
Scalable and lightweight CTF infrastructures using application containers

Arvind S Raj, Bithin Alangot, Seshagiri Prabhu and Krishnashree Achuthan

(arvindsraj,bithina,seshagiriprabhu)@am.amrita.edu, krishna@amrita.edu
Amrita Center for Cybersecurity Systems and Networks

Amrita Vishwa Vidyapeetham

Abstract

Attack-defence Capture The Flag (CTF) competitions
are effective pedagogic platforms to teach secure cod-
ing practices due to the interactive and real-world ex-
periences they provide to the contest participants. Two
of the key challenges that prevent widespread adop-
tion of such contests are: 1) The game infrastructure is
highly resource intensive requiring dedication of signif-
icant hardware resources and monitoring by organizers
during the contest and 2) the participants find the game-
play to be complicated, requiring performance of multi-
ple tasks that overwhelms inexperienced players. In or-
der to address these, we propose a novel attack-defence
CTF game infrastructure which uses application contain-
ers. The results of our work showcase effectiveness of
these containers and supporting tools in not only reduc-
ing the resources organizers need but also simplifying
the game infrastructure. The work also demonstrates
how the supporting tools can be leveraged to help par-
ticipants focus more on playing the game i.e. attacking
and defending services and less on administrative tasks.
The results from this work indicate that our architecture
can accommodate over 150 teams with 15 times fewer
resources when compared to existing infrastructures of
most contests today.

1 Introduction
In 2015 alone, the cybersecurity world saw more than
6000 security bugs being reported [1] in various kinds
of software ranging from website content management
systems and music players to web browsers and the
OS kernel. Many of these were caused by vulnerabili-
ties well studied for over a decade now and have docu-
mented fixes [2–5]. Thus, educating software developers
about secure coding practices is of paramount critical-
ity to mitigate losses and maintain both organizational
and civilian safety. Capture The Flag(CTF) competitions
provide a game based learning approach to understand-
ing computer security principles and secure coding prac-

tices. In this contests, teams are provided with identical
challenges that require the application of computer secu-
rity concepts towards solving them. Their practical and
hands-on nature makes them particularly promising as
pedagogic tools.

There are two popular formats for CTF contests:
• Jeopardy style: Teams are provided with several

challenges in multiple areas such as cryptography,
digital forensics, system security and web applica-
tion security. They are free to solve challenges in
any order of preference and work in isolation from
other teams.

• Attack-defence: Teams are provided a virtual ma-
chine consisting of identical vulnerable services.
The overall objective is to discover the existing se-
curity issues, fix them and attack services of other
teams using the vulnerabilities discovered.

It is believed that among the two formats, attack-
defence CTFs provide greater learning outcomes due to
their interactive and real-world nature [6]. However, very
few attack-defence CTFs are organized worldwide ev-
ery year [figure 1] and the number of participants is sig-
nificantly lower in comparison to Jeopardy style CTFs
[figure 2]. In addition, most attack-defense CTFs are in-
person events - at the most 3 events were run online every
year for the past 5 years.

Based on our experience participating in several online
attack-defence CTFs and organizing the last 5 editions of
InCTF [7], we believe the reasons for these trends are:

• Complex infrastructure: Attack-defence CTF in-
frastructures require high amounts of resources and
engineering to ensure smooth execution of the con-
test. This can be particularly challenging for or-
ganizers, who also need to design services and run
other peripheral activities as part of the entire con-
test.

• Multi-tasking: In addition to finding, fixing and

1



Figure 1: Number of events of both formats over past 5
years based on data from ctftime.org

exploiting vulnerabilities, participant teams are re-
quired to carry out several system administration
tasks. This includes ensuring that services and net-
work connections are functioning correctly, main-
taining backups of services and monitor incoming
traffic for attacks and so on. These can be challeng-
ing, especially for small teams and inexperienced
players.

In this paper, we introduce a novel CTF infrastructure
that uses Docker containers [8] instead of virtual ma-
chines. The use of Docker containers helps organizers
focus on creating a good quality contest since the amount
of resources and engineering effort is significantly lower.
In addition, participants can focus on finding, fixing and
exploiting vulnerabilities since much less system admin-
istration is necessary. The use of additional tools to man-
age Docker containers and associated components en-
hances the overall game experience and simplifies orga-
nizing an attack-defence CTF.

The rest of the paper is structured as follows. Section
2 provides an overview of use virtual machines in se-
cure coding education, section 3 provides an overview of
attack-defence CTFs and Docker, section 4 describes ex-
isting attack-defence CTF infrastructures and their short-
comings, section 5 describes the container based attack-
defence CTF infrastructure, section 6 describes how we
evaluated the system and section 7 concludes.

2 Related work
The infrastructure of most attack-defence CTFs is de-
rived from the design pioneered by iCTF [6] over several
editions. All services are packaged into a virtual ma-
chine which is run by the participants on their hardware
or by the organizers on their server. In the former case,
teams have direct access to their virtual machines while

Figure 2: Average participation counts in events of two
formats based on data from ctftime.org

in the latter case, teams can access them via SSH. iCTF
is also well known to experiment with contest design and
gameplay but almost all editions feature virtual machines
as a core component of the infrastructure [6, 9, 10]. Vir-
tual machines are also popular in other game based ap-
proaches to teaching computer and network security and
other computer science courses as well as focused train-
ing programs [11–17].

There have been few attack-defence CTFs which used
application containers or similar approaches. Until few
years ago, DefCon CTF finals used FreeBSD jails to iso-
late all services of all teams from each other. While
FreeBSD jails are lightweight and secure, they are not
as flexible as application containers. More recently,
iCTF 2008 [18] and RuCTFe 2011 used OpenVZ con-
tainers in their contest infrastructure. However, iCTF
2008 involved participants trying to break into an iso-
lated corporate network consisting of services hosted in-
side OpenVZ containers rather than attacking each other.
In RuCTFe 2011 too, the services ran inside OpenVZ
containers. However, these containers existed inside the
virtual machine distributed to participants. To the best
of our knowledge, this is the first attempt to construct a
CTF game infrastructure that doesn’t feature virtual ma-
chines as a core component, requires fewer resources due
to the use of application containers to reduce resource re-
quirements and is more participant friendly than existing
infrastructures.

3 Background
3.1 Attack Defence CTFs

3.1.1 Overview

In attack-defence CTFs, teams are provided identical
virtual machines consisting of custom written vulner-

2



able applications(“services”). Teams analyze the ser-
vices, discover the security issues, fix them and attack
other teams using the same security bugs to earn points.
Attack-defence CTFs test offensive and defensive skills
in application as well as system and network security ar-
eas. As a consequence, attack-defence CTFs require spe-
cialized game infrastructures which are difficult to engi-
neer and maintain reliably. The challenges are further
compounded if the game is played online since partic-
ipants can be widely distributed geographically around
the world.

3.1.2 Services

A service is a custom written vulnerable application pro-
vided by the organizers. They can be simple network ap-
plications such as a chat server for connected clients to
highly complex applications such as banking and social
networking applications. All services provide the abil-
ity to store private information (called a “flag”) in them,
which can be retrieved only by providing a particular se-
cret (e.g.: username and password). These services also
contain one or more vulnerabilities such as SQL injec-
tion, buffer overflows and use of weak encryption keys
deliberately introduced within them. The services are de-
signed carefully such that the flag can be retrieved only
by supplying the corresponding secret or exploiting the
vulnerability. Since the flag and secret cannot be brute
forced quickly, submitting a flag of another team is proof
that the team successfully exploited the corresponding
service of the other team.

3.1.3 Gameplay and scoring

Attack-defence CTFs typically last 8 to 12 hours in du-
ration. During the first phase of the contest, no flags are
stored in any of the services. Thus, teams devote this pe-
riod for analyzing services and the system, fixing any se-
curity issues they discover and writing exploits for these
security bugs for scoring points in the following phase.
The second or scoring phase consists of several, approx-
imately equal time periods called rounds. At the start
of each round, scripts run by the organizers store flags
in all services and later retrieve them towards the end of
the round. Occasionally, organizers may introduce up-
dates to services which either adds new or modifies exist-
ing service functionality. Teams continue to analyze the
services and monitor network connections for new ex-
ploits and work towards discovering any vulnerabilities
they may have missed. There are three types of scorable
points a team can avail of during a round:

1. Offence points obtained by stealing flags from other
teams.

2. Availability points awarded for ensuring services
are online.

3. Defence points obtained by preventing other teams
from stealing flags.

The gameplay and scoring mechanisms resemble real
world scenarios closely:

1. Applications work as per the intended design for le-
gitimate input yet can fail gracefully with malicious
input and without revealing the secret information.

2. Applications may be attacked and compromised at
any time. Thus, constant monitoring and swift rem-
edy are required.

In addition, the offensive aspect helps participants think
from attacker’s perspective which is useful when design-
ing secure software and developing security fixes.

3.2 Docker

Docker[8] is an operating system level virtualization
technology. Similar to hardware virtualization, Docker
allows executing processes in isolated sandboxes called
containers and restricting their resource usage. These
containers are created using a container image similar
to how virtual machines are spawned from virtual disk
images. However, unlike in hardware virtualization,
Docker virtualizes the kernel of the host device. This
reduces resource usage, image sizes and startup times
of containers significantly compared to virtual machines
while providing similar levels of isolation, security and
performance [19]. Thus, Docker containers are a viable
alternative for virtual machines in attack-defence CTF
infrastructures.

Along with Docker, we use Docker Distribution [20]
and Portus [21] to manage exploits and patches to ser-
vices uploaded by teams. Docker Distribution is a con-
tainer image management system which simplifies stor-
ing, updating and distributing images. Portus is a front
end for Docker distribution that implements role-based
access control to the images stored in Distribution and
other resources. Users can create teams, private and
shared image namespaces and provide different access
levels to different users. This makes Portus an ideal so-
lution for managing the container images of all teams.

4 Existing attack-defence CTF infrastruc-
tures

In this section, we describe the existing attack-defence
CTF infrastructure designs commonly used today and
their limitations.

4.1 Decentralized architectures

Almost all online attack-defence CTF events use the
decentralized architecture[figure 3]. The infrastructure
consists of several geographically distributed team net-
works and an organizer network inter-connected using
a virtual private network(VPN). Since all team networks

3



Figure 3: Organization of VPN based decentralized CTF
infrastructure

are identical in structure, teams can quickly locate and at-
tempt to steal flags from services of other teams. Teams
submit these flags for points, which are awarded instantly
and displayed on the team dashboard. Simultaneously,
teams monitor their network for incoming attacks to dis-
cover unknown vulnerabilities and implement appropri-
ate remedies.

4.2 Centralized architectures

iCTF introduced the centralized architecture in 2012 and
used it in 2013 as well [6]. Here, the organizers host the
virtual machines of all teams on their servers and provide
SSH access to teams. This approach reduces the amount
of technical setup teams need to perform. Organizers de-
cide if teams can run exploits on their own or to execute
the exploits on behalf of the teams. The remainder of
the infrastructure components and gameplay are similar
to the decentralized architecture.

4.3 Limitations of existing infrastructures

The amount of resources, engineering and monitoring re-
quired in the decentralized infrastructure design can be
quite high. For instance, rwthCTF 2012 ran 8 OpenVPN
processes on a 16GB server with an 8 core Intel i7 pro-
cessor to handle the VPN traffic load [22]. Also, teams
struggle to setup the VPN and team network due to is-
sues such as lack of technical expertise, lack of hardware
to run the virtual machine, lack of networking equipment
and potentially restrictive IT security policies at location
from where they participate.

The centralized approach reduces the amount of hard-
ware and infrastructure setup required by teams. How-
ever, organizers need exponentially higher amounts of
resources to run the game infrastructure and virtual ma-
chines. In addition, teams geographically further away

Figure 4: Container based attack defence CTF infrastruc-
ture

from the hosting site experience proportional network la-
tencies, which could negatively impact their game expe-
rience. Also, if organizers end up running the exploits,
the teams cannot debug exploits if they fail and rely on
organizers to install any packages and libraries used by
their exploits.

Also, regardless of architecture style used, inexperi-
enced teams struggle to perform well in attack-defence
CTFs. We believe this is because teams have to perform
several additional tasks such as administering the net-
work, keep services running, maintain backups of ser-
vices and much more. Some teams are not aware of
these, leading to greater frustration when service stops
functioning due to destructive attacks performed on them
or for other reasons. These easily distract inexperienced
teams from the goal of learning secure coding practices.

5 Application container based infrastruc-
ture

We modified the iCTF contest infrastructure[6] to work
with Docker containers. In this section, we describe the
modified and newly introduced components, how service
and exploit containers are created and executed and pro-
vide an overview of a round in a game using the enhanced
infrastructure. Figure 4 shows the container based infras-
tructure design.

5.1 Components of infrastructure

We introduce four new components: container image
registry, service containers host, exploit containers host
and flag storage volume. In addition, we modified the
gameserver to synchronize the containers periodically
with their corresponding images stored in image registry
and vmcreator to create containers instead of VMs as
well as removed the router component since teams do
not have access to the live containers. The remaining
components are exactly similar to their counterparts in
the iCTF contest infrastructure.

4



The container image registry provides an easy and
secure means to distribute and manage container im-
ages by leveraging capabilities of Docker distribution
and Portus. Docker distribution handles image storage
and retrieval while Portus handles user authentication,
request authorization and access control. Every team is
assigned a namespace exclusively accessible to them and
the gameserver. Teams can upload exploit containers and
changes to service containers to their namespace similar
to how they push changes to version controlled reposito-
ries hosted on Github and Bitbucket. Periodically, the
gameserver synchronizes the containers with their im-
ages, as described later in the section. This decoupling
of where teams update services and where the services
execute helps work around the SSH latency issue in the
centralized CTF architecture.

The container hosts are compute servers which run all
service and exploit containers. In our infrastructure, we
run both the service and exploit containers on a single
server due to resource limitations. However, the design
of the contest infrastructure makes it possible to run con-
tainers on multiple machines in order to distribute the
load and improve performance. In addition, tools such
as Docker Swarm [23] and Docker Universal Control
Plane(UCP) [24] simplify scaling out to multiple phys-
ical machines and cloud compute servers such as Ama-
zon AWS and Microsoft Azure. An alternative is to use
Docker Cloud [25], a hosted service offering the capabil-
ities of Docker Swarm and Docker UCP to manage mul-
tiple Docker containers. The container hosts run Docker
daemons listening on a TCP socket which enables cre-
ating, running and destroying containers remotely using
the Docker remote API. The Docker daemons are iso-
lated from public internet and can be configured to ac-
cept requests from clients providing a valid certificate,
thus restricting who can communicate with the daemons.

In order to synchronize containers with their images,
we configure the Docker distribution to notify the game-
server when an image is modified. During the next round
of synchronization(section 5.4), we simply delete the ex-
isting container and create a new container based on the
latest image. Since creating and deleting containers are
fast operations, they do not impose a a significant time
penalty. Another approach is to create a new container
using the updated image which “replaces” the old con-
tainer in the game. The old container can be removed
later by a garbage container collector process running in
the background, further reducing the time penalty. How-
ever, we chose not to implement this approach since the
former method is simpler and does not impose a very
significant time penalty.

A side effect of deleting and recreating containers is
that all flags stored by the service are also deleted. This
can cause issues if flags are stored in databases, which

would need to be recreated on every update. In such
cases, Docker recommends provisioning a data only con-
tainer for running the databases or creating a data volume
to store the database files.

5.2 Building, distributing and executing service
container images

Similar to the iCTF approach, we first create Debian
packages of all services to simplify creating container
images. We then proceed to create a Docker container
image using the Debian packages and a minimal cloud
image of Ubuntu. The entire process is fully automated
and driven by few template files that can be easily modi-
fied depending on requirements. This process can be eas-
ily extended to any operating system that has a standard
packaging format with a few operating system specific
changes.

In order to distribute the images, we first create ac-
counts and namespaces for all teams in Portus. After this,
we push copies of the images to namespaces for teams to
download. An alternative is to export each service con-
tainer image to an archive, which can be encrypted and
distributed prior to the contest. This can be useful since
network bandwidth could become a bottleneck if every-
one starts downloading the images at the start of the con-
test.

Every service binds to a particular port which is
mapped to a port on container host machine. The ser-
vice port is specified in the configuration file of the ser-
vice and the host machine port is automatically assigned
using the range of ports specified in the game configura-
tion, ensuring there are no collisions. At the start of the
game, all service container images are marked as “re-
quiring update” and thus the containers are started by the
gameserver as described in section 5.1. This process is
fully automated and its duration depends on the speed of
container host machine and the number of services and
teams.

5.3 Building, uploading and executing exploit con-
tainers

Similar to service containers, exploit containers can be
created using an image from Docker hub or a mini-
mal cloud image matching the architecture of the exploit
container host machine. Teams are free to choose the
OS and setup the exploitation environment by installing
custom libraries, tools, frameworks, programming lan-
guages and more as long as they correctly specify the
command to run the exploit when the container is started.
This is a notable improvement over iCTF where teams
were provided a standard environment to write exploits
and organizers had to install necessary additional pack-
ages requested by the teams. After building and testing
the exploit container locally, teams push the image to

5



Figure 5: Main memory usage with 30 teams and varying
services counts in container and virtual machine based
infrastructure

their namespace in the registry, which notifies the game-
server about the new image uploaded. The gameserver
stores an entry for the exploit container in database and
marks it as requiring update during the next synchroniza-
tion phase.

The targets for exploits are passed as a JSON array of
key-value pairs via an environment variable. Each ele-
ment of the array consists of 3 key-value pairs - the IP
address and port number of the target and the identifier
of the flag to be retrieved. Using this target informa-
tion, the exploits captures all possible flags and prints
them to stdout. After the container has exited, flags are
extracted and submitted for points and the container is
deleted. Deletion is necessary because the only way to
provide new targets via environment variables is to delete
and recreate the container. However, this doesn’t impose
a very high penalty because creating and deleting con-
tainers are very fast processes.

5.4 Game Round Overview

The entire game is divided into several rounds of approx-
imately similar and configurable duration. Each round
consists of 5 sequentially occurring phases:

1. Synchronize service containers: All services con-
tainers whose images have been updated are recre-
ated to pull in the latest changes.

2. Synchronize exploit container images: All up-
dated exploit container images are synchronized
with copies on the exploit containers host.

3. Store flags: The gameserver starts evaluating the
services by storing flags in them. If flag planting
fails, the service is marked as not functioning prop-
erly.

Figure 6: Main memory usage with 3 services and vary-
ing team counts in container and virtual machine based
infrastructure

4. Run exploits: The gameserver runs all available ex-
ploit containers against all valid and currently active
targets. Teams are awarded points for all valid flags
stolen by their exploit.

5. Retrieve flags: The gameserver retrieves the flag
planted in step 3 and updates state of service de-
pending on the result of the retrieve operation.

5.5 Benefits for participants and organizers

The gameplay closely resembles bug fixing in software
development: identifying issues, fixing them, testing
thoroughly and committing changes/releasing patches
and hence places minimal effort on the participants side.
Additionally, version controlling images is part of the
workflow and thus, participants need not worry about
losing or breaking the service and not being able to re-
store it to a working state quickly. Another significant
benefit is that services can be run locally in an environ-
ment identical to remote setup for analysis; thus working
around network latencies. Other benefits for participants
include no need to run exploits themselves, obtain net-
working equipment and machines or setup team network
and VPN. Organizers can also easily scale the infrastruc-
ture to multiple machines using additional tools such as
Docker Swarm and Docker Cloud. Docker also has a
very active community which could lead to the develop-
ment of tools, in future, that can be useful for hosting and
organizing the infrastructure.

6 Performance evaluation of system
We compare the performance of container based and vir-
tual machine based infrastructure by measuring resource
usage in two scenarios:

6



Figure 7: Average CPU usage with 30 teams and varying
services counts in container based infrastructure

1. We vary the number of teams while keeping the
number of services constant.

2. We vary the number of services while keeping the
number of teams constant.

We experimentally determine the resource usage of
container based infrastructure and compare it with the es-
timated resource usage for virtual machine based infras-
tructure. We choose to estimate usage based on InCTF
recommendations in latter case due to lack of resources
for simulating the scenario. Figures 5 and 6 display ob-
served and estimated average memory usage in both in-
frastructures while figures 7 and 8 display the measured
CPU usage in container based infrastructures. In all sim-
ulations, we ran exploits “written” by all teams against
all services of other teams.

6.1 Resource utilization in container based infras-
tructure

We measure the resource usage by instantiating several
cases for the two scenarios described earlier:

1. We simulate 8 contests with 3 services in each. We
start with 5 teams and keep adding 5 teams in every
subsequent contest.

2. We simulate 8 contests with 30 teams in each. We
start with 1 service and keep adding a service in ev-
ery subsequent contest.

All containers ran on a server with 16GB memory and
an 8 core Intel Core i5 2600 processor. We measure the
CPU utilization and the memory usage for a 10 minute
long round of game described in section 5.4.

Figure 8: Average CPU usage with 3 services and vary-
ing team counts in container based infrastructure

6.2 Resource utilization in virtual machine based
infrastructure

We estimate the resource usage based on the require-
ments for InCTF’s attack-defence round. Typically, there
are 3 vulnerable services and we recommend allocating
1GB RAM and 2 CPU cores for the virtual machine:
200MB for each service and remainder for the operating
system. In nearly all editions of InCTF, these specifica-
tions were used and performance was observed to be suf-
ficient. Based on these values, we compute the expected
resource usage for all contests instantiated in section 6.1.

6.3 Discussion

Based on figures 5, 6, 7, and 8, we believe it is possible to
run a contest with a similar number of teams and services
as other attack-defence CTFs using the container based
infrastructure and significantly fewer resources. How-
ever, we were unable to verify this experimentally since
the spawning of too many exploit containers simultane-
ously overwhelmed the sole Docker daemon. We be-
lieve this can be resolved by carefully scheduling the ex-
ecution of exploit containers on the container host ma-
chine. Alternatively, scaling out can help distribute the
load among multiple daemons and machines. In addi-
tion, use of multiple machines makes more ports avail-
able, which can help accommodate more service contain-
ers and hence more teams. The use of clustering tech-
nologies such as Docker Swarm can further ease manag-
ing containers running on multiple machines. Another
possibility is to execute multiple Docker daemons on the
same machine which would require manually bridging
the containers controlled by different daemons, which is
not a trivial task.

7



7 Conclusion and future work
Attack-defence CTFs are considered to have better learn-
ing outcomes due to their interactive and real-world
gaming environments. However, complex infrastruc-
ture setup and gameplay have been a deterrent to its
widespread adoption. We propose a novel CTF infras-
tructure that uses Docker containers instead of virtual
machines that significantly reduces the resource require-
ments and handles certain system administration tasks.
The resource efficient infrastructure and several avail-
able third party utilities greatly simplify organizing such
CTFs and scaling to several teams and helps participants
focus more on learning secure coding practices.

One of the significant limitations of the system is that
teams cannot capture exploits from the network and re-
verse engineer them to identify new vulnerabilities. An-
other challenge is that the exploit scheduling algorithm
should dynamically adapt as more exploits are uploaded
to ensure the infrastructure and exploits function cor-
rectly. We hope to address these issues as well as obtain a
user evaluation of the system as part of our future work.

8 Availability
The container based attack-defence framework is
available for download at http://github.com/inctf/inctf-
framework.

References
[1] National Vulnerability Database, https://nvd.nist.gov/.

[2] Common Weakness Enumeration, https://cwe.mitre.org/.

[3] Theodoor Scholte, Davide Balzarotti, and Engin Kirda. Have
things changed now? An Empirical Study on Input Validation
Vulnerabilities in Web Applications. Computers & Security, 31
(3):344–356, 2012.

[4] Victor van der Veen, Nitish dutt Sharma, Lorenzo Cavallaro, and
Herbert Bos. Memory Errors: The Past, the Present, and the
Future. Research in Attacks, Intrusions, and Defenses, pages 86–
106, 2012.

[5] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. SoK:
Eternal War in Memory. In Security and Privacy (SP), 2013 IEEE
Symposium on, pages 48–62. IEEE, 2013.

[6] Giovanni Vigna, Kevin Borgolte, Jacopo Corbetta, Adam Doupe,
Yanick Fratantonio, Luca Invernizzi, Dhilung Kirat, and Yan
Shoshitaishvili. Ten Years of iCTF: The Good, The Bad, and
The Ugly. In 2014 USENIX Summit on Gaming, Games, and
Gamification in Security Education (3GSE 14), 2014.

[7] InCTF contest, https://inctf.in/.

[8] Docker Inc, https://www.docker.com/what-docker/.

[9] Adam Doupé, Manuel Egele, Benjamin Caillat, Gianluca
Stringhini, Gorkem Yakin, Ali Zand, Ludovico Cavedon, and
Giovanni Vigna. Hit’em Where it Hurts: A Live Security Ex-
ercise on Cyber Situational Awareness. In Proceedings of the

27th Annual Computer Security Applications Conference, pages
51–61. ACM, 2011.

[10] Yan Shoshitaishvili, Luca Invernizzi, Adam Doupe, and Giovanni
Vigna. Do You Feel Lucky?: A Large-Scale Analysis of Risk-
Rewards Trade-Offs in Cyber Security. In Proceedings of the 29th
Annual ACM Symposium on Applied Computing, pages 1649–
1656. ACM, 2014.

[11] Elie Bursztein, Baptiste Gourdin, Celine Fabry, Jason Bau, Gus-
tav Rydstedt, Hristo Bojinov, Dan Boneh, and John C Mitchell.
Webseclab Security Education Workbench. In CSET, 2010.

[12] Andy Davis, Tim Leek, Michael Zhivich, Kyle Gwinnup, and
William Leonard. The Fun and Future of CTF. In 2014 USENIX
Summit on Gaming, Games, and Gamification in Security Educa-
tion (3GSE 14), 2014.

[13] Jelena Mirkovic, Aimee Tabor, Simon Woo, and Portia Pusey.
Engaging Novices in Cybersecurity Competitions: A Vision and
Lessons Learned at ACM Tapia 2015. In 2015 USENIX Sum-
mit on Gaming, Games, and Gamification in Security Education
(3GSE 15), 2015.

[14] Z Cliffe Schreuders and Lewis Ardern. Generating randomised
virtualised scenarios for ethical hacking and computer security
education: Secgen implementation and deployment. 2015.

[15] Tom Chothia and Chris Novakovic. An Offline Capture The Flag-
Style Virtual Machine and an Assessment of its Value for Cyber-
security Education. In 2015 USENIX Summit on Gaming, Games,
and Gamification in Security Education (3GSE 15), 2015.

[16] Martin Carlisle, Michael Chiaramonte, and David Caswell. Using
CTFs for an Undergraduate Cyber Education. In 2015 USENIX
Summit on Gaming, Games, and Gamification in Security Educa-
tion (3GSE 15), 2015.

[17] Adrian Dabrowski, Markus Kammerstetter, Eduard Thamm,
Edgar Weippl, and Wolfgang Kastner. Leveraging Competitive
Gamification for Sustainable Fun and Profit in Security Educa-
tion. In 2015 USENIX Summit on Gaming, Games, and Gamifi-
cation in Security Education (3GSE 15), 2015.

[18] Nicholas Childers, Bryce Boe, Lorenzo Cavallaro, Ludovico
Cavedon, Marco Cova, Manuel Egele, and Giovanni Vigna. Or-
ganizing Large Scale Hacking Competitions. In Detection of In-
trusions and Malware, and Vulnerability Assessment, pages 132–
152. Springer, 2010.

[19] Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Rubio.
An Updated Performance Comparison of Virtual Machines and
Linux Containers. In Performance Analysis of Systems and Soft-
ware (ISPASS), 2015 IEEE International Symposium On, pages
171–172. IEEE, 2015.

[20] Docker Inc, https://docs.docker.com/registry/.

[21] SUSE community, http://port.us.org/.

[22] 0ldEur0pe CTF Team.
https://github.com/oldeurope/rwthctf2012/blob/master/vpn/README.md.

[23] Docker Inc, https://docs.docker.com/swarm/overview/.

[24] Docker Inc, https://docs.docker.com/ucp/overview/.

[25] Docker Inc, https://docs.docker.com/docker-cloud/.

8

http://github.com/inctf/inctf-framework
http://github.com/inctf/inctf-framework

	Introduction
	Related work
	Background
	Attack Defence CTFs
	Overview
	Services
	Gameplay and scoring

	Docker

	Existing attack-defence CTF infrastructures
	Decentralized architectures
	Centralized architectures
	Limitations of existing infrastructures

	Application container based infrastructure
	Components of infrastructure
	Building, distributing and executing service container images
	Building, uploading and executing exploit containers
	Game Round Overview
	Benefits for participants and organizers

	Performance evaluation of system
	Resource utilization in container based infrastructure
	Resource utilization in virtual machine based infrastructure
	Discussion

	Conclusion and future work
	Availability

