
This paper is included in the Proceedings of the
2025 USENIX Annual Technical Conference.

July 7–9, 2025 • Boston, MA, USA
ISBN 978-1-939133-48-9

Open access to the Proceedings of the
2025 USENIX Annual Technical Conference

is sponsored by

FlexPipe: Maximizing Training Efficiency for
Transformer-based Models with

Variable-Length Inputs
Hairui Zhao, Jilin University and University of California, Riverside; Qi Tian, and
Hongliang Li, Jilin University and Key Laboratory of Symbolic Computation and

Knowledge Engineering of the Ministry of Education, China;
Zizhong Chen, University of California, Riverside

https://www.usenix.org/conference/atc25/presentation/zhao-hairui

FlexPipe: Maximizing Training Efficiency for Transformer-based Models with
Variable-Length Inputs

Hairui Zhao1,2+, Qi Tian1+, Hongliang Li1,3∗, and Zizhong Chen2

1 College of Computer Science and Technology, Jilin University, China.
2 Department of Computer Science and Engineering, University of California, Riverside, USA.

3 Key Laboratory of Symbolic Computation and Knowledge Engineering
of the Ministry of Education, China.

Abstract
Transformer achieves promising results among various deep
learning architectures. Training transformer-based models
(transformers) typically involves various parallelisms, such as
data parallelism and pipeline parallelism (PP). Variable-length
datasets have been adopted to facilitate multi-task training
of transformers, which degrades training efficiency. Though
many efforts have significantly improved the variable-length
training, these efforts primarily focus on optimizations within
a single iteration. However, substantial fluctuations of com-
putation and memory requirements across iterations can also
lead to inefficiency overall due to the static partitioning of
distributed frameworks. Thus, this paper proposes FlexPipe
from the perspective of a distributed system to enable high
throughput variable-length training of transformers. To our
knowledge, FlexPipe is the first flexible pipeline framework
that dynamically adjusts PP by a live flexibility mechanism
without training loss. We introduce a novel problem which
aims at maximizing training throughput by adjusting the paral-
lel configurations, along with an efficient heuristic algorithm
to solve the problem. Extensive experiments show that Flex-
Pipe achieves an average 1.25× training throughput compared
to state-of-the-art methods.

1 Introduction

Recently, deep learning (DL) has shown tremendous success
across a range of applications [22, 44, 52, 56]. Among various
deep neural networks (DNNs), transformer-based models [43]
(transformers) have emerged as the foundation for large lan-
guage models (LLMs) due to their exceptional sequence mod-
eling capabilities and scalability.

In pursuit of unprecedented accuracy, both data volume and
model parameters of transformers are scaling rapidly, making
it impossible to complete training on a single device. For
example, GPT-4 [4], a 1.8 trillion parameters model, which

+ Hairui Zhao and Qi Tian contributed equally to this work.
∗ Hongliang Li is the corresponding author.

required approximately 2 years to train on 1024 H100 GPUs.
Thus, various parallelisms have been proposed, including data
parallelism (DP) [25], tensor parallelism (TP) [17], pipeline
parallelism (PP) [29, 41], and sequence parallelism (SP) [26].

Current training is mostly accommodated for traditional
DNN models, presuming that they would have fixed-length
inputs. However, it is not often the case for transformers, such
as T5 [38], GPT [37] that are commonly trained on mixture
datasets for effective multi-task learning [31, 40]. This in-
herently introduces variable-length inputs, e.g., the averaged
977.93 tokens per input for summarization [13], and 51.59
tokens for textual entailment [47]. The variable-length in-
puts significantly degrade the training efficiency of existing
frameworks (i.e., padding) due to the considerable amount
of wasted computations, which has attracted substantial at-
tention [10, 16, 34, 38, 54]. Packing approach [8, 38] concate-
nates multiple shorter samples into a longer sample. Buck-
eting [34] sorts the dataset before constructing mini-batches.
FlashAttention-2 [1] enables block diagonal attention by skip-
ping irrelevant computations.

However, despite extensive efforts made by existing work,
there still remains potential for further improving the variable-
length training throughput. Fig. 1 shows the training through-
put using different approaches, which highlights a significant
performance reduction when training on a variable-length
dataset compared to a fixed-length dataset. The main reason is
that existing approaches focus on optimizing variable-length
training within a single iteration. However, substantial fluctu-
ations across iterations driven by variable-length inputs also
lead to resource under-utilization of the overall system due to
the static partitioning of existing distributed frameworks.

Existing distributed frameworks [14, 29, 32] typically
launch a fixed number of devices with a static parallel strat-
egy (i.e., combinations of different parallelism degrees) to
maximize training throughput based on the memory require-
ments of the maximum sequence length. To alleviate re-
source under-utilization from fluctuations across iterations in
variable-length training, the parallel strategy should be dynam-
ically reconfigured based on sequence length. This enables

USENIX Association 2025 USENIX Annual Technical Conference 143

Pad Pack Bucket Pos-Diag
0

1

2

3

Th
ro

ug
ho

ut
 (t

ok
en

/s
)

1e4

Fixed Variable

(a) BERT-large on 8 GPUs

Pad Pack Bucket Pos-Diag
0

1

2

3

Th
ro

ug
ho

ut
 (t

ok
en

/s
)

1e4

Fixed Variable

(b) GPT (6.7B) on 16 GPUs

Figure 1: Throughput comparison between fixed-length and
variable-length training.

the “redundant’ devices (i.e., freed when handling shorter
sequences) to be exploited for increasing the degree of DP,
thereby improving overall efficiency.

Thus, this paper proposes FlexPipe from the perspective
of a distributed system to enable high-throughput variable-
length training of transformers. FlexPipe dynamically adjusts
PP to meet both the computation and memory demands across
iterations while maintaining the semantics of training. Then,
FlexPipe utilizes “redundant” GPUs to enhance both resource
utilization and training efficiency. Specifically, two main chal-
lenges are tackled when designing FlexPipe. The first chal-
lenge is how to achieve live (i.e., no termination) and efficient
(i.e., minimize the GPU stalls) adjustment during the training.
We introduce a live flexibility mechanism (LFM) in FlexPipe
to minimize the overhead of the adjustment. The second chal-
lenge lies in determining when to perform the LFM and how
to identify an appropriate new parallel strategy. We design a
heuristic bound searching algorithm (HBSA) by efficiently
balancing the trade-off between computational and memory
usage by comprehensively considering the overhead of the
LFM and other memory optimization approaches.

We make the following contributions in this paper:

• We first introduce a flexible PP framework, FlexPipe,
that improves the efficiency of variable-length training
by enabling the LFM of PP.

• We propose a novel flexible memory optimization prob-
lem aiming at maximizing the training efficiency by
dynamically reconfiguring the parallel strategy and uti-
lizing the “redundant” GPUs across different iterations.

• We design HBSA to solve the optimization problem
while striking a good trade-off between computational
efficiency and memory usage by comprehensively con-
sidering the overhead of the LFM and other memory
optimization approaches.

• We implement FlexPipe 1 on Pytorch. Extensive experi-
ments are conducted to evaluate the efficiency of Flex-
Pipe. The results show that FlexPipe achieves an average
1.25× training throughput compared with state-of-the-
art (SOTA) frameworks.

1https://github.com/Hairui-Zhao/FlexPipe

2 Background and Motivation

In this section, we first introduce the background of distributed
transformer training, and then we illustrate this paper’s moti-
vation.

2.1 Background
Transformers have achieved impressive performance in a va-
riety of deep learning applications. Their architecture is typ-
ically based on encoders and decoders, which consists of
multiple homogeneous encoder and decoder layers, such as
BERT [7] (encoder-only) and GPT-3 [37] (decoder-only),
where each layer has similar training resource consumption.
As reported [16, 31], to perform multiple tasks, transformers
enable training on a mixture of datasets with variable-length
inputs. Self-attention is responsible for focusing on different
positions of variable-length inputs. Fig. 2(a) shows the high
variation in sequence lengths of a mixed dataset FLANv2 [30],
the difference of sample lengths can be up to 60000 across dif-
ferent iterations when random sampling. Note that FlexPipe
can be generalized to models beyond transformers. This paper
focuses on the challenges posed by variable-length sequences,
for which transformers are the most representative.

With the exponential growth of computation and memory
demands, distributed training of transformers has become
indispensable. Transformer training generally involves a com-
bination of various parallelisms, including DP, TP, PP, and SP.
This paper mainly focuses on the elasticity of PP, which is
widely adopted in both commercial and academic DL clus-
ters due to its considerably lower communication [12, 16, 54].
With PP, model parameter of DNN is partitioned into multiple
stages at layer level. In each iteration, a mini-batch is fed into
the first stage for forward propagation (FP), and the intermedi-
ate activations are transferred to the next stages. Then, during
the backward propagation, the gradients are computed based
on the FP activations and passed following the reverse order of
FP. To increase training concurrency, PP splits the mini-batch
into multiple micro-batches [9,14,16] or injects multiple mini-
batches [32]. Finally, the model parameters are updated by
the gradients synchronously or asynchronously with an opti-
mizer, e.g., adaptive moment estimation (Adam) [19]. Note
that while our optimization targets variable-length sequence
training through a dynamic PP framework and leverages DP
to enhance throughput, the resources freed by short sequences
can likewise be repurposed for TP or even 3D parallelism to
further improve scalability.

2.2 Motivation
We conduct two experiments to analyze the observations that
motivate this paper.

Observation 1: Variable-length training leads to under-
utilization of both computational and memory resources

144 2025 USENIX Annual Technical Conference USENIX Association

0 20000 40000 60000
Input Sequence Length

102

104

106

108

Co
un

ts

(a) The sequence length distribution in
FLANv2 [30].

AVG COM AVG MEM

0 20 40 60 80 100

(b) The computation efficiency and memory usage
when trained on 8 GPUs.

2 3 4 5 6 7 8
Number of devices

2

4

6

8

10

Ti
m

e
(s

)

1k
2k
3k
4k
5k
6k
7k
8k
9k
10k

(c) The training time under different sequence lengths
when trained on different number of GPUs.

Figure 2: The observations when training GPT (3.35B) with variable-length inputs.

across different iterations. To accommodate the variable-
length inputs into the traditional training frameworks [3, 35],
the inputs are typically zero-padded to a fixed-length. How-
ever, this introduces extra memory consumption and wastes
computation on zero tokens [16, 54]. To improve the training
efficiency, the packing approach [8,38] concatenates multiple
shorter samples into longer ones, aligning its length with the
maximum sequence length of input. However, it introduces
computational and memory overhead, as self-attention scales
quadratically with sequence length [26]. It also introduces
truncation and cross-contamination, putting the training ac-
curacy at risk. Bucketing [34] constructs mini-batches with
similar sequence lengths while it destroys randomness of
sample batches. Block diagonal attention [20] addresses this
with position IDs and masks, and some works leverage fu-
sion [6, 54] reduce memory usage.

Despite the forward strides made by existing work, they
still suffer from significant fluctuations in both computational
and memory requirements across different iterations. Fig. 2(b)
illustrates the training throughput and memory usage of train-
ing GPT (3.35B) on variable-length inputs under the pack-
ing method. Such high variance in sample lengths incurs
under-utilization of most iterations, their average computa-
tion throughput and memory utilizations are below 55% and
39%, respectively. Because most iterations have shorter sam-
ples but are processed using the devices designed for handling
the longest samples.

The fundamental reason can be attributed to the fact that
existing methods typically focus on the operator-level opti-
mizations within a single iteration (e.g., kernel fusion, non-
matmul FLOPs reduction). However, the substantial fluctua-
tions in both computational and memory requirements across
iterations also lead to under-utilization. This opens up an
inter-iteration opportunity from the distributed systems per-
spective.

Observation 2: Static partitioning of PP leads to ineffi-
cient variable-length training. Though PP is widely used in
training large-scale transformers [18, 29, 36, 41, 57], variable-
length training still poses challenges to existing methods.
To maximize memory usage and throughput for traditional
DNN, PP frameworks (PPs) typically initialize the PP con-
figurations (e.g., batch size, number of stages) to maximize
the occupation of device memory. These configurations will

not be adjusted during the entire training process. While for
variable-length training, current PPs still rely on static parti-
tioning based on the longest sequence length in the dataset
to avoid out-of-memory (OOM) errors, which degrades the
system efficiency.

Fig. 2(c) shows the training time of GPT (3.35B) on
datasets with different fixed lengths using different numbers
of GPUs. We observe that the number of devices required
for efficient training varies with sample length. For instance,
when training a dataset with a sample length of 3k, using 3
GPUs achieves 4.7s per iteration, the shortest training time.
However, when utilizing 8 GPUs, the throughput decreases,
resulting in a training time as high as 7.08s/iteration. This
is because smaller samples lead to significant communica-
tion overhead and poor utilization of GPU resources due
to overly fine-grained partitioning [14]. Such static strate-
gies (i.e., based on the maximum device requirement) signifi-
cantly degrades the overall training throughput. Moreover, in
variable-length training, the majority of iterations are typically
composed of short data samples. For example, when random
sampling in FLANv2, 95% of iterations have a maximum
sample length under 4k, which exacerbates the performance
degradation. This motivates us to explore dynamically recon-
figuring the parallel strategy across different iterations and
utilizing the “redundant" GPUs to accelerate variable-length
training.

Besides efficient variable-length training, there is also
a growing demand for flexible training in large-scale dis-
tributed frameworks. This includes optimizing cluster uti-
lization through dynamic scheduling [42] and meeting job-
specific service level objectives [45]. In addition, flexible
frameworks are crucial for addressing the challenges of het-
erogeneous cloud environments with fluctuating resource
availability. They can also provide lower-cost fault recovery
mechanisms [15, 48–51].

2.3 Challenges
Though the flexibility of PP shows its potential when dealing
with variable-length and dynamic training, two challenges
must be tackled to design an efficient flexible PP framework.

Firstly, dynamically adjusting PP introduces a huge over-
head during training. Existing distributed frameworks utilize

USENIX Association 2025 USENIX Annual Technical Conference 145

…

Variable Length Samples

Maximum sequence / Memory required
4K / 290GB 1K / 150GB 2K / 220GB

… …

A B C D
S-1 S-2 S-3 S-4

A B C D
S-1 S-2

DP
A D

S-1 S-2
B C

S-3

S-1
S-2
S-3
S-4

S-1
S-2
S-1

S-1
S-2
S-3S-2

Shrink Grow

M T

S E S E

M T

S E S E

M T

S E S E

DPDP

(a) (b) (c)

0 1 2 3
0 1 2

0 1
0

0
1
2

0

GPU GPU GPU GPU GPU GPU
GPU

GPUGPU
GPU

GPUGPU
GPU

GPUGPU

0
0

0

1

1
1

2
2

2

3

3

3
3

3

3
3

3

2

2
2

2
1

1 0
0

0

1
1
1

1

2
2
2

2

3
3
3

3 3
3
3

2

Figure 3: An example of FlexPipe when growing and shrink-
ing. The bars (bottom of the figures) illustrate a comparison
of memory usage (M) and training throughput (T). The label
E represents training using FlexPipe, and S represents using
the static partitioning based on a sequence length of 4K (i.e.,
Fig. 3(a)).

the suspend-resume or iteration stalling mechanism, which
leads to a long stall due to initialization and communication
overhead, usually longer than the duration of an iteration [57].

Although flexible PP could utilize “redundant" GPUs to
improve the training throughput, frequent reconfiguration or
an improper parallel strategy would still degrade its perfor-
mance. This raises the second challenge about when to adjust
PP and how to search for an appropriate parallel strategy to
maximize throughput for variable-length training.

3 FlexPipe

3.1 Overview
The key insight of FlexPipe is to dynamically adjust the par-
allel strategy during training, adapting to the variable-length
of transformers at each iteration. FlexPipe introduces a novel
flexible PP framework, while previous PP frameworks rely
on a fixed number of stages and static PP configurations dur-
ing the whole training process, which misses opportunities to
improve the variable-length training efficiency. Specifically,
FlexPipe selects an appropriate number of devices used and
configures PP, taking into account the computation and mem-
ory demands across iterations. Additionally, FlexPipe utilizes
any idle GPUs to increase the degree of DP, enhancing both
resource utilization and training efficiency.

Fig. 3 illustrates an example of flexible training with Flex-
Pipe using four A100 GPUs to train GPT (3.35B) on a
variable-length dataset with a maximum sample length of 4k.
Fig. 3(a) shows that when processing a 4k sequence length

mini-batch. To satisfy the memory requirement (290 GB), the
model is partitioned into four stages, with each stage typically
assigned to a single device (i.e., the middle of Fig. 3(a)). In
this case, FlexPipe employs an identical parallel strategy and
has a similar performance to the static partitioning (i.e., the
bottom of Fig. 3(a), which shows the memory occupation and
corresponding training throughput of GPipe and FlexPipe).
This is because the maximum sequence length in the current
mini-batch equals the dataset’s overall maximum, leading to
the same number of PP stages and configurations. In con-
trast, FlexPipe dynamically shrinks and grows PP stages as
shown in Fig. 3(b) and (c) to improve throughput while meet-
ing memory requirements. When training on a 1k sequence
length mini-batch, FlexPipe adjusts the PP stages to 2 and
leverages the remaining 2 GPUs for DP. For a 2k mini-batch,
FlexPipe reconfigures the PP stages to 3 to satisfy the in-
creased memory demands.

3.2 Design

FlexPipe is designed as an intermediary system between a typ-
ical training system (e.g., FlashAttention and Zero-Bubble)
and its underlying execution engine (e.g., PyTorch [35]). Flex-
Pipe dynamically adjusts the number of PP stages online and
configurations for a given transformer-based model trained
on a variable-length dataset. Fig. 4 shows the overview of
FlexPipe architecture, which consists of three main modules.

Monitor profiles both the running system and devices to
collect information, such as GPU states (e.g., TFlops and com-
munication bandwidth), PP schemes (e.g., Zero-Bubble sched-
uler and partitioning), and DNN model states (e.g., hyper-
parameter and optimizer settings). Furthermore, it pre-fetches
the future sequences from the data loader to minimize the
profiling overhead. Based on the profiling results, it then esti-
mates memory usage and throughput during training.

Planner leverages the collected data to decide whether
to shrink or grow and generates the corresponding parallel
strategy. Specifically, the Planner incorporates a trigger that
first determines whether to apply a shrinking or growing al-
gorithm to guarantee the memory requirements, based on the
sequence length of the mini-batch in the next iteration. Then,
the Planner calls the corresponding algorithm to evaluate the
benefits of shrinking or growing (i.e., the trade-off between
the throughput gains and the associated overhead) and makes
a global decision, including a computation graph, adjustment
decision, etc. As a way of alleviating memory pressure, PP
may not always be the most cost-efficient approach. Other
techniques such as recomputation [5, 14] or memory virtual-
ization [39, 57], should also be considered. Further details on
these algorithms are discussed in Section 5.

TwinLayer Manager receives global decisions from the
Planner and refines them into detailed communication and
computation operators. To enable an efficient and fast flexible
PP mechanism, each server maintains a TwinLayer Manager.

146 2025 USENIX Annual Technical Conference USENIX Association

FlexPipe

Data Parallel Pipeline Parallel Swap In/Out Recompute

Profiler Memory Usage Throughput Estimate

Monitor

Trigger

Shrink Grow

Planner

Graph Generation

Elasticity Strategy

Memory Reduction
Strategy

Computation Graph

Variable Length

Pipeline Execution

…

Transformer-based
 Model

Inputs

𝐿1

𝐿2

𝐿|𝐿|

𝐿9

…

…

…

Status

Pre-fetch
Model States

Cluster

CUDA NCCL/GLOOShared MemoryMulti Processing

G
P

U

Server Node

…𝑳𝟏 𝑳𝟐 𝑳|𝑳|𝑳𝟗 …

Swap out

Instruction
 Generator

ExLayer Manager

Initialization

Fine-grained
Memory Operation

Tensor
Transferring

…

G
P

U

Server Node

…𝑳𝟏 𝑳𝟐 𝑳|𝑳|𝑳𝟗 …

Swap out

Instruction
 Generator

ExLayer Manager

cudaMalloc

Memcpy

Initialization

Fine-grained
Memory Operation

Tensor
Transferring

…

Host Memory

…

G
P

U

Server Node

…𝑳𝟏 𝑳𝟐 𝑳|𝑳|𝑳𝟗 …

Swap out Swap in

Instruction
 Generator

TwinLayer Manager

cudaMalloc

Memcpy

Initialization

Fine-grained
Memory Operation

Tensor
Transferring

…

Host Memory

𝑳|𝑳|

Global
Decision

Profiles

Pipeline Schemes

Figure 4: The overview of FlexPipe system architecture.

Additionally, all layers assigned to this node are duplicated
and are stored in the host memory of each server. This design
ensures flexibility and resilience and will be elaborated on in
Section 4. The TwinLayer Manager is responsible for all op-
erations (e.g., copying, swapping, and recomputation) related
to the layers within each GPU, and the duplicated layers in
the host memory. Then, the instruction generator converts the
high-level operations from TwinLayer Manager into specific
instructions, such as cudaMalloc, cudaFree, and communi-
cation primitives like isend.

4 Live Flexibility Mechanism

To achieve high throughput with FlexPipe, the key challenge
lies in implementing a fast and live flexibility mechanism.
Existing PP frameworks [9, 29, 36] typically do not support
an adjustable number of PP stages and configurations during
runtime. Thus, resource managers [28, 59] in DL clusters that
rely on these PP frameworks reconfigure the resource allo-
cation of PP through a non-live suspend-resume mechanism.
However, this incurs heavy overhead, including checkpoint-
ing, bootstrapping, and data loading. To address this chal-
lenge, a basic way to maintain live training without requiring
a full resume is to initialize the stages on devices, transfer
parameters, and modify dependencies between the iterations.
However, the overhead of initialization and communication
during the training of large-scale transformers cannot be ig-
nored, which still leads to a long stall across iterations. In
summary, both approaches incur immense overhead, which
can severely degrade the training throughput when the adjust-
ment is frequently triggered.

Thus, FlexPipe aims to design a Live Flexibility Mecha-
nism (LFM) to transparently adjust the number of PP stages
and configurations without stalling. The key idea behind this
mechanism is to reduce the initialization overhead and over-
lap the communication and computation time. Specifically,
FlexPipe introduces duplicated layers that are stored in the
host memory of each node, containing all layers within that
node and their corresponding optimizers, which brings two

advantages. Firstly, TwinLayer supports a fine-grained layer
granularity that reduces the overhead of initialization. Tra-
ditional PP frameworks operate at the stage of granularity
during training, which prevents direct access to individual
layers. When implementing flexibility, the parameters and op-
timizers of the stages must first be decomposed into individual
layers, transmitted across devices, and then reassembled on
the target devices. This process incurs significant overhead,
e.g., 1.2s for GPT (3.35B). Secondly, by storing duplicated
layers in the host memory, FlexPipe reduces the overhead of
frequent memory allocations and deallocations.

Additionally, FlexPipe employs a TwinLayer Manager to
efficiently orchestrate the communication and computation
operations for each layer in the devices and host memory. To
ease discussion, Figs. 5 and 6 illustrate examples of FlexPipe
within a single node with four GPUs. Fig. 5(a) and Fig. 5(b)
show the steps and their corresponding timeline when reduc-
ing a PP stage. The instructions are generated based on the
global decision at the start of the previous iteration. To im-
prove the training throughput, the freed GPUs will be utilized
to increase the degree of DP. As shown in Fig. 5(a), a new
DP instance is introduced between GPU2 and GPU3. Conse-
quently, part of the data needs to be redistributed following
the instructions for data transition. The initialization steps
for PP and DP are executed following the decision-making
step, which is overlapped with the data transition process
(Fig. 5(b)). Then, the dependencies across different micro-
batches (i.e., execution order) are modified after the BP step.
Once the update of the previous iteration is complete, GPU2
and GPU3 send their updated parameters of layers L4 and
L5 to the duplicated layers. Then, they respectively copy the
parameters of layers L5 and L4 from the duplicated layers.
Note that these copy steps are proceeded in a pipelined man-
ner that copy-in process begins as soon as a portion of the
parameters arrives. Then, the next iteration starts with a new
configuration.

Conversely, to mitigate the memory pressure caused by
training on temporary longer-length sequences, the degree of
DP is decreased to add the PP stages. Fig. 6(a) and Fig. 6(b)

USENIX Association 2025 USENIX Annual Technical Conference 147

Active InactiveAdded
Copy-out Copy-in

DeletedTransferred
DelSend

…

𝐿2

𝐿7

TwinLayer
Manager

GPU0 GPU1 GPU2 GPU3

Server Node

𝐿9

𝐿3

𝐿8

𝐿4

𝐿3 𝐿5 𝐿4 𝐿5𝐿1 𝐿2

𝐿1

𝐿|𝐿|

𝐿5

𝐿6

②

DP

𝐿4

Host
Memory

①

(a) Steps of adding a stage.

Previous iteration

Make
Decision

Data
Transition

Modify
Dependency

Copy out
Parameter

Copy in
Parameter

Next
iteration

…

FP BP Update

Timeline

Initialization

①

②

(b) Execution timeline of adding a stage.

Figure 5: Example of adding a stage with FlexPipe within a
node with 4 GPUs.

show the steps and their corresponding timeline when adding
a PP stage. The same decision-making and initialization steps
are first executed. Furthermore, the data redistribution and
transition step is also needed to remove a worker of DP. Then,
after the BP, the parameters of layers L5 and L4 can be directly
deleted from devices GPU2 and GPU3, respectively. This is
because all instances in DP maintain identical model parame-
ters in each device. Once the gradients are computed during
BP, the parameters can be updated after gradient synchroniza-
tion without requiring the copies of parameters (Fig. 6(b)).

FlexPipe not only adjusts the number of stages but also
enables flexible repartitioning by supporting layer migration
between devices. As shown in Fig. 6, L3 is migrated from
GPU1 to GPU2 to satisfy memory requirements. By taking
advantage of the characteristic of PP, where the activations
generated by micro-batches in the FP are required during the
BP, the transfer process can occur within the previous itera-
tion when sufficient memory is available. After the decision-
making step, the parameters are transferred immediately, and
the activations of micro-batches already computed during the
FP on GPU1 are transferred to GPU2. Then, the FP and BP
for the remaining micro-batches will proceed on GPU2.

In our evaluation, a non-live migration approach results in
an average execution stall of 7.16s, while FlexPipe requires
only 0.79s. The specific overhead will be discussed in Sec-
tion 7. Due to space limitations, we omit the discussion of
inter-server LFM, which is similar to the intra-server. The
key difference lies in the overhead of transferring the Twin-
Layer across nodes due to lower inter-node bandwidth. This
poses challenges for FlexPipe, particularly when migrating
stages with large intermediate tensors. To address this, Flex-
Pipe minimizes inter-node transfers by prioritizing intra-node
remapping and pre-transferring critical data when necessary.

…

𝐿2

𝐿7

TwinLayer
Manager

GPU2 GPU3GPU0 GPU1

Server Node

Host
Memory

𝐿9

𝐿3

𝐿8

𝐿4

𝐿4 𝐿5 𝐿4 𝐿5𝐿1 𝐿2 𝐿3

𝐿1

𝐿|𝐿|

𝐿5

𝐿6

DP

③

(a) Steps of removing a stage.

Previous iteration

Make
Decision

Modify
Dependency

Del Para

Next iteration …

FP BP Update

Timeline

Initialization

Sync

Send Activ

Send Para

③

③

Data
Transition

(b) Execution timeline of removing a stage.

Figure 6: Example of removing a stage with FlexPipe within
a node with 4 GPUs.

5 Efficient Variable-length Training

Although the LFM reduces the overhead of individual PP ad-
justments, frequent reconfigurations, and an improper parallel
strategy can still degrade the training throughput. Therefore,
an efficient algorithm is urgently needed to determine when to
trigger the LFM and identify an appropriate parallel strategy.
We formulate a new optimization problem, flexible memory
optimization problem, which considers multiple memory op-
timization techniques and flexibility mechanisms to avoid
unnecessary reconfigurations. To address this problem, we de-
sign a Heuristic Bound Search Algorithm (HBSA) that strikes
a balance between flexibility and training efficiency.

5.1 Problem Formulation

We consider a transformer-based model trained on a mixture
of datasets with variable-length samples. The model is de-
ployed to a DL cluster and trained synchronously using PP
across the device set.

System Model. With PP, the model that consists of L =
{l1, l2, ..., l|L|} transformer layers is divided into multiple
stages S = {s1,s2, ...,s|S|)}. Each stage consists of a consecu-
tive set of layers (at least one layer, and si∩ s j∅), and the last
layer of stage sn is the predecessor of the first layer of stage
sn+1. For ease of formulation, homogeneous GPUs on several
physical servers D are available for the training model, which
is divided into multiple device groups G = {g1,g2, ...,g|G|}
(gi∩g j =∅ and ||G||= ||S||). Note that ||S|| does not neces-
sarily have to be divisible by the number of total available
GPUs ||D||, i.e., (||S||%||D||) ∈ N. Since “redundant” GPUs
can be used to accelerate DP for part of the pipeline, as il-
lustrated in Fig. 3(c) that has been widely adopted in hybrid

148 2025 USENIX Annual Technical Conference USENIX Association

parallelisms [9].
Training Time Estimation. To estimate the training time

of pipeline execution, we utilize an estimation function based
on the existing work [36]. Given a mapping of stages to
device groups SΠG = {s1→ g1, ...,s|S|→ g|G|}, the training
time T (SΠG,nmicro) can be represented by,

T (SΠG,nmicro) =
||S||

∑
i=1

ti+(nmicro−||S||+1)× max
1≤ j≤||S||

t j, (1)

where nmicro is the number of micro-batches, ti represents the
time taken for a single operation of PP, including FP and BP
computation, and the communication across devices (for PP
and DP), which is proportional to µ.

Memory Usage. To efficiently leverage the “redundant”
GPUs, we estimate the peak memory consumption of each
iteration to calculate the maximum required device number
for PP. Let B, µ, and M denote the global batch size, maxi-
mum sequence length, and memory capacity of a single GPU,
respectively.

Mpeak(L,B,µ) = Mp,g,o(||L||,µ)+Mact(||L||,B,µ)+Mbu f ,
(2)

where Mp,g,o represents the memory of parameters, gradients,
and optimizer states, Mact and Mbu f represent the memory of
activation and other buffers.

The above runtime data (e.g., training time, communica-
tion time, batch size, and memory usage) is collected by Flex-
Pipe’s profiler during initial training iterations. Cost modeling
for distributed training has been extensively studied in prior
works [42], especially in DP [23] and PP [55]. Further model-
ing details were excluded for brevity.

Flexible Memory Optimization Problem. As a way of
alleviating memory pressure, a flexibility mechanism may
not always be the most cost-efficient approach. Other mem-
ory optimization approaches should also be comprehensively
considered, such as recomputation [5, 14] or memory virtual-
ization [39, 57]. Let Oplan represent the memory-optimized
scheme utilized in the FlexPipe, including identifying layers
for activation recomputation [41], portions of the optimizer to
offload [27], and estimating memory savings for each action.
MOp(SΠG,Oplan,B,µ) represents the memory consumption
following optimized scheme Oplan. T (S′ΠG′ → SΠG) rep-
resents the overhead of the LFM from S′ΠG′ to SΠG. Let
Trc(Oplan) and Tswap(Oplan) represent the time of recomput-
ing and offloading (swap-in, swap-out), respectively. Let MG
denote the total memory capacity of the current device groups
G for PP and MG = M×||G||, naively comparing the MG and
Mpeak to decide whether to use the LFM may lead to ineffi-
cient adjustment, more details will be discussed in Sec. 5.2.
Therefore, elaborate conditions are necessary to determine
which mechanism to apply.

The memory of current S′ΠG′ is less than or equal to the
total memory capacity of the current device groups G

′
, which

is set as

condition A : Mpeak(L,B,µ)≤MG′ . (3)

The overhead of live flexibility from S′ΠG′ to SΠG and the
computation time of SΠG are greater than or equal the com-
putation time of S′ΠG′ , which is set as

condition B : T (SΠG)+T (S′ΠG′ → SΠG)≥ T (S′ΠG′). (4)

Under S′ΠG′ , the memory after using Oplan is less than or
equal the total memory capacity of the current device groups
G
′
, which is set as

condition C : MOp(S′ΠG′ ,Oplan,B,µ)≤MG′ . (5)

The overhead of the LFM from S′ΠG′ to SΠG and the compu-
tation time of SΠG greater than or equal the sum of compu-
tation time of S′ΠG′ , the time of recomputing Trc(Oplan) and
the time of offloading Tswap(Oplan), which is set as

condition D : T (SΠG)+T (S′ΠG′ → SΠG)≥ T (S′ΠG′)

+Trc(Oplan)+Tswap(Oplan).
(6)

We use T to represent the iteration time of the model on
the GPU cluster D,

T=

T (S′ΠG′), A ∧B
T (S′ΠG′)+Trc(Oplan)+Tswap(Oplan), ¬A ∧C ∧D
T (SΠG)+T (S′ΠG′ → SΠG), E

(7)
where condition E = (¬A ∧¬D)∨ (A ∧¬B).
Definition1. Flexible Memory Optimization Problem
(FMOP). Given a transformer-base model L, a GPU clus-
ter D, a current mapping of stages S

′
to device groups G

′

(S′ΠG′) and the maximum sequence length for the next iter-
ation µ, FMOP seeks an appropriate the memory optimized
scheme Oplan and mapping of stages to device groups SΠG
with minimum T considering variable-length data inputs, as:

minimize
Oplan,SΠG

T

s.t. (1),(2),(3),(4),(5),(6),(7)

(8)

5.2 Algorithm
The FMOP can be formally shown as an NP-hard problem
due to the extremely large search space. Moreover, frequent
reconfiguration can still lead to significant performance degra-
dation. To identify an appropriate parallel strategy and ef-
ficiently perform the LFM, we propose a Heuristic Bound
Search Algorithm (HBSA), which consists of three parts: 1)
computing the bounds of layer numbers in each stage and
GPU numbers in each device group (Lines 3-11), 2) utilizing
the bounds to navigate efficient mapping of stages and device

USENIX Association 2025 USENIX Annual Technical Conference 149

Algorithm 1 Heuristic Bound Search Algorithm (HBSA)
Input: Model L, GPU cluster D, time estimation functions.

memory estimation functions, maximum sequence length
µ. Current state: S′ΠG′ , µ

′
.

Output: Memory optimization scheme Oplan, Mapping of
stages to groups SΠG.

1: Initialize:Oplan =∅,S =∅,G =∅.
2: // Exhaustive search.
3: for i = 1 to ||D|| do
4: if Mpeak(B,µ)< i×M then
5: Nstage = i
6: break
7: // Computing the bounds.
8: if Nstage 6= ||S

′ || then
9: nl

low = b||L||/Nstagec, ng
low = b||D||/Nstagec

10: nl
up = min(b||L||/Nstagec+(||L||%Nstage),nl

max)

11: ng
up = b||D||/Nstagec+(||L||%Nstage)

12: Search(L,D,S,G,ν)

13: // Navigating efficient mapping.
14: function Search(L,D,St ,Gt ,ν)
15: for i = nl

low to nl
up do

16: for j = ng
low to ng

up do
17: st = Partition(L, i), gt = Partition(D, j)
18: Lt = L− st , Dt = D−gt
19: if ||Lt ||> nl

up∧||Dt ||> ng
up then

20: Search(Lt ,Dt ,St ∪{st},Gt ∪{gt},ν)
21: if ||Lt || ∈ [nl

low,n
l
up]∧||Dt || ∈ [ng

low,n
g
up] then

22: Ŝ = St ∪{st}∪{Lt}
23: Ĝ = Gt ∪{gt}∪{Dt}
24: if T (ŜΠĜ)+T (S′ΠG′ → ŜΠĜ)< ν then
25: S = Ŝ,G = Ĝ
26: ν = T (ŜΠĜ)+T (S′ΠG′ → ŜΠĜ)

27: // Determining the triggering timing.
28: if A ∧B then
29: return Oplan,S′ ΠG′ B¬
30: else if A ∧¬B then
31: return Oplan,S ΠG B¯

32: if ¬A ∧¬B then
33: Oplan = init(L,S′ ΠG′)
34: if C ∧D then
35: return Oplan,S′ ΠG′ B
36: else if ¬D then
37: return Oplan,SΠG B®

groups (Lines 14-26), 3) exploiting the above conditions to
determine when to trigger the LFM (Lines 28-37).

Bounds Computation. To complete the training of LLMs,
it is crucial to ensure that PP can be executed without OOM
errors. Therefore, the first step is to determine the minimum
number of devices required to accommodate Mpeak(L,B,µ),
which corresponds to the number of stages. The HBSA can
identify the minimum number of devices through an exhaus-

tive search (Lines 3-6). To reduce the frequency and space of
searching the mapping, we compare the number of stages in
the next iteration Nstage with the current configuration ||S′ ||.
Based on this comparison, we compute the bounds for the
number of layers in each stage (i.e., ||si|| (0 < i ≤ ||S||))
and the number of GPUs in each device group (i.e., ||gi||
(0 < i≤ ||G||)). HBSA leverages bounds to filter out a large
number of invalid stage partitions and device combinations.
The calculation of these bounds is based on the characteristics
of transformer-based models and key observations.

The homogeneity of transformers allows us to easily pre-
dict the memory consumption of each layer, and stages with
the same number of layers typically exhibit similar memory
consumption. A key observation is that the variance in ||si||
(0 < i ≤ ||S||) and ||gi|| (0 < i ≤ ||G||) is not significant in
the optimal solution. Based on the heuristic, we should aim
to keep the ||si|| and the ||gi|| as consistent as possible. There-
fore, we use b||L||/Nstagec and b||D||/Nstagec as the lower
bounds for the ||si|| and the ||gi||, respectively (Line 9).

Since the total number of model layers and GPUs cannot al-
ways be evenly divided by the number of stages Nstage, the up-
per bound for the ||gi|| is ng

up = b||D||/Nstagec+(||L||%Nstage)
(Line 11). Moreover, as the number of model layers per stage
is also constrained by the GPU memory capacity M, where
nl

max represents the maximum number of layers that can be
accommodated in a single GPU, the minimum value between
b||L||/Nstagec+(||L||%Nstage) and nl

max (Line 10) is the upper
bound of layers.

Navigating mapping. To accelerate the search for efficient
mapping of stages to device groups, HBSA uses the upper and
lower bounds of layers and GPUs as the starting and stopping
conditions for recursion. This effectively reduces the search
cost by avoiding invalid and inefficient mappings caused by
OOM or excessive overhead of the LFM.

In the Search function, we begin by using bounds to par-
tition L and D (Lines 15-17). We then check if both remain-
ing ||Lt || and ||Dt || exceed their upper bounds. If so, we re-
cursively invoke the Search function with the remaining Lt
and Dt (Lines 19-20). Conversely, if ||Lt || and ||Dt || are both
within the defined bounds, we identify ŜΠĜ as a valid map-
ping and assess whether it is the shortest in terms of time
(Lines 21-26). Any other cases where ||Lt || and ||Dt || fall
outside the bounds are deemed invalid mappings.

The introduction of the bound constraints effectively pre-
vents extreme model-device partition (e.g., inefficient map-
pings with an excessively high degree of DP, causing com-
munication overhead explosions). For candidate mappings
within the bounds, we perform comprehensive cost modeling
through Eq. 1 to estimate the training time, further searching
for the most efficient mapping.

Determining triggering. Once an effective mapping is
identified, it is essential to decide whether to trigger the LFM.
Therefore, we use the conditions in Sec. 5 to guide this de-
cision. As shown in Fig. 7, we summarize four types of so-

150 2025 USENIX Annual Technical Conference USENIX Association

𝑠0
’ 𝑠1

’ 𝑠2
’①

𝑨 ⋀ 𝑩

𝑠0 𝑠1

𝑠0 𝑠1 𝑠2 𝑠3

𝑠0
’ 𝑠1

’ 𝑠2
’

③𝜇 >

𝜇’ ⋀ [¬𝑪 ⋁ (𝑪 ⋀ ¬𝑫)]

④𝜇 < 𝜇’⋀ 𝑨 ⋀ ¬𝑩

Grow

Shrink ②𝜇 >

𝜇’ ⋀ ¬𝑨 ⋀ 𝑪 ⋀ 𝑫

Memory Requirement: 300GB

Memory Requirement: 130GB Memory Requirement: 260GB

Optimizer
(26GB, 19%)

Weights,
Grads
(15GB,
19%)

Others

Host Memory

Activation
Checkpoints
(31GB, 56%)

Optimizer
(30GB, 56%)

Others

Activations
(45GB, 56%)

Weights,
Grads
(15GB,
19%)

OOM

Figure 7: The trigger condition of flexibility by combining
with recomputing and memory virtualization.

lutions in the HBSA, including ¬ maintaining the original
mapping without memory optimization, applying current
popular memory optimization techniques under the original
mapping, ® grow, which involves forming more stages and
¯ shrink, which entails reducing the number of stages.

When both conditions A and B are satisfied, no action is
necessary, meaning that neither memory optimization nor trig-
gering flexibility is needed (¬, Lines 28-29). If condition A
is satisfied but condition B is not, then flexibility should be
triggered (¯, Lines30-31). When condition A is false, con-
dition B must also be false. In such cases, it is necessary to
employ memory optimization techniques (, Lines 32-33).
When both conditions C and D are true, triggering flexibility
is unnecessary, and only memory optimization techniques
should be utilized (Lines 34-35). If condition D is not met,
flexibility should be activated (®, Lines 36-37). For example,
as shown in Fig.7, increasing the maximum sequence length
pushes GPU memory usage to 260GB, triggering an OOM
error. Under condition D, reconfiguration overhead exceeds
that of memory optimization, thus FlexPipe prioritizes the
memory optimization strategies (). Specifically, in stage S

′
1,

the recomputation reduces activation memory by 14GB, cou-
pled with memory swapping that decreases optimizer memory
by 4GB. Comprehensive reconfiguration details and examples
are provided in Sec. 7, Tab. 2.

Here, reconfiguration is not required at every iteration dur-
ing variable-length training. According to the input distri-
bution, where the vast majority of sequences are short, only
about 3% of the iterations contain long sequences. Thus, most
training iterations fall within a relatively narrow resource
range. Furthermore, HBSA provides a tolerant adjustment
mechanism to avoid unnecessary reconfigurations by selec-
tively combining reconfiguration with other lightweight mem-
ory optimization strategies. Empirical observations demon-
strate that during training of the GPT-3.35B model on a 16-
A100 GPU cluster, the system triggers grow (®) or shrink
(¯) at an average period of 37 iterations due to the symmetry.
Memory optimization techniques () serve as the principal
optimization methodology at an average period of 4 iterations.

6 System Implementation

FlexPipe is implemented using 8K LoC in Python and 2K LoC
C++/CUDA code, a distributed DL runtime. Communication
in PP and DP is implemented based on PyTorch’s DDP with
NCCL backend. We further describe the implementation of
some of the unique aspects of FlexPipe.

Data preprocessing. To prevent delays between iterations
and ensure efficient training, it is essential to preprocess the
data before the training begins. Specifically, we implement
a data prefetching strategy where the data loader not only
fetches the current batch but also samples the next global
batch in advance based on the training workflow feature. This
advanced sampling process involves calculating the maxi-
mum sequence length, which ensures that the data is padded
or truncated appropriately. The prepared data also prevents
bottlenecks caused by input data stalls.

Model reconstruction. We designed a TwinLayer by re-
constructing the original model layer. The TwinLayer mini-
mizes the overhead of managing tensors by referencing their
addresses directly rather than duplicating the tensors them-
selves, thereby reducing memory usage and improving compu-
tational efficiency. The TwinLayer Manager is implemented
as an independent process on each server, where it runs multi-
ple computational and communication threads using the C++
thread interface to avoid the Global Interpreter Lock limita-
tions in Python’s multithreading. Based on the timeline and
current communication efficiency of the server, it generates
effective orchestration strategies.

Communication transferring. We use DDP to transmit
tensor between GPU-GPU and GPU-host. To leverage the
duplicate channels between GPUs and the host, the weights
and gradients are partitioned and transferred in a pipelined
manner, which effectively reduces communication delays. To
eliminate the potential disruption of training caused by live
flexibility, we implemented asynchronous transfer operations
using specific asynchronous interfaces, cudaMemcpyAsync
and isend, which enable non-blocking data transmission.

7 Evaluation

We conduct comprehensive tests to evaluate the efficiency
of FlexPipe. The results show that FlexPipe achieves 1.25×
training throughput over SOTA methods on average.

7.1 Experimental Setup
Testbed. We evaluate FlexPipe in an environment consisting
of 8 NVIDIA SXM4 servers. Each node is equipped with 4
NVIDIA A100 GPUs (Ampere architecture) with 80GB of
on-chip memory and is connected to a 64-core AMD EPYC
7763 CPU. The GPUs are interconnected using NVLink, pro-
viding a communication bandwidth of 300GB/s. GPU-to-
CPU communication uses PCIe 4.0, offering a bandwidth

USENIX Association 2025 USENIX Annual Technical Conference 151

512 1024 2048 4096 8192
Max Sequence Length

0

2

Th
ro

ug
hp

ut
 (t

ok
en

/s
) ×104

FlexPipe DynaPipe FA ZB

(a) BERT24 on 4 GPUs.

512 1024 2048 4096 8192
Max Sequence Length

0

1

2

Th
ro

ug
hp

ut
 (t

ok
en

/s
) ×104

FlexPipe DynaPipe FA ZB

(b) BERT96 on 8 GPUs.

512 1024 2048 4096 8192
Max Sequence Length

0

2

4

Th
ro

ug
hp

ut
 (t

ok
en

/s
) ×104

FlexPipe DynaPipe FA ZB

(c) GPT (3.35B) on 16 GPUs.

512 1024 2048 4096 8192
Max Sequence Length

0

1

2

Th
ro

ug
hp

ut
 (t

ok
en

/s
) ×104

FlexPipe DynaPipe FA ZB

(d) GPT (13B) on 32 GPUs.
Figure 8: The average training throughput under different maximum sequence lengths.

4 8 16 32 64
Global Batch Size

0

2

Th
ro

ug
hp

ut
 (t

ok
en

/s
) ×104

FlexPipe DynaPipe FA ZB

(a) BERT24 on 4 GPUs.

4 8 16 32 64
Global Batch Size

0

2

Th
ro

ug
hp

ut
 (t

ok
en

/s
) ×104

FlexPipe DynaPipe FA ZB

(b) BERT96 on 8 GPUs.

4 8 16 32 64
Global Batch Size

0

2

4

Th
ro

ug
hp

ut
 (t

ok
en

/s
) ×104

FlexPipe DynaPipe FA ZB

(c) GPT (3.35B) on 16 GPUs.

4 8 16 32 64
Global Batch Size

0

1

2

Th
ro

ug
hp

ut
 (t

ok
en

/s
) ×104

FlexPipe DynaPipe FA ZB

(d) GPT (13B) on 32 GPUs.

Figure 9: The average training throughput under different global batch sizes.

Table 1: Transformer-based models for evaluation
Model # Layers # Heads #Model Dim # Params
BERT 24 16 1024 340M
BERT 96 16 1024 1.36B
GPT 16 32 4096 3.35B
GPT 40 40 5140 13B

of 64GB/s. These servers are connected by Infiniband with
50GB/s.The testbed runs on 64-bit SUSE Linux Enterprise
Server 15 SP4 with CUDA 12.1 and PyTorch 2.1.1. As a
middleware, FlexPipe is compatible with FlashAttention [6]
and Zero-Bubble [36], which are incorporated to enhance the
efficiency of the transformer-based model.

Baselines. FlexPipe is compared with three representa-
tive methods from different perspectives. (1) Zero-Bubble
(ZB) [36] is currently the most effective PP training frame-
work. We implement it by using padding to enable variable-
length training. (2) FlashAttention (FA) [1] is widely used
for optimizing LLMs from the kernel perspective, which re-
duces the computation time and memory footprint of attention.
FlashAttention supports efficient variable-length training by
packing methods and utilizes the default PP provided by Py-
Torch for distributed training. (3) DynaPipe [16] optimizes
the variable-length training from the system perspective by
supporting variable sizes of micro-batches to increase the
padding efficiency.

Transformer-based models. Two transformer-based mod-
els are used in the experiments, including the variants of the
GPT and BERT models. The details are shown in the Tab. 1.
Both of them are trained on the FLANv2 dataset [30], one of
the largest publicly available multi-task training datasets. The
number of micro-batches for Zero-Bubble and FlashAtten-
tion is configured per model to maximize training throughput,

while for FlexPipe and DynaPipe, it is dynamically adjusted.
Metrics. The average training throughput of actual tokens

is used as the main metric, which is calculated by dividing the
total number of tokens by the duration of one epoch. More-
over, we utilize the overhead of PP adjustment as a metric to
evaluate the proposed flexibility mechanism.

7.2 Performance Comparison

7.2.1 Different Maximum Sequence Lengths

The average training throughput by using different methods
under different maximum sequence lengths is shown in Fig. 8.
We train BERT24, BERT96, GPT (3.35B), and GPT (13B)
models with a global batch size of 4 on 1, 2, 4, and 8 nodes,
respectively. The number of training devices is determined
by the method with the highest peak memory requirement
(i.e., ZA). For other methods with memory optimization tech-
niques, the idle GPUs are utilized to accelerate training by
launching DP, similar to FlexPipe. We could see that FlexPipe
achieves 40.4% and 22.7% than Zero-Bubble and FlashAt-
tention, respectively. Since Zero-Bubble and FlashAttention
optimize variable-length training from a single perspective,
either focusing solely on distributed systems or kernel opti-
mization. In contrast, FlexPipe serves as a middleware system,
enabling a holistic optimization approach to variable-length
training. FlexPipe outperforms DynaPipe by 13.9%, as it
takes accounts for fluctuations across iterations and utilizes
“redundant” GPUs to further accelerate variable-length train-
ing, enhancing both performance and resource efficiency.

Moreover, as the maximum sequence length increases,
throughput decreases due to a higher proportion of wasted
tokens within each iteration. However, FlexPipe experiences
a moderate decline in performance compared with other meth-

152 2025 USENIX Annual Technical Conference USENIX Association

ods. This is because a larger maximum sequence length also
amplifies the fluctuation between iterations, which FlexPipe
is designed to handle more effectively.

7.2.2 Different Global Batch Sizes

Fig. 9 illustrates the average training throughput under differ-
ent global batch sizes, where the maximum sequence length
is set to 2048. The performance of all methods improves
with the global batch size, as larger global batch sizes enable
efficient parallelism in computations and reduce per-batch
overhead (e.g., gradient aggregation). FlexPipe and DynaPipe
increase faster than other methods because they both support
dynamic distributed training according to the variable lengths
across multiple iterations. The overhead of such adjustments
becomes relatively smaller as the duration of each iteration
increases (i.e., larger global batch size).

Furthermore, we observe that FlexPipe exhibits better per-
formance as the model size increases. For instance, it im-
proves an average performance by 9% over other algorithms
with BERT24 and 57% performance improvement with GPT
(13B). This can be attributed to the following two reasons:
(1) larger models exhibit larger fluctuations due to variable-
length inputs, providing FlexPipe with greater optimization
opportunities. (2) more devices are required for training larger
models, which allows FlexPipe to explore stage-to-device
mappings more comprehensively. On the other hand, the flex-
ibility mechanism heavily relies on communication, which
intuitively suggests a declined performance for larger models.
While FlexPipe mitigates this by overlapping the computa-
tion and communication. This optimization leverages a higher
computation-to-communication ratio, enabling FlexPipe to
achieve better performance with larger models.

Based on the above analysis, FlexPipe achieves an average
throughput of 1.25 × than SOTA methods across different
maximum sequence lengths and global batch sizes. Addition-
ally, FlexPipe demonstrates better performance in the context
of large models and large-scale setups.

7.2.3 Overhead

We also evaluate the flexibility overhead of FlexPipe by com-
paring it against two common methods for adjusting PP: (1)
Suspend-Resume is a non-live mechanism that suspends the
training and saves the current status as a checkpoint, then
restarts by loading the checkpoint with a new configuration.
(2) Iteration Stalling supports live adjustment between iter-
ations by transferring the model states without overlapping.
Furthermore, to evaluate the effectiveness of TwinLayer, a de-
graded FlexPipe is implemented as Flex w/o TL by removing
TwinLayer from the host memory.

Fig. 10(a) and 10(b) show the training time using different
flexibility mechanisms under different maximum sequence
lengths. We could see that FlexPipe significantly reduces

BERT24 BERT96 GPT(3.35B) GPT(13B)
0

2

4

6

Tr
ai

ni
ng

 T
im

e
(s

)

×103

FlexPipe
Flex w/o TL
Ite-Stall
Sus-Res

(a) Max_sequence length is 1024.
BERT24 BERT96 GPT(3.35B) GPT(13B)

0

1

Tr
ai

ni
ng

 T
im

e
(s

)

×104

FlexPipe
Flex w/o TL
Ite-Stall
Sus-Res

(b) Max_sequence length is 4096.

Intra-node Mixed-node Inter-node

0.16s

0.46s

0.28s

0.66s

0.4s

(c) The detailed overhead under different envionments: intra-node consists
of one node with 4 GPUs, inter-node consists of 4 nodes across 4 nodes,
mixed-node consists of 2 nodes, each with 2 GPUs.

Figure 10: The flexibility overhead comparison with two com-
mon methods and a degraded FlexPipe.

35%, 23.1%, and 18.8% of the training time compared with
Suspend-Resume, Iteration Stalling, and Flex w/o TL, respec-
tively. This is because FlexPipe optimizes the initialization
time required for dynamically adjusting pipelines by introduc-
ing the TwinLayer mechanism and designing elaborate fine-
grained computation and communication overlap, enabling
rapid flexibility and improving overall efficiency. As the max-
imum sequence length increases, FlexPipe demonstrates bet-
ter performance compared to other methods, as discussed in
Sec. 7.2.1 and 7.2.2, a larger maximum sequence length leads
to more frequent fluctuations. Additionally, a larger maximum
sequence length with a higher computation-to-communication
ratio further reduces the flexibility overhead of FlexPipe.

Fig 10(c) further presents the detailed overhead of a single
flexibility operation under different environments, including
intra-node, mixed-node, and inter-node. Suspend-Resume has
a stable overhead under different environments. The other
methods perform better within a single node, but experience
degraded performance across nodes due to their dependency
on communication bandwidth. Notably, FlexPipe maintains a
minimal increase in overhead across nodes, attributed to its
elaborate overlap of computation and communication.

For cases where new stages are added under the GPT
(3.35B), we estimate the communication overhead per recon-
figuration to be approximately 0.95s, measured as the interval
between completing one iteration’s update and beginning
the next. The performance of FlexPipe comes with the over-
head of each component, typically involving a trade-off be-
tween memory, computation, and communication. However,
as discussed in Sec. 5.2, reconfiguration is infrequent during
variable-length training, and each adjustment yields perfor-
mance benefits that persist over multiple iterations. Further-
more, FlexPipe’s profiling overhead is primarily confined to
early iterations, where extensive sampling is required. There-

USENIX Association 2025 USENIX Annual Technical Conference 153

Model µ Parallel Strategy Mpeak Oplan
512 (4,4) 140 (0,0)
1024 (4,4) 175 (10,5)

BERT96 2048 (3,3,2) 238 (0,0)
4096 (2,2,2,2) 352 (20,12)
8192 (1,1,2,1,1,1,1) 596 (18,18)
512 (8,8) 185 (15,10)
2048 (4,4,4,4) 315 (0,0)

GPT 2560 (4,4,4,4) 358 (25,13)
(3.35B) 3072 (3,3,3,4,3) 397 (0,0))

2560 (3,3,3,4,3) 358 (0,0)

Table 2: The configuration and training details of BERT96 and
GPT (3.35B) by using FlexPipe, where µ and Mpeak denote
the sequence length and peak memory usage, respectively.
The parallel strategy denotes the DP degree of each stage
of PP, e.g., BERT96 is divided into 7 stages, and the degree
of the third stage is 2. Oplan (r, s) denotes r GB activations
recomputed, and s GB tensors offloaded during the training.

fore, as demonstrated by the above experiments, the cost of
a single adjustment is justified when amortized across the
subsequent gains in throughput.

Furthermore, no significant performance degradation was
observed from the compiler. According to our analysis, this is
likely because FlexPipe’s stage migration only remaps model
stages across devices without altering the model structure or
operator definitions, thus avoiding costly recompilation.

7.3 Discussion
7.3.1 Parallel Strategies of FlexPipe

To demonstrate how FlexPipe works, we train BERT96 and
GPT (13B) on 2 and 8 nodes, respectively. Tab. 2 samples
several representative iterations and illustrates their corre-
sponding details. Unlike traditional training frameworks that
rely on a fixed maximum number of GPUs (e.g., 16 GPUs for
training GPT (3.35B)) to handle the variable sequence lengths
across different iterations, FlexPipe dynamically adapts its
parallel strategies according to the memory requirement to
accommodate these fluctuations (e.g., 8 pipeline stages for a
sequence length of 8192 and 4 stages for 512). Moreover, it ef-
fectively utilizes the “redundant” GPUs to boost the training
throughput, leading to a significant performance improve-
ment.

Note that the number of pipeline stages may vary even
when the peak memory requirements are identical. For exam-
ple, when training GPT (3.35B) with a sequence length of
2560, FlexPipe employed different parallel strategies across
two iterations, which are influenced by the state of their previ-
ous iteration. This is because FlexPipe incorporates additional
memory optimization techniques, such as recomputation and
swapping, when adjusting its flexibility. FlexPipe balances the
throughput improvements gained from these optimizations

BERT24 BERT96 GPT(3.35B)GPT(13B)
0

1

2

3

4

Th
ro

ug
ho

ut
 (t

ok
en

/s
) ×104 FlexPipe Flex w/o M

(a) Throughput comparison.

25ms

2080ms

(b) Overhead comparision.

Figure 11: The ablation study of the algorithm.

against their corresponding overheads.
Here, the number of iterations required for model conver-

gence remains nearly identical with or without reconfiguration.
FlexPipe is designed to accelerate each training iteration while
maintaining strong training semantics. Therefore, even with
long training runs, the reconfigurations in FlexPipe do not
compromise training stability. With higher training through-
put, the training tends to finish sooner. We omitted a detailed
convergence analysis due to space constraints.

7.3.2 Effectiveness of Algorithm

To evaluate the effectiveness of HBSA, an ablation study is
conducted by comparing FlexPipe with its modified versions.
Fig. 11(a) shows the training throughput of different mod-
els using FlexPipe and Flex w/o M (only implements the
flexibility mechanism, excluding recomputation and memory
virtualization). We could see FlexPipe achieves an average
32.3% higher performance than Flex w/o M. When memory
fluctuations are moderate, the overhead introduced by acti-
vation checkpointing and memory swapping is lower than
the cost of flexibility adjustments. This mitigates the over-
head caused by frequent adjustments. Furthermore, FlexPipe
demonstrates even better performance advantages for larger
models. This is because as the model size increases, Flex-
Pipe w/o M requires more frequent PP adjustment, leading to
greater overhead.

On the other hand, we compare the overhead of HBSA
with HBSA w/o BD, which employs brute-force search based
on the global solution space to determine the partitioning
strategy. As shown in Fig. 11(b), HBSA achieves a significant
reduction in overhead, with an average overhead of 15ms,
compared to the 745ms for HBSA w/o BD. Although the
overhead of HBSA increases with model size, the growth
remains both reasonable and manageable.

As a heuristic algorithm, the computational overhead of
HBSA is expected to grow linearly with the scale of the sys-
tem. Compared to more complex methods, such as dynamic
programming, HBSA remains relatively lightweight and in-
curs acceptable overhead. Moreover, FlexPipe’s monitor per-
forms sequence-length prefetching from the dataloader, al-
lowing HBSA to be executed ahead of time and overlap with
other computations. This further reduces the latency of recon-
figuration decisions to the acceptable numbers of 15ms.

154 2025 USENIX Annual Technical Conference USENIX Association

8 Related Work

Parallel Techniques. To deal with the explosive growth of
both data volume and model complexity, a surge of studies
have been proposed by researchers focused on various paral-
lelisms [24,26,29,33,36]. With DP [24,25], multiple instances
(i.e., worker) are launched by DL job, and each worker trains
an identical DNN model with different parts of datasets. Thus,
DP is commonly used to speed up large data training for the
models that could fit on a single device. As the increasing
of the model parameter, TP [17, 46] splits individual layers
(operation) into different devices to reduce the memory re-
quirements. While each partition of operation requires two
synchronous communication that slows down the training.
Different from TP, PP [14,18,29,36] spits layers of the model
into different stages, where each stage consists of a consecu-
tive set of layers. Only transferring intermediate activations
between the border layers of neighbor stages results in lower
communication overhead. Recently, SP [26] aims at long se-
quence training by splitting the input into different devices
and uses a ring-style communication, which is orthogonal
to other parallelisms. This paper mainly focuses on the PP,
which is indispensable in both commercial and academic DL
clusters [29, 33, 53].

Pipeline Parallelism. Among the earliest PPs was
GPipe [14], which reduces the bubble ratio by spitting a mini-
batch into multiple micro-batches. Dapple [9] efficiently re-
duces this memory issue with a one-forward-one-backward
scheduling policy, but it is not efficient enough. Hanayo [29]
further improves the training throughput by utilizing a bidi-
rectional pipeline without introducing additional memory
copy. Zero-Bubble [36] nearly achieves zero bubbles by
splitting the BP into two parts: computation for gradients
and parameters. However, existing PPs either rely on static
strategies (e.g., layer partitioning, micro-batch size) during
training or reconfigure the parallel scheme based on suspend-
resume [21, 42, 58] that brings huge overhead. vPipe [57]
addresses the OOM issue when performing neural network
search by dynamically partitioning layers. However, it can-
not dynamically adjust the number of PP stages. PipeTrans-
former [12] improves the training efficiency of transformers
by progressively freezing some layers during the training
process while supporting elastic pipelines that dynamically
allocate resources to the remaining active layers. However,
PipeTransformer does not maintain the semantics of pipeline
training, which is lossy. Though these works allow or support
flexible pipelines, they do not take the variable-length training
of transformers into account.

The optimizations of PPs often come at the expense of
additional memory usage [18, 41, 57]. Therefore, they are
typically combined with memory optimization techniques,
which involve two widely used mechanisms. Memory virtual-
ization [2, 39] synchronously swaps in/out from GPU to host
memory, which brings extra communication overhead. Chen

et al. [5] propose recomputation that drops activations during
the FP and later recomputes them when needed in BP, which
reduces the memory footprint approximately to the square
root of the total activations but incurs 33% extra computation.

Variable-length Training. The variable-length training of
transformers has attracted lots of attention [8, 34, 38]. Tra-
ditionally, a straightforward solution is to pad all short sam-
ples with zeros to the length of the longest sequence. The
naïve padding brings in redundant computations and wasted
memory on padded tokens. Packing [8, 38] can efficiently re-
duce the number of padding tokens by concatenating multiple
short samples to form a long sample. However, packing is
also memory inefficient because self-attention suffers from
quadratic memory requirements with respect to the sequence
length. Some libraries [34] sort the dataset so that each mini-
batch contains samples with similar sequence lengths, which
destroys the randomness and degrades the model performance
(i.e., accuracy) [11].

Recently, a few DL frameworks have employed explicit
designs for reducing the redundant computation caused by
variable-length inputs [10, 16, 54]. ByteTransformer [54] pro-
poses architecture-level optimization on multi-head attention
and designs a padding-free algorithm for efficient variable-
length training for transformers. DynaPipe [16] tackles the se-
quence length variation by advocating PP with variable-length
micro-batches and optimizing micro-batch construction using
dynamic programming. In contrast, FlexPipe mainly focuses
on the trade-off between computational efficiency and mem-
ory usage.

9 Conclusion

This paper presents FlexPipe, a flexible PP framework that im-
proves the efficiency of variable-length training by enabling
the live flexibility mechanism (LFM) of PP. We propose a
novel flexible memory optimization problem (FMOP) aiming
at maximizing the training efficiency by dynamically recon-
figuring parallel strategies and utilizing “redundant” GPUs
across different iterations. We design an efficient heuristic
bound searching algorithm to solve the optimization problem
by comprehensively considering the overhead of the LFM and
other memory optimization approaches. Experiments show
that FlexPipe achieves an average 1.25× improvement in train-
ing throughput compared to existing SOTA frameworks.

Acknowledgment

This work is supported by the Natural Science Founda-
tion of Jilin Province (Grant 20230101062JC), the Na-
tional Key Research and Development Plan of China (Grant
2017YFC1502306), and the National Natural Science Foun-
dation of China (Grant 62272190).

USENIX Association 2025 USENIX Annual Technical Conference 155

References

[1] FlashAttention Packing, Retrieved: 12/01/2024. https:
//huggingface.co/blog/packing-with-FA2/.

[2] NVIDIA Unified Memory, Retrieved: 10/08/2024.
https://developer.nvidia.com/blog/
unified-memory-cuda-beginners/.

[3] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek Gordon Murray, Benoit Steiner, Paul A.
Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. Tensorflow: A system
for large-scale machine learning. 12th USENIX Sympo-
sium on Operating Systems Design and Implementation,
OSDI 2016, pages 265–283, 2016.

[4] OpenAI Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, and Ilge Akkaya. Gpt-4 technical report.
2023.

[5] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos
Guestrin. Training deep nets with sublinear memory
cost. CoRR, abs/1604.06174, 2016.

[6] Tri Dao. Flashattention-2: Faster attention with better
parallelism and work partitioning. The Twelfth Interna-
tional Conference on Learning Representations, ICLR
2024, 2024.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: pre-training of deep bidi-
rectional transformers for language understanding. Pro-
ceedings of the 2019 Conference of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, NAACL-HLT
2019, pages 4171–4186, 2019.

[8] Hantian Ding, Zijian Wang, Giovanni Paolini, Varun
Kumar, Anoop Deoras, Dan Roth, and Stefano Soatto.
Fewer truncations improve language modeling. Forty-
first International Conference on Machine Learning,
ICML 2024, 2024.

[9] Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu
Wang, Zhen Zheng, Chuan Wu, Guoping Long, Jun
Yang, Lixue Xia, Lansong Diao, Xiaoyong Liu, and Wei
Lin. DAPPLE: a pipelined data parallel approach for
training large models. 26th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Program-
ming,PPoPP 2021, pages 431–445, 2021.

[10] Jiarui Fang, Yang Yu, Chengduo Zhao, and Jie Zhou.
Turbotransformers: an efficient GPU serving system for

transformer models. 26th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming,
PPoPP 2021, pages 389–402, 2021.

[11] Ananth Gottumukkala, Dheeru Dua, Sameer Singh, and
Matt Gardner. Dynamic sampling strategies for multi-
task reading comprehension. Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, ACL 2020, pages 920–924, 2020.

[12] Chaoyang He, Shen Li, Mahdi Soltanolkotabi, and
Salman Avestimehr. Pipetransformer: Automated elastic
pipelining for distributed training of large-scale models.
Proceedings of the 38th International Conference on
Machine Learning, ICML 2021, 139:4150–4159, 2021.

[13] Karl Moritz Hermann, Tomás Kociský, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman, and
Phil Blunsom. Teaching machines to read and com-
prehend. Advances in Neural Information Processing
Systems 28: Annual Conference on Neural Information
Processing Systems 2015,, pages 1693–1701, 2015.

[14] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan
Firat, Dehao Chen, Mia Xu Chen, HyoukJoong Lee, Ji-
quan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng
Chen. Gpipe: Efficient training of giant neural networks
using pipeline parallelism. Advances in Neural Infor-
mation Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS
2019, pages 103–112, 2019.

[15] Insu Jang, Zhenning Yang, Zhen Zhang, Xin Jin, and
Mosharaf Chowdhury. Oobleck: Resilient distributed
training of large models using pipeline templates. Pro-
ceedings of the 29th Symposium on Operating Systems
Principles, 2023.

[16] Chenyu Jiang, Zhen Jia, Shuai Zheng, Yida Wang, and
Chuan Wu. Dynapipe: Optimizing multi-task training
through dynamic pipelines. Proceedings of the Nine-
teenth European Conference on Computer Systems, Eu-
roSys 2024, pages 542–559, 2024.

[17] Ziheng Jiang, Haibin Lin, Yinmin Zhong, Qi Huang,
Yangrui Chen, Zhi Zhang, Yanghua Peng, Xiang Li,
Cong Xie, Shibiao Nong, Yulu Jia, Sun He, Hongmin
Chen, Zhihao Bai, Qi Hou, Shipeng Yan, Ding Zhou,
Yiyao Sheng, Zhuo Jiang, Haohan Xu, Haoran Wei,
Zhang Zhang, Pengfei Nie, Leqi Zou, Sida Zhao, Liang
Xiang, Zherui Liu, Zhe Li, Xiaoying Jia, Jianxi Ye, Xin
Jin, and Xin Liu. Megascale: Scaling large language
model training to more than 10, 000 gpus. 21st USENIX
Symposium on Networked Systems Design and Imple-
mentation, NSDI 2024, pages 745–760, 2024.

156 2025 USENIX Annual Technical Conference USENIX Association

https://huggingface.co/blog/packing-with-FA2/
https://huggingface.co/blog/packing-with-FA2/
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/

[18] Taebum Kim, Hyoungjoo Kim, Gyeong-In Yu, and
Byung-Gon Chun. Bpipe: Memory-balanced pipeline
parallelism for training large language models. Interna-
tional Conference on Machine Learning, ICML 2023,
202:16639–16653, 2023.

[19] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. 3rd International Conference
on Learning Representations, ICLR 2015, 2015.

[20] Achintya Kundu, Rhui Dih Lee, Laura Wynter,
Raghu Kiran Ganti, and Mayank Mishra. Enhancing
training efficiency using packing with flash attention.
CoRR, abs/2407.09105, 2024.

[21] Zhiquan Lai, Shengwei Li, Xudong Tang, Keshi Ge,
Weijie Liu, Yabo Duan, Linbo Qiao, and Dongsheng
Li. Merak: An efficient distributed DNN training frame-
work with automated 3d parallelism for giant founda-
tion models. IEEE Trans. Parallel Distributed Syst.,
34(5):1466–1478, 2023.

[22] Haoran Li, Zhanming Jie, and Wei Lu. Non-
autoregressive machine translation as constrained HMM.
Findings of the Association for Computational Linguis-
tics, ACL 2024,, pages 12361–12372, 2024.

[23] Hongliang Li, Hairui Zhao, Ting Sun, Xiang Li, Haix-
iao Xu, and Keqin Li. Interference-aware opportunistic
job placement for shared distributed deep learning clus-
ters. Journal of Parallel and Distributed Computing,
183:104776, 2024.

[24] Hongliang Li, Hairui Zhao, Zhewen Xu, Xiang Li, and
Haixiao Xu. Explsched: Maximizing deep learning clus-
ter efficiency for exploratory jobs. IEEE International
Conference on Cluster Computing, CLUSTER 2023,,
pages 173–184, 2023.

[25] Mingzhen Li, Wencong Xiao, Hailong Yang, Biao Sun,
Hanyu Zhao, Shiru Ren, Zhongzhi Luan, Xianyan Jia,
Yi Liu, Yong Li, Wei Lin, and Depei Qian. Easyscale:
Elastic training with consistent accuracy and improved
utilization on gpus. Proceedings of the International
Conference for High Performance Computing, Network-
ing, Storage and Analysis, SC 2023, pages 55:1–55:14,
2023.

[26] Shenggui Li, Fuzhao Xue, Chaitanya Baranwal, Yongbin
Li, and Yang You. Sequence parallelism: Long sequence
training from system perspective. Proceedings of the
61st Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), ACL 2023,
pages 2391–2404, 2023.

[27] Youjie Li, Amar Phanishayee, Derek Gordon Murray,
Jakub Tarnawski, and Nam Sung Kim. Harmony: Over-
coming the hurdles of gpu memory capacity to train

massive dnn models on commodity servers. Proc. VLDB
Endow., 15:2747–2760, 2022.

[28] Guodong Liu, Youshan Miao, Zhiqi Lin, Xiaoxiang Shi,
Saeed Maleki, Fan Yang, Yungang Bao, and Sa Wang.
Aceso: Efficient parallel DNN training through iterative
bottleneck alleviation. Proceedings of the Nineteenth
European Conference on Computer Systems, EuroSys
2024, pages 163–181, 2024.

[29] Ziming Liu, Shenggan Cheng, Haotian Zhou, and Yang
You. Hanayo: Harnessing wave-like pipeline parallelism
for enhanced large model training efficiency. Proceed-
ings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis,
SC 2023, pages 56:1–56:13, 2023.

[30] Shayne Longpre, Le Hou, Tu Vu, Albert Webson,
Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V. Le,
Barret Zoph, Jason Wei, and Adam Roberts. The flan
collection: Designing data and methods for effective in-
struction tuning. International Conference on Machine
Learning, ICML 2023, 202:22631–22648, 2023.

[31] Swaroop Mishra, Daniel Khashabi, Chitta Baral, and
Hannaneh Hajishirzi. Cross-task generalization via nat-
ural language crowdsourcing instructions. Proceedings
of the 60th Annual Meeting of the Association for Com-
putational Linguistics , ACL 2022, pages 3470–3487,
2022.

[32] Deepak Narayanan, Aaron Harlap, Amar Phanishayee,
Vivek Seshadri, Nikhil R. Devanur, Gregory R. Ganger,
Phillip B. Gibbons, and Matei Zaharia. Pipedream: gen-
eralized pipeline parallelism for DNN training. Proceed-
ings of the 27th ACM Symposium on Operating Systems
Principles, SOSP 2019, pages 1–15, 2019.

[33] Deepak Narayanan, Mohammad Shoeybi, Jared Casper,
Patrick LeGresley, Mostofa Patwary, Vijay Korthikanti,
Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer,
Bryan Catanzaro, Amar Phanishayee, and Matei Zaharia.
Efficient large-scale language model training on GPU
clusters using megatron-lm. International Conference
for High Performance Computing, Networking, Storage
and Analysis, SC 2021, page 58, 2021.

[34] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. fairseq: A fast, extensible toolkit for sequence
modeling. Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
NAACL-HLT 2019, pages 48–53, 2019.

[35] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,

USENIX Association 2025 USENIX Annual Technical Conference 157

Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Köpf, Edward Z. Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. Advances in Neu-
ral Information Processing Systems 32: Annual Confer-
ence on Neural Information Processing Systems 2019,
NeurIPS 2019,, pages 8024–8035, 2019.

[36] Penghui Qi, Xinyi Wan, Guangxing Huang, and Min Lin.
Zero bubble (almost) pipeline parallelism. The Twelfth
International Conference on Learning Representations,
ICLR 2024, 2024.

[37] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario
Amodei, and Ilya Sutskever. Language models are un-
supervised multitask learners. OpenAI blog, 2019.

[38] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei
Li, and Peter J. Liu. Exploring the limits of transfer
learning with a unified text-to-text transformer. J. Mach.
Learn. Res., 21:140:1–140:67, 2020.

[39] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Ar-
slan Zulfiqar, and Stephen W. Keckler. vdnn: Virtualized
deep neural networks for scalable, memory-efficient neu-
ral network design. 49th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO 2016,
pages 18:1–18:13, 2016.

[40] Victor Sanh, Albert Webson, Colin Raffel, Stephen H.
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine Chaffin,
Arnaud Stiegler, Arun Raja, Manan Dey, M Saiful Bari,
Canwen Xu, Urmish Thakker, Shanya Sharma Sharma,
Eliza Szczechla, Taewoon Kim, Gunjan Chhablani,
Nihal V. Nayak, Debajyoti Datta, Jonathan Chang,
Mike Tian-Jian Jiang, Han Wang, Matteo Manica, Sheng
Shen, Zheng Xin Yong, Harshit Pandey, Rachel Bawden,
Thomas Wang, Trishala Neeraj, Jos Rozen, Abheesht
Sharma, Andrea Santilli, Thibault Févry, Jason Alan
Fries, Ryan Teehan, Teven Le Scao, Stella Biderman,
Leo Gao, Thomas Wolf, and Alexander M. Rush. Multi-
task prompted training enables zero-shot task generaliza-
tion. The Tenth International Conference on Learning
Representations, ICLR 2022, 2022.

[41] Zhenbo Sun, Huanqi Cao, Yuanwei Wang, Guanyu
Feng, Shengqi Chen, Haojie Wang, and Wenguang Chen.
Adapipe: Optimizing pipeline parallelism with adaptive
recomputation and partitioning. Proceedings of the 29th
ACM International Conference on Architectural Support
for Programming Languages and Operating Systems,
Volume 3, ASPLOS 2024, pages 86–100, 2024.

[42] Taegeon Um, Byungsoo Oh, Minyoung Kang, Woo-
Yeon Lee, Goeun Kim, Dongseob Kim, Youngtaek Kim,
Mohd Muzzammil, and Myeongjae Jeon. Metis: Fast
automatic distributed training on heterogeneous gpus.
Proceedings of the 2024 USENIX Annual Technical Con-
ference, USENIX ATC 2024, pages 563–578, 2024.

[43] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances
in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems
2017, pages 5998–6008, 2017.

[44] Chen Wang, Ziwei Fan, Liangwei Yang, Mingdai Yang,
Xiaolong Liu, Zhiwei Liu, and Philip S. Yu. Pre-training
with transferable attention for addressing market shifts
in cross-market sequential recommendation. Proceed-
ings of the 30th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining, KDD 2024, pages
2970–2979, 2024.

[45] Haoyu Wang, Zetian Liu, and Haiying Shen. Machine
learning feature based job scheduling for distributed
machine learning clusters. IEEE/ACM Transactions on
Networking, 31:58–73, 2023.

[46] Minjie Wang, Chien-Chin Huang, and Jinyang Li. Sup-
porting very large models using automatic dataflow
graph partitioning. Proceedings of the Fourteenth Eu-
roSys Conference 2019, Dresden, pages 26:1–26:17,
2019.

[47] Adina Williams, Nikita Nangia, and Samuel R. Bow-
man. A broad-coverage challenge corpus for sentence
understanding through inference. Proceedings of the
2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT 2018, pages 1112–
1122, 2018.

[48] Shixun Wu, Yitong Ding, Yujia Zhai, Jinyang Liu, Ji-
ajun Huang, Zizhe Jian, Huangliang Dai, Sheng Di,
Bryan M Wong, Zizhong Chen, et al. Ft k-means: A
high-performance k-means on gpu with fault tolerance.
In 2024 IEEE International Conference on Cluster Com-
puting (CLUSTER), pages 322–334. IEEE, 2024.

[49] Shixun Wu, Yujia Zhai, Jiajun Huang, Zizhe Jian, and
Zizhong Chen. Ft-gemm: A fault tolerant high perfor-
mance gemm implementation on x86 cpus. In Pro-
ceedings of the 32nd International Symposium on High-
Performance Parallel and Distributed Computing, pages
323–324, 2023.

[50] Shixun Wu, Yujia Zhai, Jinyang Liu, Jiajun Huang,
Zizhe Jian, Huangliang Dai, Sheng Di, Franck Cap-

158 2025 USENIX Annual Technical Conference USENIX Association

pello, and Zizhong Chen. Turbofft: Co-designed high-
performance and fault-tolerant fast fourier transform on
gpus. In Proceedings of the 30th ACM SIGPLAN An-
nual Symposium on Principles and Practice of Parallel
Programming, pages 70–84, 2025.

[51] Shixun Wu, Yujia Zhai, Jinyang Liu, Jiajun Huang,
Zizhe Jian, Bryan Wong, and Zizhong Chen. Anatomy
of high-performance gemm with online fault tolerance
on gpus. In Proceedings of the 37th International Con-
ference on Supercomputing, pages 360–372, 2023.

[52] Yisheng Xiao, Lijun Wu, Junliang Guo, Juntao Li,
M. Zhang, Tao Qin, and Tie-Yan Liu. A survey on non-
autoregressive generation for neural machine translation
and beyond. IEEE Transactions on Pattern Analysis and
Machine Intelligence, pages 11407–11427, 2022.

[53] Tailing Yuan, Yuliang Liu, Xucheng Ye, Shenglong
Zhang, Jianchao Tan, Bin Chen, Chengru Song, and
Di Zhang. Accelerating the training of large language
models using efficient activation rematerialization and
optimal hybrid parallelism. Proceedings of the 2024
USENIX Annual Technical Conference, USENIX ATC
2024, pages 545–561, 2024.

[54] Yujia Zhai, Chengquan Jiang, Leyuan Wang, Xiaoying
Jia, Shang Zhang, Zizhong Chen, Xin Liu, and Yibo
Zhu. Bytetransformer: A high-performance transformer
boosted for variable-length inputs. IEEE International
Parallel and Distributed Processing Symposium, IPDPS
2023, pages 344–355, 2023.

[55] Hairui Zhao, Hongliang Li, Qi Tian, Jie Wu, Meng
Zhang, Z Xu, X Li, and H Xu. Arraypipe: Introducing
job-array pipeline parallelism for high throughput model
exploration. In Proc. of the IEEE International Confer-
ence on Computer Communications (INFOCOM), 2025.

[56] Hairui Zhao, Xinyu Li, and Hongliang Li. Visage:
Visual-aware generation of adversarial examples in
black-box for text classification. In CCF International
Conference on Natural Language Processing and Chi-
nese Computing, pages 440–453. Springer, 2024.

[57] Shixiong Zhao, Fanxin Li, Xusheng Chen, Xiuxian
Guan, Jianyu Jiang, Dong Huang, Yuhao Qing, Sen
Wang, Peng Wang, Gong Zhang, Cheng Li, Ping Luo,
and Heming Cui. vpipe: A virtualized acceleration sys-
tem for achieving efficient and scalable pipeline parallel
DNN training. IEEE Trans. Parallel Distributed Syst.,
33(3):489–506, 2022.

[58] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao
Zhuang, Zhifeng Chen, Yanping Huang, Yida Wang,
Yuanzhong Xu, Danyang Zhuo, Eric P. Xing, Joseph E.
Gonzalez, and Ion Stoica. Alpa: Automating inter- and

intra-operator parallelism for distributed deep learning.
16th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2022, pages 559–578, 2022.

[59] Quan Zhou, Haiquan Wang, Xiaoyan Yu, Cheng Li,
Youhui Bai, Feng Yan, and Yinlong Xu. Mpress: De-
mocratizing billion-scale model training on multi-gpu
servers via memory-saving inter-operator parallelism.
IEEE International Symposium on High-Performance
Computer Architecture, HPCA 2023, pages 556–569,
2023.

USENIX Association 2025 USENIX Annual Technical Conference 159

	Introduction
	Background and Motivation
	Background
	Motivation
	Challenges

	FlexPipe
	Overview
	Design

	Live Flexibility Mechanism
	Efficient Variable-length Training
	Problem Formulation
	Algorithm

	System Implementation
	Evaluation
	Experimental Setup
	Performance Comparison
	Different Maximum Sequence Lengths
	Different Global Batch Sizes
	Overhead

	Discussion
	Parallel Strategies of FlexPipe
	Effectiveness of Algorithm

	Related Work
	Conclusion

