
USENIX Association  2013 USENIX Annual Technical Conference (USENIX ATC ’13) 25

MiG: Efficient Migration of Desktop VMs
using Semantic Compression

Anshul Rai†, Ramachandran Ramjee†, Ashok Anand‡∗,
Venkata N. Padmanabhan†, and George Varghese§

†Microsoft Research India ‡Bell Labs India §Microsoft Research US

ABSTRACT

We consider the problem of efficiently migrating desktop

virtual machines. The key challenge is to migrate the desk-

top VM quickly and in a bandwidth-efficient manner. The

idea of replaying computation to reconstruct state seems ap-

pealing. However, our detailed analysis shows that the match

between the source memory and the memory reconstructed

via replay at the destination is poor, even at the sub-page

level; the ability to reconstruct memory state is stymied be-

cause modern OSes use address space layout randomization

(ASLR) to improve security, and page prefetching to im-

prove performance.

Despite these challenges, we show that desktop VM mem-

ory state can be efficiently compressed for transfer without

relying on replay, using a suite of semantic techniques – col-

lectively dubbed as MiG – that are tailored to the type of

each memory page. Our evaluation on Windows and Linux

desktop VMs shows that MiG is able to compress the VM

state effectively, requiring on average 51-65% fewer bytes to

be transferred during migration compared to standard com-

pression, and halving the migration time in a typical setting.

1. INTRODUCTION

Efficient migration of desktop virtual machines (VM) is

important in a variety of scenarios. First, consider the vision

of a desktop PC environment that is always available and lo-

cal to the user [15, 16, 25, 27]. In these systems, the user’s

desktop environment is encapsulated in a VM, so that it can

be moved flexibly between, say, the user’s office worksta-

tion, home PC, and laptop, providing a seamless computing

experience, without sacrificing interactive responsiveness of

local execution. Second, consider the desktop as a service

model where desktop VMs execute in the cloud and are ac-

cessible from any local device. A key requirement in this

scenario is ensuring low response times [24]. This necessi-

tates migrating the VM over WAN links so that the VM exe-

cutes in a data center that is always close to the user. Finally,

desktop VM migration has also been utilized for saving en-

ergy [20]. In these systems, when the user is not engaged in

computing, the VM is migrated to a server in the cloud so

that the local machine can go to sleep and save energy.

∗The author was an intern at MSR India during part of this work.

A key challenge common to the above scenarios is effi-

cient migration of VMs, both in terms of migration time and

the amount of data transferred, especially over links of mod-

est bandwidth. For instance, transferring a 4 GB VM over a

10 Mbps connection would take nearly an hour, which can

be frustrating for a user who wants to transfer the VM from

workplace or cloud to her home for better interactivity. Fur-

ther, many ISPs worldwide offer tiered service plans with

bandwidth caps ranging from 1GB to 250GB per month,

with higher cost for higher limits [4]; apart from transfer

time, a home user would also care equally about the amount

of bytes transferred.

In this paper, we consider the problem of efficiently mi-

grating desktop VMs. We start by revisiting the idea of re-

playing input to speed up migration [28] and show its limi-

tations in practice. We then present MiG, which categorizes

memory pages based on type (e.g., free page, code (i.e., im-

age) page, heap page, etc.) and then employs a page-type-

specific technique to perform effective compression. This

paper only considers migration of memory state; while mi-

gration of disk state could be important in certain settings,

measurements presented in prior work show that the amount

of dirty disk state to be migrated is an order or magnitude

smaller than the VM’s memory size (e.g., [20] reports dirty-

ing of disk blocks at an uncompressed rate of 40-100 MB

per hour).

Input replay has been proposed as a technique to speed

up desktop VM migration [28], by trading computation for

byte savings. By replaying user input (e.g., keyboard/mouse

events), the “same” computation is performed on the desti-

nation machine. The hope is to recreate much of the source’s

memory state on the destination, thereby reducing the state

to be transferred during VM migration. Our study reveals

that mechanisms employed by modern OSes pose many prac-

tical difficulties in benefiting from input replay.

First, for improving interactive performance, modern desk-

top OSes prefetch pages into memory based on user actions,

application behavior, etc. (e.g., SuperFetch [9] in Windows

and preload in Linux). Thus, a long running workload might

result in a certain set of pages prefetched into memory while

the same workload, replayed in an accelerated fashion for

fast migration, might result in a different set of prefetched

pages at the replayed VM.



26 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Second, for security reasons, modern OSes (e.g., Win-

dows Vista/7 and recent versions of Linux) employ Address

Space Layout Randomization (ASLR), wherein the layout of

code segments is randomized, which in turn impacts the val-

ues of the embedded pointers. Therefore, the “same” pages,

or even sub-pages, at the source and the destination will not

match with input replay.

Third, managed code runtimes (e.g., the .NET Common

Language Runtime) actively manage memory using mech-

anisms such as garbage collection. The invocation of these

mechanisms during replay on the destination machine will

typically not match that on the source machine, resulting in

poor matches for heap pages. We find that even matching at

the level of heap allocation units yields little benefit.

Our first contribution in this paper is an evaluation of the

impact of the above mechanisms through extensive measure-

ments of VMs running multiple flavours of Windows and

Linux, spanning the evolution in the prevalence of ASLR

and page prefetching. Our findings go beyond a recent study

of memory similarity in VMs [13] by showing that even

identical VMs with identical input can have dramatic differ-

ences in memory, even at the sub-page level. For example,

while zero pages account for 72% of the pages in a Win-

dows XP VM that is left running for several hours, the cor-

responding figure for the newer Windows 7 OS is only 4%,

because of SuperFetch implemented by the latter. Likewise,

the fraction of non-zero pages that match across two freshly

booted VMs goes from 66% in the case of Windows XP to

33% with Windows 7, on account of ASLR. We also see a

corresponding, though less pronounced, trend with Linux.

Despite the above findings, we show that we do not have

to turn off prefetching and ASLR (which could have undesir-

able performance and security implications) for efficient VM

migration. We present MiG, our second contribution, which

leverages observations from our measurement study to tailor

compression to the semantics of memory pages, thereby ob-

taining significant gains in the context of VM migration. The

page-semantics-dependent techniques including identifying

and suppressing free pages, eliminating significant intra-VM

redundancy in heap pages and compressing image and Su-

perFetch pages using a novel approach that uses file sys-

tem data as a primer dictionary for a dictionary-based redun-

dancy elimination [12]. Our experiments bear out the effec-

tiveness of MiG, which yields average byte savings of 51%

and 65% over a gzip-compressed VM image, for Windows

and Linux desktop VMs, respectively. These byte savings

translate into a significant speedup in migration time; e.g.,

for a 2GB Windows 7 VM being migrated over a 10Mbps

link, MiG halves the migration time (including computing

overhead) to 275s from 558s with gzip-only compression.

Our third contribution is a reality check on the gains achiev-

able through replay. To this end, we develop MiG-Replay,

which uses MiG as the starting point but additionally ex-

ploits full page and heap matches with respect to the memory

state of a replayed VM. We find that MiG-Replay can pro-

vide 15% gains over MiG but only in specific cases where

Type WinXP Win7 Debian 6d Debian 6

Blank VM 85% 66% 89% 80%

Short workload 72% 47% 68% 56%

Long Workload 72% 4% 63% 55%

Table 1: Zero pages in Win XP, Win 7, Debian 6 with

preload/ASLR disabled (Debian 6d) and Debian 6

Type WinXP Win7 Debian 6d Debian 6

Blank VM 66% 33% 76% 61%

Short+Paced 42% 34% 66% 48%

Long+Accelerated 41% 14% 62% 43%

Table 2: Identical non-zero pages in OSes with replay

either the workload is short or the pace of replay is identi-

cal to the original; for long workloads and where replay is

accelerated in time to be practical, MiG-Replay even under-

performs MiG, because of ASLR and SuperFetch.

2. MEMORY SIMILARITY

A high degree of full and partial page similarity were re-

ported [23] in Windows XP and older Linux VMs (Debian

3.1/Slackware 10.2). A recent study [13] of memory simi-

larity among VMs shows that page similarity has reduced to

15%. However, these studies [13, 23] were in the context of

a server hosting disparate VMs. In this section, we character-

ize memory similarity between two identical VMs provided

with identical input. In particular, we seek to answer the fol-

lowing questions:

• How similar are two VMs at the full page level? At the

sub-page level?

• How effective are existing techniques, like rsync [29], in

leveraging inter-VM similarity?

• How do these similarities vary for different page types

(e.g., Heap, Image, etc.)?

• How much redundancy exists intra-VM? How effective

are existing compression techniques (gzip, bzip2, 7zip)

on intra-VM redundancy?

Understanding these issues is crucial for designing an effi-

cient migration scheme. We now briefly describe the work-

load and the replay techniques used in our experiments be-

fore presenting the results of our analysis.

2.1 VM Workloads and Input Replay

Workload. Our workload consists of VMs running various

versions of Windows and Linux for three cases: i) Freshly

booted blank VM, ii) short workload of running applications

for 30 minutes and iii) long workload of running applica-

tions over several hours (workload is typical desktop office

applications, detailed in Section 5).

Replay. Replay on VMs can be accomplished in a num-

ber of ways. Instruction-level replay with strict adherence to

timing as in the ReVirt system [21] will ensure that the des-

tination VM is identical to the source VM in all respects.

However, accomplishing instruction-level replay on a multi-

processor system has large overheads [22]. In this paper, we

2



USENIX Association  2013 USENIX Annual Technical Conference (USENIX ATC ’13) 27

10.02
1.71 0.90 0.54 0.70 0.70 0.89

42.49 42.05

0
5

10
15
20
25
30
35
40
45

P
e

rc
en

ta
ge

Word match count
(a) WinXP Paced

25.81

3.03 1.84 1.80 2.07 2.22
5.99

23.07

34.16

0
5

10
15
20
25
30
35
40

P
e

rc
e

n
ta

ge

Word match count
(b) Win7 Paced

42.46

4.66 3.16 2.52 2.77 2.38 4.39

23.50

14.16

0
5
10
15
20
25
30
35
40
45

P
e

rc
en

ta
ge

Word match count
(c) Win7 Accelerated

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0

10

20

30

40

50

60

70

80

90

64-byte chunk match count

Pe
rce

nta
ge

(d) WinXP Paced

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0

2

4

6

8

10

12

14

64-byte chunk match count

Pe
rce

nta
ge

(e) Win7 Paced

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0

10

20

30

40

50

60

64-byte chunk match count

Pe
rce

nta
ge

(f) Win7 Accelerated

Figure 1: Distribution of sub-page matches

consider input replay, which involves simply replaying the

user inputs to the system (e.g., keyboard and mouse events),

detailed in Section 5). While input replay cannot guarantee

that the destination VM memory is identical to the source

VM due to non-determinism and network interactions, the

hope is to recreate similar memory so that creating an iden-

tical version is efficient. In this section, we evaluate the sim-

ilarity of VMs that are created using this input replay mech-

anism.

We consider 3 scenarios: i) Blank VM: two freshly booted

VMs, ii) short workload, paced replay: two VMs with iden-

tical apps executing for 30 minutes with paced input replay

(same keyboard and mouse events paced identically at both

VMs), iii) long workload, accelerated replay: two VMs with

identical apps/replay but one is a long running VM where in-

put is spread over a period of several hours representing typ-

ical usage, while, in the other VM the input is accelerated in

time (e.g., ten minutes), representing a practical scenario of

using replay for fast migration.

2.2 Page-level Similarity

We start with Table 1 that lists the percentage of zero

pages in VMs running various OSes that have each been al-

located 2 GB of memory. We see that the fraction of zero

pages in Windows XP starts at 85% and reduces to 72%; in

the case of Windows 7, the fraction of zero pages starts at

66% but goes down to 4% for the long workload case.

The dramatic reduction in zero pages in Windows 7 is due

to a new feature that was first introduced in Windows Vista

called SuperFetch [9]. SuperFetch is a user-customized pre-

fetching technique that tracks application usage and selec-

tively preloads applications or data into memory in order to

improve interactive responsiveness. Linux has a similar fea-

ture called preload available in Debian 6 that preloads pages

to improve performance. While it does not appear to be as

aggressive as SuperFetch, it also reduces the number of zero

pages. For a blank VM, Debian with preload disabled had

89% zero pages which reduces to 80% with preload enabled,

and for a long workload, the corresponding numbers are 63%

and 55%, respectively.

Next, in Table 2, we consider the number of identical non-

zero pages when replay is used. Consider the case of freshly

booted Windows XP and Windows 7 VMs. While 66% of the

non-zero pages are identical in two XP VMs, only 33% are

identical in Windows 7. Next consider paced replay which

represents an ideal scenario for recreating similar memory;

the percentage of identical non-zero pages in Windows XP

reduces to 42%, while, for Windows 7 it is 34%.

However, in the more practical accelerated replay scenario,

we notice an interesting divergence. While the numbers for

Windows XP do not change significantly, we notice a dras-

tic reduction in the percentage of identical non-zero pages in

Windows 7 to 14%. This reduction is due to a combination of

SuperFetch (acceleration of input has significant impact on

SuperFetch’s pre-fetching) and ASLR, that we will discuss

in the next sub-section.

In the case of Linux, we verified that Debian 3.1 used in

Difference Engine [23] does not have ASLR while Debian

6 has a weaker form of ASLR with less randomization, re-

sulting in higher non-zero page matches than Windows 7.

For the long workload, accelerated replay scenario, Debian

6 with ASLR and preload disabled had 62% non-zero iden-

tical page matches which reduced to 43% when ASLR and

preload was enabled.

Two observations follow from these results:

• O1: Fraction of zero pages is dramatically reduced to 4%

in Windows 7 and significantly reduced to 55% in Debian

6 compared to 70+% in Windows XP due to prefetching.

3



28 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

• O2: Fraction of identical non-zero pages between two

Windows 7 VMs running identical applications with iden-

tical input ranges between 14-33% compared to 41-66%

for Windows XP and 43-61% for Debian 6.

2.3 Sub-page-level Similarity

We now investigate partial-page similarity between two

2GB identical VMs provided with same input. A brute-force

way to identify a page in the second VM most similar to

a page in the source VM would entail 2GB*2GB or 1018

comparisons! Instead, we adapt Min-wise hashing [14] and

compute hashes of each 4-byte word using 16 hash func-

tions. For each hash function, we store the minimum hash

value of all words in the page as a 16-tuple that succinctly

represents the page. For each page in the source VM, we

find the page in the second VM with the largest number of

matching hash values in the 16-tuple. Tuple similarity is an

unbiased estimator [14] of page similarity, a fact we verified

by brute-force calculation on a small sample of source VM.

After finding the most similar page in the destination VM,

we compute a similarity measure as the number of corre-

sponding words that match between the two similar pages

The distribution of word match count between non-zero

pages of two identical Windows XP and Windows 7 VMs are

shown in Figures 1a and 1b, respectively. Note that a page

is 4KB in size and thus there are 1024 4-byte words in a

page. Consider Windows XP with paced replay (accelerated

replay is similar). We find that, in 42% of pages, the word-

level match count is 1024, i.e., these are identical pages.

We also find that, for another 42.5% of the pages, there is

a very high degree of similarity (896-1023 word matches).

Now consider Windows 7 with paced replay. While 34% of

pages are identical, only 23% of pages have a high degree of

similarity.

The presence of highly similar pages is not sufficient for

reducing the amount of bytes transferred; the word differ-

ences in these similar pages must also be clustered to have

long sequences of continuous word matches, which can be

efficiently removed. To examine this issue, we segment each

4 KB page into sixty four 64-byte chunks and study the dis-

tribution of differences between the highly similar pages.

Figure 1d shows that the differences are indeed clustered in

the case of Windows XP (56 or more out of 64 chunks match

in over 90% of the cases) while Figures 1e and 1f shows that

the differences are spread throughout the page in the case of

Windows 7, resulting in far fewer chunk-level matches.

The difference between Windows XP and Windows 7 is

due to Address Space Layout Randomization (ASLR) [2],

a security feature where the start addresses of executables,

the heap, etc. are placed at random locations to make it diffi-

cult for an attacker to guess. The randomization, performed

at the granularity of 64 KB chunks, can result in pointer ref-

erences in code/heap pages being different in executions in

two VMs. This results in differences between similar Win-

dows 7 pages being spread throughout the page. For Linux, a

minimal version of ASLR was enabled only in 2.6.12 while

both Linux versions studied in [23] used older kernels. Thus,

while the authors in [23] found a high degree of partial page

matches (> 2KB) across VMs, our findings corroborate the

diminished page sharing found in [13].

Finally, Figure 1c shows the distribution of word match

count for the Windows 7 VM with accelerated replay. The

fraction of pages that have very low match (0-127) has in-

creased to 42.5% for the Windows 7 VM with accelerated

replay, up from 26% in the case of Windows 7 VM with

paced replay and just 10% in the case of Windows XP. Su-

perFetch is the primary reason for this increase in the preva-

lence of low matches (as elaborated further in Section 2.5),

since SuperFetch customized to the first VM is unlikely to

make matching decisions regarding prefetching in the sec-

ond VM, where the input replay is accelerated in time.

Summarizing sub-page-level similarity results:

• O3: Even among pages that are highly similar (896-1023

word matches), the locations of differences in the page

are not clustered in Windows 7 due to ASLR. Thus, par-

tial page sharing opportunities, as identified in [23], are

significantly diminished.

• O4: Fraction of pages with little match is significant (42%)

in Windows 7, primarily, due to SuperFetch.

2.4 Chunk-level Matches using rsync

While pages are a natural way of segmenting physical

memory, an alternative is finer-grained chunk-level match-

ing between two VMs. In this section, we consider synchro-

nizing two VM memory dumps using rsync[29], a file syn-

chronization application that leverages a similar, remote ver-

sion of the file for compression. rsync computes sliding

window chunk hashes over the remote version (replayed VM

in our case) and uses these hashes to identify and compress

identical chunks in the local version (current VM) for effi-

cient migration.

We perform a parameter sweep, in steps of 32 bytes, to

determine the optimal chunk-size for rsync that maximizes

compression for the VM dumps. Using this optimal chunk

size (128 bytes), rsync yields compression savings of 69.7%

and 40.4%, respectively, for the Windows 7 with paced and

accelerated replay.. These savings correspond roughly to the

sum of the last three bars in Figures 1b and 1c, respectively.

Applying gzip in addition to rsync yields a total savings of

72.5% with accelerated replay.

In the context of VM migration, the on-the-wire traffic

goes from 100-66.5 = 33.5% with gzip compression alone

to 100-72.5 = 27.5% of the VM size with rsync (plus gzip).

Thus, rsync, which relies on replay, provides only a modest

18% relative byte savings over gzip. Furthermore, it takes

840s, 10X slower than gzip.

• O5: Applying a fine-grained chunk-matching technique

like rsync on two VMs with identical applications and

identical replay, only yields about an 18% reduction over

conventional gzip compression.

4



USENIX Association  2013 USENIX Annual Technical Conference (USENIX ATC ’13) 29

0
10
20
30
40
50
60
70

0-127 896-1023 1024

Pe
rc

en
ta

ge

Word match count

Heap Image Kernel SuperFetch NonZero Free

Figure 2: Page Type Distribution

2.5 Semantic Analysis

To gain a deeper understanding, we now parse the page

similarity results by page type. We consider the accelerated

replay case. We classify the pages into five categories: heap,

image (i.e., code), kernel, SuperFetch, and free. Figure 2

shows the relative distribution of different page types, cor-

responding to a few cases in Figure 1c, namely, pages with

very low matches (0-127), highly similar pages (896-1023),

and identical pages (1024).

For pages with very low match (0-127), SuperFetch pages

are dominant, (50%); this is caused due to the difference in

the prefetching decisions in the long-running VM and the

replayed VM where input is accelerated in time. In contrast,

for pages with high similarity (896-1023), heap is dominant

(over 50%) while SuperFetch is second (over 20%). ASLR

converts what might have been identical pages in Windows

XP into pages that are highly similar in Windows 7. Finally,

for identical page matches, SuperFetch constitutes over 60%,

followed by kernel pages at 20%.

Full VM Heap Image Kernel SFetch Free

66.5% 80.0% 69.2% 67.6% 47.3% 81.4%

Table 3: Savings by page type using gzip

Intra-VM redundancy: We applied gzip on the entire VM

and also on different collection of pages collated by their

type (Table 3). While the entire VM can be reduced by 66.5%

using gzip, we see that compression savings vary signifi-

cantly across page types. Heap and free pages can be reduced

by 80% (due to a predominance of zero bytes; e.g. 66% of

bytes in heap pages were zeros compared to 45% for the en-

tire VM), while SuperFetch pages can be reduced by only

47%.

gzip vs bzip2 vs 7zip: We also examined other well-known

compression utilities such as bzip2 and 7zip that have been

shown to be better than gzip in other contexts [18]. However,

these utilities were all significantly slower than gzip, signifi-

cantly inflating overall VM migration time, another metric of

interest in our setting. For example, on a 2.2 GHz CPU core,

gzip takes 65s when optimized for speed (with compression

savings of 66.5%) and 117s when optimized for compression

(savings increases to 68.5%). In contrast, using default set-

tings, bzip2 [5] takes 390s to reduce the VM by 68.4% and

7zip [1] takes 810s to reduce the VM by 77.5%.

Summarizing, semantic analysis of memory pages helps

inform our design of efficient migration:

• O6: Free pages can be compressed by almost 100% since

these need not be transferred.

• O7: Heap pages are highly compressible using gzip.

• O8: SuperFetch pages constitute a significant fraction of

low-match pages and are not highly compressible using

gzip. Hence, we need an efficient technique for transfer-

ring these pages. Many SuperFetch pages are also image

pages; a technique that works for these SuperFetch pages

will also work for image pages.

• O9: Full page matches can benefit kernel and SuperFetch

pages.

3. MIG DESIGN

We now present the design of MiG, our solution for ef-

ficient migration of desktop VMs, which does not resort to

input replay. As a point of comparison, we also design MiG-

Replay, which leverages a replayed VM’s memory state where

appropriate.

Design Constraints: In order to ensure correct operation

post migration, we need to ensure that source memory is

replicated fully and identically at destination. Even the goal

of input replay is only to create similar memory at the desti-

nation so that creating an identical version is efficient, since

as mentioned earlier, due to non-determinism and network

interactions, input replay cannot guarantee a semantically

identical VM.

The only exception to the above is that Free pages need

not be identical since the OS does not rely on its contents.

Note that even SuperFetch pages have to be identical at the

two ends. This is because the SuperFetch service may “acti-

vate” these pages at any time based on its internal represen-

tation (e.g, SuperFetch page 1 is image page for process x),

without the knowledge of the hypervisor.

Another constraint we impose is that the design should

not require changes to the guest OS. For example, requir-

ing that the guest OS implement a mechanism to get/set the

ASLR random seed via the hypervisor is out of scope. This

is to ensure that the migration solution will work for exist-

ing versions of guest OSes that are deployed today. Note that

this constraint does not preclude the design from using any

publicly documented information of the guest OSes for its

operation, since this does not affect its deployability.

3.1 Overview

At a high level, MiG and MiG-Replay operate as follows.

When a desktop machine is to be migrated from a source ma-

chine S to a destination machine D, we examine each mem-

ory page on S and apply techniques tailored to the type of

the page. MiG relies only on local state at S, including disk

state that has been synced previously, MiG-Replay, in addi-

tion, also leverages the memory state of the VM at D that

has been constructed via input replay. The set of techniques

applied derives from the observations O6 through O9:

5



30 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

• Free/Zero pages: In both MiG and MiG-Replay, these

pages are identified on S and not transferred.

• Full-page matches: In MiG, memory image of a freshly

booted VM is pre-provisioned at both S and D. Full-page

matches with respect to this “blank VM” helps reduce the

bytes transferred. In MiG-Replay, full-page matches are

computed against the replayed VM at D instead of a blank

VM.

• Image/SuperFetch pages: For image pages, whether ac-

tive or prefetched, both MiG and MiG-Replay employ a

novel approach involving statically precomputing a com-

mon, primer dictionary at both S and D. This dictionary

comprises the contents of commonly-accessed executable

and library files, and is used as a reference for computing

a diff of the memory state.

• Heap pages: In MiG, we employ a combination of history-

based redundancy elimination [12] and gzip to identify

and eliminate redundancy within heap pages. In MiG-

Replay, where possible, we parse the heap to identify the

chunks that match between S and D.

• Other: For both MiG and MiG-Replay, the remaining

pages are compressed using a combination of dictionary-

based redundancy elimination [12] and gzip.

Next, we discuss each technique in greater detail.

3.2 Free/Zero Pages

MiG and MiG-Replay identify free/zero pages by parsing

the page allocation table on S (Section 4) and only convey

their indices to D, thereby achieving nearly 100% compres-

sion for these pages. Since free pages can have non-zero con-

tent, conventional compression schemes achieve less savings

on these pages (e.g., only 81% savings when gzip is applied

on free pages – Table 3).

3.3 Full-page Matches

As seen in Figure 2, kernel pages constitute a good per-

centage of full-page matches, in large part because ASLR is

typically not applied to kernel pages. Thus, MiG preprovi-

sions the memory state of a freshly booted “blank VM” and

the corresponding page hashes at both S and D. At transfer

time, MiG simply computes a fast 4-byte hash [6] for each

page at S, matches it against the hash list of the blank VM,

verifies using a byte-by-byte comparison with the local copy

(to neutralize hash collision risk), and sends across the index

and location of the matched page to D, which then reads in

the corresponding page from its local copy to reconstruct the

memory state.

In MiG-Replay, we look for full-page matches between

S and the replayed VM, D. A 4-byte hash is computed for

each page at S and these are sent across to D as a list of

(page index, hash) pairs. D then compares these hashes from

S with those computed locally on its own pages. When a

hash from S matches one at D, the corresponding page need

not be transferred from S to D. To reduce hash collision risk

in MiG-Replay, we also send a full 20-byte SHA1 hash [11]

of just the matched pages.

3.4 Image/SuperFetch Pages

Image pages comprise active pages that are in the ad-

dress space of a process as well as SuperFetch pages that

are prefetched in anticipation of future use. ASLR impacts

both active and SuperFetch pages by impeding even sub-

page level matching. Indeed, as reported in Section 2, even

if the page were divided into 64-byte chunks, 40-75% of the

pages have 8 or more chunks that do not match (Figures 1e

and 1f). The fine-grained nature of the matches, interspersed

with non-matching pointers, means that two pages would

ideally need to be compared side-by-side, defeating the goal

of efficient transfer.

3.4.1 Using Precomputed File System Context

For the reasons noted above, neither MiG nor MiG-Replay

relies on D for compressing image pages. Instead, as shown

in Figure 3, they employ a novel approach that builds on

the observation that the image pages in memory are derived

from the file system content. Indeed, the OS loader reads

binaries from the file system and places these in memory,

albeit with modifications because of ASLR. The content of

these binary files provides context both similar to the tar-

get pages (image/SuperFetch) and also locally available at

both S and D. Thus, the pre-computed context built using

file system content offers the prospect of good compression

savings without any overhead incurred in establishing the

shared context.

To realize pre-computed context based compression, we

prime the dictionary in an existing redundancy elimination

algorithm, EndRE [12]. EndRE works as follows. Given a

cache/dictionary of past packets that have been transferred

from a source to a destination, EndRE identifies contiguous

strings of bytes in the current packet that are also present in

the cache. This is accomplished by 1) identifying a set of

representative “fingerprints” for each packet 2) looking up

these fingerprints in a “fingerprints store” that holds the fin-

gerprints of all the past packets in the cache’ and 3) for each

fingerprint of the packet that is found in the store, the match-

ing packet is retrieved and the matching region is expanded

byte-by-byte in both directions to obtain the maximal re-

gion of redundant bytes. Once all matches are identified, the

matched segments are replaced with fixed-size pointers into

the cache, thereby suppressing redundancy. In the original

EndRE, the cache starts empty and is dynamically built up

as packets are transferred between source and destination. In

the primed version, the cache at both ends is primed with

2 GB worth of file system content, comprising commonly-

used binary and library files. The priming is done by passing

these files to EndRE which builds its internal data structures

for identifying redundancy. Subsequently, when the Super-

Fetch/image pages are passed to EndRE, contiguous byte

strings that are redundant with the bytes in the primed con-

text are identified and replaced with pointers, which are then

restored at the destination using its primed cache.

6



USENIX Association  2013 USENIX Annual Technical Conference (USENIX ATC ’13) 31

App1

SuperFetch 
Proactively
loads App 1
pages

Physical pages of 
Local VM 

MiG: Combatting SuperFetch
• Exploit differences with file system content to migrate SuperFetch Pages 

Kernel

Zero

Free

Free

Free

Kernel 

App 2

Destination VM with 
replay of running apps

App 1

App 1

App 2

(a) SuperFetch (shaded pages) impacts the ability of replay
to recreate matching pages at the destination VM; MiG/MiG-
Replay exploit differences with (local) file system to migrate
these pages

Use diff with 
file system
for Image 
pages

DLL1: Function F

DLL2: Function G

Heap 

Heap DLL2: Function G

DLL1: Function F

Heap 

Heap 

Physical pages of 
Local VM 

MiG: Combatting ASLR
• Image pages: use diff with file system instead of matching with Destination 
• Heap pages: match 64-byte chunks on heap entries with matching signatures

After 
matching 
heap entries, 
match at 64-
byte chunk 
level

DLL1
DLL2

Destination VM with 
replay of running apps

(b) Due to ASLR, function and data pointers in image and heap
pages may not match across two VMs; MiG relies on intra-VM
redundancy for heap while MiG-Replay matches 64-byte heap
chunks across VMs

Figure 3: Illustration depicting how MiG and MiG-Replay combat SuperFetch and ASLR

While we have not performed any optimization or cus-

tomization of the context, we believe user-specific personal-

ization could yield both reduction in context size as well as

potentially higher compression savings.

3.5 Heap Pages

Now we turn to heap pages. Since MiG does not rely on

replay, it exploits intra-VM redundancy for heap pages. We

already saw that gzip was able to compress heap pages by

80% due to predominance of zero-bytes. Further, examining

the heap pages of a VM instance, we found that out of the

total heap of 670MB, about 170MB (non-zero bytes) was

redundant. Even though over 91% of this redundancy was

from within the heaps belonging to the same process, the

vast majority of the redundancy was between byte strings lo-

cated in different memory pages. So compression techniques

such as gzip, which look for redundancy over a small win-

dow (64KB), will often not be able to identify such redun-

dancy across disparate locations. Hence, to compress heap

pages, MiG uses an intra-VM redundancy technique based

on EndRE [12], that identifies redundancy over a large his-

tory (e.g., 2GB), coupled with gzip.

MiG-Replay, on the other hand, has the advantage of ac-

cess to the replayed VM to eke out additional gains over

MiG. Conceptually, replay should create a heap at D similar

or identical to the one at S. However, in practice there is a

distinction between heap content and heap structure. Replay

could, in fact, help make the heap content similar. Yet, the

structure of the heap could be very different across the two

ends because of garbage collection and compaction, which

kick in asynchronously.

Therefore, to match the process heaps across S and D,

MiG-Replay looks deeper. Heaps in Windows 7 come in two

forms: managed heap, whose structure can be parsed, and

unmanaged heap which are private to a process. For man-

aged heap, MiG-Replay performs a heap walk on the heap

of each process at S and D, to produce the list of heap entries

at each end. For each heap entry at S, MiG-Replay computes

a hash of its used portion (parts of the heap entry might be

unused), and sends it across to D. D looks through its heap

entries for hash matches. If a matching heap entry is found,

the corresponding content need not be transferred from S to

D.

As shown in Figure 3b, ASLR can again result in differ-

ing pointers inside the heap entries of S and D, that make an

exact match of the full heap entry less likely. To mitigate this

effect of ASLR, we chunk the heap entry into n-byte blocks

and compute 4-byte hashes to identify potential matches.

Based on our evaluation (Section 5), we find that blocks of

size n = 64 bytes provided us with the highest compression

savings. Finally, for unmanaged heaps, since the heap struc-

ture cannot be parsed, MiG-Replay simply chunks them into

64-byte chunks at S and looks for chunk matches at D on

corresponding heap pages that belong to the same process.

To keep the processing overhead manageable, we only ap-

ply the above procedure for heap entries that are larger than

1KB in allocated size. Our measurements show that heap

entries that qualify as being “large” per the above criterion

account for an overwhelming 80+% of the bytes in the heap.

We stress again that all of the above complexity associ-

ated with replay and parsing the heap is only for the case

of MiG-Replay, which we designed solely for the purpose of

comparison with the much simpler MiG scheme.

3.6 Other Pages

The pages that remain include stack pages, and also kernel

pages that did not benefit from a full-page match. For such

pages, both with MiG and MiG-Replay, we employ intra-

VM redundancy elimination using EndRE [12].

4. IMPLEMENTATION

We now briefly discuss the implementation of MiG on

Windows. MiG runs in the root partition of the Microsoft

Windows Server 2008 Hyper-V system [8]. While our cur-

rent prototype is targeted towards the quick migration fea-

ture of Hyper-V (suspend-migrate-resume), wherein the VM

7



32 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

state is saved, moved, and restored at the destination, we be-

lieve MiG can be effectively applied to the VM live migra-

tion [17] scenario as well.

To initiate migration, we use existing Hyper-V mecha-

nisms to save the state of the VM, which yields a VM phys-

ical memory file and two small (few MB) configuration files

containing the VM configuration information and the saved

state of devices. MiG reads in the saved physical memory

and extracts semantic information in two steps. First, it con-

sults a system-wide data structure, the Page Frame Number

(PFN) database, which has metadata information for each

page (zero or free, allocated to a process or kernel, etc.),

and allows the reverse mapping of a physical memory ad-

dress to the virtual address of a process, where applicable.

Second, MiG consults the Virtual Address Descriptor (VAD)

tree process-specific data structure to determine the type of

the page (MEM PRIVATE for heap, MEM IMAGE for code and

MEM MAPPED for memory mapped file pages) in the virtual

address space. MiG then applies the appropriate technique

from Section 3 to each of the pages and, thus, creates a com-

pressed version of the memory file, which is migrated to the

destination. Note that both PFN and VAD are publicly docu-

mented, so while MiG is intrusive in having to look into the

memory state of the VM, it does not depend on access to any

proprietary information.

In case of MiG-Replay, our prototype takes in two saved

memory image files — one each corresponding to the orig-

inal and the replayed VM — and simply performs an anal-

ysis of the compression gains of having a replayed VM. In

addition to extracting the above semantic information, MiG-

Replay also performs a heap walk by parsing the heap struc-

ture of each process on the two VMs, to identify the allocated

heap chunks for heap compression.

For Linux, we use the libVMI tool [7] for introspection

into VM memory.

5. EVALUATION

Metrics. We evaluate the performance of MiG, MiG-Replay

and rsync primarily in terms of volume of bytes transferred

relative to using gzip as the compression scheme.1 Let gzip

yield a total byte transfer requirement of bgzip. For any other

scheme x (e.g., MiG), let the byte requirement be bx. The

byte savings, or compression gains, of x over the baseline

is then gx =
(bgzip−bx)

bgzip
× 100. This relative savings metric

captures the bytes saved compared to the scheme, namely

gzip, that is commonly used in commercial systems such as

Windows Server 2008 Hyper-V. Further, if compression pro-

cessing is faster than the link speed, this relative byte sav-

ings would translate into an equivalent reduction in migra-

tion time. Thus, we also evaluate the migration transfer time

for the various schemes. Finally, we do not present absolute

byte savings as a separate metric since it is already captured

1We do not use rsync or 7zip as a baseline to compare against
since these are an order of magnitude slower than gzip at the set-
tings that provide savings.

as part of the migration transfer time metric. In general, ab-

solute byte savings for MiG ranges between 80-95% for the

various scenarios.

Workloads. We evaluate MiG performance for both Win-

dows and Linux OSes. For Windows, we collect memory

dumps from 10 desktops with real user workloads, running

the 32-bit version of Windows 7 with 2-4 GB of RAM, 8

of which were from desktops used by researchers and 2 by

admin staff. For Linux, we use 64-bit VMs running Debian

squeeze (2.6.32.5-amd64) and workload consists of a mix

of document editing (openoffice word/ presentation, gedit),

image manipulation (gimp, inkscape, photo manager), and

web-browsing (firefox, epiphany) applications, reflecting com-

mon desktop usage.

In order to evaluate MiG-Replay, we use Windows VMs

with artificially generated workloads that emulate a Win-

dows desktop computing environment, with applications such

as Outlook (email), Internet Explorer (browser), Word (doc-

ument editor), Excel (spreadsheet), etc. running. We use the

AutoIt scripting language [3] to automate the Windows GUI

and design scripts to feed keyboard input into Word or Excel

interspersed with random think-time, sync email, download

pages from different websites, etc. We perform 5 runs of this

emulation, with different combinations of applications used

in each instance, with each experiment lasting between 30

minutes and four hours to mimic a user work session. For

each of these experiments, we also performed paced and ac-

celerated replay (same script without think-times).

5.1 MiG Byte Savings

Figures 4 and 5 show the percentage byte savings achieved

by MiG relative to gzip for each of the individual Windows

and Linux desktop VMs, respectively. First, we see that MiG

delivers consistent byte savings of 40%-60% for the ten Win-

dows VMs (average 51%) and 58%-68% for the five Linux

VMs (average 65%) over gzip.

It is interesting to observe the contribution of the differ-

ent MiG techniques towards achieving the overall gains. For

Linux VMs, the bulk of the gains come from the use of pre-

computed context (30-38%), followed by Full page matches

(18-25%) and intra-VM redundancy elimination (6-13%). In

contrast, for Windows VMs, the majority of the gains come

from Intra-VM redundancy elimination (35-44%), followed

by precomputed context (3-15%), Full page matches (2-7%),

and Free pages (0-7%).

The surprising finding in the above results is that while

the use of precomputed context (Section 3.4) provides sub-

stantial benefits for Linux VMs (30-38%), its contribution to

savings in Windows VMs is modest (3-15%). Upon examin-

ing this in more detail, we find that while precomputed con-

text in Windows had indeed full or partial matches with over

80% of image pages and 45% of SuperFetch pages2, many

of these matches were also captured by intra-VM redun-

dancy elimination. These intra-VM redundant matches were

2The lower cache hit rate for SuperFetch pages is because Super-
Fetch pages can also be non-image pages.

8



USENIX Association  2013 USENIX Annual Technical Conference (USENIX ATC ’13) 33

0

20

40

60

1 2 3 4 5 6 7 8 9 10

B
y

te
 S

a
vi

n
gs

 (
%

) 

Free Full Intra-VM Context

Figure 4: MiG byte savings on Windows VMs

0

20

40

60

1 2 3 4 5

B
y

te
 S

a
vi

n
gs

 (
%

) 

Free Full Intra-VM Context

Figure 5: MiG byte savings on Linux VMs

between pages belonging to the same DLL that had been

loaded by different processes (e.g., user32.dll was loaded by

almost 50 out of the 100 processes in one Windows desktop),

though, vast majority of these matches were for only small

portions of a page (average match length of only 107 and 83

bytes for image and SuperFetch pages, respectively). Thus,

in Windows, a substantial portion of the savings that would

have accrued from using a precomputed context is already

obtained by intra-VM redundancy elimination.

The other notable difference is the higher contribution of

Full page matches in Linux (18-25%) versus Windows (2-

7%). This is explained by the fact that Windows has much

more extensive ASLR support turned on by default than Linux

and agrees with the higher full page sharing numbers for

Linux (Section 2).

In summary, MiG delivers significant byte savings of 51%

and 65% over gzip for Windows and Linux desktop VMs, re-

spectively. The different techniques in MiG each contribute

towards achieving these savings, though, the significance of

each technique’s contribution varies between Windows and

Linux.

5.2 Replay

Figure 6 depicts the byte savings relative to gzip for the

non-semantic scheme rsync, and the two semantic schemes

(MiG and MiG-replay) for four Windows desktop VM work-

loads, viz., different combinations of short/long workloads

and paced/accelerated replays. In this case, short/long work-

loads lasted 30 mins/four hours of automated use of office

applications and while paced replay took the same time as

the original workload, accelerated replay took under ten min-

utes to complete for both workloads.

From the figure, we see that MiG provides average sav-

ings relative to gzip of 38-48% for all these workloads with-

out relying on any replay. Using the replayed VM memory,

we find that rsync provides about 18-34% relative savings

while MiG-Replay provides 39-63% relative savings. Note

that rsync gains over gzip are modest when the replay is

accelerated, indicating that the memory image created with

accelerated replay is not as close to the source image as in

paced replay.

Interestingly, MiG-Replay delivers about 15% additional

savings compared to MiG in cases where either the replay is

paced or the workload is short; however, when the workload

Type Excel Outlook Powerpoint OneNote

Managed pages 131 212 205 347

Unmanaged pages 893 1045 1249 860

Bytes (%) (heap size > 1KB) 84.5 84.9 83.8 89.8

Bytes % match 84 80.6 77.4 73.3

MiG-Replay savings % 50 44 36 42

Table 4: Heap characteristics of some office apps

is long and replay is accelerated in time (as would be nec-

essary for fast migration), we find that MiG-Replay surpris-

ingly performs worse than MiG by 8%. The reason is two-

fold. First, the gains due to matching of SuperFetch pages

disappear because accelerated replay fails to evoke the same

prefetching pattern as the actual execution of the VM. Sec-

ond, the degree of similarity in the heap also diminishes,

so the overhead of performing heap matching (e.g., send-

ing hash values across from S to D) overwhelms the gains

obtained from the actual matches. We examine this second

reason next.

Table 4 shows some important statistics for the heap pages

of a few Office applications. The heap comprises of managed

and unmanaged heap and we can see that managed heap is

only 13-29% of total heap for these applications. The ability

of replay to recreate the source’s memory state at the desti-

nation is highlighted in the next row that lists the percentage

of bytes that match heap entries between source and destina-

tion VMs. For these applications, we see that between 73 to

84% of bytes do indeed match between source and destina-

tion VM. However, since the match is not exact (because of

pointers affected by ASLR), we resort to dividing the heap

into chunks and perform matching at the smaller granularity

of chunks rather than matching at larger full heap entries. We

evaluated compression savings for the entire managed heap

size using the replay mechanism for different chunk sizes

(not shown) and found that 64-byte chunks provide the high-

est savings of 40-50%, balancing the overhead of sending

4-byte hashes for each of the chunks and the cost of losing a

chunk match due to a small difference (e.g., a pointer value

change) between source and destination chunks. For unman-

aged heap, we use the same chunk size to divide up the heap

pages and try to identify matches at the replayed VM; again,

the 4-byte hash overhead for each 64-byte chunk results in

decreasing the savings. Additional protection against hash

collisions will further reduce these savings.

To summarize, while replay does indeed create similar

9



34 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

0

20

40

60

Short,
Paced

Short,
Accelerated

Long,
Paced

Long,
Accelerated

B
y

te
 S

a
v

in
g

s 
(%

) 

MiG rsync MiG-Replay

Figure 6: Replay workloads

0

10

20

30

40

50

2004 1728 1537 1339 1138 935

B
y

te
 S

a
v

in
g

s
 (

%
)

VM assigned memory (MB)

Figure 7: Ballooning

0

20

40

60

80

100

0.5 1.25 2.5 3 4 6 12 60

B
y

te
 S

a
v

in
g

s
 (

%
)

Hours since previous migration

Figure 8: Repeated migrations

state at the destination, MiG-Replay’s ability to compress

heap pages effectively using replay is impeded by the re-

ality that (a) only a small fraction (13-29%) of the heap is

parseable, (b) the reconstruction of the heap using replay is

far from perfect (only 73-84% of bytes match), and (c) we

have to resort to matching small, 64-byte chunks to get maxi-

mum compression savings, incurring high overhead and lim-

iting savings. Since MiG is able to perform effective intra-

VM redundancy elimination for heap pages, MiG-Replay is

unable to gain over MiG.

5.3 Ballooning

Ballooning is a technique to artificially introduce memory

pressure in a VM, leading it to evict less important pages [30].

One application of ballooning proposed in the literature is

in the context of efficient migration, wherein unnecessary

pages are shed from the VM memory prior to migration [26].

In general, it is hard to estimate the amount of memory to

be ballooned out; overdoing it can cause the eviction of im-

portant pages and thus adversely impact user-perceived per-

formance. Thus, migrating the entire memory is desirable.

However, since memory ballooning can be applied indepen-

dently of MiG, in this section, we investigate the impact of

memory ballooning on MiG byte savings by using Hyper-

V dynamic memory feature to create different amounts of

memory pressure on the VM before applying MiG.

Figure 7 shows MiG’s relative savings over gzip for dif-

ferent amounts of assigned memory for a 2GB VM, corre-

sponding to a memory reduction of 5-55% through balloon-

ing. While the savings decreases as the assigned memory

is reduced, MiG is still able to deliver 36% relative savings

even with 55% of VM memory pages evicted. This is be-

cause while ballooning evicts low priority pages like free

pages, it does not evict all SuperFetch or heap pages3 and,

thus, a substantial portion of the MiG byte savings remains.

Further, at high memory pressure, many of the evicted

pages are paged out into a pagefile (swap) in disk which, of

course, also needs to be migrated. MiG can be directly ap-

plied to the pages sitting in the pagefile just as to the pages in

memory. MiG’s savings on pagefile was similar to the sav-

ings achieved for in-memory pages.

3SuperFetch pages retain the priority of the original page.

5.4 Repeated Migrations

One of the scenarios targeted by MiG is the desktop that

is always-on and is migrated repeatedly between work and

home or work and cloud. In this section, we evaluate the

benefit of using the memory from previously migrated state

for byte savings. In these cases, both source and destination

save the previously transferred VM memory and MiG uses

this for its full page matches instead of a blank VM as before

(all other techniques remain the same).

We had a user use a 2GB Windows 7 VM for several days;

applications used included the browser and several office ap-

plications. Every once in a while, sometimes after short in-

tervals of 30 minutes to few hours, and sometimes after long

intervals of several hours to even days, we took snapshots of

the VM memory, representing a checkpoint of VM state that

needs to be migrated. We then used MiG with the benefit of

the previous snapshot for computing byte savings.

Figure 8 depicts MiG’s relative byte savings over gzip

for the different migration cases corresponding to workloads

that last from 30 minutes to 60 hours. From the figure, we

see that short workloads of up to a couple of hours in gen-

eral significantly benefit from using the previous snapshot

by delivering relative savings over gzip of up to 87% (cor-

responding to absolute reduction of VM size by 95%). Of

course, not all short workloads result in such gains (for ex-

ample the 1.25 hour data point), due to windows update or

other system activity that can potentially induce large change

in memory, effectively reducing the effectiveness of the pre-

vious snapshot. Finally, we see that for workloads beyond a

few hours, the previous snapshot is not as useful and MiG’s

relative gains drop down to about 50%.

5.5 Migration Time

We now evaluate the time for VM migration for the var-

ious schemes. Let us first consider the computational cost

of the different MiG techniques on a 2.2 GHz CPU core for

a typical 2GB Windows 7 VM.4 In the following analysis,

MiG’s context cache is preloaded in memory and the VM

image is also in memory.

Parsing the PFN database to extract semantic informa-

4Most of these numbers scale proportionately with VM size but can
vary depending on the amount of compression achieved.

10



USENIX Association  2013 USENIX Annual Technical Conference (USENIX ATC ’13) 35

Compressed Size Compute time Transfer time

gzip 670MB 65s 558s

MiG 330MB 67s 275s

Table 5: Migration time for 2GB VM on 10Mbps link

Off Default Aggressive

Full 26% 23% 22%

Full+Intra-VM 32% 32% 30%

Full+Intra-VM+context 62% 69% 70%

Table 6: Impact of preload on MiG savings (Linux)

tion takes about 20s.5. MiG also creates a 4-byte hash of

each page using Jenkins Hash [6] and compares these hashes

against the local precomputed hashes of a blank VM for

identifying full page matches. This process takes around 8s.

The processing of SuperFetch and image pages using En-

dRE [12] with primed context takes about 15s. Finally, all

remaining pages are compressed using EndRE+gzip, which

takes about 24s. Thus, our MiG prototype implementation is

able to reduce a 2GB VM to about 330 MB in 67s. For the

same VM, gzip reduces it to 670 MB in 65s.

Migration time (Table 5) is determined by the maximum

of transfer time and compression processing time. Trans-

fer time is directly proportional to (compressed) VM size

and inversely proportional to link speed. Thus, on slow links

and/or for large VMs, MiG’s migration is significantly faster

than gzip. For example, on a 10 Mbps link, MiG transfers

the 2GB VM in about 275s, halving the transfer time of gzip

(558s). For comparison, it takes 810s for 7zip, 840s for

rsync and 1665s for uncompressed transfer.

We can also take advantage of multi-core CPUs to per-

form many of the above operations in parallel to optimize

MiG (and gzip). Using 4 cores, processing for an optimized

version of MiG can easily be limited to less than 28s (and

optimized gzip to less than 55s), thereby allowing MiG to

retain the 50% reduction in both bytes and migration time

compared to gzip at 100 Mbps speeds. Of course, on 1 Gbps

or faster links, transferring the raw VM may be faster than

using either gzip or MiG.

6. DISCUSSION

Turning off page prefetching prior to migration: Turning

off page prefetching mechanisms such as SuperFetch could

aid VM migration by cutting out the prefetched pages from

the set that needs to be moved. However, doing so can have

an adverse impact on user-perceived performance [10]. Nev-

ertheless, it is interesting to ask how much there is to be

gained from varying the amount of prefetching, in terms of

the byte savings achieved by MiG.

To answer this question, we used a Linux desktop VM

loaded with a few applications and tested it under three dif-

ferent settings for prefetching: off (preload removed), de-

fault, and aggressive (increased free memory to be used for

5This is primarily due to our prototype using windbg APIs which
makes disk accesses; an optimized version should take under 10s.

prefetching from default of 50% to 90%). The byte savings

relative to gzip is shown in Table 6. While increasing the de-

gree of prefetching results in a reduction in the number of

full-page matches relative to a blank VM, this loss is more

than offset by leveraging pre-computed context to compress

the prefetched (and other) pages, resulting in similar abso-

lute byte savings for all these cases. This suggests that we

do not have to turn off prefetching to obtain byte savings for

migration.

Influencing randomization in ASLR: While turning off

ASLR would adversely impact security, one could arguably

influence ASLR’s randomization policy more subtly, to make

it more migration friendly while not compromising secu-

rity. For instance, when a VM is migrated, the randomiza-

tion seed used for ASLR at the destination could be set to

be the same as that at the source, which might then make

the memory state of a replayed instance match more closely

with the source. However, to our knowledge, for security rea-

sons, OSes do not make the seed available through an API

or document the location of the seed in memory so that, for

instance, it could be read from the hypervisor.

Nevertheless, to get a sense for the gains to be had if the

same seed were used at the source and the destination, con-

sider the evaluation presented in Section 5.4. Since a single

VM instance was snapshoted repeatedly, the randomization

seed remained unchanged across the snapshots. When the in-

terval between two snapshots is short (under 2 hours), there

is a high degree of match between the snapshots. However,

when the interval is longer, the snapshots tend to diverge,

even though the randomization seed is the same across the

snapshots. The divergence is because of SuperFetch, garbage

collection, etc., factors which exist independent of ASLR.

Thus, any short-term gains arising from maintaining the same

ASLR seed get overshadowed over longer durations by other

sources of non-determinism.

7. RELATED WORK

ISR, Collective, Transient PCs. The vision of a desktop

PC environment that is mobile and available anywhere was

articulated by Chen and Noble [16] and in the Internet Sus-

pend Resume (ISR) project [25]. The Collective [15] is an-

other system that provides users with a consistent desktop

environment at a computer nearby as users move. Recently,

this paradigm of having the desktop environment stored in

the cloud but executed on a PC close to the user has been

dubbed the transient PC [27].

Efficient Migration. Prior work closest to MiG is the work

on optimizing the migration of virtual computers [26]. Their

system uses copy-on-write disks in order to migrate disk

changes, supplanted with demand paging to fetch needed

blocks, memory ballooning to zero out unused memory, and

page hashing to suppress identical memory blocks. While

MiG can benefit from the disk migration techniques in [26],

migrating memory state is much more challenging today due

to new OS features. The idea of using replay in order to mi-

grate VMs efficiently was proposed in [28]. However, as we

11



36 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

show in this paper, replay provides only small gains.

CloudNet [31] supports efficient Live WAN migration of

VMs. It implements smart stop and copy to reduce the num-

ber of iterations/copies for Live migration which can be use-

ful for live migration support in MiG. It also implements

redundancy elimination by computing sub page-level hashes

(1 KB in size) and comparing this to previously sent data.

MiG’s intra-VM redundancy elimination eliminates redun-

dant chunks that are as small as 32 bytes. Remus [19] is

a system that replicates VMs asynchronously. Remus uses

page compression including delta and gzip compression for

efficient checkpointing. Since Remus checkpoints state ev-

ery 25ms, memory page delta-based approach works well

for them. For durations comprising several hours, typical for

VM migration, we find that previous memory state is not

useful.

Similarity in VM memory. Looking beyond migration, the

recent study by Barker et al. [13] reports that page sharing in

Linux and Windows VMs running at a server is diminished

because of ASLR. Our study differs from and goes beyond

this prior work in several ways. First, since our goal is ef-

ficient migration, we compare two VMs running the same

OSes/applications and provided with the same input, which

is not a scenario considered in [13]. Second, while [13] fo-

cuses mostly on page-level sharing, we show that even at

64-byte chunk level, changes due to ASLR render sharing

ineffective. Third, going beyond ASLR, we also evaluate and

show the significant impact of OS prefetching (e.g., Super-

Fetch) on memory redundancy.

8. CONCLUSION

When we started our investigation into efficient migra-

tion of desktop VMs, we had assumed that replay and mem-

ory similarity would lead to efficiency. However, we were

puzzled by the lack of similarity even in blank VMs. The

culprit, as explained in this paper, is randomness and non-

determinism due to mechanisms such as ASLR and page

prefetching in modern OSes. Through extensive experiments

on both Windows and Linux, we have characterized and quan-

tified the impact of these mechanisms.

Despite these hurdles, our migration solution, MiG, yields

compression gains of 51% and 65% over gzip on Windows

and Linux VMs, respectively, and halving of the overall mi-

gration time. Central to MiG is the idea of tailoring the com-

pression technique to the semantics of memory pages, an

approach which we believe could transcend the specific OS

mechanisms and compression techniques considered here.

9. ACKNOWLEDGEMENTS

We thank our shepherd, Jason Flinn, and the anonymous

reviewers for their constructive comments.

10. REFERENCES
[1] 7zip. http://www.7-zip.org.

[2] ASLR. http://blogs.msdn.com/b/michael_howard/
archive/2006/05/26/address-space-layout-
randomization-in-windows-vista.aspx.

[3] AutoIT. http://www.autoitscript.com/site/.

[4] Bandwidth caps around the world. http://www.maximumpc.com/
article/features/how\_bad\_do\_we\_really\_have\_it\
_bandwidth\_caps\_around\_world.

[5] bzip2. http://www.bzip.org.

[6] Jenkins Hash. http://burtleburtle.net/bob/c/lookup3.c.

[7] LibVMI tool. http://code.google.com/p/vmitools/.

[8] Microsoft Hyper-V. http://www.microsoft.com/en-
us/server-cloud/windows-server/hyper-vaspx.

[9] SuperFetch. http://msdn.microsoft.com/en-
us/library/bb188739.aspx.

[10] SuperFetch performance.

http://everythingexpress.wordpress.com/2011/11/13/
how-to-adjusting-windows-7-superfetch/.

[11] US Secure Hash Algorithm 1 (SHA1). RFC 3174, September 2001.

[12] B. Aggarwal, A. Akella, A. Anand, A. Balachandran, P. Chitnis,

C. Muthukrishnan, R. Ramjee, and G. Varghese. EndRE: An

End-System Redundancy Elimination Service for Enterprises. In

USENIX NSDI, April 2010.

[13] S. Barker, T. Wood, P. Shenoy, and R. Sitaraman. An Empirical

Study of Memory Sharing in Virtual Machines. In USENIX ATC,

June 2012.

[14] A. Z. Broder. On the resemblance and containment of documents. In

Proceedings of IEEE Compression and Complexity of Sequences,

June 1997.

[15] R. Chandra, N. Zeldovich, C. Sapuntzakis, and M. Lam. The

Collective: A Cache-Based System Management Architecture. In

NSDI, May 2005.

[16] P. Chen and B. D. Noble. When virtual is better than real. In 8th

IEEE Workshop on Hot Topics on Operating Systems, May 2001.

[17] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,

I. Pratt, and A. Warfield. Live Migration of Virtual Machines. In

NSDI, May 2005.

[18] L. Collin. A quick benchmark: Gzip vs. Bzip2 vs. LZMA, 2005.

http://tukaani.org/lzma/benchmarks.html.

[19] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and

A. Warfield. Remus: High Availability via Asynchronous Virtual

Machine Replication. In USENIX NSDI, April 2008.

[20] T. Das, P. Padala, V. Padmanabhan, R. Ramjee, and K. Shin.

LiteGreen: Saving Energy in Networked Desktops using

Virtualization. In USENIX ATC, June 2010.

[21] G. Dunlap, S. King, S. Cinar, M. Basrai, and P. Chen. ReVirt:

enabling intrusion analysis through virtual-machine logging and

replay. In OSDI, 2002.

[22] G. Dunlap, D. Lucchetti, M. Fetterman, and P. Chen. Execution

replay of multiprocessor virtual machines. In VEE, 2008.

[23] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren, G. Varghese,

G. M. Voelker, and A. Vahdat. Difference Engine: Harnessing

Memory Redundancy in Virtual Machines . In OSDI, December

2008.

[24] A. Kochut and H. Shaikh. Desktop to cloud transformation planning.

In IEEE IPDPS, May 2009.

[25] M. Kozuch and M. Satyanarayanan. Internet Suspend/Resume. In

IEEE WMCSA, June 2002.

[26] C. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. Lam, and

M. Rosenblum. Optimizing the migration of virtual computers. In

OSDI, 2002.

[27] M. Satyanarayanan, S. Smaldone, B. Gilbert, J. Harkes1, and

L. Iftode. Bringing the Cloud Down to Earth: Transient PCs

Everywhere. In MobiCloud 2010, Santa Clara, CA, October 2010.

[28] A. Surie, H. A. Lagar-Cavilla, E. de Lara, and M. Satyanarayanan.

Low-Bandwidth VM Migration via Opportunistic Replay. In

HotMobile, February 2008.

[29] A. Tridgell. Efficient Algorithms for Sorting and Synchronization,

2000. PhD thesis, Australian National University.

[30] C. Waldspurger. Memory Resource Management in VMware ESX

Server. In OSDI, December 2002.

[31] T. Wood, K. Ramakrishnan, P. Shenoy, and J. V. der Merwe.

CloudNet: Dynamic Pooling of Cloud Resources by Live WAN

Migration of Virtual Machines. In Virtual Execution Environments

(VEE), March 2011.

12




