NIC) that is virtualized
by a software intermediary, either the hypervisor (e.g.
KVM [26], VMware ESX server [10]) or a driver do-
main (e.g. Xen [13]). Today, this category of systems is
most commonly used in virtualized servers since it offers
a rich set of features, including security, isolation, and
mobility. There are several software virtual switches—
such as Linux bridge [1], VMware vswitch [32], Cisco
Nexus 1000v [8], Open vSwitch [24], etc.—that are used
in these systems. Recently, Rizzo et al. [30] also pro-
posed a new virtual switching solution based on their
netmap API. They use memory-mapped buffers to avoid
data copies inside the host. It will be interesting to see if
the netmap API can be exported all the way to the VMs.
Unlike Hyper-Switch, all these existing systems imple-
ment the entire virtual switch within a single software
domain—either the hypervisor or the driver domain. But
we believe that the optimizations proposed in this paper
are applicable to many of these solutions. Further, in this
paper, the Hyper-Switch’s performance was only com-
pared to the performance under Xen and KVM. A recent
report from VMware has shown an impressive perfor-
mance of 27 Gbps between two VMs running on their
vSphere architecture [33]. Unfortunately, it is hard to
compare this to Hyper-Switch’s performance since the
hardware platforms used in the evaluations are vastly dif-
ferent.

The second category of systems employ more sophis-
ticated NICs (direct-access NICs) with multiple con-
texts that present a vNIC interface directly to each
VM [20, 27, 34]. Today, there exists an industry-wide
standard called SR-IOV, which has been adopted by sev-
eral network interface vendors to implement this solu-
tion [6, 16, 22]. These NICs also implement a virtual
switch internally within the hardware. However, today
most of them only implement a rudimentary form of
switch. The sNICh [28] architecture explores the idea
of switch/server integration. It implements a full-fledged
switch while enabling a low cost NIC solution, by ex-
ploiting its tight integration with the server internals.
This makes sNICh more valuable than simply a combina-
tion of a network interface and a datacenter switch. Luo
et al. [19] propose offloading Open vSwitch’s in-kernel
data path to programmable NICs. Similarly, one can also
imagine offloading Hyper-Switch’s data plane to the NIC
hardware. These solutions can enable high-performance
since the VMs directly communicate with the NIC. But,
in general, they lack the flexibility that pure software so-
lutions offer.

The third category of switches attempt to leverage
the functionality that already exist in today’s datacen-
ter switches. This approach uses an external switch for
switching all network packets [9, 23]. But, fundamen-

tally, this approach results in a waste of network band-
width since even packets from inter-VM traffic must
travel all the way to the external switch and back again.

There have also been proposals to distribute virtual
networking across all endpoints within a data center [7,
11]. Here the software-based components reside on all
servers that collaborate with each other and implement
network virtualization and access control for VMs, while
network switches are completely unaware of the indi-
vidual VMs on the end-points. All these architectures
are aimed at solving the network management problem,
which is not the focus of this paper. But the Hyper-
Switch can easily be a part of these solutions.

7 Conclusions

This paper presented the Hyper-Switch architecture that
combines the best of the existing last hop virtual switch-
ing architectures. It hosts the device drivers in a driver
domain to isolate any faults and the last hop virtual
switch in the hypervisor to perform efficient packet
switching. In particular, the hypervisor implements just
the fast, efficient data plane of a flow-based software
switch. The driver domain is needed only for handling
external network traffic.

Further, this paper also presented several carefully de-
signed optimizations that enable efficient packet process-
ing, better utilization of the available CPU resources, and
higher concurrency. The optimizations take advantage of
the Hyper-Switch data plane’s integration within the hy-
pervisor. As a result, the Hyper-Switch enables much im-
proved and scalable network performance, while main-
taining the robustness and fault tolerance that derive from
the use of driver domains. Moreover, these optimizations
should be a part of any virtual switching solution that
aims to deliver high performance.

This paper also presented an evaluation of the Hyper-
Switch architecture using a prototype implemented in
the Xen platform. The evaluation showed that, for
inter-VM network communication, the Hyper-Switch
achieved higher performance and exhibited better scal-
ability than both Xen’s default network I/O architecture
and KVM’s vhost-net architecture. Further, the external
network performance under Hyper-Switch was compara-
ble and in some cases even better than the performance
under Xen and KVM.

References

[1] Linux Ethernet bridge. http://www.linuxfoundation.org/
collaborate/workgroups/networking/bridge.

[2] Netperf: A network performance benchmark. http://www.

netperf.org, 1995. Revision 2.5.

[3] AMD CORPORATION. Shared level-1 instruction-cache perfor-
mance on AMD family 15h CPUs.

11

24 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

[4] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S., HAR-
RIS, T. L., HO, A., NEUGEBAUER, R., PRATT, I., AND
WARFIELD, A. Xen and the art of virtualization. In SOSP ’03:
Proceedings of the 19th ACM Symposium on Operating Systems
Principles (October 2003), pp. 164–177.

[5] BENSON, T., AKELLA, A., AND MALTZ, D. A. Network traffic
characteristics of data centers in the wild. In IMC (2010).

[6] BROADCOM CORPORATION. BCM57712 product
brief. http://www.broadcom.com/collateral/pb/

57712-PB00-R.pdf, January 2010.
[7] CABUK, S., DALTON, C. I., RAMASAMY, H., AND SCHUNTER,

M. Towards automated provisioning of secure virtualized net-
works. In CCS ’08: Proceedings of the 15th ACM Confer-
ence on Computer and Communications Security (October 2007),
pp. 235–245.

[8] CISCO SYSTEMS, INC. Cisco Nexus 1000V series switches.
http://www.cisco.com/en/US/prod/collateral/

switches/ps9441/ps9902/data_sheet_c78-492971.pdf,
August 2011.

[9] CONGDON, P. Virtual Ethernet port aggregator.
http://www.ieee802.org/1/files/public/docs2008/

new-congdon-vepa-1108-v01.pdf, November 2008.
[10] DEVINE, S., BUGNION, E., AND ROSENBLUM, M. Virtualiza-

tion system including a virtual machine monitor for a computer
with a segmented architecture. US Patent #6,397,242 (October
1998).

[11] EDWARDS, A., FISCHER, A., AND LAIN, A. Diverter: A new
approach to networking within virtualized infrastructures. In
WREN ’09: Proceedings of the ACM SIGCOMM Workshop: Re-
search on Enterprise Networking (August 2009).

[12] ESMAEILZADEH, H., BLEM, E., ST. AMANT, R.,
SANKARALĨNGAM, K., AND BURGER, D. Dark silicon
and the end of multicore scaling. In Proceedings of the 38th
annual international symposium on Compute r architecture
(New York, NY, USA, 2011), ISCA ’11, ACM, pp. 365–376.

[13] FRASER, K., HAND, S., NEUGEBAUER, R., PRATT, I.,
WARFIELD, A., AND WILLIAMS, M. Safe hardware access with
the Xen virtual machine monitor. In OASIS ’04: Proceedings of
the 1st Workshop on Operating System and Architectural Support
for the on demand IT Infrastructure (October 2004).

[14] GREENBERG, A., HAMILTON, J., MALTZ, D. A., AND PATEL,
P. The cost of a cloud: Research problems in data center networ
ks. SIGCOMM Computer Communcation Review 39, 1 (2009),
68–73.

[15] INTEL. http://goo.gl/5lpY8, 2010. "Intel 1000 Core Chip".
[16] INTEL CORPORATION. Intel 82599 10 GbE controller

datasheet. http://download.intel.com/design/

network/datashts/82599_datasheet.pdf, October 2011.
Revision 2.72.

[17] KUMAR, S., RAJ, H., SCHWAN, K., AND GANEV, I. Re-
architecting VMMs for multicore systems: The sidecore ap-
proach. In WIOSCA ’07: Proceedings of the Workshop on the
Interaction between Operating Systems and Computer Architec-
ture (June 2007).

[18] LANDAU, A., BEN-YEHUDA, M., AND GORDON, A. SplitX:
Split guest/hypervisor execution on multi-core. In WIOV ’11:
Proceedings of the 4th Workshop on I/O Virtualization (May
2011).

[19] LUO, Y., MURRAY, E., AND FICARRA, T. Accelerated vir-
tual switching with programmable NICs for scalable data center
networking. In VISA ’10: Proceedings of the 2nd ACM SIG-
COMM Workshop on Virtualized Infrastructure Systems and Ar-
chitectures (September 2010).

[20] MANSLEY, K., LAW, G., RIDDOCH, D., BARZINI, G., TUR-
TON, N., AND POPE, S. Getting 10 Gb/s from Xen: Safe and
fast device access from unprivileged domains. In Proceedings
of the Euro-Par Workshop on Parallel Processing (August 2007),
pp. 224–233.

[21] MENON, A., SANTOS, J. R., TURNER, Y., JANAKIRAMAN, G.,
AND ZWAENEPOEL, W. Diagnosing performance overheads in
the Xen virtual machine environment. In VEE ’05: Proceedings
of the 1st ACM/USENIX International Conference on Virtual Ex-
ecution Environments (June 2005), pp. 13–23.

[22] PCI-SIG. Single Root I/O Virtualization. http://www.

pcisig.com/specifications/iov/single_root.

[23] PELISSIER, J. VNTag 101. http://www.

ieee802.org/1/files/public/docs2009/

new-pelissier-vntag-seminar-0508.pdf, 2009.

[24] PFAFF, B., PETTIT, J., KOPONEN, T., AMIDON, K., CASADO,
M., AND SHENKER, S. Extending networking into the virtual-
ization layer. In HotNets-VIII: Proceedings of the Workshop on
Hot Topics in Networks (October 2009).

[25] PORTERFIELD, A., FOWLER, R., MANDAL, A., AND LIM,
M. Y. Empirical evaluation of multi-core memory concur-
rency. Tech. rep., RENCI, January 2009. www.renci.org/

publications/techreports/TR-09-01.pdf.

[26] QUMRANET. KVM: Kernel-based virtualization driver. http:

//www.redhat.com/f/pdf/rhev/DOC-KVM.pdf.

[27] RAJ, H., AND SCHWAN, K. High performance and scalable I/O
virtualization via self-virtualized devices. In HPDC ’07: Pro-
ceedings of the IEEE International Symposium on High Perfor-
mance Distributed Computing (June 2007).

[28] RAM, K. K., MUDIGONDA, J., COX, A. L., RIXNER, S., RAN-
GANATHAN, P., AND SANTOS, J. R. sNICh: Efficient last hop
networking in the data center. In ANCS ’10: Proceedings of
the ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (October 2010), pp. 1–12.

[29] RAM, K. K., SANTOS, J. R., TURNER, Y., COX, A. L., AND
RIXNER, S. Achieving 10 Gb/s using safe and transparent net-
work interface virtualization. In VEE ’09: Proceedings of the
ACM SIGPLAN/SIGOPS International Conference on Virtual Ex-
ecution Environments (March 2009), pp. 61–70.

[30] RIZZO, L., AND LETTIERI, G. VALE, a switched ethernet for
virtual machines. In CoNEXT ’12: Proceedings of the 8th Inter-
national Conference on Emerging Networking Experiments and
Technologies (Decemeber 2012), pp. 61–72.

[31] SANTOS, J. R., TURNER, Y., JANAKIRAMAN, G., AND PRATT,
I. Bridging the gap between software and hardware techniques
for I/O virtualization. In ATC ’08: Proceedings of the USENIX
Annual Technical Conference (June 2008), pp. 29–42.

[32] VMWARE, INC. VMware virtual networking con-
cepts. http://www.vmware.com/files/pdf/virtual_

networking_concepts.pdf, 2007.

[33] VMWARE, INC. VMware vSphere 4.1 networking perfor-
mance. http://www.vmware.com/files/pdf/techpaper/

Performance-Networking-vSphere4-1-WP.pdf, April
2011.

[34] WILLMANN, P., SHAFER, J., CARR, D., MENON, A., RIXNER,
S., COX, A. L., AND ZWAENEPOEL, W. Concurrent di-
rect network access for virtual machine monitors. In HPCA
’07: Proceedings of the 13th International Symposium on High-
Performance Computer Architecture (February 2007).

12

