
USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 79

The Harey Tortoise:
Managing Heterogeneous Write Performance in SSDs

Laura M. Grupp†, John D. Davis‡, Steven Swanson†

†Department of Computer Science and Engineering, University of California, San Diego
‡Microsoft Research, Mountain View

Abstract
Recent years have witnessed significant gains in the
adoption of flash technology due to increases in bit den-
sity, enabling higher capacities and lower prices. Unfor-
tunately, these improvements come at a significant cost
to performance with trends pointing toward worst-case
flash program latencies on par with disk writes.

We extend a conventional flash translation layer to
schedule flash program operations to flash pages based
on the operations’ performance needs and the pages’ per-
formance characteristics. We then develop policies to im-
prove performance in two scenarios: First, we improve
peak performance for latency-critical operations of short
bursts of intensive activity by 36%. Second, we realize
steady-state bandwidth improvements of up to 95% by
rate-matching garbage collection performance and exter-
nal access performance.

1 Introduction
NAND flash memory can provide orders-of-magnitude
faster performance than traditional rotating media
(HDDs), albeit at the cost of reduced capacity. Push-
ing flash to higher densities, causes significant decline
in other metrics – like performance, endurance, and relia-
bility. Increasing flash’s capacity by storing an additional
bit per memory cell (1 to 2 bits, or 2 to 3 for example) re-
duces the chip’s lifetime by 5-10%, shrinks throughput
by 22% to 98% (55% on average) and increases latency
by 1.3× to 4.0× (2.3× on average) [14]. Increasing den-
sity via scaling leads to smaller, but still significant de-
clines.

Despite the disturbing trends resulting from increas-
ing the density of the underlying flash technology, flash
systems remain very promising. The chip-level trends
are driving the development of increasingly sophisticated
flash management techniques. For example, sophisti-
cated error coding techniques based on a deep under-
standing of flash’s behavior [12, 5] can bring triple-level
cell (TLC) bit error rates and performance in line with
multi-level cell (MLC 2-bit/cell) technology [1], and ag-

gressively exploiting parallelism can partially compen-
sate for increasing latencies.

This paper exploits another characteristic of high-
density flash devices to improve SSD performance. The
dominance of MLC over SLC devices leads to system-
atic variation in the program latency of different pages.
We have developed a flash translation layer (FTL) that
schedules programs to pages according to the program
operation’s purpose (e.g., internal garbage collection vs.
storing user data) and the speed of the page (i.e., faster
or slower). Our scheduling algorithm improves perfor-
mance without sacrificing capacity or endurance, provid-
ing speed of the hare (high performance) and the en-
durance of the tortoise (increased capacity and reduced
write amplification). In particular, we make the follow-
ing contributions:

• A flexible FTL which is aware of different page
types and can direct operations accordingly.

• A Many Write Point mechanism for increasing
scheduler flexibility and thereby enhancing the ef-
fect of scheduling policies.

• A scheduling policy that provides SLC performance
on an MLC device for performance-critical opera-
tions and bursty workloads.

• An analytical model of steady state SSD perfor-
mance that guides our access scheduler and suggests
some non-intuitive scheduling algorithms.

Our FTL architecture and multi-write point mecha-
nism allow the system to more readily access the array’s
variability. With this improved access and our policies,
our FTL improves burst bandwidth by up to 36% (equal
to the performance of an SLC array) with no increase in
wear, and improves performance of sustained traffic by
up to 95%.

First, we provide some background information on
NAND flash and SSDs. Section 3 follows with a descrip-
tion of our baseline architecture, simulation infrastruc-
ture and our methodology. Next, Section 4 describes our

80 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

enhancements to the FTL which efficiently leverage page
latency variation. We follow this with our evaluation in
Section 5, suggestions for applying the mechanisms in
Section 6, related work in Section 7, and conclusions in
Section 8.

2 Background
NAND flash memory is the driving force behind the on-
going success of solid-state drives (SSDs). This sec-
tion describes the basics of flash chip operation and the
source, magnitude and patterns of page latency variation.

2.1 Flash memory
The packages composing the flash array in an SSD each
contain one or more flash dies. Within a flash die, mul-
tiple (typically two) “planes” each contain several thou-
sand 128 kB to 3 MB blocks that, in turn, contain 64 to
384 2-8 kB pages. The chips perform reads and writes
on pages. However, before the chip can program (write)
new data to a page, it must first erase the parent block.
Further complicating writes, FTLs must write pages in
order within each block. The FTL may skip over a page,
but after doing so cannot write to it until after erasing it.

To represent the data, each memory element uses
charge stored on a floating gate between the control gate
and channel of a transistor. Varying amounts of charge on
the floating gate determine the effective threshold volt-
age (VTH) of the transistor, creating an analog range
which the chip interprets as two regions for a single bit.
Physically, a block comprises an array of “flash chains”
that each contain 32-128 floating gate transistors in se-
ries with each other. To a first order, the nth page in the
block comprises the nth bit in each of the block’s chains
(we discuss this more detail in Section 2.2).

Multi-level cell (MLC) flash stores multiple bits per
floating gate (usually 2 bits) to improve density by in-
terpreting the range of possible VTH as 4 regions. This
improved density (i.e., lower cost) makes MLC the dom-
inant type of flash. Single-level cell (SLC) devices are
less-dense, faster, and more expensive. TLC is in produc-
tion systems and Macronix recently demonstrated 6-bit-
per-cell technology [16]. We focus on the performance
of the write operation in MLC devices in this study, and
we discuss it in more detail in the next section.

Flash memories exhibit a well-known wear-out be-
havior which causes their data retention time to degrade
with increasing program-erase (PE) cycle counts. Man-
ufacturers rate current MLC devices for between 5,000
and 10,000 PE cycles, after which the data may be-
come unrecoverable without very aggressive ECC pro-
tection. While wear-out remains a first-class concern,
large over-provisioned flash arrays, common wear man-
agement techniques and recent advances in chip-level
technology [11] help.

E_SLC_51nm

B_MLC_72nm

B_MLC_34nm

D_MLC_50nm

E_MLC_51nm

F_MLC_41nm

C_MLC_43nm

B_TLC_25nm

C_TLC_43nm

Pr
og

ra
m

 L
at

en
cy

 (m
s)

0
1
2
3
4
5
6 First Bit

Second Bit
Third Bit

Figure 1: Chip Program Latency Multi-bit flash chips
retain single-bit performance in their fast pages. The in-
crease in latency is confined to the chips’ added capacity.

2.2 Flash Chip Performance Variability
The techniques we propose exploit systematic page-level
variation in write performance. This section describes the
source of this variation, magnitude of variation we have
measured in flash chips, the architectural lay-out of fast
and slow pages within each flash chip, and how the FTL
can non-destructively detect this pattern. Each of the 30
chip models (from 6 manufacturers) we have character-
ized show distinct groups of latencies in proportion with
the number of bits stored in each memory element.

The variation arises because, although MLC devices
store multiple bits on a single floating gate, those bits
map into different pages. As a result, the programming
operation for the first fast bit stored on the gate is much
faster than the programming operation for the second
slow bit, and so on for all additional bits stored in the
cell. We refer to individual pages as fast or slow depend-
ing on which kind of bits they contain.

Figure 1 shows the latency of a representative sample
of SLC, MLC and TLC chips. For each chip we mea-
sure the time to write random data to each page in 16
blocks. We divide these measurements into fast, slow
and (for TLC) medium page latencies. Slow pages from
the average MLC chip are 4.8× slower than fast pages,
with D MLC 50nm exhibiting the largest gap (6×) and
F MLC 41nm the smallest at 3.5×. Our data show that
fast page program latency is comparable to SLC pro-
gram latency in devices from similar technology gener-
ations [13].

Our previous work reveals two common organizations
for fast and slow pages within an MLC block. We now
extend those observations to TLC parts as well. With the
exception of one manufacturer, the chips exhibit the or-
ganization in Figure 2A. In MLC devices, the first four
pages are fast, the last four are slow and every pair of
pages mid-block alternate between fast and slow. TLC
devices cycle through the three latencies with pairs of

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 81

Fast Page Medium Page Slow Page

(A)
Common Pattern

(B)
Unique Pattern

. . .

. . .

. . .

. . .

MLC

MLC

TLC

TLC

Figure 2: Latency Pattern Pages’ read and write laten-
cies follow the same pattern within each block of a given
chip.

F = Fast Page M = Medium Page S = Slow Page

(A)
Common Pattern

(B)
Unique Pattern

TLCMLC
F S
0

2

6

4

8

12

1610

F S
0

2

6

10

16

24

3012

M
4

8

14

22

TLCMLC
F S
0

1

3

2

4

6

85

F S
0

1

3

5

8

11

146

M
2

4

7

10

Figure 3: Memory Cell Anatomy Fast pages consist of
each memory element’s first-written bit. In-order pro-
gramming causes the final bit of a memory cell to be
written after most programs to the surrounding cells.

pages as well. The unique manufacturer follows the
single-page alternating patterns in Figure 2B.

Figure 3 shows how a single bit from each page maps
to the chain of flash memory cells. The numbers corre-
spond to the page’s location within the block and are in
columns corresponding to the time required to program
the bit. Figure 3A shows the even-numbered NAND
chains from MLC and TLC parts made by most manu-
facturers (the corresponding odd chain is similar), and
Figure 3B shows the pattern used by the manufacturer
with a unique pattern.

Because of the in-order programming constraint, the
final program of a cell occurs after most of the program
operations to adjacent cells are complete. This reduces
the program disturb that is a major hindrance to enabling
multi-bit technology [21]. The blocks of most manu-
facturers alternate between page speeds in pairs because
they separate pages into even and odd chains, while the
unique manufacturer uses only one chain. Also, we ob-
serve most of the variation in the latency of slow pages
(indicated by the wide error bars in Figure 1) comes from
the even chain being slower than the odd chain, though
we are unfamiliar with the cause.

The techniques we develop in the following sections
depend on the FTL knowing the layout of fast and slow
pages within a block. Since the layout is consistent for a
given part number and does not vary over time, it is suf-
ficient for the manufacturer to detect this pattern using a
single block and configure the FTL accordingly. An FTL
could perform the measurement at initialization time by
monitoring the programming time of pages in a block,
reducing the cost of moving to a new type of flash chip in
an existing SSD design. There is also a non-destructive
technique for determining page type. Page read latencies
exhibit the same variation pattern. Furthermore, differen-
tiating between the small number of possible patterns (ei-

ther mentioned in the datasheets or derived empirically)
requires only a few page reads.

Overall, as shown in Figure 1, the dramatic differences
in page program latency provide a better opportunity to
exploit diversity to improve SSD performance. In Sec-
tion 4, we describe our extensions to the baseline FTL
(from Section 3) which leverage these variations in pro-
gram latency.

3 Baseline FTL
SSDs contain both an array of flash and a controller to
manage wear leveling and access requirements while pre-
senting a block interface. The following sections de-
scribe the basic algorithms needed in all FTLs, how we
structure the algorithms to isolate important policy deci-
sions, and our simulation infrastructure and array param-
eters.

3.1 FTL Basics
SSDs maintain a mapping between the logical block ad-
dresses (LBA) that the host system uses and the physi-
cal block addresses (PBA) that identify particular pages
within the flash array. The FTL maintains this map
with the goal of minimizing wear and maximizing per-
formance. FTLs fall into three broad categories based
on the granularity of this map – block-based, page-based
and hybrids of the two. Improving the FTL is the ob-
ject of intense work both in industry and academia (see
Section 7).

In this work, we study variability-aware enhancements
to a page-based FTL, but the concepts extend to other
designs as well. We begin with the parallelized FTL ar-
chitecture described in [7]. It uses log-structured write
operations, filling up one block before moving on to an-
other. To improve bandwidth, the FTL maintains one log
for each chip in the array. We refer to the head of each

82 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

log as a write point.
As the FTL writes new data at a write point, the old

version of the data for that LBA becomes invalid but re-
mains in the array. The effects of this copy-on-write pro-
cedure requires that we provide functionality to (1) re-
cover the physical-to-logical address mapping after un-
expected power failure and (2) convert pages contain-
ing stale data to erased flash through garbage collection
(GC).

First, for the FTL to recover from unexpected power
failure it must track each page’s logical address (LBA)
as well as which copy of data for a given LBA is most-
recent. With a single-write point array, a block sequence
number suffices. However, when the system contains
more than one write point, the FTL must use a page
sequence number to maintain strict ordering. (See [6]
and [7] for more details.)

Second, the FTL must remove the stale copies and
create room for new data by performing GC. GC algo-
rithms copy valid data from partially-invalid blocks to
write points on or off chip, and erase the now fully-
invalid blocks to make them ready for new write oper-
ations.

GC must constantly maintain a pool of erased blocks
on each chip. When a write point reaches the end of
a block, the block is full and the FTL must locate a
new, erased block for that write point to continue writing.
When a chip starts to run short on erased blocks, GC be-
gins to consolidate valid data to create additional erased
blocks for that chip. In the best case, garbage collection
makes use of idle periods to hide its impact on perfor-
mance. However, GC latencies are a significant source
of performance variability in SSDs.

Our FTL uses two thresholds as parameters for the GC
routines. The FTL maintains these thresholds on a per-
chip basis, so in the worst case, any single chip can free
up resources by taking itself off-line for cleaning. The
first threshold is the background (BG) threshold. When
the FTL finds any chip in the array idle, it performs GC
operations on that chip up to the BG threshold. If the
number of erased blocks on any chip drops below the
second, emergency threshold, GC becomes the FTL’s top
priority for that chip and it will divert all incoming traffic
to other chips or block entirely while GC proceeds. In
normal operation, the FTL should very rarely enter this
“emergency mode.”

3.2 Design for Flexible Policy Choices
Figure 4 shows the high-level structure of the FTL’s op-
eration scheduler. The FTL maintains three queues. The
queues hold write, erase, read and cleanup operations
waiting to execute. External accesses to the SSD enter
the external queue, background GC operations reside in
the background queue, and the emergency queue holds

External Queue

Background Queue

Emergency Queue

Op. Selection

Data Placement GC Op. Selection

Flash Array

Cleanup

Read
or Erase

Write

Move’s Write

Figure 4: Operation Flow Operations move through the
FTL’s queues and a series of policy decisions (the gray
boxes) before executing on a flash chip.

emergency GC operations. Emergency mode is a rare
occurrence.

Operations pass from the queues to the flash array via
three distinct policies, marked by the gray boxes in Fig-
ure 4:

Operation Selection Policy First, the FTL chooses
which operation to execute next. Operations in the emer-
gency queue have the highest priority. If the emergency
queue is empty, or contains operations that cannot yet ex-
ecute (for example, they must access a busy chip or wait
for data being read), then an operation is taken from the
external queue. Finally, operations are taken from the
background queue when the system is idle.

Data Placement Policy The second policy in the FTL
determines where to schedule writes. Because the physi-
cal address of an LBA changes with each write, the FTL
has the freedom to choose, for example, the fastest page
available. In our baseline design, the FTL follows a
round robin approach which avoids busy chips and seeks
to maintain a uniform number of valid LBAs on each
chip.

GC Operation Selection Policy
The third policy is critical to efficient and flexible op-

eration of GC. Rather than enqueue a list of move oper-
ations followed by one erase, we enqueue cleanup oper-
ations that represent one step in cleaning a block. The
“Cleanup Operation Selection” policy in Figure 4 deter-
mines whether to start a read, write or erase operation.
Delaying the choice of which page to move allows GC to
adapt as pages become invalid due to external writes.

With GC policy reduced to the decision of executing
one flash operation at a time, the particular algorithm is
simple. Erasing fully invalidated blocks is the best op-
tion. When no such blocks are available, we move a page
from a block with the least number of valid pages. A
move begins with a read operation which, once complete

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 83

Parameter Value

Channels 4 or 8
Dies per channel 2 or 16
Blocks per chip 2048
Pages per block 64 or 128
Bytes per page 4096
Fast Page Read Latency 27 µs
Slow Page Read Latency 40 µs
Fast Page Write Latency 253 µs
Slow Page Write Latency 1359 µs
Erase Latency 2871 µs

Table 1: SSD Configuration Architectural dimensions
of the flash array and operation latencies to the flash
chips.

pushes the paired write operation to the front of the queue
from where the cleanup operation originated.

We will use this platform to demonstrate how to more
effectively harness the variable performance available in
high density flash. Many of these concepts and algo-
rithms will transfer to the more memory-efficient hybrid
FTL designs.

3.3 Simulation Setup
To evaluate these alternative organizations, we have de-
veloped a detailed trace-driven flash storage system sim-
ulator. It supports parallel operations between flash de-
vices, models the flash buses and implements our FTL.

Table 1 details the array’s dimensions. We model two
moderately-sized SSDs – one to quickly simulate results
for our microbenchmarks and a larger configuration to
run the workloads. We also simulate an All Fast config-
uration, which models a half-capacity SLC-speed array
by (1) reducing block size from 128 to 64 pages and (2)
using only the fast read and write latencies.

Our SSD manages the array of flash chips and presents
a block-based interface. The controller in the SSD coor-
dinates 4 or 8 channels that each connect 2 chips to the
controller via a 400 MB/s bus. Larger SSD configura-
tions are possible, but the configurations we choose pro-
vide similar performance trends with much shorter simu-
lation times.

To ensure steady state behavior, we arrange all of the
LBAs randomly throughout the chips in the SSD be-
fore starting the simulations. We add enough invalidated
pages to fill all blocks to the background threshold. The
write points begin on a random page in the write point’s
assigned block.

4 Leveraging Variability
In this section, we describe our mechanisms for schedul-
ing flash operations based on flash page performance

variation. We demonstrate how careful, variation-aware
scheduling can improve performance under both bursty
and sustained workloads. With both mechanisms, we
show how increasing the number of write points on each
chip increases the FTL’s ability to leverage the variability
in its flash array.

4.1 Many Write Points for More Flexibility
Making good scheduling decisions requires the scheduler
to have multiple options available, and without multiple
options, no scheduling policy can have much impact on
performance. Since each write point is associated with
a single block, and the FTL must write to pages in the
block in order, a single write point offers limited options:
The FTL can either write to the next page (which may
not be the type of page it would prefer) or it can skip the
page, writing to the page of its choice, but wasting space.

Our baseline FTL maintains one write point per chip,
which can only provide multiple options under light load
(and some chips are idle). Under heavy load the FTL’s
only choice is to schedule an access to the most recently
idled chip. Even under light load, a large burst of write
traffic will use up the fast pages available on each write
point. Both of these scenarios force the FTL to choose
between the two undesirable options described above.

To provide flexibility, we extend the baseline FTL with
multiple write points per chip, ensuring that the FTL will
have choices and can make wise scheduling decisions. In
the following subsections, we demonstrate how increas-
ing the number of write points in the system and on each
chip increases the policies’ ability to access its desired
page type.

While additional write points provide the flexibility to
access fast and slow pages on demand, their number and
use constitute a trade-off with over-provisioned capacity
and data placement policies the FTL designer wishes to
incorporate. Because each write point requires an open
block, when the FTL maintains too many write points
the over-provisioned space becomes too fractured across
open blocks. In particular, the number of blocks between
the background and emergency thresholds (for the GC
routines described in section 3) provide a hard limit for
the possible number of write points in our design. The
FTL designer will also have to carefully weigh the value
of placing data to potentially improve the efficiency of
future GC with the effects of using a high or low latency
page.

4.2 Handling Bursty Workloads
In this section, we present a policy called Return
to Fast (RTF) that allows the FTL to service bursts
of performance-critical operations exclusively with fast
pages. The algorithm seamlessly provides nearly the
speed of SLC while using all of the MLC pages.

84 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

We can apply the RTF policy in a number of situations.
With an interface that passes information about the criti-
cality of writes to the device, the system could schedule
critical operations to fast pages. Such an interface could,
for example, enable fast distributed locking protocols that
require persistent writes for ordering via a log.

Even without changes to the interface, we can signif-
icantly enhance the performance of bursty workloads by
treating user accesses as performance critical and GC op-
erations as non-critical. In this case, we use fast pages
exclusively until we run out, and then return to our base-
line policy. We focus on this application in this paper.

RTF aims to service as many external writes as possi-
ble with fast pages. One approach is to skip over slow
pages in order to move write points to the fast pages, but
that would waste those skipped pages – reducing SSD
capacity, invoking GC sooner, and increasing wear and
potentially decreasing performance.

RTF avoids skipping pages by returning all write
points to fast pages during the idle periods through GC
writes. The FTL saves up a reserve of fast pages which it
can spend on performance-critical operations. The num-
ber of write points in the system controls the size of re-
serve of fast pages.

The most common pattern of fast and slow pages pro-
vides up to two fast pages per write point. The FTL can
fully exploit both pages in Strongly RTF, which ensures
the write points reach the first of the pair of fast pages.
The FTL can store an average of 1.5 writes per write
point in Weakly RTF, which returns the write points to
any fast page. Strongly RTF will give us the largest num-
ber of fast pages available after a large enough idle pe-
riod.

We can further enhance the FTL with preemptive GC.
During idle periods, the FTL continues to GC until each
write point points to a fast page. This runs the risk of in-
creased wear, when external writes or trims invalidate the
pre-emptively moved data. However, simulation results
show this is not a problem.

Increasing the number of write points in a system in-
creases the performance of the bursts, even when the
workload is a complex mix of reads, writes and poten-
tially short idle times. In order for the FTL to direct an
external write to a fast page, (1) there must be a write
point already pointing at a fast page and (2) this write
point must point to a chip which is not busy with another
operation. Under a complex workload, the number of
write points in the system is directly related to the likeli-
hood of both of these conditions. The more write points
there are, the more write points there will be pointing to
fast pages. So, even with very little idle time we have
increased the number of fast pages for the next burst.

A similar argument holds when you consider the con-
tention over access to chips in the system. Imagine all

 0

 20

 40

 60

 80

 100

 120

 0.25 1 4 16 64 256 1024

Bu
rs

t B
W

 (M
B/

s)

Burst Size (kB)

All Fast

 0

 20

 40

 60

 80

 100

 120

 0.25 1 4 16 64 256 1024

Bu
rs

t B
W

 (M
B/

s)

Burst Size (kB)

All Fast
32 WPs x 8
16 WPs x 8

8 WPs x 8
4 WPs x 8
2 WPs x 8
1 WPs x 8

 0

 20

 40

 60

 80

 100

 120

 0.25 1 4 16 64 256 1024

Bu
rs

t B
W

 (M
B/

s)

Burst Size (kB)

All Fast
32 WPs x 8
16 WPs x 8

8 WPs x 8
4 WPs x 8
2 WPs x 8
1 WPs x 8

Baseline

Figure 5: Performance of Weakly RTF The weakly
RTF policy maintains performance comparable to using
only fast pages for burst sizes up to the number of write
points before dropping to the performance of using all
page speeds.

but one of the chips in the array are blocked with oper-
ations. The single available chip is more likely to have
a fast page available if there are more write points (and
more possible pages available).

4.2.1 Evaluating RTF

We explore the potential of the RTF policy by studying
its behavior under a synthetic workload of page-sized
accesses to uniformly distributed LBAs, grouped into
bursts. The gap between bursts is sufficient to complete
all necessary GC and return all the write points to fast
pages, when applicable. Each trace uses a different burst
size from 4 kB to 4 MB (1 to 1024 pages) and writes a
total of 16 MB of data.

Figure 5 shows the performance of the Weakly RTF
policy for 1-32 write points per chip on an 8 chip array
(x8). For burst sizes less than 32 kB, the array is under-
used, but as the burst size reaches between one and two
pages per chip the performance increases significantly
for RTF and the All-Fast configuration. The baseline re-
mains low with a maximum performance of 39.4 MB/s
because it uses both fast and slow pages.

At burst sizes greater than 32kB, we observe the pos-
itive effect of additional write points in enabling RTF.
With one write point, the FTL can manage only short
bursts at high speed. Increasing the number of write
points per chip provides a larger reserve of fast pages
from which to draw and lets the scheduler make better de-
cisions. For weakly (strongly) RTF, the maximum burst
size serviced at high speed is equal to (2×) the number
of write points in the system times the page size.

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 85

4.3 Sustained Write-Intensive Workloads
RTF provides an effective tool for selective performance
enhancement. However, under sustained write traffic, ex-
ternal operations must compete for resources with GC,
which eclipses the performance benefits of RTF.

In this section, we develop a rate matching technique
that allocates fast and slow SSD resources among GC and
external operations for the best performance during long
periods of sustained load. We begin with a variability-
informed analytical model of an FTL, its page schedul-
ing policy, and its GC. The model shows that in most
cases the intuitive choice for page variability will lead
to performance losses while the counter-intuitive choice
improves performance. Finally, we study the potential of
the FTL operating with these parameters.

4.3.1 Analyzing FTL Behavior Under Load

In order to maintain the erased block pool during periods
of sustained, heavy load, the FTL must match the rate at
which it erases pages with its external write rate. The per-
chip bandwidths for these two operations remains con-
stant, so the FTL matches these rates by establishing the
correct number of chips performing each of the two sets
of operations. Equations 1 and 2 describe the two per-
chip bandwidths. For Equation 2, we assume 20% over-
provisioning and include a parameter (pgsMvd) for the
number of page moves GC must perform on the average
block (which is determined by the workload’s locality).

ExternalWriteBW =
pageSize

wLat
(1)

GC BW =
0.2 ∗ blockSize

pgsMvd ∗ (mvLat) + eLat
(2)

With respect to write latency variability, we consider
two choices. The FTL could use slow pages to service
GC writes and fast pages to service user writes (SGC), or
vice versa (FGC).

Figure 6 plots the SSD’s bandwidth for these poli-
cies and a baseline, latency agnostic configuration over
a range of workload localities. Our model assumes the
FTL always has access to the preferred page speed with-
out skipping pages. For the FGC configuration, for ex-
ample, we determine the per-chip user write BW and the
cleaning BW using slow page write latency for Equa-
tion 1 and fast page write latency for Equation 2, re-
spectively. The ratio of the two yields the correct ratio
of chips to use for each operation. The chip counts are
averaged over time, so they do not need to be integers.
Ultimately these values yield the user-visible write band-
width.

Without the analytical model, our initial choice was to
accelerate external operations, corresponding to the SGC

0.0
0.5
1.0
1.5
2.0
2.5
3.0

 0 20 40 60 80 100

N
or

m
al

iz
ed

 B
an

dw
id

th

Locality
(% of block invalidated by user writes)

Baseline
FGC
SGC

Figure 6: Design Space for Rate Matching Which con-
figuration to use under heavy load depends on the work-
load’s locality. If locality is low (less than 80% on this
graph), GC must move lots of data and prioritize those
writes to fast pages to improve overall performance.

configuration. However, as Figure 6 shows, the highest
performance configuration allocates fast pages to online
GC instead (FGC).

Scenarios with average to low page locality will do
best under FGC, because GC reclaims relatively few
erased pages for many moves. SGC experiences a disad-
vantage because fast user writes and slow GC writes ex-
acerbate the inherent slowness of GC. FGC, on the other
hand, uses the speed of fast pages to help GC to keep
pace with the user accesses. Because block erase is nec-
essary, and such a heavy weight process, the FTL does
best by completing it quickly.

The crossover point falls exactly at 80% locality be-
cause of the particular amount of over-provisioning in
our array (20%). The analytical model frees 20% of
the pages in a block for the average whole-block GC se-
quence. With 80% locality, the number of pages erased
per block GC equals the number of pages moved, and so
external write BW is the same as GC write bandwidth
for all configurations. As locality decreases from this
crossover point, GC requires more moves and higher-
performing writes (FGC).

In order to study FGC and SGC, we make two changes
to the baseline FTL. The first does not include knowledge
of page variability and is simply to maintain the pool un-
der sustained write traffic. To do this, we modify the
operation selection policy. We calculate the ratio of per-
chip GC bandwidth to per-chip external write bandwidth,
called the target ratio. The FTL maintains a chip use ra-
tio by monitoring the ratio of time spent on GC and ex-
ternal write operations for the recent history. The FTL
then chooses the next operation by attempting to match
the chip use ratio to the target ratio.

The second policy change accounts for page variability
in the data placement policy by directing pages to match

86 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

 0

 20

 40

 60

 80

 100

 1 2 4 8 16 32

W
rit

es
 to

 P

re
fe

rre
d

Pa
ge

 (%
)

Write Points Per Chip

GC Writes, FGC
User Writes, SGC
User Writes, FGC
GC Writes, SGC

Figure 7: Page Preference Improvement Increasing the
number of write points per chip increases the availability
of the preferred page type when the SSD is under heavy
load.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 1 2 4 8 16 32

N
or

m
al

iz
ed

 B
W

Write Points Per Chip

FGC
SGC

Figure 8: Sustained Performance Adding write points
allows fast online GC to improve SSD performance by
20%.

either the SGC or FGC configurations. We implement
a page preference policy whereby given the choice be-
tween several locations to write, the FTL prefers to direct
the previously chosen operation according to the SGC or
FGC configuration.

The baseline for studying the FTL under sustained
load includes the changes to the operation choice policy,
but retains the original round robin baseline for the write
point choice policy.

4.3.2 Evaluating FGC and SGC

To study rate matching with page preference under the
complex constraints imposed by a real FTL, we apply
a write-intensive synthetic load to our simulator. The
workload consists of 5 s pulses of infinite load followed
by 4 s of idleness. This cycles repeats 80 times, and
the load consists purely of writes with evenly distributed
LBAs.

Under such a load, all operations reach the Data Place-
ment policy with only one idle chip in the flash array. Be-
cause each chip only has one write point, the page prefer-
ence has no effect, and all operations have an equal prob-
ability of being written to fast or slow pages. Skipping
pages is not a good option because its negative effect on
performance overwhelms any advantage gained from us-
ing fast pages, due to the added GC.

Write points again provide the flexibility needed for
the FTL to leverage the fast pages in the FTL. With mul-
tiple write points on each chip, when the operation arrives
with only one idle chip from which to select, it still has
multiple options for where it can write.

Figure 7 shows how, as the number of write points in-
creases, the FTL can run operations on the desired pages
type more frequently. With one write point, both SGC
and FGC direct their operations to the two page speeds
with equal probability. As the number of write points

increases, a larger percentage of operations are sched-
uled to their preferred page speed. This is especially true
when that preferred page speed is fast.

Figure 8 shows the performance resulting from the
FTL accessing its preferred pages more often, normal-
ized to the baseline of no page preference. As more write
points allow the FTL to select its preferences, the perfor-
mance of FGC improves while the performance of SGC
declines.

These results verify that the optimal choice for page
preference under heavy write load is to save fast pages for
servicing online garbage-collecting moves (FGC), and
that increasing the number of write points on each chip
better enables the FTL to tap into that supply of fast
pages.

5 Results
In this section we evaluate the effectiveness of our vari-
ability aware FTL policies – RTF, FGC and SGC – on a
set of five benchmarks.

5.1 Workloads
Table 2 describes the five trace files we use to explore
our proposed FTL enhancements. Their burst sizes span
a range as do the idle times between each burst.

The conventional method of replaying traces does not
accurately retain fixed computation time (seen by the
SSD as idle time). This runs the risk of mixing the idle
and active parts of the workload which could both (1) eat
into the idle time needed for RTF and (2) lessen the load
FGC and SGC are intended to accommodate.

We pre-process our trace files to alleviate these prob-
lems. Instead of each trace line indicating what time it
arrives at the SSD, it indicates how much later than the
previous trace line it arrives. Then, if the delta is below a

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 87

Trace Min. ∆ Avg. Burst Avg. Idle
Name (Thresh.) Size (pgs) Time (s) Description

Build 0.087 s 3.56 1.74 Compilation of the Linux 2.6 kernel.
Financial 18 ms 0.140 0.0620 Live OLTP trace for financial transactions.
WebIndex 48 µs 212 0.000564 Indexing of webpages using Hadoop.
Swap 150 ms 0.0645 0.0218 Virtual memory trace for desktop applications.
DeskDev 0.7 s 4.48 3.82 24 hour trace of a software development work station.

Table 2: Workload Statistics Characteristics of the burstiness of our tracefiles and the idle times between the bursts.

particular per-trace threshold, we group that access in the
same burst with the previous access by setting the delta
to zero. In this way, we ensure the SSD experiences the
full brunt of the burst without added idle time.

We assume that a large enough idle period (i.e. that
greater than the threshold) indicates the program is exe-
cuting calculations using the previous burst’s data. We
also assume that the amount of time before issuing its
next burst will remain constant for a given processor ar-
chitecture. We then enforce the delta time between each
burst by issuing the first access of a given burst delta
seconds after the previous burst completes (i.e. after the
completion of the last access).

We set the delta threshold to be the average time be-
tween each trace line for a given file. Table 2 details the
delta threshold for each trace file as well as the average
size of the bursts and average amount of idle time be-
tween them.

Measuring the performance of an SSD running a trace
file that includes idle time requires some care. To fac-
tor out the effect of idle time in the trace file, we divide
the amount of data written in a given burst by the time it
takes to complete that burst (this is the burst’s write band-
width). We then report the average of these bandwidths
for each policy normalized to the baseline.

5.2 Return To Fast
Figure 9 shows the performance of the delta traces run-
ning under the Strongly RTF (sRTF) and weakly RTF
(wRTF) policies with 1, 8 and 32 write points per chip.
The All-Fast configuration shows a potential for 19%
to 62% increase in write performance (34% on average)
over the baseline and all traces realize at least a portion
of these gains. On average, traces realize a 9% perfor-
mance increase going from 1 to 32 write points per chip
and no increase in performance for using strongly RTF
rather than weakly RTF.

Financial (Fin. in the figures) works well with RTF – it
contains a significant amount of idle time between bursts
for recovery, and has very few reads which could block
and stall the burst. Financial also has very few writes
in each burst, so the SSD is able to realize the full po-
tential of the fast pages with very few write points. For

other workloads, added performance comes with more
write points because a larger pool of fast pages increases
the options for where to write, getting around the effect
of blocking reads. All workloads on both strongly and
weakly RTF achieve more than 24% of the All Fast con-
figuration’s gains and most see more than 64%.

While RTF consistently improves the write perfor-
mance, it has negligible effect on the read performance.
On average the RTF configurations gain less than 0.1%
in read bandwidth.

Figure 10 shows the wear out experienced by our SSD
under the different workloads and RTF configurations.
Trying to achieve high performance by using only the
fast pages significantly increases the wear – up to 2.0×,
and 1.7× on average. However, if we instead fill the slow
areas with garbage collected data we were planning on
moving anyway, our wear increases by 5% relative to the
baseline on average, and never more than 34%.

5.3 Rate Matching with FGC and SGC
Figure 11 shows the performance of the traces running
on the FGC and SGC rate matching policies using 1, 8
and 32 write points per chip. The All-Fast configuration
is able to realize much larger gains over the baseline, be-
cause the FTL makes use of all of the pages during ex-
ternal activity. Even so, the FGC configuration on most
workloads achieves a significant portion of these gains
while the more intuitive SGC configuration remains at
baseline levels. DeskDev reaches the highest perfor-
mance at 95% above baseline, and the average of all the
traces except for WebIndex reaches 65% over baseline.

The spacial locality in the WebIndex’s writes set this
workload apart – in this case the intuitive choice of di-
recting external operations to fast pages (SGC) provides
better performance. WebIndex exhibits an average of
31% fewer moves per erase, placing it in the right-most
region of Figure 6. The advantage of saving fast pages for
online operations in FGC is a result of completing GC
as fast as possible to match the rate of external writes.
However, when the access stream exhibits good spacial
locality, the act of writing external operations invalidates
pages on a small set of blocks, accelerating GC.

Increasing the number of write points on each chip al-

88 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Build
Fin.

WebInx

Swap
DeskDev

Avg.N
or

m
al

iz
ed

 W
rit

e
Ba

nd
w

id
th

0.0

0.5

1.0

1.5

2.0

Baseline
All_Fast

wRTF1
sRTF1

wRTF8
sRTF8

wRTF32
sRTF32

Figure 9: Performance of RTF More write points in the
flash array increases the reserve of fast pages the FTL
can build during idle periods, allowing the FTL to absorb
larger burst with only fast pages.

Build
Fin.

WebInx

Swap
DeskDev

Avg.N
or

m
al

iz
ed

 E
ra

se
 C

ou
nt

0.0

0.5

1.0

1.5

2.0

Baseline
All_Fast

wRTF1
sRTF1

wRTF8
sRTF8

wRTF32
sRTF32

Figure 10: Wear of RTF While RTF improves perfor-
mance, on average its wear is nearly that of the baseline.

lows each configuration to approach the predicted behav-
ior. SGC almost always performs on par or worse than
the baseline, often declining from baseline as the num-
ber of write points decreases. The opposite trend holds
for FGC, frequently beginning with a performance bet-
ter than baseline and increasing as the number of write
points increases. This makes sense because increas-
ing the number of write points increases the impact of
each policy. Since SGC hurts performance, adding write
points makes performance worse.

While FGC and SGC produce performance gains and
losses, respectively, in most cases they both perform a
number of erases on-par with the baseline (Figure 12).
Excluding WebIndex, the erase count declines by as
much as 32% for the SGC-32 configuration on DeskDev,
and increases by no more than 2% (Excluding Financial).
On average, FGC and SGC experience a 3% decline in
wear while the All-Fast configuration is 56% more wear
compared to the baseline.

6 Application
Although we propose distinct mechanisms for bursts and
heavy load, we discuss their coordination with other poli-
cies in the system to address a variety of workloads with
mixed access patterns. This section describes how this
could be done either through coordination with the oper-
ating system or by further enhancing the FTL.

OS Support Coordination with the operating system
constitutes one avenue of leveraging the Harey Tortoise
techniques. The OS could provide hints with the accesses
made to the SSD. For example, the FTL could use RTF
to service latency-critical accesses (marked as high prior-
ity), providing the functionality of the variability aware
FTL in [13] without the added wear. Alternately, the OS
could signal a course-grained switch between workload

style when, for example, a server transitions between
workloads or activities that change between peak and off-
peak periods. An enhanced interface, such as NVMe [2],
would facilitate these implementations.

Dynamic FTL Without hints from the OS, the FTL
could combine the Harey Tortoise’s policies to accom-
modate mixed workloads. It would adjust as a burst of
accesses of unknown length progresses – employing RTF
early in the burst before transitioning to RM techniques
as the “burst” lengthens to a sustained load. This tech-
nique would result in RTF accommodating small bursts
while the FTL treats long bursts with RM techniques.

For long bursts and sustained load, the FTL would step
through several phases combining our techniques pro-
posed in this work. For such a policy, GC during idle pe-
riod should employ RTF to return as many write points
as possible to fast pages. Then, when accesses arrive,
the FTL would achieve maximum possible performance
from using only fast pages under RTF, before gradually
transitioning to RM policies.

During the transition period the FTL would (1) adjust
the preference for fast or slow pages of the external and
GC writes and (2) tailor the use and cleaning rates to
use up the over-provisioned space and create a graceful
degradation of performance. The latter could be achieved
by relating the target and chip time ratios by some factor
which dynamically adjusts to one.

Finally, when the pool of erased blocks reaches a sus-
tainable minimum, the FTL would work exclusively with
the RM policies until an idle period allows for additional
GC. In this way, the FTL would provide high perfor-
mance to small bursts and gradually ramp down to a max-
imum, sustainable performance.

The inversion of preference (for RM) with good write
locality suggests another dimension for exploring how to
detect and adapt to the correct choice of page preference.

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 89

Build
Fin.

Swap
DeskDev

Avg.
WebIdxN

or
m

al
iz

ed
 W

rit
e

Ba
nd

w
id

th

0.0

1.0

2.0

3.0

4.0

Baseline
All_Fast

FGC1
SGC1

FGC8
SGC8

FGC32
SGC32

Figure 11: Performance of FGC and SGC The counter
intuitive choice of servicing online operations with fast
pages (FGC) improves the performance, when spacial lo-
cality is low.

Build
Fin.

WebIdx

Swap
DeskDev

Avg.N
or

m
al

iz
ed

 E
ra

se
 C

ou
nt

0.0

0.5

1.0

1.5

2.0

Baseline
All_Fast

FGC1
SGC1

FGC8
SGC8

FGC32
SGC32

Figure 12: Wear of FGC and SGC Leveraging page
variability during heavy load does not effect device wear
out in most cases.

7 Related Work
There is a large body of flash-based storage research
spurred on by the promise of high performance, low en-
ergy, and the limitations imposed by its idiosyncrasies.
The research most closely related to our work falls in four
categories: Mode-switching Flash, FTL algorithms, SSD
interleaving, and write buffers. All of these topics try to
improve the performance, endurance and/or reliability of
the SSD, but do not leverage or address the variability
inherent in MLC flash. The final section of related work
discusses the emerging research that embraces flash page
variability.

Mode-Switching Flash: Changing the cell bit density
has been proposed in research [18] and implemented by
SSD vendors [24, 20] to improve reliability, endurance,
and performance. Switching between MLC mode and
SLC mode does have the drawback of sacrificing half of
the system capacity. In our work, by leveraging write la-
tency asymmetry across the pages, we are able to approx-
imate the performance of SLC without sacrificing device
capacity, the best of both worlds. Furthermore, because
we use all the pages in the block by not throwing away
the slow pages, we reduce the number of erase cycles,
improving overall system endurance and reliability.

FTL Algorithms: There is a large body of work fo-
cused on FTL optimizations to improve SSD perfor-
mance, endurance and reduce memory overhead based
on access pattern or application behavior. By using
an adaptive page- and block-level addressing mapping
scheme, KAST [17], ROSE [10] and WAFTL [27] are
able to improve performance, reduce garbage collection
overhead and reduce FTL address mapping table size.
DFTL [15] goes one step further by caching a portion
of the page-level address mapping table for reduced size
and fast translation. MNFTL [23] reduces the number of

valid page copies for garbage collection, explicitly tar-
geting MLC flash. Finally, CAFTL [9], removes un-
necessary duplicate writes and increases the lifespan of
the SSD. While some of these FTLs address workload
variability, none address the variability in the underlying
MLC flash.
SSD Interleaving: Intra-SSD parallelism has been ex-
plored by many groups [3, 7, 22, 28, 8, 25, 4]. By not
only issuing operations in parallel at the package-, die-,
and plane-level, others have also shown that reschedul-
ing operations can improve performance [28]. Our work
dives deeper into parallel data placement by providing
multiple write points for fast pages within the plane that
can adsorb burst and sustain high write performance, on
par with SLC devices.
Write Buffers: Historically, buffers have been used in
HDD to improve read and write performance. Likewise,
write buffers have been shown to improve random write
performance in SSDs [19]. These write buffers are also
sufficient for handling small burst sizes. More recently,
research has shown that per package queues and oper-
ation reordering provide more opportunities for parallel
operations and further improve performance over LRU-
based write buffer mechanisms [25]. Write points can
be used in conjunction with write buffers, providing the
FTL with more flexibility in data placement, in light of
the performance asymmetries that exist in MLC flash.
Variability: The quest for higher density flash has pro-
vided opportunities to exploit the variability in flash page
latency. Previous work [13] has exposed these asym-
metries and predicted their impact on future SSDs [14].
Other work has exploited the differences in the flash to
improve error correction [12] or guarantee other proper-
ties, like secure erasure [26]. We demonstrate that the
FTL can take advantage of flash variability to improve
performance while not sacrificing endurance or capacity.

90 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

8 Conclusion
In this paper, we developed an FTL that leverages sys-
tematic variability in flash memory to provide the speed
of the hare (SLC) with the capacity of the tortoise (MLC).
We propose increasing the number of write points on
each chip to increase the flexibility of the FTL to sched-
ule accesses to pages with a variety of latencies, and we
demonstrate how to use this flexibility to achieve up to
100% of the performance an SLC array (or an average
of 89%) by using MLC flash without additional wear.
Further, we show that the counterintuitive approach of
scheduling garbage collection operations on fast pages
improves performance by an average of 65% and as much
as 95% in workloads with little spacial locality.

Acknowledgements
We would like to thank the reviewers and shepherd of this
paper for their valuable input. This work was supported
by the NSF Variability Expedition under award number
1029783.

References
[1] Densbits technologies. memory modem: Technology

overview. April 2012.
[2] Nvm express. http://www.nvmexpress.org/. 2013.
[3] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis,

M. Manasse, and R. Panigrahy. Design tradeoffs for ssd
performance. In USENIX 2008 Annual Technical Confer-
ence on Annual Technical Conference, ATC’08, 2008.

[4] S. Bai and X.-L. Liao. A parallel flash translation layer
based on page group-block hybrid-mapping method. Con-
sumer Electronics, IEEE Transactions on, may 2012.

[5] A. Berman and Y. Birk. Constrained Flash memory pro-
gramming. In IEEE International Symposium on Infor-
mation Theory, pages 2128–2132, 2011.

[6] A. Birrell, M. Isard, C. Thacker, and T. Wobber. A design
for high-performance flash disks. Technical Report MSR-
TR-2005-176, Microsoft Research, December 2005.

[7] A. M. Caulfield, L. M. Grupp, and S. Swanson. Gor-
don: using flash memory to build fast, power-efficient
clusters for data-intensive applications. In Architectural
Support for Programming Languages and Operating Sys-
tems, pages 217–228, 2009.

[8] F. Chen, R. Lee, and X. Zhang. Essential roles of ex-
ploiting internal parallelism of flash memory based solid
state drives in high-speed data processing. In High Perfor-
mance Computer Architecture (HPCA), 2011 IEEE 17th
International Symposium on, 2011.

[9] F. Chen, T. Luo, and X. Zhang. CAFTL: A Content-
Aware Flash Translation Layer Enhancing the Lifespan
of Flash Memory based Solid State Drives. In USENIX
Conference on File and Storage Technologies, pages 77–
90, 2011.

[10] M.-L. Chiao and D.-W. Chang. ROSE: A Novel Flash
Translation Layer for NAND Flash Memory Based on
Hybrid Address Translation. IEEE Transactions on Com-
puters, 60:753–766, 2011.

[11] H.-T. L. et. al. Radically extending the cycling endurance
of flash memory (to ¿100m cycles) by using built-in ther-
mal annealing to self-heal the stress-induced damage.
2012.

[12] R. Gabrys, E. Yaakobi, L. M. Grupp, S. Swanson, and
L. Dolecek. Tackling intracell variability in tlc flash

through tensor product codes. In International Sympo-
sium on Information Theory, ISIT, 2012.

[13] L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swanson,
E. Yaakobi, P. H. Siegel, and J. K. Wolf. Characterizing
flash memory: anomalies, observations, and applications.
In International Symposium on Microarchitecture, pages
24–33, 2009.

[14] L. M. Grupp, J. D. Davis, and S. Swanson. The Bleak
Future of NAND Flash Memory. In USENIX Conference
on File and Storage Technologies, 2012.

[15] A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: a flash trans-
lation layer employing demand-based selective caching of
page-level address mappings. In Architectural Support for
Programming Languages and Operating Systems, pages
229–240, 2009.

[16] K.-C. Ho, P.-C. Fang, H.-P. Li, C.-Y. Wang, and H.-C.
Chang. A 45nm 6b/cell Charge-Trapping Flash Memory
Using LDPC-Based ECC and Drift-Immune Soft-Sensing
Engine. In Solid-State Circuits IEEE International Con-
ference, 2013.

[17] H. jin Cho, D. Shin, and Y. I. Eom. KAST: K-associative
sector translation for NAND flash memory in real-time
systems. In Design, Automation, and Test in Europe,
pages 507–512, 2009.

[18] T. Kgil, D. Roberts, and T. Mudge. Improving nand flash
based disk caches. In Computer Architecture, 2008. ISCA
’08. 35th International Symposium on, june 2008.

[19] H. Kim and S. Ahn. Bplru: a buffer management scheme
for improving random writes in flash storage. In Proceed-
ings of the 6th USENIX Conference on File and Storage
Technologies, FAST’08, 2008.

[20] G. e. a. Marotta. A 3bit/cell 32gb nand flash memory at
34nm with 6mb/s program throughput and with dynamic
2b/cell blocks configuration mode for a program through-
put increase up to 13mb/s. In Solid-State Circuits Con-
ference Digest of Technical Papers (ISSCC), 2010 IEEE
International, pages 444 –445, feb. 2010.

[21] K.-T. Park, M. Kang, D. Kim, S.-W. Hwang, B. Y. Choi,
Y.-T. Lee, C. Kim, and K. Kim. A Zeroing Cell-to-Cell In-
terference Page Architecture With Temporary LSB Stor-
ing and Parallel MSB Program Scheme for MLC NAND
Flash Memories. IEEE Journal of Solid-state Circuits,
43:919–928, 2008.

[22] S.-H. Park, S.-H. Ha, K. Bang, and E.-Y. Chung. Design
and analysis of flash translation layers for multi-channel
nand flash-based storage devices. Consumer Electronics,
IEEE Transactions on, august 2009.

[23] Z. Qin, Y. Wang, D. Liu, Z. Shao, and Y. Guan. Mnftl: An
efficient flash translation layer for mlc nand flash mem-
ory storage systems. In Design Automation Conference
(DAC), 2011 48th ACM/EDAC/IEEE, 2011.

[24] D. Raffo. Fusionio builds ssd bridge between slc,mlc, july
2009.

[25] X. Ruan, Z. Zong, M. I. Alghamdi, Y. Tian, X. Jiang, and
X. Qin. Improving write performance by enhancing inter-
nal parallelism of solid state drives. In Performance Com-
puting and Communications Conference (IPCCC), 2012
IEEE 31st International, dec. 2012.

[26] M. Wei, L. M. Grupp, F. E. Spada, and S. Swanson. Re-
liably erasing data from flash-based solid state drives. In
Proceedings of the 9th USENIX conference on File and
stroage technologies, FAST’11, 2011.

[27] Q. Wei, B. Gong, S. Pathak, B. Veeravalli, L. Zeng, and
K. Okada. WAFTL: A workload adaptive flash translation
layer with data partition. In Symposium on Mass Storage
Systems, pages 1–12, 2011.

[28] S. yeong Park, E. Seo, J.-Y. Shin, S. Maeng, and J. Lee.
Exploiting internal parallelism of flash-based ssds. Com-
puter Architecture Letters, jan. 2010.

