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Introduction 
The history of formal methods and computer security 
research is long and intertwined. Program logics that 
were in theory capable of proving security properties of 
software were developed by the early 1970s [1]. The 
development of the first security models [2-4] gave rise 
to a desire to prove that the models did, in fact, enforce 
the properties that they claimed to, and that an actual 
implementation of the model was correct with respect 
to its specification [5; 6]. Optimism reached its peak in 
the early to mid-1980s [7-11], and the peak of formal 
methods for security was reached shortly before the 
publication of the Orange Book [12], where the certifi-
cation of a system at class A1 required formal methods. 
Formal verification of software was considered the gold 
standard evidence that the software enforced a particu-
lar set of properties. Soon afterwards, the costs of for-
mal methods, in both time and money, became all too 
apparent. Mainstream computer security research shift-
ed focus to analysis of cryptographic protocols (e.g. 
[13; 14]), policies around cryptographic key manage-
ment [15], and clever fixes for security problems found 
in contemporary systems [16-19]. 

Our appetite for formal verification historically has 
been insufficient to limit our appetite to build ever larg-
er operating systems. In the 1980s, it was possible to 
verify a few hundred to a few thousand lines of code. 
By comparison, the 1986 release of the 4.3BSD Unix 
operating system had a kernel of approximately 50,000 
lines of code. From the 1980s to present, there have 
been numerous advances in formal verification technol-
ogy, for example, the introduction of software model 
checkers, (mostly) practical satisfiability solvers, and 
SMT solvers. The seL4 project [20] remains a highlight 
of modern operating system verification, with a mi-
crokernel of approximately 9,000 lines, took 11 person-
years, plus an additional 9 person-years of tool devel-
opment. For comparison, due primarily to the large 

number of devices supported, the 2013 Linux 3.10 ker-
nel has 15.8 million lines of code1. 

While the seL4 project is justifiably celebrated as a 
success, it also unfortunately reinforces the message 
that formal verification has scaling challenges. Based 
on the seL4 data, if one optimistically assumed linear 
scaling of effort vs. lines of code in formal verification, 
verifying Linux 2.6.24 with 8.9 million lines of code2 
from January 2008 would take 11,000 person-years, or 
nearly 3 years if all of the world’s estimated 4,000 for-
mal methods experts [21] productively working togeth-
er on a single project. With the average salary of a 
software engineer being approximately $93,000 in 
20133, we derive a direct cost of $1 billion for the veri-
fication effort. In those intervening 3 years, Linux had 
advanced to version 2.6.36, with an additional 4.5 mil-
lion lines of code. It is easy to see that this process will 
never converge, even with unrealistically optimistic 
assumptions! 

The time and cost of formal verification appeared to be 
an intractable problem outside of very specialized do-
mains, where cost and long development times could be 
tolerated for improved safety and security. If one exam-
ines the situation a little closer, the key to the problem 
is that the size of the available talent pool is limited by 
today’s formal verification tools, complete with user 
interfaces that can be described charitably as obscure. It 
is often said that an advanced degree in Computer Sci-
ence is necessary to use formal verification tools. If, 
however, this talent pool could be expanded, the key 
bottleneck to effective formal verification could be re-
moved. We note that automation, while proven very 
helpful by the seL4 effort, cannot provide a full solution 

                                                
1http://www.h-online.com/open/features/What-s-new-
in-Linux-3-10-1902270.html  
2http://royal.pingdom.com/2012/04/16/linux-kernel-
development-numbers/  
3http://money.usnews.com/careers/best-jobs/salary  



due to Rice’s Theorem [22], which established that 
most common questions about software are algorithmi-
cally undecidable.  Given that we cannot fully automate 
the verification problem, it is natural to attempt to add 
aspects of human intuition to the solution.  

Towards the goal of human-assisted verification, two 
remarkable circumstances converged: (1) the then di-
rector of DARPA, Dr. Regina Dugan, expressed interest 
in applying crowdsourcing to computer security; and 
(2) a set of enlightening discussions with Michael Ernst 
and Jeannette Wing, starting at the November 2010 
Usable Verification workshop hosted by Microsoft Re-
search, led to the idea of applying gamification to the 

formal verification domain. If formal verification prob-
lems could be turned into entertaining video games, 
those games could be crowd-sourced to a large audi-
ence. At first, this seemed like an impossible challenge: 
how do you define a puzzle that encodes a formal veri-
fication problem in a way such that a solution to the 
puzzle can be mapped usefully back to the underlying 
verification problem, while simultaneously be entertain-
ing to solve? The remainder of this paper describes five 
remarkable solutions to this challenge developed under 
the aegis of DARPA’s Crowd-Sourced Formal Verifi-
cation (CSFV) program, identifying numerous lessons 
that can be carried improve the success of future citizen 
science and gamification efforts.  
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1. Introduction 
The Circuitbot and Dynamakr games provide a crowd-
sourced contribution to the verification of C-language 
programs. In particular, the player-provided solutions of 
these puzzle games contribute so called "points-to 
graphs”, which represent information about which 
memory locations may hold the addresses of other 
memory locations as the program runs. Nodes in the 
graph correspond to memory locations, and an arc from 
node x to node y represents that x may hold the address 
of y at some point during program execution. This is 
classically known as the "pointer analysis problem" and 
has many variations. The variation we treat takes ac-
count of offsets in memory, but abstracts away control 
flow from the program. Even this simplified version of 
the problem is undecidable, and its solution or sound 
partial solution contributes substantially to program 
verification. These two factors make this version of the 
pointer-analysis problem a good candidate for the ap-
plication of human intelligence through game play. 

There are three steps to our program verification ap-
proach.  In the first step, the CodeHawk static analyzer 
creates a set of constraints on the points-to graph of the 
given source program. These constraints are partitioned 
into sets corresponding roughly to functions in the 
source code, which are then transformed into game lev-
els. In the second step, the game players solve these 
levels by making moves in a judicious order. Each 
move in the game consists of adding arcs to the graph 
that result in satisfying a single constraint. Eventually, 
as the players complete the levels and satisfy all of the 
constraints, the gameplay yields a fixpoint solution -- 
but the time required to reach this solution, and whether 
the process halts, depends on triggering constraints in a 
wise order, as well as performing operations that lose 
information but speed up the solution process or allow 
it to halt. In the third step, CodeHawk uses the infor-
mation derived from the points-to arcs to detect buffer 
overflow and underflow errors, or (more hopefully) 
verify their absence. 

 

 

 

1.1. General Game Play 
The challenge is to create an engaging game from the 
constraints on the points-to graph of a software pro-
gram. Our player-engineers are actually receiving in-
formation about a section of the program to be verified, 
in the form of game levels. The information takes the 
form of constraints defining when connections (“arcs”) 
must be added between elements to satisfy the con-
straint, at least temporarily. Once all rules are satisfied 
simultaneously, the level is solved (corresponding to a 
local fixpoint).  

From the player's perspective, the tricky part is this: 
arcs added to satisfy a constraint may cause another 
constraint to become unsatisfied. Indeed, a brute force 
auto solver could spend an infinite amount of time at-
tempting to complete all the connections. In practice, 
the size and connectedness of the graph grow as the 
game progresses, resulting in ever-more complex inter-
actions between constraints. Eventually as a fixpoint is 
neared, some sections of information become idle. Our 
autosolver uses a divide-and-conquer approach, but the 
current strategy did not become apparent until after a 
great deal of experimentation. 

1.2. Game Play Evolution 
Although our core game concept has remained un-
changed throughout the CSFV program, our approach 
to crowd contribution has changed substantially. Our 
present game-play approach is to present essential ele-
ments of the graph to the player in very large chunks, 
then prompt him to steer the autosolver in exploring the 
graph.   

Since we focus on the creation of a points-to graph, our 
key heuristic for player productivity is the number of 



arcs added to the graph.  The source of the name “Cir-
cuitbot” was a game concept where constraints were 
represented directly and individually on the screen, and 
robotic spiders traveled from one to another in a specif-
ic order carrying information, like an assembly line 
changing with each rule application.  A potential prob-
lem present in this early version was Circuitbot going 
into a trivial infinite loop due to incompatible rules. 
 We developed art for this concept, and created some 
cartoonish Acme-Labs style gates that would destroy 
the Circuitbots. 

As the game evolved we found no good strategies for 
constraint ordering that worked significantly faster than 
brute force, and we found that constraints needed to be 
represented in a different way.  We also found that, as 
the concept matured, we were uncertain about the num-
ber of total constraints and how often they would be 
applied.  So we had to change our game concept into 
something that would work regardless of the number of 
constraints. In the end we discovered through experi-
mentation that some rules can produce thousands or 
tens of thousands of arcs in a single pass, and we had to 
adapt to this.   

Since the game model hit a technical bottleneck, while 
work was being done on the backend server we had to 
base our game on speculation and some sample data. 
 There were many unknowns from a game-making per-
spective, which made it difficult to predict how much 
fun -- or how much work -- the resulting game would 
provide the player. We considered it likely that some of 
the work could be automated, so we needed a game 
concept that would maintain user engagement and also 
could adapt to some automation. 

 

2. Circuitbot 

 

The Circuitbot game employs a turn-based strategy in 
which the motivational system drives the player back to 
the “work” part we want accomplished for verification. 
 The universe of Circuitbot is the near future explora-
tion and exploitation of near Earth asteroids, along with 

the development of a space program.   We took many 
liberties with physics in favor of directing the player 
toward rapidly expanding his supplies of critical re-
sources.  The landing sequence, in which robots arrive 
on the surface of some far-flung location, requires the 
player to develop connections (arcs) in order to pro-
gram them so they can complete the automated process 
of building a support facility.  This is the “work” that 
we are asking the player to accomplish.   

After launching the game to the public and supplying 
data from actual to-be-verified software, we began 
analysis of player-generated results back into the verifi-
cation backend.  After much analysis and some rework-
ing on the software analysis side, we realized that we 
were looking at the information too narrowly.  We 
would receive a game level that represents too small a 
portion of the software; and   focusing the player on 
individual constraints inside each level was not ac-
counting for a sufficiently wide view of the target pro-
gram.  This led to the development of Dynamakr, which 
better leverages the respective capabilities of the human 
player and the autosolver. 

 

3. Dynamakr 

 

Though the mathematical game model for Dynamakr is 
the same as for Circuitbot, game play is very different. 
Dynamakr presents sets of game levels and the player 
manages them on the global level.  This allows automa-
tion to solve each individual game level and present the 
player with the goal of finding the right sets of levels to 
solve in order. The player’s objective is to reach a 
fixpoint quickly while minimizing information loss. 
 We also discovered that we could display this solution 
process, showing the individual arcs, and this would 
make interesting knots of interconnected arcs.  We then 
developed an arcade-style game around this concept as 
a reward game that challenge players to find connecting 
game levels. 

The reward game became Dyna-makr.  Conceptually, 
Dynamakr is a quantum level 3D printer.  Inside the 
Dynamakr the player examines patterns and feeds them 
into the Dynamo.  The player first takes on the chal-



lenge of finding patterns that will produce the most 
energy in the Dynamo, as sometimes patterns will 
amplify each other’s energy.  Once they generate 
enough energy from the patterns, the player feeds the 
patterns into the Dynamo and launches the arcade 
game.  The player’s success in the first game deter-
mines his points and power-ups available in the second 
game.  To help the player search for higher-valued pat-
terns we provide him with a set of tools.  Each pattern 
yields some energy by itself, but when joined with the 
energy from other patterns its energy can multiply by 
many times.  The game rules govern the search space 
and the energy value.  The player cannot feed a pattern 
into the Dynamo until it has joined its energy with the 
energy design.  Moreover, we provide the player with 
search tools in the solution space to discover related 
patterns based on various relationships.  These patterns 
have a value based on their composition and the past 
game activity.  If a pattern produced energy recently it 
is likely to produce energy again so we encourage the 
player to find related patterns and then join these results 
with the energy design. The tools the player deploys 
correspond to parameters used in heuristics by the auto-
solver. We had to learn to set these parameters effec-
tively, based on what we saw in the solution process, to 
find fixpoint solutions quickly. The players perform the 
same task within the abstraction of the game. 

 

The Dynamakr arcade game shows the same infor-
mation that is displayed as robots in the Circuitbot 
game, but in Dynamakr there are many times more in-
stances involved and they fly past the player in an infi-
nite-runner style game. The player has to dodge and 
shoot the bad elements, which are constraints that have 
not yet been triggered, and has to collect the energy 
generated by triggering the active constraints.  This 
feature is meant to reward the player for generating 
maximal energy during the first phase of the game.  The 
energy elements arrive at the player in waves, with each 
wave associated with one of the patterns he fed into the 
Dynamo. 

 

The design effort for Dynamakr required the game de-
velopers to understand the underlying logic of the veri-
fication method and game rules.  In essence, the game 
development team had to become familiar with pointer 
analysis, especially as represented through the abstrac-
tion of the game. We experimented with various manu-
al and auto-solving strategies, processing candidate 
constraints sets to better understand how the player 
would best provide assistance for verification.  A com-
bination of auto-solving and manual play turns out to be 
most useful, where we auto-solve much of the game set 
prior to releasing it to the crowd who complete the iter-
ation.  This final step of the procedure is where the hu-
man game players in the crowd add the most value.  
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1. Introduction 
Paradox is a game designed for crowd-sourced formal 
verification [23], in which the actions of ordinary peo-
ple assist in the production of a proof of correctness for 
a computer program. Paradox is a puzzle game with 
levels that resemble branching tree-like structures. Each 
level of Paradox corresponds to Java code that has been 
converted into a constraint graph via a type analysis 
system. A level solved with all constraints satisfied the 
game corresponds to a proof that some code satisfies a 
security property. The player may not be able to fully 
solve a level; however, a partial solution will reduce the 
amount of work necessary for a skilled programmer to 
complete the proof. 

This section discusses the design of Paradox and the 
application of lessons learned from a previous version 
of the game called Flow Jam. Paradox and Flow Jam 
were developed at the University of Washington De-
partment of Computer Science and Engineering, as a 
collaboration between the Programming Languages & 
Software Engineering Group and the Center for Game 
Science. 

2. Verification Approach 
Our verification approach is based on type theory. To 
verify a security property, the types in a program must 
satisfy certain type constraints. As a simple example, if 
the program contains the assignment statement “x = y”, 
then the type of x must be a supertype of the type of y. 
Therefore a proof of correctness can be thought of as a 
set of constraints involving the statements of the pro-
gram. 

A Paradox game level can also be thought of as a set of 
constraints that a player is trying to solve. Like many 
puzzle games, in order to complete a Paradox game 
level, the player must find consistent settings for all the 
game elements.   

Because both Paradox and type-checking are based on 
constraints, it is possible to create a Paradox level that 
corresponds to a given piece of code. Specifically, our 
type analysis system takes as input a Java program and 
a security property, and it generates as output a set of 
type constraints that the Paradox game presents to play-

ers as a puzzle to solve. When a player adjusts a game 
element, this corresponds to selecting a different type 
for a variable. Because the actual type system con-
straints are displayed as simple game mechanics, play-
ers can help perform verification tasks without needing 
any prior knowledge of software verification.  

If the player is able to solve a given level, the player 
has also generated a proof that the input piece of code is 
free from vulnerabilities for the given security property. 
If the level cannot be fully solved, the constraint graph 
must contain certain inconsistencies that correspond to 
type-checking errors for the program -- potential securi-
ty vulnerabilities that can be examined by a verification 
expert. 

3. Paradox Game Play 

 

Figure 2-1: Paradox variables, constraints, and con-
flicts. 

A Paradox level’s elements represent variables and 
constraints from the underlying constraint problem (see 
Figure 2-1). A variable node is either light blue or dark 
blue, representing type qualifiers or their absence in the 
code being verified. A constraint node requires that at 
least one of the connected variables has a certain value. 
If none of the variables for a given constraint are the 
correct value, then the constraint is marked as a con-
flict. Edges are the connections between a variable and 
a constraint when a constraint contains a given variable. 

 



 

 

 

 

 

 

 

 

 

Figure 2-2: A Paradox level representing the formula: 
¬x0 ∧  (¬x0∨ x1). The red circles represent conflicts 
are shown for the unsatisfied constraints involving 
variables x0 and x1. 

The player’s goal is to find a setting for the variables 
that minimizes the number of conflicts. Currently, we 
represent the variables as boolean values and the con-
straints as disjunctions over variables or their negations, 
making the problem the players are solving a maximum 
satisfiability problem (MAX-SAT) (Figure 2-2). Expos-
ing MAX-SAT problems to human players is similar to 
the approach taken by the game FunSAT [24; 25].  

4. Maximizing Human Contribution 
In order to maximize the contribution that untrained 
human players can make to the verification process, 
players should focus on the portion of problem that is 
least solvable by automated methods. Up to a certain 
size, constraint graphs can be solved rapidly by auto-
mated solvers and are not challenging for human play-
ers. Very large constraint graphs, however -- corre-
sponding to real-world programs such as Hadoop -- can 
be difficult to understand and present multiple problems 
for user interface design. A previous version of this 
game, Flow Jam, required players to toggle variables 
(in that game called “widgets”) individually, which did 
not scale well to larger levels where humans were most 
needed. 

To address this, Paradox provides a “paintbrush” mech-
anism that allows the player to select arbitrary groups 
of variables.  The player can change them all at once, or 
the computer can automatically solve them (for groups 
up to a predetermined limit). Different paintbrushes can 
allow the player to apply different automated algo-
rithms to their selection. Thus, the main feature of Par-
adox gameplay is the player guiding the automated 
methods: deciding which areas of the graph to solve 
and in what order. Currently players have access to four 
paintbrushes that have the following effects on the se-

lected variables: set to true, set to false, launch an exact 
DPLL optimization [26; 27]or launch a heuristic GSAT 
optimization [27].  These optimizations are the two 
phases of the maximum (MAX-SAT) solving algorithm 
suggested by Borchers and Furman [28]. New optimiza-
tion algorithms can be added to the game as additional 
paintbrushes. 

Additionally, in Paradox, human players are never giv-
en small optimization problems (for example, toggling 
the values of 50 variables to get the optimal score) since 
automated methods can solve that scale of problem. 
Instead, they are consistently provided with large and 
challenging problems that are computationally intracta-
ble to solve in an automated manner.  

5. Maintaining Player Interest 
In a normal game, levels are created by a game designer 
with the aim of creating a fun and engaging experience 
for players. In a formal verification game, however, the 
levels that are most valuable for players to solve are 
those generated from the code that is being verified. 
Since the code in question was most likely created for a 
very different purpose than making an interesting game 
level, sometimes levels contain oddities such as enor-
mous sections that are not integral to the solution. 
Worse, some levels are very large but consist only of 
repeating structures, resulting in puzzles that are not 
interesting or challenging for human players.  

To study player preferences, a comparable batch of 
levels was synthesized -- that is, generated randomly 
and not based on real-world Java code. Using Flow Jam 
(the previous version of Paradox), real versus synthe-
sized levels were compared by surveying players to see 
which type of levels were found enjoyable. Synthesized 
levels designed to maximize complexity were clearly 
preferred, with an average 65% preference rating, over 
real levels, which averaged a 30% preference rating. 

Figure 2-3: A previous version of the game, Flow 
Jam, required players to adjust variables individu-
ally. 

 



 Although not a rigorous comparison, this indicates that 
there is room for improving levels generated from real 
code. We do not yet know whether this preference for 
synthesized levels in Flow Jam carries over to levels in 
Paradox. 

To ensure that levels generated from real-world code 
are interesting enough to entice non-expert human 
players to solve them, our system adjusts the constraint 
graphs before they are served to players. For example, 
irrelevant parts are removed, and a level is broken down 
into independent levels when possible.  If a level can be 
automatically solved, then it is never given to human 
players. Subparts of a level may be solved before the 
player ever sees it. We plan to perform a study compar-
ing levels directly from Java code to levels optimized 
for human engagement.  

6. Solution Submission and Sharing 
Game players on the Internet are not obligated to persist 
in playing until a level is solved. We found that many 
players of Flow Jam would make some amount of pro-
gress, but very few of them would follow through and 
submit or share their results.  Before changing our sub-
mission process, there were only about 3,300 submis-
sions compared to about 100,000 levels played (note 
that players could make multiple submissions on an 
individual level if desired). Players would often quit 
midway through without returning to their current state, 
or fail to notice the level submission/sharing functional-
ity even though they were making progress on the lev-
els. 

To address this, Paradox automatically submits level 
configurations to a central server whenever the player’s 
score increases. This takes the burden off of players to 
manually submit their solutions for evaluation. By add-
ing these submissions back into the system as new level 
starting points, it also allows future players of a given 
level to begin with the progress that prior players have 
made, without requiring them to proactively share solu-
tions with each other.  

7. Sense of Purpose 
Another aspect of working with a human population of 
solvers is motivation. Playtesting has shown that, if 
players do not understand what they are doing and why 
they are doing it, they quickly lose interest in the task. 
In early versions of Paradox, players were given the 
optimizer brush and tasked with painting around con-
flicts to solve them, leaving them with no sense of what 
they were actually doing to solve the levels. To fix this, 
the tutorial now includes a few levels where players 
must change variables manually. Playtest feedback in-
dicates a much better understanding of the underlying 

problem and a general sense of purpose when players 
are required to adjust individual variables in tutorials 
before using optimizer brushes.  

8. Results 
Since the public launch of the combined verigames.com 
portal in December 2013, over 6,000 unique players 
have played Flow Jam for a combined total of over 
7,500 hours of play and over 34,000 level submissions.  

In addition, we completed an experiment on Hadoop to 
test how much expert analysis time is saved using in-
ference and Verigames. Two developers annotated a 
program, one starting from unannotated source code 
and one starting from game results (inference). Each 
continued manually until the program type-checked. 

There were a total of 23 annotations required. Of the 
two conditions, unannotated code required 45 minutes 
total time (7 minutes of type checking and 38 minutes 
of manual effort) versus 4 minutes total when starting 
with game results (3 minutes of type-checking and 1 
minute of manual effort). 

Not included in these timing were the annotation of 
APIs (determining the proof goal, required in both cas-
es), and gameplay (crowd time, machine time to gener-
ate levels). Note that the game computed correct anno-
tations in this case (the human merely verified them).  

9. Conclusions 
Due to its crowd-sourcing approach, the CSFV program 
is as much about game design, human-computer inter-
action, and human behavior as it is about formal verifi-
cation of software. The lessons that have guided devel-
opment from the earlier game Flow Jam to the current 
game Paradox naturally point towards future areas of 
study. These topics include player performance versus 
fully automated methods, player effectiveness with dif-
ferent graph representations and groupings, and differ-
ences between volunteer players and compensated 
players.  Also, given its general nature, problems from 
other domains that can be encoded as maximum satisfi-
ability problems (MAX-SAT) could be used to create 
levels in Paradox. The game design may also extend to 
other types of constraint satisfaction problems that can 
be visualized as a factor graph. 
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1. Introduction and Approach 
The Ghost Map project is led by Raytheon BBN Tech-
nologies with support from Breakaway Games, the 
University of Central Florida, and Carnegie Mellon 
University. Ghost Map uses model checking as its 
software verification technique.  The fundamental con-
cept of model checking is that properties of a complex 
system can sometimes be most effectively deduced by 
creating and reasoning about a simplified model of the 
system rather than the system itself.  For software, the 
control flow graph (CFG) of a program is a simplified 
model of the program’s actual executions.  Many of the 
software correctness properties from the SANS/MITRE 
Common Weakness Enumeration (CWE) list [29] can 
be associated with a set of control flow patterns.  The 
Ghost Map underlying mathematical engine takes a 
program and a CWE and identifies any paths through 
the program’s CFG that have the potential to violate the 
correctness property.  Each such path is built into a lev-
el in the Ghost Map game.  During game play, the play-
er performs actions that attempt to resolve the potential 
violation path, that is, to establish that the path is not 
realizable in the program.  If all the levels for a program 
and a CWE are resolved by game play, then we have a 
proof that the program is free from the CWE vulnera-
bility. In model checking terms, Ghost Map game play-
ers perform counterexample-guided abstraction refine-
ment (CEGAR), in that they extend the CFG to a more 
precise model as necessary to verify the correctness of 
the software with respect to the CWE in question. The 
verification approach used by Ghost Map is based on 
the MOPS tool, which was shown successful over a 
series of papers [30; 31]. Ghost Map game play at-
tempts to resolve the potential violations identified by 
MOPS, with the goal of reducing the numbers of false 
alarms that waste the time of programmers and verifica-
tion experts.  In the future, the Ghost Map approach 
could potentially be combined with commercial tools 
that generate vulnerability warnings, such as Coverity 
and HP Fortify. 

2. Ghost Map 
The high-level theme of Ghost Map is that the player is 
a cybernetic entity attempting to achieve consciousness.  

The software CFGs are described as aspects of the cy-
bernetic entities own programming and the potential 
violation paths in the CFG are called locks, meaning 
obstacles to consciousness.  The player/entity resolves 
the paths in order to break the locks and achieve its 
goal. The cybernetic entity theme is not deeply devel-
oped in the initial game and it is possible for players to 
ignore the theme and play purely abstractly if they so 
choose.  

Figure 3-1: Simple Example of Ghost Map Level 

A simple example of a Ghost Map game level is shown 
in Figure 3-1.  The software CFG is the X-like pattern 
in the middle of the figure.  The three node graph in the 
box in the lower right is a representation of the software 
vulnerability being addressed.  The purple arrows on 
the CFG show a potential violation path that must be 
addressed.  The player uses game tools to “cleave” the 
haloed node into two nodes.  After the cleaving opera-
tion, a modified CFG will appear and each of the new 
nodes will have just one incoming edge.   The player 
then is able to propose the elimination of the new path 
that contains the blue edge.  More details on the game 
play of Ghost Map are available in Watro et al. [32] and 
at the Verigames web site.  

3. Ghost Map Hypersapce 
For the second game, the team decided to retain the 
underlying mathematical approach but to update the 



game.  The new game, called Ghost Map Hyperspace, 
addresses several observations from early play testing. 
First, initial play testing showed that players lacked the 
needed information to make informed choices on path 
elimination proposals.  The vulnerability pattern win-
dow in the game did allow users to infer that certain 
paths would be valuable to eliminate, but nowhere in 
the game was their data that suggested that a path could 
be successfully eliminated.  The Hyperspace game at-
tempts to resolve this issue with the use of “energy 
analysis,” discussed below. 

Another observation from Ghost Map was that cyber-
netic organism theme was confusing at times, as the 
game narrative concepts such as the organism’s soft-
ware overlapped with the underlying verification con-
cepts, such as the software being proved correct.  Also, 
the theme did not seem to foster engagement from 
players.  For Ghost Map Hyperspace, we adopted a 
“space opera” theme that we believe will be more en-
gaging, less confusing, and will allow easy expansion 
of the narrative to cover the new data that supports path 
decisions. 

 

Figure 3-2: Example of a Ghost Map Hyperspace 
Level 

Finally, one of the issues with Ghost Map is the signifi-
cant delay required to process the path elimination in-
put. In Ghost Map Hyperspace, we include additional 
game play activities that are integrated with the overall 
theme and occur while the path elimination process is 
running.  We are hopeful that this new feature will sup-
port a more balanced game play experience. 

Figure 3-2 shows a screen shots from Ghost Map Hy-
perspace.  The potential violation path is shown as a 
highlighted segment of a portion of the CFG, much as 
in Phase 1.  In the new narrative, the potential violation 

path is a rift in hyperspace that the player is attempting 
to seal.  In Figure 3-3, we see a second example where 
variable reads and writes in the software have been 
modeled as energy exchanges and displayed in the chart 
at the bottom of the game window.  These energy anal-
ysis readings allow the game player to make better path 
removal suggestions since they reflect actual data ex-
changes in the software.  Once the elimination sugges-
tion is completed, a combat game begins that represents 
alien ships slipping through the rift to attack.  Points 
scored in the combat game add to the players total and 
the rift sealing results (determined by the math back-
end) are released at a later point in game play.  More 
information on the player engagement strategy in Ghost 
Map Hyperspace can be found in Moffitt et al [33]. 

 

Figure 3-3: Using energy clues to seal rifts 

 
4. Ghost Map Summary 
Since the initial release in December 2013, more than a 
thousand users have played Ghost Map and hundreds of 
small proofs have been completed.  Ghost Map demon-
strates the basic feasibility of using games to generate 
proofs and provides a new approach to performing re-
finement for model-checking approaches.  In addition 
to the immediate benefits of verifying software using 
games, we also anticipate that the Ghost Map approach 
may enable new automated methods as well.  Through 
the intermediate representations we have developed and 
the proof tools we have created for validating edge re-
movals, we believe the possibility of creating novel 
refinement algorithms is significant. 

 



Solution 4: StormBound and Monster Proof 
 

Aaron Cammarata, VoidALPHA     Aaron Tomb, Galoi, Inc. 
 

 
1. Introduction 
Our team is Galois, specialists in formal methods, and 
voidALPHA, a videogame studio. We first built 
StormBound, which challenged players to find patterns 
in magical energy and save their planet. Based on les-
sons learned from StormBound, we are building Mon-
ster Proof, in which players solve puzzles to gather re-
sources and become wealthy beyond desire. 

2. Verification Approach 
Our games used two different implementations of the 
same verification approach. In the games, players use 
their intuition and insight to generate assertions about 
the code being verified. The verification back end cre-
ates individual puzzles, which are then presented in-
game. It assembles player answers (logical assertions), 
and tries to perform an end-to-end verification. 

In StormBound, our approach was to instrument the 
code being verified, and take snapshots of the software 
during execution. This generated ‘trace data’, which 
captured the values of in-scope variables at key pro-
gram points. The players identified patterns in those 
data, for example noting the relationship between an 
integer function parameter and the size of a local array. 
Taken collectively, these player-generated assertions 
sketched out a spec for ‘normal operation’ of the pro-
gram, which in turn acted as hints for the verification 
solvers. 

In Monster Proof, we establish the weakest precondi-
tion under which a desired property holds for a block of 
code. We then ask the player to discover invariants that 
prove the preconditions by using pre-defined rules to 
transform or supplement those preconditions. For a 
trivial example, a player may be tasked with proving 
the precondition “a < c”, by identifying the invariant “a 
< b” in a context where “b < c” is already known. 

3. Game Descriptions 
StormBound is: 

• Story-driven engagement 

• In a “Magepunk” universe, a blend of 
brass/steam and glowing magical runes 

• Designed to “completely hide the math”: allow 
players to make assertions without any math or 
numbers in-game 

Figure 4-1:StormBound play screen 

 

• Targeted to a broader, casual audience 

• Created with Unity Webplayer, embedded in a 
MeteorJS web page 

 

Figure 4-2: Monster Proof Game Screen 

Monster Proof is: 

• A Resource-gathering and collection  

• Utilizes cute cartoon monsters, with an em-
phasis on tongue-in-cheek humor  

• Designed to to “completely show the math”: 
give players tons of context, and focus on effi-
ciency and comprehension 

• Targeted to a focused puzzle-game audience  

• Created with Famo.us for HTML/CSS Sprites, 
and MeteorJS for web page / server 

4. Game Results 
The audience of the StormBound followed a typical 
industry adoption curve – numerous players up front at 
launch, tapering off to a steady state, trailing off over 



time. All told, 10,650 players tried the game, 7,264 in 
the three weeks after launch in December 2013. The 
game continued to attract about 150 players / week until 
June, then dropped to near zero. 

We received 142,711 valid assertions – successful solu-
tions – generated over 2,919.2 hours. Note: levels can 
have multiple solutions. (All figures exclude CSFV 
team members.) 

In order for a level to be verified, it must have at least 
one player-generated answer. By the end of the active 
play period, players had contributed to 4,361 out of 
6,523 levels (66.8%). 

When we began, automated tools could discharge about 
19% of the work with no human input. Improvements 
to automated tools done under the CSFV program re-
solved an additional 15%, and player-assisted levels 
solved an additional 15%, totaling about 49%. Once  
automated tools remove some of the workload, players 
completed 22.3% of the remaining work. Note that all 
of these measures apply to verifying program properties 
in isolation rather than across the entire code base—a 
weakness we are addressing in the Phase 2 game.  

The original code base was about 300,000 lines of code 
(LOC), so players touched about 103 LOC per hour of 
gameplay, and contributed to verifying 15.4 LOC per 
hour. The reason these differ is because as you’ll see, in 
StormBound it was possible to give us an answer that 
isn’t useful for making verification progress – players 
could easily ‘waste’ effort. 

As with any free-to-play offering, players dropped off 
quickly as they went through our tutorials. Of the 
10,650 registered players who watched the intro story 
cutscene, only 2,048 (19.2%) completed the sixth tuto-
rial, which is when the player begins contributing to 
verification progress. This is analogous to the “conver-
sion rate” – the percentage of players who convert to 
paying customers. Since this is a research effort, we 
define ‘conversion’ as ‘contributing to the problem’. 
Standard industry conversion rates are often in the 3% 
range, so 19% might indicate that players motivated by 
“contributing to science” are more invested in sticking 
with the game. 

5. Assessment & Lessons Learned 
According to Flow Theory, much of a game’s enjoy-
ment comes from a delicate balance between a player 
feeling competent and feeling challenged. Game de-
signers craft complex game systems that aim to self-
regulate and adapt to player skills, or at least provide a 
measured, reasonable path of progression. 

The biggest challenge in a ‘real science game’ is that 
the solutions for levels are by definition unknown, and 
unknowable - if the answer could be computed, the 
system would not need the players. This means there is 
no reliable predictor of level difficulty. A ‘small’ level 
can be impossible to resolve, while a very large level 
with lots of data might require only a single action to 
solve, like collapsing a house of cards with a gentle tap. 
In StormBound, this was exacerbated by the fact that 
even after we got a player’s solution, we didn’t know if 
it would help verification. It may have been an interest-
ing fact, and true, but not necessary to construct a 
proof. The analogy we used was ‘shooting mosquitos 
with a shotgun’. Players could generate lots of true as-
sertions, but determining their usefulness could take 
days. Not being able to give players immediate feed-
back really hamstrung our ability to use common game 
feedback mechanisms.  

In Monster Proof, we are addressing these issues by 
putting the verification engine closer to the player. As 
you play a level, you know what it is you’re trying to 
build (there is a clear ‘goal’ for each level), and you 
know unequivocally whether you solved it or not. It is 
still possible to do a certain amount of ‘solution by intu-
ition’, but generally you know which pieces of the puz-
zle are relevant and which are not. We are investigating 
if this improves two metrics. First, we believe that it 
will result in better retention. The highly math-centric 
style might discourage some users, resulting in a small-
er audience, but we theorize that the players who do 
continue with the game will find it far more satisfying 
than those who started StormBound thinking they’d be 
playing a cool space RPG and found only an unsatisfy-
ing make-work task. Second, we feel that the increased 
context and transparency within the core game will 
greatly reduce ‘effort waste’. That is, we are replacing 
the player’s shotgun with a (figurative) set of building 
blocks and a target shape. It’s then up to the player to 
assemble the blocks, using known and teachable rules, 
into the desired shape. Players should be able to address 
the complete problem more quickly, and produce more 
verification progress during an equivalent amount of 
gameplay.  

Another challenge of designing these games is some-
thing we have come to call “The Bump”. That is, the 
transition between custom tutorial levels, designed for 
clarity and pedagogy, into ‘real’ levels derived from the 
code. Because there is no way to classify level difficul-
ty, players are effectively ‘thrown into the deep end’ – 
because all of the actual problems are deep end. The 
only remotely effective solution we identified was to 
make players fairly skillful before letting them into the 
‘real data’ pool. This results in a long ramp-up time 



before you can contribute, and feeling like a ‘citizen 
scientist’ is a key motivator for people who play these 
games. Requiring 30-60 minutes of tutorials before you 
can help is frustrating, and leads to churn (player depar-
ture). 

Worse, it’s possible that a level is, in fact, unsolvable – 
and it is impossible to know this in advance. To account 
for this, designers need to provide a way to ‘win’ even 
unwinnable levels. In StormBound, this could only be 
detected if players made every possible assertion 
through the game UI (which could take hours or even 
days). In Monster Proof, a player can demonstrate that a 
level is, in fact, unsolvable. They can then “bang a gav-
el” to assert that the level is unsolvable (possibly indi-
cating that the code is in fact unverifiable), and place a 
bet on that assertion. If someone else is later able to 
solve the level, the first player loses her bet, while the 
second collects it. If three players report that a level is 
unsolvable, we set it aside for expert review, and re-
ward players. It is important that, again, since gameplay 
emerges from data over which you have no control, 
players have a way to feel successful in all cases. 

Tutorial design was also challenging – we struggled to 
find the best ‘voice’ for the narrator / instructor. Since 
our tutorials needed to teach more than just basic game 
mechanics, we vacillated between speaking “game” and 
“science”. In StormBound, because we were math-
phobic, we twisted and contorted our script to fit into 
the game universe’s vocabulary. Our intent was to al-
low players to relax into the game narrative and not 
break the ‘fourth wall’. Instead, it frustrated players, 
who just wanted to know what everything actually 
“was”, so they could work with it. In Monster Proof, we 
are using a lot less game language, and while we have 
not completely eliminated such language, we are being 
a lot more cautious and intentional to use game-themed 
language only where it affects the resource collection 
meta-game, and not the core logic problem. 

As we designed the games, we thought quite a bit about 
“griefing” – cheating or interfering with other players. 
This did not happen, but sometimes players gave us lots 
of useless answers (and scored tons of points) because 
they game told them they were doing well. The key 
takeaway is that players want to help, so you need to 
give clear feedback about what you need. 

Thematically, we found that the primary motivator for 
players was in fact the ‘citizen scientist’ role. It’s im-
portant to give them feedback about their effort in terms 
they can understand, preferably in the language of the 
underlying science. 

We found that although players wanted to contribute to 
science, they didn’t want to learn it. Many players dis-
missed or skimmed tutorials, then complained they 
didn’t understand the game. This remains a point of 
design friction for which we do not have a great solu-
tion. 

Finally, as development unfolded we discovered how to 
automate certain classes of solution. In StormBound, 
we did not do very much automated solving. In Monster 
Proof, we are automating everything we can, so players 
will not be given ‘busy work’. We do have a concern 
that this leaves only very challenging levels, which will 
exacerbate the issue with level difficulty. 

5. Conclusions & Future Work 
We feel the key takeaway from projects like CSFV is 
that ‘utilitainment’ is here to stay. Games and applica-
tions like these are the very first, unstable steps of a 
new industry, in which high-cost, high-skill, low-supply 
work is done by a low-cost, low-skill, high-supply 
crowd. As game designers, we are only just beginning 
to understand how to craft a satisfying, entertaining 
experience that produces useful results. We believe that 
with continued work, game-based work on problems 
that require human intuition (i.e. are not easily automat-
ed) could be a viable industry within the next 10 years. 
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1. Introduction 
In this section, we describe two games developed: Xy-
lem: The Code of Plants and Binary Fission. Xylem is a 
logical induction puzzle game where the player plays a 
botanist exploring and discovering new forms of plant 
life on a mysterious island. Players observe patterns in 
the way a plant grows, and then construct mathematical 
equations to express the observations they make.  In 
doing so, players work in concert with the game’s me-
chanics to perform loop invariant synthesis. 

Xylem was designed with a “casual niche” audience in 
mind.  The idea was to appeal to as wide a player base 
as possible, while addressing the concern that including 
mathematical game play would somewhat limit the au-
dience.  To that end, the game design team chose to use 
a visual metaphor (plants, for their representational 
flexibility) and make the gameplay as light on math as 
possible while still supporting the underlying formal 
verification problem.  Focus was given to creating a 
smooth player experience in a typical casual game to 
avoid confusing players. However, this approach 
proved to be largely ineffective in addressing the 
broader task of crowd-sourcing formal verification. 
 Casual players were not interested in the math oriented 
gameplay, while those who enjoyed the science goals 
were frustrated by the lack of more advanced math 
tools with which to describe patterns.  

The second game, Binary Fission, sought to address 
these problems by taking the project in a new direction. 
Instead of addressing pure game players, we instead 
focused on a “citizen science” audience. Player reports 
from Xylem indicated that those most engaged in the 
game were also those who were interested in the actual 
CSFV program goal, i.e. formal software verification. 

The project is led by SRI International, a non-profit 
research institute based in Menlo Park CA. Xylem and 
Binary Fission were both designed and developed at the 
University of California at Santa Cruz. The verification 
infrastructure is provided by CEA, the research arm of 
the Atomic Energy Commission in France. 

 
2. Verification Strategy 
Xylem problems were generated from source code using 
Frama-C, with an additional value analysis module. 

Sets of variable values were delivered to players as 
game instances. A fast response to players' proposed 
solutions is key for reward and retention. However, 
traditional confirmatory analysis of invariants can take 
many hours of CPU time, and is thus impractical in a 
game environment. Using a Hasse partial ordering ap-
proach, in conjunction with our backend verification 
modules, enables us to sieve play results and enables an 
initial coarse ranking of candidate invariant solutions.  

For progress metrics, we use abstract interpretation-
based software analysis to determine the overall poten-
tial state space. We propagate states to encompass all 
possible execution paths. State space management is a 
key issue for industrial-strength software analysis.  It 
triggers non-termination, over-widening, and false 
alarms during the analysis process.  Frama-C/Value 
Analysis takes advantage of crowd-sourced candidate 
invariants to significantly reduce its state space.  

3. Game Descriptions 
Xylem is a logical induction puzzle game where players 
are botanists exploring the strange island of Miraflora.  

Figure 6-1:Xylem: Miraflora Island 

Players are tasked with observing and comparing the 
growth patterns of the plants they discover, as they 
travel around the island. The Floraphase Comparator is 
used for this purpose. In describing the growth patterns, 
the players also provide candidate loop invariants for 
the CSFV verification task.  

 

 



Figure 6-2:Xylem: Floraphase Comparator 

 

Each region of Miraflora contains increasingly hard 
problems. Access to interior regions is granted only 
when the entire player base has collectively solve a 
certain number of problems in earlier areas.  

In the second game, Binary Fission, players still work 
with loop invariants, but now they refine searches per-
formed by an automated system instead of creating 
simple invariants from observations of data changes 
over time. Binary Fission presents players with an ab-
stract tree-like structure of nodes.  Each node contains a 
number of “bits” (or “atoms”, as players like to call 
them) in either purple or green.  The player’s job is to 
sort the bits using provided filters, in an attempt to cre-
ate “clean sets” -- that is, nodes which contain only one 
color of bits. As an additional challenge, players must 
create these clean sets while using as few nodes as pos-
sible (i.e. performing as few as possible sorts).   

Figure 6-3:Binary Fission: Tree Structure 

For each node, the game provides up to a hundred fil-
ters to choose from.  The filters are presented as small 
spheres set in a circular container.  As players move 
their mouse cursor over the spheres, they are shown in 
real time how that particular filter would sort the node. 

 This takes advantage of a key thing humans can do 
better than computers - visual pattern recognition. Play-
ers can additionally save filters for later in case the one 
they have chosen doesn’t produce the results they 
would like later in the filtering process.   

 

Figure 6-4:Binary Fission: Fliter Selection 

The auxiliary Binary Fission feature set is very light, 
since our goal is to keep players focused on solving 
problems.  The game features live chat, in order to fos-
ter a sense of community among players and help with 
player retention. Binary Fission also clearly shows 
community progress in the form of number of problems 
solved on the main menu screen, in order to reinforce 
the sense of collaborative citizen science.  

 
4. Lessons Learned 
Xylem: The Code of Plants was designed with a “casual 
niche” audience in mind.  Our concept was that, even 
though we could not legitimately pursue a truly “casu-
al” audience (by game industry definitions) due to the 
math gameplay inherent in the core game design, it 
would still be worthwhile to pursue as “casual an audi-
ence as possible.”  This was important in order to bring 
in more players, which we believed would best take 
advantage of the crowd-sourcing nature of the applica-
tion. To attract and keep this audience, we created a 
game around math-based puzzle solving, but with as 
lightweight math as we could manage (while still keep-
ing the integrity of the science task) and within the 
bounds of a narrative-oriented casual puzzle game.  

Xylem turned out to attract a much smaller audience 
than we would have preferred. The math oriented game 
play was not (for the most part) appealing to the larger 
puzzle game audience. Instead, we found that the play-
ers who most enjoyed Xylem were most likely to be 
people who came to our game with an already estab-
lished interest in math and computer science, and were 



drawn by the stated science objectives. During the first 
nine months of gameplay, our top 20 players submitted 
a total of 1754 invariant solutions. 

In designing Binary Fission, we decided to change our 
tactics.  Instead of attempting to bring in the largest 
crowd possible, we decided to focus on pulling in a 
high quality crowd.  We changed our approach com-
pletely in order to attract and maintain a different sort 
of audience - citizen scientists who are interested in the 
science problem being solved.   

Building off the lessons learned from our experience 
with Xylem, as well as additional research into automat-
ed invariant synthesis and design principles from other 
successful citizen science projects, we believe that Bi-
nary Fission will provides better CSFV results than 
Xylem for several reasons. For example, as a citizen 
science project, our recruitment policy draws in players 
who are interested in cybersecurity, many of whom are 
less likely to have conflicts with mathematical game-
play. Also, our science goals are transparent within the 
game itself and in all marketing materials.   

Binary Fission partners with other methods of crowd-
sourced synthesis of candidate invariants, such as Xy-
lem and similar CSFV games, as well as automated 
generation of candidates. Thus, players are asked to 
guide searches through suites of potential invariants, 
rather than produce invariants from scratch (although 
players are able to do this too). The game thus inte-
grates the best skills of both the human and computer 
partners. Binary Fission enables the creation of disjunc-
tive invariants, which is a key advantage over tradition-
al automated systems. 

Binary Fission emphasizes community, an important 
aspect of successful citizen science projects, through 
better-integrated chat, active community management, 
and regular community events. The game also allows 
for more player choice by allowing them to select puz-
zles to work on from a visible group of problems every 
time they play. The Binary Fission tutorial assumes a 
higher level of sophistication in players, and therefore 
focuses on teaching the game interface rather than 
teaching about the game.  The tutorial is much shorter, 
allowing players to reach productive ability levels much 
faster. 

5. Conclusions & Future Work 
Our vision of appealing to a less-math-literate audience 
with Xylem was not as successful as we anticipated, 
primarily because of the complexity of some solutions 
and/or the potential lack of clear answers for certain 
problems. In addition, the nature of the verification 
challenge made it difficult to consistently assign levels 

of difficulty to problem instances.  We nonetheless 
were able to make a largely inaccessible task accessible 
to a wide variety of people, making it instantly under-
standable to advanced players and less alienating to 
those who will not necessarily become experts but want 
to try the game. Discovering the characteristics of our 
true audience helped to drive the design of updates to 
Xylem and to inform the strategy for Binary Fission. 

Looking beyond the first release of Binary Fission, we 
plan to support different levels and styles of play, with 
at least two distinct play styles that are interdependent 
on each other. These roles will allow for different ex-
penditures of cognitive energy;  less-math-literate play-
ers who are interested in contributing to the science 
goals of the project can contribute alongside those who 
are more math-sophisticated.  Further, players can 
switch freely between roles as they see fit. Binary Fis-
sion will also offer more player choice by allowing 
them to select from a visible group of problems every 
time they play. Solutions will also be forkable, so that 
multiple players can take a single problem in several 
different directions.  

 



Conclusions and Lessons Learned 
Overall, across the development of these five efforts, 
the crowd-sourced formal verification has shown mixed 
success in demonstrating the potential for crowdsourc-
ing to enrich the formal verification process. In each 
effort, solutions have been collected from numerous 
players, providing significant progress towards formal 
verification proofs. Furthermore, these efforts provide 
several critical lessons that drove the development of 
the second set of formal verification games that are now 
being tested, and that can be readily extended to other 
citizen science and game-based crowdsourcing efforts.  

One key lesson learned across several of these efforts is 
to know the player population. At the start of the pro-
gram, a key focus was to develop games that would be 
engaging enough to bring crowds of players with no 
significant mathematical background. We quickly 
learned that this was not the best way to motivate high-
contributing players. Rather than drive a general popu-
lation, each of these games was better served by citizen 
scientists with a strong interest in the underlying sci-
ence and outcome of the effort (e.g., players with a 
mathematical and computational interest and/or back-
ground). While it is important for the games to be en-
gaging for citizen scientists, it is perhaps more im-
portant that these players understand the types of con-
tributions they are making and the impact they are 
having on addressing the scientific problem. That com-
bination of intrinsic and extrinsic value to the player 
has been the greater focus for the second round of 
games, which will be tested over the summer of 2015.  

Scientific tasks, such as those performed in the course 
of formal verification, often involve both complex logi-
cal or abstract problem-solving and simple, rote repeti-
tion of previously learned strategies. The most valuable 
work on these problems can only be done once the re-
petitive solutions have been exhausted. This pushes the 
creators of a game-based task to teach concepts to the 
player in rapid succession, in hopes that the player will 
learn enough to contribute meaningfully before walking 
away from the game. With so many concepts to teach, it 
becomes difficult to keep the terminology simple and 
accessible and to give the player enough of an oppor-
tunity to practice and grasp a concept before the next 
one is introduced. Our teams took several approaches to 
solve this problem in the second round of games, from 
progressions of tools that teach the player key concepts 
when they are unlocked to video tutorials using humor-
ous in-game characters to keep the player entertained 
while learning to play. 

Related to this, a key challenge in any citizen science 
gamification effort is navigating the tradeoff between 

making a game engaging and making the game address 
critical problems. When the game is being designed for 
a very specific purpose, game designers have a limited 
ability to modify game elements to drive a more engag-
ing experience. Rather, the game must capture and ad-
dress a specific, structured problem—and cannot stray 
too far from the structure of that problem in the process. 
One way to address this issue is to separate the puzzle-
solving process (related to addressing actual citizen 
science problems) from a game section that is focused 
on fun and accomplishment.  While this can be a suc-
cessful approach to make the games more engaging, 
providing that engaging game can limit the contribu-
tions that are made by the game players (who may wish 
to spend more time on the fun game than on the puzzle-
solving process). Our teams took a variety of approach-
es to address this problem, ranging from targeting citi-
zen science audiences (as described above) to incorpo-
rating the engagement elements during downtime in the 
puzzle-solving process to maximizing the use of human 
intuition and insight for problem-solving, which makes 
the problems more fun to solve.  

Related to this latter element, many of the games bene-
fited strongly from incorporating an autosolver to ad-
dress wide segments of the problem. Rather than having 
the human address every element of the computational 
problem, humans were focused on either guiding the 
autosolver (e.g., in the case of Paradox and Dyanamkr) 
or addressing only the complex problems that need hu-
man insights. When there are numerous tedious prob-
lems that need to be solved on the way to addressing a 
larger computational problem—as is the case in formal 
verification proofs—autosolvers can be extremely use-
ful to manage the work that must be addressed by citi-
zen scientists. However, they pose a number of chal-
lenges as well. For example, overusing automation can 
lead players to question whether the computer is really 
doing all the work and if so, why they should bother to 
play at all. In addition, if  players have a limited under-
standing of what the automation is doing, and, because 
of that, a limited understanding of what they are doing, 
it will lead to errors, frustration, and attrition.  This is 
further exasperated by the bump in complexity from 
training levels to live levels (which are often a lot more 
complex than the levels used to train players on the 
game concept). Ultimately, judicious use of an auto-
solver that allows citizen scientists to focus on the prob-
lem aspects where they can make the greatest contribu-
tions and learn the details as they need them  can make 
the game more fun and more accessible.  

Across all of these individual points we find that the 
main lesson has been the challenge of turning a task 
into a game without sacrificing too much of the player's 



time on pure engagement mechanics and without com-
promising the value of the task. It is easy to focus too 
heavily on the constraints of the task and to lose focus 
on the things that constrain good games: clarity (of 
goals and the consequences of actions) and value to the 
player (through entertainment, improvement, social 
rewards, etc). Without these things, the game fails to 
motivate play and the opportunity to leverage leisure 
time to accomplish scientific goals can be lost.  
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