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Abstract

Recently, various key/value stores have been proposed
targeting clusters built from low-power CPUs. The typi-
cal network configuration is that the nodes in those clus-
ters are connected using 1 Gigabit Ethernet. During the
last couple of years, 10 Gigabit Ethernet has become
commodity and is increasingly used within the data cen-
ters providing cloud computing services. The boost in
network link speed, however, poses a challenge to the
cluster nodes because filling the network link can be a
CPU-intensive task. In particular for CPUs running in
low-power mode, it is therefore important to spend CPU
cycles used for networking as efficiently as possible. In
this paper, we propose a modified Memcached architec-
ture to leverage the one-side semantics of RDMA. We
show how the modified Memcached is more CPU effi-
cient and can serve up to 20% more GET operations than
the standard Memcached implementation on low-power
CPUs. While RDMA is a networking technology typi-
cally associated with specialized hardware, our solution
uses soft-RDMA which runs on standard Ethernet and
does not require special hardware.

1 Introduction

The ever increasing amount of data stored and processed
in today’s data centers poses huge challenges not only
to the data processing itself but also in terms of power
consumption. To be able to move from petascale com-
puting to exascale in the near future, we need to improve
the power efficiency of data centers substantially. Power
consumption plays a key role in how data centers are
built and where they are located. Facebook, Microsoft
and Google have all recently built data centers in regions
with cold climates, leveraging the cold temperature for
cooling. Power consumption is also considered when
choosing the hardware for data centers and supercomput-
ers. For instance, the IBM Blue Gene supercomputer[4]
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Figure 1: Performance and CPU consumption of a Mem-
cached server attached to (a) 1GbE and (b) 10GbE for
different CPU clock rates on a Intel Xeon E5345 4 core
CPU

is composed of energy-efficient CPUs running at a lower
clock speed than traditional CPUs used in desktop com-
puters.

While clusters of low-power CPUs might not neces-
sarily be the right choice for every workload [11], it has
been shown that such “wimpy” nodes can indeed be very
efficient for implementing key/value stores [5, 6], espe-
cially if nodes within the cluster comprise large num-
bers of cores. The key insight is that even a slow CPU
can provide sufficient performance to implement sim-
ple PUT/GET operations, given that those operations are
typically more network- than CPU-intensive. The com-
mon assumption here is that the network used to inter-
connect the wimpy nodes in the cluster is typically a 1
Gigabit Ethernet network. In the past couple of years,
however, 10 Gigabit Ethernet has become commodity
and is already used widely within data centers.

Unfortunately, the task of serving PUT/GET requests
on top of a 10 Gibabit link imposes a much higher load
on the host CPU, a problem for low-power CPUs run-
ning at a relatively low clock frequency. Figure 1 shows



Value Size 1K 10K 100K
Total CPU cycles 46K 84K 289K
Networking 35% 42.8% 58%
User Space 5% 3.2% 1.1%
Remaining 60% 54% 40.9%

Figure 2: Breakdown of CPU cycles used by Memcached
per GET operation at 1.1Ghz CPU clock frequency
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Figure 3: Distribution of the CPU consumption across
function calls of the Memcached process serving 100K
bytes requests

the performance and CPU consumption of a Memcached
server for different CPU clock frequencies in a config-
uration with 1GbE and 10GbE. As the clock speed de-
creases in the 1GbE case, the performance stays con-
stant, whereas the CPU consumption slightly increases.
In the same experiment but using 10GbE, the perfor-
mance drops significantly (still higher than what could
be achieved with 1GbE though), whereas the CPU con-
sumption reaches close to 350% (more than 3 cores fully
loaded).

To get a sense of how those CPU cycles are consumed
we have used OProfile [2] to divide the cycles into three
classes: “network” – TCP/IP and socket processing, “ap-
plication” – Memcached user space processing, and “re-
maining” – all other cycles executed by the operating
system on behalf of the Memcached user process, e.g.,
context switching. Table 2 shows the cycles used by
Memcached for each of those classes during the execu-
tion of a single GET operation at 1.1Ghz CPU clock fre-
quency. For smaller size GET operations (first column,
Table 2) most of the cycles are used up in the “remain-
ing” class. For bigger value sizes (last column, Table
2), the bulk of the CPU cycles are used up inside the
network stack. Figure 3 shows exactly how the network
related cycles are distributed in a experiment with GET
requests for 100K Bytes key/value pairs. A large frac-
tion of the cycles are used to copy data from user space

to kernel during socket read/write calls as well as during
the actual data transmission.

In this paper, we propose modifications to Memcached
to leverage one-sided operations in RDMA. With those
modifications in place, Memcached/RDMA uses fewer
CPU cycles than the unmodified Memcached due to copy
avoidance, less context switching and removal of server-
side request parsing. As a result, this allows for 20%
more operations to be handled by Memcached per sec-
ond. While RDMA is a network technology typically
associated with specialized hardware, our solution uses
soft-RDMA which runs on standard Ethernet and does
not require special hardware.

2 Background

To provide low data access latencies, many key/value
stores attempt to keep as much of their data in mem-
ory. Memcached[1] is a popular key/value store serving
mostly as a cache to avoid disk I/O in large-scale web
applications, thus keeping all of its data in main mem-
ory at any point in time. Remote Direct Memory Access
(RDMA) is a networking concept providing CPU effi-
cient low-latency read/write operations on remote main
memory. Therefore, using RDMA principles to read, and
possibly write, key/value pairs in Memcached seems to
be an attractive opportunity, in particular on low-power
CPUs.

Traditionally, the main showstopper for RDMA was
that it requires special high-end hardware (NICs and pos-
sibly switches). However, recently several RDMA stacks
implemented entirely in software have been proposed,
such as SoftiWARP [15] or SoftRoCE [3]. We use the
term soft-RDMA to refer to any RDMA stack imple-
mented in software. While soft-RDMA cannot provide
the same performance as hardware-based solutions, it has
the advantage that it runs on top of standard Ethernet and
requires no additional hardware support. The modifica-
tions we later propose for Memcached will be leverag-
ing the one-sided operations of RDMA, namely read and
write. Let us quickly revisit how those operations work
using a soft-RDMA implementation (see Figure 4).

Soft-RDMA is typically implemented inside the ker-
nel as a loadable kernel module. Assuming a client wants
to read some data from a remote server’s main mem-
ory, it will first have to allocate a receiving buffer on its
own local memory. The client then registers the address
and length of the receiving buffer with the in-kernel soft-
RDMA provider. Similarly, the server will have to regis-
ter the memory to be accessed by the client with its own
local soft-RDMA provider. Registering memory with
RDMA causes the RDMA provider to pin the memory
and return an identifier (stag, typically 4 bytes) which
can later be used by the client to perform operations on

2



Figure 4: Example of a one-sided RDMA read operation

that memory. The actual data transfer is triggered by the
client who issues a RDMA read operation containing the
stag associated with the memory of the remote server.

Depending on which soft-RDMA stack is used, the
RDMA read request may be transmitted to the server
using in-kernel TCP or some proprietary transport pro-
tocol. At the server side, the read request is not passed
on to the application but served directly by the in-kernel
soft-RDMA stack, which – given the stag specified by
the client – directly triggers transmission of the requested
memory without any extra copying of the data. Copying
is not avoided at the client side, but the RDMA receive
path is typically shorter than the socket receive path.

In addition to read, soft-RDMA also supports write
operations in a similar manner. Those operations are
called one-sided since they only actively involve the
client application without having to schedule any user
level process at the server side. Besides avoiding the
scheduling of the server process, another advantage of
RDMA read/write operations is their zero copy trans-
mit feature which yields a lower CPU consumption com-
pared to the traditional socket based approach.

3 Memcached/RDMA

Memcached employs a multi-threaded architecture
where a number of worker threads access the single hash
table (Figure 5a). Serialized access to individual keys is
enforced with locks. Requests entering the system will
be demultiplexed to the various threads by using a ded-
icated dispatcher thread that monitors the server socket
for new events. A key building block of Memcached is
the memory management, implemented to avoid mem-
ory fragmentation and to provide fast re-use of memory
blocks (see Figure 6). Memory is allocated (using mal-
loc) in slabs of 1 MB size. A slab is assigned to a certain
slab class which defines the chunk size the slab is bro-
ken into, e.g., slab classes may exists for chunk sizes of
64, 128 and 256 bytes, doubling all the way up to 1 MB.
Each slab maintains a list of free chunks, and when a
request (e.g., SET) comes in with a particular size, it is

Figure 6: Memory management in Memcached

rounded up to the closest size class and a free chunk is
taken from one of the slabs in the class. Items stored in-
side chunks contain key and value as well as some meta
data. Chunks that are not used are put back into the free
list to be re-used at a later point in time.

3.1 Proposed Modifications
The architecture of Memcached does contain several
potential inefficiencies that can result in a significant
amount of load for low-frequency CPUs. First, data is
copied between the kernel and the worker threads. Given
that the operations of Memcached (SET/GET) are rather
simple and do not require much processing, the overhead
introduced by copying data from user space to kernel and
vice versa becomes significant (as shown in Figure 3).
Second, in most cases processing a Memcached client
request requires a context switch as the corresponding
worker thread needs to be scheduled. And third, the time
required to parse client requests – although small when
measured in absolute numbers – can be a significant frac-
tion of the overall processing time of a single request.

All three of those issues are addressed in our RDMA-
based Memcached approach which takes advantage of
RDMA’s one-sided operations. In particular, we propose
modifications of Memcached in the following three as-
pects:

1. Memory management: We associate memory
chunks of Memcached with registered memory re-
gions in soft-RDMA

2. GET operation: We use RDMA/read to imple-
ment the Memcached/GET operation.

3. Parsing: We increase the level of parsing neces-
sary at the client side in favor of lowering parsing
the effort at the server.

To simplify the upcoming description of the system,
we henceforth use the name Memcached/RDMA when
referring to the modified Memcached, and simply Mem-
cached when referring to the unmodified system. The
high-level architecture of Memcached/RDMA is shown
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Figure 5: Architecture of (a) Memcached and (b) Memcached/RDMA

in Figure 5b. For a detailed understanding of the pro-
posed modifications, let us walk through some aspects
of the memory management and through the two main
operations of Memcached, SET and GET:

Memory management: In Memcached, memory
chunks of fixed sizes are the basic unit for storing
key/value pairs. The main idea in Memcached/RDMA
is to allow chunks to be read remotely without involv-
ing the Memcached user-level process. For this, Mem-
cached/RDMA registers every newly allocated chunk
with the soft-RDMA provider. The RDMA stag returned
by the memory registration call is stored inside the meta
data of the chunk.

SET: A client of Memcached/RDMA issues a SET re-
quest using TCP, just as if it was connected to a unmod-
ified Memcached server. Upon receiving the SET re-
quest, the Memcached/RDMA server finds a chunk that
fits the item (key/value pair) size, stores the item inside
that chunk and inserts the chunk into the global hash ta-
ble. If the item is a new item (the key does not yet exist
in the hash table), the SET operation transmits, as part
of the response message, the stag stored inside the cho-
sen chunk. If the item replaces an already existing item
with the same key, then Memcached/RDMA swaps the
stags stored in those two chunks, updates the RDMA reg-
istration for both chunks, and also includes the stag of
the newly created item in the response message. Clients
maintain a table (stag table) matching keys with stags for
a later use. It is important to note that the swapping of
stags guarantees that the same stag is used throughout
the lifetime of a key, even as the chunk storing the actual
key/value pair changes.

GET: Before issuing a GET operation, the client
checks whether an entry for the given key exists in the
stag table. Depending on whether a stag is found or not,

the GET operation is executed in the following ways:
If no entry is found, the GET operation is initiated us-

ing the TCP-based protocol. The server, however, rather
than responding on the reverse channel of the TCP con-
nection, will use a one-sided RDMA/write operation to
transmit the requested key/value pair to the client using
additional RDMA information that was inserted into the
client request. Besides the key/value pair, the respond
message from the server also includes the stag associ-
ated with the chunk storing the item at the server; this
stag is inserted into the local stag table by the client.

If a stag entry is found at the client before the GET
request is issued, Memcached/RDMA will use a one-
sided RDMA/read operation to directly read from the
server the chunk storing the requested key/value pair.
The chunk, once received by the client, is parsed and the
value contained in the chunk is returned to the applica-
tion. The client also verifies that the key stored inside the
received chunk matches the key which was requested. In
case of an error the client purges the corresponding entry
in the stag table and falls back to the first mode of oper-
ation.

Leveraging one-sided semantics during the GET op-
eration has several advantages: First, data sent back to
the client is always transmitted without extra copying at
the server, thereby saving CPU cycles. This is true for
both modes of the GET operation, namely when using
RDMA/write as well as when using RDMA/read. Sec-
ond, the Memcached/RDMA user level process is only
involved in SET requests and in first-time GET requests
by clients. All subsequent GET requests are handled ex-
clusively by the operating system’s network stack, low-
ering the load at the server. And third, directly reading
entire chunks from the server using RDMA/read elimi-
nates the need for parsing client requests, decreasing the
CPU load at the server further.
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Figure 7: Performance and CPU consumption of Memcached and Memcached/RDMA for different value sizes (1K,
10K, 100K) and different server CPU clock frequencies (2.3 GHz, 1.1 GHz)

3.2 Lazy Memory Pinning
The proposed modifications, if implemented as de-
scribed, can lead to a waste of memory resources if
only a small fraction of the allocated chunks in Mem-
cached/RDMA is actually read and written by the clients.
As mentioned in Section 2, registering memory buffers
with RDMA would typically cause the associated mem-
ory to be pinned, requiring the commitment of real phys-
ical memory. It is recommended to run Memcached
with sufficient physical memory to avoid paging and
the corresponding performance degradations, but over-
committing the memory resources is technically possi-
ble and supported. To maintain this feature in Mem-
cached/RDMA, we employ a novel lazy memory pinning
strategy. Any memory registered with soft-RDMA will
not be pinned until it is accessed for the first time through
read or write operations. Outside of RDMA operations,
memory can be paged out, causing extra overhead to
page in the virtual memory at the subsequent RDMA op-
eration. If sufficient memory is available to keep all the
chunks pinned, no overhead would occur. If, however,
the underlying system is short of physical memory then
the memory accessed by RDMA will be paged in and
out according to the same OS principles any user-level
memory is managed, e.g., hot memory typically stays
in main memory whereas cold memory gets swapped to
disk. However, we did not evaluate this feature in our
experiments.

4 Evaluation

Memcached already supports both UDP and TCP trans-
ports. Thus, one appealing approach to implement Mem-
cached/RDMA would be to just add an RDMA transport
to Memcached. In this work, however, we have imple-
mented a standalone prototype of Memcached/RDMA

by re-using some of Memcached’s original data struc-
tures. As one example of a soft-RDMA provider we
use SoftiWARP [15], an efficient Linux-based in-kernel
RDMA stack. Memcached/RDMA does not interact
with SoftiWARP directly, but builds on libibverbs, which
is a standardized, provider-independent RDMA API.
Separating Memcached/RDMA from the actual RDMA
provider will make it possible in the near future to also
exploit hardware accelerated RDMA implementations
(e.g., Infiniband).

Configuration: Experiments are executed on a cluster
of 7 nodes, each equipped with a 4 core Intel Xeon E5345
CPU and a 10 GbE adapter. One of the nodes in the
cluster acts as server running Memcached with 8 threads,
whereas the other nodes are used as clients. Depending
on the actual experiment, the server is configured in low-
power mode, which causes the CPU to run at 1.1 GHz
clock frequency. Experiments consist of two phases: in
the first phase, clients insert a set of 1000 key/value pairs
into Memcached; in the second phase, the clients query
Memcached using GET calls at the highest possible rate.
We used OProfile [2] to measure the CPU load at the
server.

Performance: Figures 7 shows a performance compar-
ison of Memcached and Memcached/RDMA in terms of
number of operations executed per second at the server.
Each panel illustrates an experiment for a given size of
key/value pairs (1K, 10K, 100K); performance numbers
are given for both 2.3 GHz and 1.1 GHz CPU clock
speed. Note that the range marked by the y-axis (GET
operations) differs for each panel. It is easy to see
that Memcached/RDMA outperforms unmodified Mem-
cached in almost all cases by 20% or more. The perfor-
mance gap is visible for 2.3 GHz CPU clock speed and
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Figure 8: (a) CPU efficiency (“mc” for Memcached, “mc/r” for Memcached/RDMA, “MC-us” for Memcached user
space) and (b) performance for different numbers of cores.

increases even further once the server switches to low-
power mode. An exception is the configration with 100K
size key/value pairs and 2.3GHz clock speed where both
Memcached and Memcached/RDMA perform equally
well. The explanation for these performance results
lies in the CPU consumption of Memcached and Mem-
cached/RDMA, which we plot against the right y-axis
(with 400% referring to all four cores being fully loaded)
in each panel. While four cores running at 2.3GHz can
handle bandwidth intensive 100K size GET requests, the
difference in CPU load between Memcached and Mem-
cached/RDMA eventually turns into a performance ad-
vantages for Memcached/RDMA at 1.1GHz clock speed.

To understand how exactly the CPU efficiency of
Memcached/RDMA is materialized, we again divided
the used CPU cycles into three classes “network”, “ap-
plication” and “remaining” (see Section 1 for descrip-
tions of these classes). Here, the class “application”
refers to the actual RDMA processing in the kernel (la-
bel “RDMA stack” in Figure 8a) since the user space
Memcached process is entirely outside of the loop dur-
ing GET operations. Figure 8a illustrates the used cycles
per GET operation of Memcached/RDMA and compares
them to the numbers we have previously shown for the
unmodified Memcached (see Table 2). Clearly, Mem-
cached/RDMA is more CPU efficient for all three sizes
of key/value pairs. For smaller key/value sizes the effi-
ciency stems partially from a low operating system in-
volvment (e.g., context switching). For larger key/value
sizes the efficiency is mostly due to zero-copy network-
ing.

Efficiency: One obvious opportunity to increase the
performance of Memcached is to throw more cores at
it. This approach – besides being limited by the cur-
rent scalability walls of Memcached [6, 9] – reduces

the CPU efficiency of Memcached. Figure 8b illustrates
that Memached/RDMA when using just a single core is
able to provide a similar performance as the unmodified
Memached with all four cores.

The key observation from these experiments is that
Memcached/RDMA uses CPU cycles more efficiently
which allows for either handling more operations per
second, or for using fewer cores than a comparable un-
modified Memcached server.

5 Related Work

There exists obviously a substantial body of work on
key/value stores, a large part thereof adopting a disk-
based storage model focusing mostly on scalability [8,
7, 14]. Fawn [5] is a key/value store designed for Flash
and low-power CPUs. Like other key/value stores tar-
getting low power [6], Fawn does not consider network
speeds greater than 1GbE. Using RDMA to boost dis-
tributed storage and key/value stores has been proposed
in [12, 10], and partially in [13]. These works, similar
to our work, do successfully use RDMA to improve the
performance of distributed systems. However, compar-
ing the results with our work is difficult as those sys-
tems rely on dedicated RDMA hardware which is often
not available in commodity datacenters. In addition, the
main focus of these works is on improving throughput
and latency, and not so much on reducing the CPU foot-
print of the system.

In contrast, our work explicitly studies high-speed net-
works in a low-power CPU configuration. The solution
we propose leverages one-sided operations in RDMA
which improves both the performance as well as the CPU
consumption of the system. Furthermore, our approach
can be applied within commodity data centers as it is
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purely implemented in software without requiring ded-
icated hardware support.

6 Conclusion

In this paper, we studied the feasibility of implement-
ing an in-memory key/value store such as Memcached
on a cluster of low-power CPUs interconnected with 10
Gigabit Ethernet. Our experiments revealed certain in-
efficiencies of Memcached when dealing with high link
speeds at low CPU clock frequencies. We proposed mod-
ifications to the Memcached architecture by leveraging
one-side operations in soft-RDMA. Our approach im-
proves the CPU efficiency of Memcached due to zero-
copy packet transmission, less context switching and re-
duced server-side request parsing. As a result, we were
able to improve the GET performance of Memcached by
20%. While this paper looked at in-memory key/value
stores, we believe that many of its ideas can be extended
to key/value stores targeting non-volatile memory (e.g.,
Flash, PCM).
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