
Lessons Learned in Game Development for
Crowdsourced Software Formal Verification

Drew Dean, SRI International Sean Guarino, Charles River Analytics

Leonard Eusebi, Charles River Analytics Andrew Keplinger, Left Brain Games
Tim Pavlik, University of Washington Ronald Watro, Raytheon BBN

Aaron Cammarata, VoidALPHA John Murrary, SRI International
Kelly McLaughlin, XPD Analytics John Cheng, Veracient LLC

Thomas Maddern, Veracient LLC

Introduction
The history of formal methods and computer security
research is long and intertwined. Program logics that
were in theory capable of proving security properties of
software were developed by the early 1970s [1]. The
development of the first security models [2-4] gave rise
to a desire to prove that the models did, in fact, enforce
the properties that they claimed to, and that an actual
implementation of the model was correct with respect
to its specification [5; 6]. Optimism reached its peak in
the early to mid-1980s [7-11], and the peak of formal
methods for security was reached shortly before the
publication of the Orange Book [12], where the certifi-
cation of a system at class A1 required formal methods.
Formal verification of software was considered the gold
standard evidence that the software enforced a particu-
lar set of properties. Soon afterwards, the costs of for-
mal methods, in both time and money, became all too
apparent. Mainstream computer security research shift-
ed focus to analysis of cryptographic protocols (e.g.
[13; 14]), policies around cryptographic key manage-
ment [15], and clever fixes for security problems found
in contemporary systems [16-19].

Our appetite for formal verification historically has
been insufficient to limit our appetite to build ever larg-
er operating systems. In the 1980s, it was possible to
verify a few hundred to a few thousand lines of code.
By comparison, the 1986 release of the 4.3BSD Unix
operating system had a kernel of approximately 50,000
lines of code. From the 1980s to present, there have
been numerous advances in formal verification technol-
ogy, for example, the introduction of software model
checkers, (mostly) practical satisfiability solvers, and
SMT solvers. The seL4 project [20] remains a highlight
of modern operating system verification, with a mi-
crokernel of approximately 9,000 lines, took 11 person-
years, plus an additional 9 person-years of tool devel-
opment. For comparison, due primarily to the large

number of devices supported, the 2013 Linux 3.10 ker-
nel has 15.8 million lines of code1.

While the seL4 project is justifiably celebrated as a
success, it also unfortunately reinforces the message
that formal verification has scaling challenges. Based
on the seL4 data, if one optimistically assumed linear
scaling of effort vs. lines of code in formal verification,
verifying Linux 2.6.24 with 8.9 million lines of code2
from January 2008 would take 11,000 person-years, or
nearly 3 years if all of the world’s estimated 4,000 for-
mal methods experts [21] productively working togeth-
er on a single project. With the average salary of a
software engineer being approximately $93,000 in
20133, we derive a direct cost of $1 billion for the veri-
fication effort. In those intervening 3 years, Linux had
advanced to version 2.6.36, with an additional 4.5 mil-
lion lines of code. It is easy to see that this process will
never converge, even with unrealistically optimistic
assumptions!

The time and cost of formal verification appeared to be
an intractable problem outside of very specialized do-
mains, where cost and long development times could be
tolerated for improved safety and security. If one exam-
ines the situation a little closer, the key to the problem
is that the size of the available talent pool is limited by
today’s formal verification tools, complete with user
interfaces that can be described charitably as obscure. It
is often said that an advanced degree in Computer Sci-
ence is necessary to use formal verification tools. If,
however, this talent pool could be expanded, the key
bottleneck to effective formal verification could be re-
moved. We note that automation, while proven very
helpful by the seL4 effort, cannot provide a full solution

1http://www.h-online.com/open/features/What-s-new-
in-Linux-3-10-1902270.html
2http://royal.pingdom.com/2012/04/16/linux-kernel-
development-numbers/
3http://money.usnews.com/careers/best-jobs/salary

due to Rice’s Theorem [22], which established that
most common questions about software are algorithmi-
cally undecidable. Given that we cannot fully automate
the verification problem, it is natural to attempt to add
aspects of human intuition to the solution.

Towards the goal of human-assisted verification, two
remarkable circumstances converged: (1) the then di-
rector of DARPA, Dr. Regina Dugan, expressed interest
in applying crowdsourcing to computer security; and
(2) a set of enlightening discussions with Michael Ernst
and Jeannette Wing, starting at the November 2010
Usable Verification workshop hosted by Microsoft Re-
search, led to the idea of applying gamification to the

formal verification domain. If formal verification prob-
lems could be turned into entertaining video games,
those games could be crowd-sourced to a large audi-
ence. At first, this seemed like an impossible challenge:
how do you define a puzzle that encodes a formal veri-
fication problem in a way such that a solution to the
puzzle can be mapped usefully back to the underlying
verification problem, while simultaneously be entertain-
ing to solve? The remainder of this paper describes five
remarkable solutions to this challenge developed under
the aegis of DARPA’s Crowd-Sourced Formal Verifi-
cation (CSFV) program, identifying numerous lessons
that can be carried improve the success of future citizen
science and gamification efforts.

Solution 1: Circuitbot and Dynamakr

Andrew Keplinger, Left Brain Games Mathew Barry, Kestrel Technology
J. Nelson Rushton, Texas Tech University Greg Izzo, Left Brain Games

Qianji Zheng, Texas Tech University

1. Introduction
The Circuitbot and Dynamakr games provide a crowd-
sourced contribution to the verification of C-language
programs. In particular, the player-provided solutions of
these puzzle games contribute so called "points-to
graphs”, which represent information about which
memory locations may hold the addresses of other
memory locations as the program runs. Nodes in the
graph correspond to memory locations, and an arc from
node x to node y represents that x may hold the address
of y at some point during program execution. This is
classically known as the "pointer analysis problem" and
has many variations. The variation we treat takes ac-
count of offsets in memory, but abstracts away control
flow from the program. Even this simplified version of
the problem is undecidable, and its solution or sound
partial solution contributes substantially to program
verification. These two factors make this version of the
pointer-analysis problem a good candidate for the ap-
plication of human intelligence through game play.

There are three steps to our program verification ap-
proach. In the first step, the CodeHawk static analyzer
creates a set of constraints on the points-to graph of the
given source program. These constraints are partitioned
into sets corresponding roughly to functions in the
source code, which are then transformed into game lev-
els. In the second step, the game players solve these
levels by making moves in a judicious order. Each
move in the game consists of adding arcs to the graph
that result in satisfying a single constraint. Eventually,
as the players complete the levels and satisfy all of the
constraints, the gameplay yields a fixpoint solution --
but the time required to reach this solution, and whether
the process halts, depends on triggering constraints in a
wise order, as well as performing operations that lose
information but speed up the solution process or allow
it to halt. In the third step, CodeHawk uses the infor-
mation derived from the points-to arcs to detect buffer
overflow and underflow errors, or (more hopefully)
verify their absence.

1.1. General Game Play
The challenge is to create an engaging game from the
constraints on the points-to graph of a software pro-
gram. Our player-engineers are actually receiving in-
formation about a section of the program to be verified,
in the form of game levels. The information takes the
form of constraints defining when connections (“arcs”)
must be added between elements to satisfy the con-
straint, at least temporarily. Once all rules are satisfied
simultaneously, the level is solved (corresponding to a
local fixpoint).

From the player's perspective, the tricky part is this:
arcs added to satisfy a constraint may cause another
constraint to become unsatisfied. Indeed, a brute force
auto solver could spend an infinite amount of time at-
tempting to complete all the connections. In practice,
the size and connectedness of the graph grow as the
game progresses, resulting in ever-more complex inter-
actions between constraints. Eventually as a fixpoint is
neared, some sections of information become idle. Our
autosolver uses a divide-and-conquer approach, but the
current strategy did not become apparent until after a
great deal of experimentation.

1.2. Game Play Evolution
Although our core game concept has remained un-
changed throughout the CSFV program, our approach
to crowd contribution has changed substantially. Our
present game-play approach is to present essential ele-
ments of the graph to the player in very large chunks,
then prompt him to steer the autosolver in exploring the
graph.

Since we focus on the creation of a points-to graph, our
key heuristic for player productivity is the number of

arcs added to the graph. The source of the name “Cir-
cuitbot” was a game concept where constraints were
represented directly and individually on the screen, and
robotic spiders traveled from one to another in a specif-
ic order carrying information, like an assembly line
changing with each rule application. A potential prob-
lem present in this early version was Circuitbot going
into a trivial infinite loop due to incompatible rules.
 We developed art for this concept, and created some
cartoonish Acme-Labs style gates that would destroy
the Circuitbots.

As the game evolved we found no good strategies for
constraint ordering that worked significantly faster than
brute force, and we found that constraints needed to be
represented in a different way. We also found that, as
the concept matured, we were uncertain about the num-
ber of total constraints and how often they would be
applied. So we had to change our game concept into
something that would work regardless of the number of
constraints. In the end we discovered through experi-
mentation that some rules can produce thousands or
tens of thousands of arcs in a single pass, and we had to
adapt to this.

Since the game model hit a technical bottleneck, while
work was being done on the backend server we had to
base our game on speculation and some sample data.
 There were many unknowns from a game-making per-
spective, which made it difficult to predict how much
fun -- or how much work -- the resulting game would
provide the player. We considered it likely that some of
the work could be automated, so we needed a game
concept that would maintain user engagement and also
could adapt to some automation.

2. Circuitbot

The Circuitbot game employs a turn-based strategy in
which the motivational system drives the player back to
the “work” part we want accomplished for verification.
 The universe of Circuitbot is the near future explora-
tion and exploitation of near Earth asteroids, along with

the development of a space program. We took many
liberties with physics in favor of directing the player
toward rapidly expanding his supplies of critical re-
sources. The landing sequence, in which robots arrive
on the surface of some far-flung location, requires the
player to develop connections (arcs) in order to pro-
gram them so they can complete the automated process
of building a support facility. This is the “work” that
we are asking the player to accomplish.

After launching the game to the public and supplying
data from actual to-be-verified software, we began
analysis of player-generated results back into the verifi-
cation backend. After much analysis and some rework-
ing on the software analysis side, we realized that we
were looking at the information too narrowly. We
would receive a game level that represents too small a
portion of the software; and focusing the player on
individual constraints inside each level was not ac-
counting for a sufficiently wide view of the target pro-
gram. This led to the development of Dynamakr, which
better leverages the respective capabilities of the human
player and the autosolver.

3. Dynamakr

Though the mathematical game model for Dynamakr is
the same as for Circuitbot, game play is very different.
Dynamakr presents sets of game levels and the player
manages them on the global level. This allows automa-
tion to solve each individual game level and present the
player with the goal of finding the right sets of levels to
solve in order. The player’s objective is to reach a
fixpoint quickly while minimizing information loss.
 We also discovered that we could display this solution
process, showing the individual arcs, and this would
make interesting knots of interconnected arcs. We then
developed an arcade-style game around this concept as
a reward game that challenge players to find connecting
game levels.

The reward game became Dyna-makr. Conceptually,
Dynamakr is a quantum level 3D printer. Inside the
Dynamakr the player examines patterns and feeds them
into the Dynamo. The player first takes on the chal-

lenge of finding patterns that will produce the most
energy in the Dynamo, as sometimes patterns will
amplify each other’s energy. Once they generate
enough energy from the patterns, the player feeds the
patterns into the Dynamo and launches the arcade
game. The player’s success in the first game deter-
mines his points and power-ups available in the second
game. To help the player search for higher-valued pat-
terns we provide him with a set of tools. Each pattern
yields some energy by itself, but when joined with the
energy from other patterns its energy can multiply by
many times. The game rules govern the search space
and the energy value. The player cannot feed a pattern
into the Dynamo until it has joined its energy with the
energy design. Moreover, we provide the player with
search tools in the solution space to discover related
patterns based on various relationships. These patterns
have a value based on their composition and the past
game activity. If a pattern produced energy recently it
is likely to produce energy again so we encourage the
player to find related patterns and then join these results
with the energy design. The tools the player deploys
correspond to parameters used in heuristics by the auto-
solver. We had to learn to set these parameters effec-
tively, based on what we saw in the solution process, to
find fixpoint solutions quickly. The players perform the
same task within the abstraction of the game.

The Dynamakr arcade game shows the same infor-
mation that is displayed as robots in the Circuitbot
game, but in Dynamakr there are many times more in-
stances involved and they fly past the player in an infi-
nite-runner style game. The player has to dodge and
shoot the bad elements, which are constraints that have
not yet been triggered, and has to collect the energy
generated by triggering the active constraints. This
feature is meant to reward the player for generating
maximal energy during the first phase of the game. The
energy elements arrive at the player in waves, with each
wave associated with one of the patterns he fed into the
Dynamo.

The design effort for Dynamakr required the game de-
velopers to understand the underlying logic of the veri-
fication method and game rules. In essence, the game
development team had to become familiar with pointer
analysis, especially as represented through the abstrac-
tion of the game. We experimented with various manu-
al and auto-solving strategies, processing candidate
constraints sets to better understand how the player
would best provide assistance for verification. A com-
bination of auto-solving and manual play turns out to be
most useful, where we auto-solve much of the game set
prior to releasing it to the crowd who complete the iter-
ation. This final step of the procedure is where the hu-
man game players in the crowd add the most value.

Solution 2: Flow Jam and Paradox

Tim Pavlik, University of Washington Craig Conner, University of Washington
Jonathan Burke, University of Washington Mathew Burns, University of Washington

Werner Dietl, University of Waterloo Seth Cooper, Northeastern University
Michael Ernst, University of Washington Zoran Popović, University of Washington

1. Introduction
Paradox is a game designed for crowd-sourced formal
verification [23], in which the actions of ordinary peo-
ple assist in the production of a proof of correctness for
a computer program. Paradox is a puzzle game with
levels that resemble branching tree-like structures. Each
level of Paradox corresponds to Java code that has been
converted into a constraint graph via a type analysis
system. A level solved with all constraints satisfied the
game corresponds to a proof that some code satisfies a
security property. The player may not be able to fully
solve a level; however, a partial solution will reduce the
amount of work necessary for a skilled programmer to
complete the proof.

This section discusses the design of Paradox and the
application of lessons learned from a previous version
of the game called Flow Jam. Paradox and Flow Jam
were developed at the University of Washington De-
partment of Computer Science and Engineering, as a
collaboration between the Programming Languages &
Software Engineering Group and the Center for Game
Science.

2. Verification Approach
Our verification approach is based on type theory. To
verify a security property, the types in a program must
satisfy certain type constraints. As a simple example, if
the program contains the assignment statement “x = y”,
then the type of x must be a supertype of the type of y.
Therefore a proof of correctness can be thought of as a
set of constraints involving the statements of the pro-
gram.

A Paradox game level can also be thought of as a set of
constraints that a player is trying to solve. Like many
puzzle games, in order to complete a Paradox game
level, the player must find consistent settings for all the
game elements.

Because both Paradox and type-checking are based on
constraints, it is possible to create a Paradox level that
corresponds to a given piece of code. Specifically, our
type analysis system takes as input a Java program and
a security property, and it generates as output a set of
type constraints that the Paradox game presents to play-

ers as a puzzle to solve. When a player adjusts a game
element, this corresponds to selecting a different type
for a variable. Because the actual type system con-
straints are displayed as simple game mechanics, play-
ers can help perform verification tasks without needing
any prior knowledge of software verification.

If the player is able to solve a given level, the player
has also generated a proof that the input piece of code is
free from vulnerabilities for the given security property.
If the level cannot be fully solved, the constraint graph
must contain certain inconsistencies that correspond to
type-checking errors for the program -- potential securi-
ty vulnerabilities that can be examined by a verification
expert.

3. Paradox Game Play

Figure 2-1: Paradox variables, constraints, and con-
flicts.

A Paradox level’s elements represent variables and
constraints from the underlying constraint problem (see
Figure 2-1). A variable node is either light blue or dark
blue, representing type qualifiers or their absence in the
code being verified. A constraint node requires that at
least one of the connected variables has a certain value.
If none of the variables for a given constraint are the
correct value, then the constraint is marked as a con-
flict. Edges are the connections between a variable and
a constraint when a constraint contains a given variable.

Figure 2-2: A Paradox level representing the formula:
¬x0 ∧ (¬x0∨ x1). The red circles represent conflicts
are shown for the unsatisfied constraints involving
variables x0 and x1.

The player’s goal is to find a setting for the variables
that minimizes the number of conflicts. Currently, we
represent the variables as boolean values and the con-
straints as disjunctions over variables or their negations,
making the problem the players are solving a maximum
satisfiability problem (MAX-SAT) (Figure 2-2). Expos-
ing MAX-SAT problems to human players is similar to
the approach taken by the game FunSAT [24; 25].

4. Maximizing Human Contribution
In order to maximize the contribution that untrained
human players can make to the verification process,
players should focus on the portion of problem that is
least solvable by automated methods. Up to a certain
size, constraint graphs can be solved rapidly by auto-
mated solvers and are not challenging for human play-
ers. Very large constraint graphs, however -- corre-
sponding to real-world programs such as Hadoop -- can
be difficult to understand and present multiple problems
for user interface design. A previous version of this
game, Flow Jam, required players to toggle variables
(in that game called “widgets”) individually, which did
not scale well to larger levels where humans were most
needed.

To address this, Paradox provides a “paintbrush” mech-
anism that allows the player to select arbitrary groups
of variables. The player can change them all at once, or
the computer can automatically solve them (for groups
up to a predetermined limit). Different paintbrushes can
allow the player to apply different automated algo-
rithms to their selection. Thus, the main feature of Par-
adox gameplay is the player guiding the automated
methods: deciding which areas of the graph to solve
and in what order. Currently players have access to four
paintbrushes that have the following effects on the se-

lected variables: set to true, set to false, launch an exact
DPLL optimization [26; 27]or launch a heuristic GSAT
optimization [27]. These optimizations are the two
phases of the maximum (MAX-SAT) solving algorithm
suggested by Borchers and Furman [28]. New optimiza-
tion algorithms can be added to the game as additional
paintbrushes.

Additionally, in Paradox, human players are never giv-
en small optimization problems (for example, toggling
the values of 50 variables to get the optimal score) since
automated methods can solve that scale of problem.
Instead, they are consistently provided with large and
challenging problems that are computationally intracta-
ble to solve in an automated manner.

5. Maintaining Player Interest
In a normal game, levels are created by a game designer
with the aim of creating a fun and engaging experience
for players. In a formal verification game, however, the
levels that are most valuable for players to solve are
those generated from the code that is being verified.
Since the code in question was most likely created for a
very different purpose than making an interesting game
level, sometimes levels contain oddities such as enor-
mous sections that are not integral to the solution.
Worse, some levels are very large but consist only of
repeating structures, resulting in puzzles that are not
interesting or challenging for human players.

To study player preferences, a comparable batch of
levels was synthesized -- that is, generated randomly
and not based on real-world Java code. Using Flow Jam
(the previous version of Paradox), real versus synthe-
sized levels were compared by surveying players to see
which type of levels were found enjoyable. Synthesized
levels designed to maximize complexity were clearly
preferred, with an average 65% preference rating, over
real levels, which averaged a 30% preference rating.

Figure 2-3: A previous version of the game, Flow
Jam, required players to adjust variables individu-
ally.

 Although not a rigorous comparison, this indicates that
there is room for improving levels generated from real
code. We do not yet know whether this preference for
synthesized levels in Flow Jam carries over to levels in
Paradox.

To ensure that levels generated from real-world code
are interesting enough to entice non-expert human
players to solve them, our system adjusts the constraint
graphs before they are served to players. For example,
irrelevant parts are removed, and a level is broken down
into independent levels when possible. If a level can be
automatically solved, then it is never given to human
players. Subparts of a level may be solved before the
player ever sees it. We plan to perform a study compar-
ing levels directly from Java code to levels optimized
for human engagement.

6. Solution Submission and Sharing
Game players on the Internet are not obligated to persist
in playing until a level is solved. We found that many
players of Flow Jam would make some amount of pro-
gress, but very few of them would follow through and
submit or share their results. Before changing our sub-
mission process, there were only about 3,300 submis-
sions compared to about 100,000 levels played (note
that players could make multiple submissions on an
individual level if desired). Players would often quit
midway through without returning to their current state,
or fail to notice the level submission/sharing functional-
ity even though they were making progress on the lev-
els.

To address this, Paradox automatically submits level
configurations to a central server whenever the player’s
score increases. This takes the burden off of players to
manually submit their solutions for evaluation. By add-
ing these submissions back into the system as new level
starting points, it also allows future players of a given
level to begin with the progress that prior players have
made, without requiring them to proactively share solu-
tions with each other.

7. Sense of Purpose
Another aspect of working with a human population of
solvers is motivation. Playtesting has shown that, if
players do not understand what they are doing and why
they are doing it, they quickly lose interest in the task.
In early versions of Paradox, players were given the
optimizer brush and tasked with painting around con-
flicts to solve them, leaving them with no sense of what
they were actually doing to solve the levels. To fix this,
the tutorial now includes a few levels where players
must change variables manually. Playtest feedback in-
dicates a much better understanding of the underlying

problem and a general sense of purpose when players
are required to adjust individual variables in tutorials
before using optimizer brushes.

8. Results
Since the public launch of the combined verigames.com
portal in December 2013, over 6,000 unique players
have played Flow Jam for a combined total of over
7,500 hours of play and over 34,000 level submissions.

In addition, we completed an experiment on Hadoop to
test how much expert analysis time is saved using in-
ference and Verigames. Two developers annotated a
program, one starting from unannotated source code
and one starting from game results (inference). Each
continued manually until the program type-checked.

There were a total of 23 annotations required. Of the
two conditions, unannotated code required 45 minutes
total time (7 minutes of type checking and 38 minutes
of manual effort) versus 4 minutes total when starting
with game results (3 minutes of type-checking and 1
minute of manual effort).

Not included in these timing were the annotation of
APIs (determining the proof goal, required in both cas-
es), and gameplay (crowd time, machine time to gener-
ate levels). Note that the game computed correct anno-
tations in this case (the human merely verified them).

9. Conclusions
Due to its crowd-sourcing approach, the CSFV program
is as much about game design, human-computer inter-
action, and human behavior as it is about formal verifi-
cation of software. The lessons that have guided devel-
opment from the earlier game Flow Jam to the current
game Paradox naturally point towards future areas of
study. These topics include player performance versus
fully automated methods, player effectiveness with dif-
ferent graph representations and groupings, and differ-
ences between volunteer players and compensated
players. Also, given its general nature, problems from
other domains that can be encoded as maximum satisfi-
ability problems (MAX-SAT) could be used to create
levels in Paradox. The game design may also extend to
other types of constraint satisfaction problems that can
be visualized as a factor graph.

Solution 3: Ghost Map and Hyperspace

Ronald Watro, Raytheon BBN Kerry Moffit, Raytheon BBN
John Ostwalk, Raytheon BBN Eric Church, BreakAway Games

Dan Wyschogrod, Raytheon BBN Andrei Lapets, Raytheon BBN
Linsey Kennard, Raytheon BBN

1. Introduction and Approach
The Ghost Map project is led by Raytheon BBN Tech-
nologies with support from Breakaway Games, the
University of Central Florida, and Carnegie Mellon
University. Ghost Map uses model checking as its
software verification technique. The fundamental con-
cept of model checking is that properties of a complex
system can sometimes be most effectively deduced by
creating and reasoning about a simplified model of the
system rather than the system itself. For software, the
control flow graph (CFG) of a program is a simplified
model of the program’s actual executions. Many of the
software correctness properties from the SANS/MITRE
Common Weakness Enumeration (CWE) list [29] can
be associated with a set of control flow patterns. The
Ghost Map underlying mathematical engine takes a
program and a CWE and identifies any paths through
the program’s CFG that have the potential to violate the
correctness property. Each such path is built into a lev-
el in the Ghost Map game. During game play, the play-
er performs actions that attempt to resolve the potential
violation path, that is, to establish that the path is not
realizable in the program. If all the levels for a program
and a CWE are resolved by game play, then we have a
proof that the program is free from the CWE vulnera-
bility. In model checking terms, Ghost Map game play-
ers perform counterexample-guided abstraction refine-
ment (CEGAR), in that they extend the CFG to a more
precise model as necessary to verify the correctness of
the software with respect to the CWE in question. The
verification approach used by Ghost Map is based on
the MOPS tool, which was shown successful over a
series of papers [30; 31]. Ghost Map game play at-
tempts to resolve the potential violations identified by
MOPS, with the goal of reducing the numbers of false
alarms that waste the time of programmers and verifica-
tion experts. In the future, the Ghost Map approach
could potentially be combined with commercial tools
that generate vulnerability warnings, such as Coverity
and HP Fortify.

2. Ghost Map
The high-level theme of Ghost Map is that the player is
a cybernetic entity attempting to achieve consciousness.

The software CFGs are described as aspects of the cy-
bernetic entities own programming and the potential
violation paths in the CFG are called locks, meaning
obstacles to consciousness. The player/entity resolves
the paths in order to break the locks and achieve its
goal. The cybernetic entity theme is not deeply devel-
oped in the initial game and it is possible for players to
ignore the theme and play purely abstractly if they so
choose.

Figure 3-1: Simple Example of Ghost Map Level

A simple example of a Ghost Map game level is shown
in Figure 3-1. The software CFG is the X-like pattern
in the middle of the figure. The three node graph in the
box in the lower right is a representation of the software
vulnerability being addressed. The purple arrows on
the CFG show a potential violation path that must be
addressed. The player uses game tools to “cleave” the
haloed node into two nodes. After the cleaving opera-
tion, a modified CFG will appear and each of the new
nodes will have just one incoming edge. The player
then is able to propose the elimination of the new path
that contains the blue edge. More details on the game
play of Ghost Map are available in Watro et al. [32] and
at the Verigames web site.

3. Ghost Map Hypersapce
For the second game, the team decided to retain the
underlying mathematical approach but to update the

game. The new game, called Ghost Map Hyperspace,
addresses several observations from early play testing.
First, initial play testing showed that players lacked the
needed information to make informed choices on path
elimination proposals. The vulnerability pattern win-
dow in the game did allow users to infer that certain
paths would be valuable to eliminate, but nowhere in
the game was their data that suggested that a path could
be successfully eliminated. The Hyperspace game at-
tempts to resolve this issue with the use of “energy
analysis,” discussed below.

Another observation from Ghost Map was that cyber-
netic organism theme was confusing at times, as the
game narrative concepts such as the organism’s soft-
ware overlapped with the underlying verification con-
cepts, such as the software being proved correct. Also,
the theme did not seem to foster engagement from
players. For Ghost Map Hyperspace, we adopted a
“space opera” theme that we believe will be more en-
gaging, less confusing, and will allow easy expansion
of the narrative to cover the new data that supports path
decisions.

Figure 3-2: Example of a Ghost Map Hyperspace
Level

Finally, one of the issues with Ghost Map is the signifi-
cant delay required to process the path elimination in-
put. In Ghost Map Hyperspace, we include additional
game play activities that are integrated with the overall
theme and occur while the path elimination process is
running. We are hopeful that this new feature will sup-
port a more balanced game play experience.

Figure 3-2 shows a screen shots from Ghost Map Hy-
perspace. The potential violation path is shown as a
highlighted segment of a portion of the CFG, much as
in Phase 1. In the new narrative, the potential violation

path is a rift in hyperspace that the player is attempting
to seal. In Figure 3-3, we see a second example where
variable reads and writes in the software have been
modeled as energy exchanges and displayed in the chart
at the bottom of the game window. These energy anal-
ysis readings allow the game player to make better path
removal suggestions since they reflect actual data ex-
changes in the software. Once the elimination sugges-
tion is completed, a combat game begins that represents
alien ships slipping through the rift to attack. Points
scored in the combat game add to the players total and
the rift sealing results (determined by the math back-
end) are released at a later point in game play. More
information on the player engagement strategy in Ghost
Map Hyperspace can be found in Moffitt et al [33].

Figure 3-3: Using energy clues to seal rifts

4. Ghost Map Summary
Since the initial release in December 2013, more than a
thousand users have played Ghost Map and hundreds of
small proofs have been completed. Ghost Map demon-
strates the basic feasibility of using games to generate
proofs and provides a new approach to performing re-
finement for model-checking approaches. In addition
to the immediate benefits of verifying software using
games, we also anticipate that the Ghost Map approach
may enable new automated methods as well. Through
the intermediate representations we have developed and
the proof tools we have created for validating edge re-
movals, we believe the possibility of creating novel
refinement algorithms is significant.

Solution 4: StormBound and Monster Proof

Aaron Cammarata, VoidALPHA Aaron Tomb, Galoi, Inc.

1. Introduction
Our team is Galois, specialists in formal methods, and
voidALPHA, a videogame studio. We first built
StormBound, which challenged players to find patterns
in magical energy and save their planet. Based on les-
sons learned from StormBound, we are building Mon-
ster Proof, in which players solve puzzles to gather re-
sources and become wealthy beyond desire.

2. Verification Approach
Our games used two different implementations of the
same verification approach. In the games, players use
their intuition and insight to generate assertions about
the code being verified. The verification back end cre-
ates individual puzzles, which are then presented in-
game. It assembles player answers (logical assertions),
and tries to perform an end-to-end verification.

In StormBound, our approach was to instrument the
code being verified, and take snapshots of the software
during execution. This generated ‘trace data’, which
captured the values of in-scope variables at key pro-
gram points. The players identified patterns in those
data, for example noting the relationship between an
integer function parameter and the size of a local array.
Taken collectively, these player-generated assertions
sketched out a spec for ‘normal operation’ of the pro-
gram, which in turn acted as hints for the verification
solvers.

In Monster Proof, we establish the weakest precondi-
tion under which a desired property holds for a block of
code. We then ask the player to discover invariants that
prove the preconditions by using pre-defined rules to
transform or supplement those preconditions. For a
trivial example, a player may be tasked with proving
the precondition “a < c”, by identifying the invariant “a
< b” in a context where “b < c” is already known.

3. Game Descriptions
StormBound is:

• Story-driven engagement

• In a “Magepunk” universe, a blend of
brass/steam and glowing magical runes

• Designed to “completely hide the math”: allow
players to make assertions without any math or
numbers in-game

Figure 4-1:StormBound play screen

• Targeted to a broader, casual audience

• Created with Unity Webplayer, embedded in a
MeteorJS web page

Figure 4-2: Monster Proof Game Screen

Monster Proof is:

• A Resource-gathering and collection

• Utilizes cute cartoon monsters, with an em-
phasis on tongue-in-cheek humor

• Designed to to “completely show the math”:
give players tons of context, and focus on effi-
ciency and comprehension

• Targeted to a focused puzzle-game audience

• Created with Famo.us for HTML/CSS Sprites,
and MeteorJS for web page / server

4. Game Results
The audience of the StormBound followed a typical
industry adoption curve – numerous players up front at
launch, tapering off to a steady state, trailing off over

time. All told, 10,650 players tried the game, 7,264 in
the three weeks after launch in December 2013. The
game continued to attract about 150 players / week until
June, then dropped to near zero.

We received 142,711 valid assertions – successful solu-
tions – generated over 2,919.2 hours. Note: levels can
have multiple solutions. (All figures exclude CSFV
team members.)

In order for a level to be verified, it must have at least
one player-generated answer. By the end of the active
play period, players had contributed to 4,361 out of
6,523 levels (66.8%).

When we began, automated tools could discharge about
19% of the work with no human input. Improvements
to automated tools done under the CSFV program re-
solved an additional 15%, and player-assisted levels
solved an additional 15%, totaling about 49%. Once
automated tools remove some of the workload, players
completed 22.3% of the remaining work. Note that all
of these measures apply to verifying program properties
in isolation rather than across the entire code base—a
weakness we are addressing in the Phase 2 game.

The original code base was about 300,000 lines of code
(LOC), so players touched about 103 LOC per hour of
gameplay, and contributed to verifying 15.4 LOC per
hour. The reason these differ is because as you’ll see, in
StormBound it was possible to give us an answer that
isn’t useful for making verification progress – players
could easily ‘waste’ effort.

As with any free-to-play offering, players dropped off
quickly as they went through our tutorials. Of the
10,650 registered players who watched the intro story
cutscene, only 2,048 (19.2%) completed the sixth tuto-
rial, which is when the player begins contributing to
verification progress. This is analogous to the “conver-
sion rate” – the percentage of players who convert to
paying customers. Since this is a research effort, we
define ‘conversion’ as ‘contributing to the problem’.
Standard industry conversion rates are often in the 3%
range, so 19% might indicate that players motivated by
“contributing to science” are more invested in sticking
with the game.

5. Assessment & Lessons Learned
According to Flow Theory, much of a game’s enjoy-
ment comes from a delicate balance between a player
feeling competent and feeling challenged. Game de-
signers craft complex game systems that aim to self-
regulate and adapt to player skills, or at least provide a
measured, reasonable path of progression.

The biggest challenge in a ‘real science game’ is that
the solutions for levels are by definition unknown, and
unknowable - if the answer could be computed, the
system would not need the players. This means there is
no reliable predictor of level difficulty. A ‘small’ level
can be impossible to resolve, while a very large level
with lots of data might require only a single action to
solve, like collapsing a house of cards with a gentle tap.
In StormBound, this was exacerbated by the fact that
even after we got a player’s solution, we didn’t know if
it would help verification. It may have been an interest-
ing fact, and true, but not necessary to construct a
proof. The analogy we used was ‘shooting mosquitos
with a shotgun’. Players could generate lots of true as-
sertions, but determining their usefulness could take
days. Not being able to give players immediate feed-
back really hamstrung our ability to use common game
feedback mechanisms.

In Monster Proof, we are addressing these issues by
putting the verification engine closer to the player. As
you play a level, you know what it is you’re trying to
build (there is a clear ‘goal’ for each level), and you
know unequivocally whether you solved it or not. It is
still possible to do a certain amount of ‘solution by intu-
ition’, but generally you know which pieces of the puz-
zle are relevant and which are not. We are investigating
if this improves two metrics. First, we believe that it
will result in better retention. The highly math-centric
style might discourage some users, resulting in a small-
er audience, but we theorize that the players who do
continue with the game will find it far more satisfying
than those who started StormBound thinking they’d be
playing a cool space RPG and found only an unsatisfy-
ing make-work task. Second, we feel that the increased
context and transparency within the core game will
greatly reduce ‘effort waste’. That is, we are replacing
the player’s shotgun with a (figurative) set of building
blocks and a target shape. It’s then up to the player to
assemble the blocks, using known and teachable rules,
into the desired shape. Players should be able to address
the complete problem more quickly, and produce more
verification progress during an equivalent amount of
gameplay.

Another challenge of designing these games is some-
thing we have come to call “The Bump”. That is, the
transition between custom tutorial levels, designed for
clarity and pedagogy, into ‘real’ levels derived from the
code. Because there is no way to classify level difficul-
ty, players are effectively ‘thrown into the deep end’ –
because all of the actual problems are deep end. The
only remotely effective solution we identified was to
make players fairly skillful before letting them into the
‘real data’ pool. This results in a long ramp-up time

before you can contribute, and feeling like a ‘citizen
scientist’ is a key motivator for people who play these
games. Requiring 30-60 minutes of tutorials before you
can help is frustrating, and leads to churn (player depar-
ture).

Worse, it’s possible that a level is, in fact, unsolvable –
and it is impossible to know this in advance. To account
for this, designers need to provide a way to ‘win’ even
unwinnable levels. In StormBound, this could only be
detected if players made every possible assertion
through the game UI (which could take hours or even
days). In Monster Proof, a player can demonstrate that a
level is, in fact, unsolvable. They can then “bang a gav-
el” to assert that the level is unsolvable (possibly indi-
cating that the code is in fact unverifiable), and place a
bet on that assertion. If someone else is later able to
solve the level, the first player loses her bet, while the
second collects it. If three players report that a level is
unsolvable, we set it aside for expert review, and re-
ward players. It is important that, again, since gameplay
emerges from data over which you have no control,
players have a way to feel successful in all cases.

Tutorial design was also challenging – we struggled to
find the best ‘voice’ for the narrator / instructor. Since
our tutorials needed to teach more than just basic game
mechanics, we vacillated between speaking “game” and
“science”. In StormBound, because we were math-
phobic, we twisted and contorted our script to fit into
the game universe’s vocabulary. Our intent was to al-
low players to relax into the game narrative and not
break the ‘fourth wall’. Instead, it frustrated players,
who just wanted to know what everything actually
“was”, so they could work with it. In Monster Proof, we
are using a lot less game language, and while we have
not completely eliminated such language, we are being
a lot more cautious and intentional to use game-themed
language only where it affects the resource collection
meta-game, and not the core logic problem.

As we designed the games, we thought quite a bit about
“griefing” – cheating or interfering with other players.
This did not happen, but sometimes players gave us lots
of useless answers (and scored tons of points) because
they game told them they were doing well. The key
takeaway is that players want to help, so you need to
give clear feedback about what you need.

Thematically, we found that the primary motivator for
players was in fact the ‘citizen scientist’ role. It’s im-
portant to give them feedback about their effort in terms
they can understand, preferably in the language of the
underlying science.

We found that although players wanted to contribute to
science, they didn’t want to learn it. Many players dis-
missed or skimmed tutorials, then complained they
didn’t understand the game. This remains a point of
design friction for which we do not have a great solu-
tion.

Finally, as development unfolded we discovered how to
automate certain classes of solution. In StormBound,
we did not do very much automated solving. In Monster
Proof, we are automating everything we can, so players
will not be given ‘busy work’. We do have a concern
that this leaves only very challenging levels, which will
exacerbate the issue with level difficulty.

5. Conclusions & Future Work
We feel the key takeaway from projects like CSFV is
that ‘utilitainment’ is here to stay. Games and applica-
tions like these are the very first, unstable steps of a
new industry, in which high-cost, high-skill, low-supply
work is done by a low-cost, low-skill, high-supply
crowd. As game designers, we are only just beginning
to understand how to craft a satisfying, entertaining
experience that produces useful results. We believe that
with continued work, game-based work on problems
that require human intuition (i.e. are not easily automat-
ed) could be a viable industry within the next 10 years.

Solution 5: Xylem and Binary Fission

John Murray, SRI International Heather Logas, University of California, Santa Cruz
Jim Whitehead, University of California, Santa Cruz

1. Introduction
In this section, we describe two games developed: Xy-
lem: The Code of Plants and Binary Fission. Xylem is a
logical induction puzzle game where the player plays a
botanist exploring and discovering new forms of plant
life on a mysterious island. Players observe patterns in
the way a plant grows, and then construct mathematical
equations to express the observations they make. In
doing so, players work in concert with the game’s me-
chanics to perform loop invariant synthesis.

Xylem was designed with a “casual niche” audience in
mind. The idea was to appeal to as wide a player base
as possible, while addressing the concern that including
mathematical game play would somewhat limit the au-
dience. To that end, the game design team chose to use
a visual metaphor (plants, for their representational
flexibility) and make the gameplay as light on math as
possible while still supporting the underlying formal
verification problem. Focus was given to creating a
smooth player experience in a typical casual game to
avoid confusing players. However, this approach
proved to be largely ineffective in addressing the
broader task of crowd-sourcing formal verification.
 Casual players were not interested in the math oriented
gameplay, while those who enjoyed the science goals
were frustrated by the lack of more advanced math
tools with which to describe patterns.

The second game, Binary Fission, sought to address
these problems by taking the project in a new direction.
Instead of addressing pure game players, we instead
focused on a “citizen science” audience. Player reports
from Xylem indicated that those most engaged in the
game were also those who were interested in the actual
CSFV program goal, i.e. formal software verification.

The project is led by SRI International, a non-profit
research institute based in Menlo Park CA. Xylem and
Binary Fission were both designed and developed at the
University of California at Santa Cruz. The verification
infrastructure is provided by CEA, the research arm of
the Atomic Energy Commission in France.

2. Verification Strategy
Xylem problems were generated from source code using
Frama-C, with an additional value analysis module.

Sets of variable values were delivered to players as
game instances. A fast response to players' proposed
solutions is key for reward and retention. However,
traditional confirmatory analysis of invariants can take
many hours of CPU time, and is thus impractical in a
game environment. Using a Hasse partial ordering ap-
proach, in conjunction with our backend verification
modules, enables us to sieve play results and enables an
initial coarse ranking of candidate invariant solutions.

For progress metrics, we use abstract interpretation-
based software analysis to determine the overall poten-
tial state space. We propagate states to encompass all
possible execution paths. State space management is a
key issue for industrial-strength software analysis. It
triggers non-termination, over-widening, and false
alarms during the analysis process. Frama-C/Value
Analysis takes advantage of crowd-sourced candidate
invariants to significantly reduce its state space.

3. Game Descriptions
Xylem is a logical induction puzzle game where players
are botanists exploring the strange island of Miraflora.

Figure 6-1:Xylem: Miraflora Island

Players are tasked with observing and comparing the
growth patterns of the plants they discover, as they
travel around the island. The Floraphase Comparator is
used for this purpose. In describing the growth patterns,
the players also provide candidate loop invariants for
the CSFV verification task.

Figure 6-2:Xylem: Floraphase Comparator

Each region of Miraflora contains increasingly hard
problems. Access to interior regions is granted only
when the entire player base has collectively solve a
certain number of problems in earlier areas.

In the second game, Binary Fission, players still work
with loop invariants, but now they refine searches per-
formed by an automated system instead of creating
simple invariants from observations of data changes
over time. Binary Fission presents players with an ab-
stract tree-like structure of nodes. Each node contains a
number of “bits” (or “atoms”, as players like to call
them) in either purple or green. The player’s job is to
sort the bits using provided filters, in an attempt to cre-
ate “clean sets” -- that is, nodes which contain only one
color of bits. As an additional challenge, players must
create these clean sets while using as few nodes as pos-
sible (i.e. performing as few as possible sorts).

Figure 6-3:Binary Fission: Tree Structure

For each node, the game provides up to a hundred fil-
ters to choose from. The filters are presented as small
spheres set in a circular container. As players move
their mouse cursor over the spheres, they are shown in
real time how that particular filter would sort the node.

 This takes advantage of a key thing humans can do
better than computers - visual pattern recognition. Play-
ers can additionally save filters for later in case the one
they have chosen doesn’t produce the results they
would like later in the filtering process.

Figure 6-4:Binary Fission: Fliter Selection

The auxiliary Binary Fission feature set is very light,
since our goal is to keep players focused on solving
problems. The game features live chat, in order to fos-
ter a sense of community among players and help with
player retention. Binary Fission also clearly shows
community progress in the form of number of problems
solved on the main menu screen, in order to reinforce
the sense of collaborative citizen science.

4. Lessons Learned
Xylem: The Code of Plants was designed with a “casual
niche” audience in mind. Our concept was that, even
though we could not legitimately pursue a truly “casu-
al” audience (by game industry definitions) due to the
math gameplay inherent in the core game design, it
would still be worthwhile to pursue as “casual an audi-
ence as possible.” This was important in order to bring
in more players, which we believed would best take
advantage of the crowd-sourcing nature of the applica-
tion. To attract and keep this audience, we created a
game around math-based puzzle solving, but with as
lightweight math as we could manage (while still keep-
ing the integrity of the science task) and within the
bounds of a narrative-oriented casual puzzle game.

Xylem turned out to attract a much smaller audience
than we would have preferred. The math oriented game
play was not (for the most part) appealing to the larger
puzzle game audience. Instead, we found that the play-
ers who most enjoyed Xylem were most likely to be
people who came to our game with an already estab-
lished interest in math and computer science, and were

drawn by the stated science objectives. During the first
nine months of gameplay, our top 20 players submitted
a total of 1754 invariant solutions.

In designing Binary Fission, we decided to change our
tactics. Instead of attempting to bring in the largest
crowd possible, we decided to focus on pulling in a
high quality crowd. We changed our approach com-
pletely in order to attract and maintain a different sort
of audience - citizen scientists who are interested in the
science problem being solved.

Building off the lessons learned from our experience
with Xylem, as well as additional research into automat-
ed invariant synthesis and design principles from other
successful citizen science projects, we believe that Bi-
nary Fission will provides better CSFV results than
Xylem for several reasons. For example, as a citizen
science project, our recruitment policy draws in players
who are interested in cybersecurity, many of whom are
less likely to have conflicts with mathematical game-
play. Also, our science goals are transparent within the
game itself and in all marketing materials.

Binary Fission partners with other methods of crowd-
sourced synthesis of candidate invariants, such as Xy-
lem and similar CSFV games, as well as automated
generation of candidates. Thus, players are asked to
guide searches through suites of potential invariants,
rather than produce invariants from scratch (although
players are able to do this too). The game thus inte-
grates the best skills of both the human and computer
partners. Binary Fission enables the creation of disjunc-
tive invariants, which is a key advantage over tradition-
al automated systems.

Binary Fission emphasizes community, an important
aspect of successful citizen science projects, through
better-integrated chat, active community management,
and regular community events. The game also allows
for more player choice by allowing them to select puz-
zles to work on from a visible group of problems every
time they play. The Binary Fission tutorial assumes a
higher level of sophistication in players, and therefore
focuses on teaching the game interface rather than
teaching about the game. The tutorial is much shorter,
allowing players to reach productive ability levels much
faster.

5. Conclusions & Future Work
Our vision of appealing to a less-math-literate audience
with Xylem was not as successful as we anticipated,
primarily because of the complexity of some solutions
and/or the potential lack of clear answers for certain
problems. In addition, the nature of the verification
challenge made it difficult to consistently assign levels

of difficulty to problem instances. We nonetheless
were able to make a largely inaccessible task accessible
to a wide variety of people, making it instantly under-
standable to advanced players and less alienating to
those who will not necessarily become experts but want
to try the game. Discovering the characteristics of our
true audience helped to drive the design of updates to
Xylem and to inform the strategy for Binary Fission.

Looking beyond the first release of Binary Fission, we
plan to support different levels and styles of play, with
at least two distinct play styles that are interdependent
on each other. These roles will allow for different ex-
penditures of cognitive energy; less-math-literate play-
ers who are interested in contributing to the science
goals of the project can contribute alongside those who
are more math-sophisticated. Further, players can
switch freely between roles as they see fit. Binary Fis-
sion will also offer more player choice by allowing
them to select from a visible group of problems every
time they play. Solutions will also be forkable, so that
multiple players can take a single problem in several
different directions.

Conclusions and Lessons Learned
Overall, across the development of these five efforts,
the crowd-sourced formal verification has shown mixed
success in demonstrating the potential for crowdsourc-
ing to enrich the formal verification process. In each
effort, solutions have been collected from numerous
players, providing significant progress towards formal
verification proofs. Furthermore, these efforts provide
several critical lessons that drove the development of
the second set of formal verification games that are now
being tested, and that can be readily extended to other
citizen science and game-based crowdsourcing efforts.

One key lesson learned across several of these efforts is
to know the player population. At the start of the pro-
gram, a key focus was to develop games that would be
engaging enough to bring crowds of players with no
significant mathematical background. We quickly
learned that this was not the best way to motivate high-
contributing players. Rather than drive a general popu-
lation, each of these games was better served by citizen
scientists with a strong interest in the underlying sci-
ence and outcome of the effort (e.g., players with a
mathematical and computational interest and/or back-
ground). While it is important for the games to be en-
gaging for citizen scientists, it is perhaps more im-
portant that these players understand the types of con-
tributions they are making and the impact they are
having on addressing the scientific problem. That com-
bination of intrinsic and extrinsic value to the player
has been the greater focus for the second round of
games, which will be tested over the summer of 2015.

Scientific tasks, such as those performed in the course
of formal verification, often involve both complex logi-
cal or abstract problem-solving and simple, rote repeti-
tion of previously learned strategies. The most valuable
work on these problems can only be done once the re-
petitive solutions have been exhausted. This pushes the
creators of a game-based task to teach concepts to the
player in rapid succession, in hopes that the player will
learn enough to contribute meaningfully before walking
away from the game. With so many concepts to teach, it
becomes difficult to keep the terminology simple and
accessible and to give the player enough of an oppor-
tunity to practice and grasp a concept before the next
one is introduced. Our teams took several approaches to
solve this problem in the second round of games, from
progressions of tools that teach the player key concepts
when they are unlocked to video tutorials using humor-
ous in-game characters to keep the player entertained
while learning to play.

Related to this, a key challenge in any citizen science
gamification effort is navigating the tradeoff between

making a game engaging and making the game address
critical problems. When the game is being designed for
a very specific purpose, game designers have a limited
ability to modify game elements to drive a more engag-
ing experience. Rather, the game must capture and ad-
dress a specific, structured problem—and cannot stray
too far from the structure of that problem in the process.
One way to address this issue is to separate the puzzle-
solving process (related to addressing actual citizen
science problems) from a game section that is focused
on fun and accomplishment. While this can be a suc-
cessful approach to make the games more engaging,
providing that engaging game can limit the contribu-
tions that are made by the game players (who may wish
to spend more time on the fun game than on the puzzle-
solving process). Our teams took a variety of approach-
es to address this problem, ranging from targeting citi-
zen science audiences (as described above) to incorpo-
rating the engagement elements during downtime in the
puzzle-solving process to maximizing the use of human
intuition and insight for problem-solving, which makes
the problems more fun to solve.

Related to this latter element, many of the games bene-
fited strongly from incorporating an autosolver to ad-
dress wide segments of the problem. Rather than having
the human address every element of the computational
problem, humans were focused on either guiding the
autosolver (e.g., in the case of Paradox and Dyanamkr)
or addressing only the complex problems that need hu-
man insights. When there are numerous tedious prob-
lems that need to be solved on the way to addressing a
larger computational problem—as is the case in formal
verification proofs—autosolvers can be extremely use-
ful to manage the work that must be addressed by citi-
zen scientists. However, they pose a number of chal-
lenges as well. For example, overusing automation can
lead players to question whether the computer is really
doing all the work and if so, why they should bother to
play at all. In addition, if players have a limited under-
standing of what the automation is doing, and, because
of that, a limited understanding of what they are doing,
it will lead to errors, frustration, and attrition. This is
further exasperated by the bump in complexity from
training levels to live levels (which are often a lot more
complex than the levels used to train players on the
game concept). Ultimately, judicious use of an auto-
solver that allows citizen scientists to focus on the prob-
lem aspects where they can make the greatest contribu-
tions and learn the details as they need them can make
the game more fun and more accessible.

Across all of these individual points we find that the
main lesson has been the challenge of turning a task
into a game without sacrificing too much of the player's

time on pure engagement mechanics and without com-
promising the value of the task. It is easy to focus too
heavily on the constraints of the task and to lose focus
on the things that constrain good games: clarity (of
goals and the consequences of actions) and value to the
player (through entertainment, improvement, social
rewards, etc). Without these things, the game fails to
motivate play and the opportunity to leverage leisure
time to accomplish scientific goals can be lost.

Disclaimed and Acknowledgements
This research was developed with funding from the
Defense Advanced Research Projects Agency
(DARPA). The views, opinions, and/or findings con-
tained in this article are those of the authors and should
not be interpreted as representing the official views or
policies of the Department of Defense or the U.S. Gov-
ernment.

References
[1] Hoare, C. A. R. (2002). Proof of correctness of
data representations.: Springer.

[2] Lampson, B. W. (1974). Protection. ACM
SIGOPS Operating Systems Review, 8, 18-24.

[3] Bell, D. E. and LaPadula, L. J. (1973). Secure
computer systems: Mathematical foundations. DTIC
Document.

[4] Lipton, R. J. and Snyder, L. (1977). A linear
time algorithm for deciding subject security. Journal of
the ACM (JACM), 24, 455-464.

[5] Neumann, P., Boyer, R. S., Feiertag, R. J.,
Levitt, K. N., and Robinson, L. (1980). A provably se-
cure operating system: The system, its applications, and
proofs.: SRI International.

[6] Feiertag, R. J. (1980). A technique for proving
specifications are multilevel secure. DTIC Document.

[7] Rushby, J. M. (1981). Design and verification
of secure systems. ACM SIGOPS Operating Systems
Review, 15, 12-21.

[8] Levitt, K. N., Crocker, S., and Craigen, D.
(1985). VERkshop III: Verification workshop. ACM
SIGSOFT Software Engineering Notes, 10, 1-136.

[9] Neumann, P. G. (1981). VERkshop II: Verifi-
cation Workshop. ACM SIGSOFT Software Engineer-
ing Notes, 6, 1-63.

[10] Landwehr, C. E. (1981). Formal models for
computer security. ACM Computing Surveys (CSUR),
13, 247-278.

[11] Young, W. D., Boebert, W. E., and Kain, R. Y.
(1988). Proving a computer system secure. ADVANC-
ES IN COMPUTER SYSTEM SECURITY., 1988, 3.

[12] U.S. Department of Defense (1985). Depart-
ment of Defense trusted computer system evaluation
criteria. DoD 5200.28-STD.

[13] Lowe, G. (1996). Breaking and fixing the
Needham-Schroeder public-key protocol using FDR.
Tools and Algorithms for the Construction and Analy-
sis of Systems, 147-166.

[14] Mitchell, J. C., Mitchell, M., and Stern, U.
(1997). Automated analysis of cryptographic protocols
using Murφ. Security and Privacy, 1997. Proceedings.,
1997 IEEE Symposium on, 141-151.

[15] Blaze, M., Feigenbaum, J., and Lacy, J.
(1996). Decentralized trust management. Security and
Privacy, 1996. Proceedings., 1996 IEEE Symposium
on, 164-173.

[16] Hu, W.-M. (1992). Reducing timing channels
with fuzzy time. Journal of computer security, 1, 233-
254.

[17] Cowan, C., Pu, C., Maier, D., Walpole, J.,
Bakke, P., Beattie, S., Grier, A., Wagle, P., Zhang, Q.,
and Hinton, H. (1998). StackGuard: Automatic Adap-
tive Detection and Prevention of Buffer-Overflow At-
tacks. Usenix Security, 98, 63-78.

[18] Toth, T. and Kruegel, C. (2002). Accurate
buffer overflow detection via abstract pay load execu-
tion. Recent Advances in Intrusion Detection, 274-291.

[19] Cowan, C., Beattie, S., Wright, C., and Kroah-
Hartman, G. (2001). RaceGuard: Kernel Protection
From Temporary File Race Vulnerabilities. USENIX
Security Symposium, 165-176.

[20] Klein, G., Elphinstone, K., Heiser, G., Andro-
nick, J., Cock, D., Derrin, P., Elkaduwe, D., Engelhardt,
K., Kolanski, R., and Norrish, M. (2009). seL4: Formal
verification of an OS kernel. Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems prin-
ciples, 207-220.

[21] Woodcock, J., Larsen, P. G., Bicarregui, J.,
and Fitzgerald, J. (2009). Formal methods: Practice and
experience. ACM Computing Surveys (CSUR), 41, 19.

[22] Rice, H. G. (1953). Classes of recursively
enumerable sets and their decision problems. Transac-
tions of the American Mathematical Society, 358-366.

[23] DeOrio, A. and Bertacco, V. (2009). Human
computing for EDA. Proceedings of the 46th annual
design automation conference, 621-622.

[24] Bertacco, V. (2012). Humans for EDA and
EDA for humans. Proceedings of the 49th Annual De-
sign Automation Conference, 729-733.

[25] Davis, M. and Putnam, H. (1960). A compu-
ting procedure for quantification theory. Journal of the
ACM (JACM), 7, 201-215.

[26] Davis, M., Logemann, G., and Loveland, D.
(1962). A machine program for theorem-proving.
Communications of the ACM, 5, 394-397.

[27] Jiang, Y., Kautz, H., and Selman, B. (1995).
Solving problems with hard and soft constraints using a
stochastic algorithm for MAX-SAT. 1st International
Joint Workshop on Artificial Intelligence and Opera-
tions Research.

[28] Borchers, B. and Furman, J. (1998). A two-
phase exact algorithm for MAX-SAT and weighted
MAX-SAT problems. Journal of Combinatorial Opti-
mization, 2, 299-306.

[29] 2011 CWE/SANS Top 25 Most Dangerous
Sofwtare Errors, http://cwe.mitre.org/top25/index.html.

[30] Chen, H. and Wagner, D. (2002).
MOPS: an infrastructure for examing security proper-

ties of software. Proceedings of the 9th ACM Confer-
ence on Computer and Communications Security
(CCS), Washington, DC.

[31] Chen, H., Wagner, D. and Dean, D. (2004).
Model Checking One Million Lines of C Code. Pro-
ceedings of the Network and Distributed Security Sym-
posium (NDSS). San Diego, CA.

[32] Watro, W., Moffitt, K., Hussain, T., Wysh-
cogrod, D., Ostwald, J., Kong, D., Bowers, C., Church,
E., Guttman, J., and Wang, Q (2014). Ghost Map: Prov-
ing software correctness using games. Proceedings of
the Eight International COnference on Emerging Secu-
rity Information, Systems, and Tecnologies (SE-
CUREWARE). Lisbon, Portugal.

[33] Moffitt, K., Ostwald, J., Watro, R.,
and Church, E. (2015). Making Hard Fun in
Crowdsourced Model Checking: Balancing Crowd En-
gagement and Efficiency to Maximize Output in Proof
by Games. Proceedings of the Second INternational
Workshop on Crowdsourcing in Sofware Engineering.
Florence, Italy.

