
This paper is included in the Proceedings of the
2025 USENIX Annual Technical Conference.

July 7–9, 2025 • Boston, MA, USA
ISBN 978-1-939133-48-9

Open access to the Proceedings of the
2025 USENIX Annual Technical Conference

is sponsored by

DRack: A CXL-Disaggregated Rack Architecture to
Boost Inter-Rack Communication

Xu Zhang and Ke Liu, SKLP, Institute of Computing Technology, CAS; and University of
Chinese Academy of Sciences; Yuan Hui and Xiaolong Zheng, Huawei;

Yisong Chang, SKLP, Institute of Computing Technology, CAS; and University of Chinese
Academy of Sciences; Yizhou Shan, Huawei Cloud; Guanghui Zhang, Shandong

University; Ke Zhang, Yungang Bao, Mingyu Chen, and Chenxi Wang, SKLP, Institute
of Computing Technology, CAS; and University of Chinese Academy of Sciences

https://www.usenix.org/conference/atc25/presentation/zhang-xu

DRack: A CXL-Disaggregated Rack Architecture to Boost Inter-Rack
Communication

Xu Zhang1,2 , Ke Liu1,2 , Yuan Hui3 , Xiaolong Zheng3 , Yisong Chang1,2 , Yizhou Shan4

Guanghui Zhang5 , Ke Zhang1,2 , Yungang Bao1,2 , Mingyu Chen1,2 , Chenxi Wang1,2

1SKLP, Institute of Computing Technology, CAS
2University of Chinese Academy of Sciences

3Huawei, 4Huawei Cloud, 5Shandong University

Abstract
Data-intensive applications are scaling out across more

and more racks, and boosted with advanced computing units
with enhanced throughput, which necessitates increased NIC
capacity and network bandwidth to transport inter-rack traffic.
As a result, when running them over ToR-centric racks, inter-
rack traffic can be bottlenecked at host NICs and core network
due to oversubscription. However, we observe that, although
a large volume of inter-rack traffic exists, the utilization of the
host’s NICs within a rack remains low. If those underutilized
NICs within a rack can be utilized by any host, inter-rack
communication can be accelerated. Therefore, we propose
DRack. At its core, DRack disaggregates all NICs within a
rack from their hosts, forming a shared NIC pool. As the local
memory bandwidth or the PCIe link at a host is much smaller
than the NIC pool capacity, the host cannot fully utilize the
NIC pool. DRack also disaggregates memory devices within
a rack from their hosts, so that data from the NIC pool can
be written and read from multiple memory with full capacity,
while host processors can directly access the memory pool
with memory semantics. We realize DRack with CXL as it
supports device pooling and memory semantics, which is well-
suited to our designs. We have implemented DRack prototype
and evaluated it with real applications, such as DNN training
and graph processing. The result shows that DRack can reduce
the communication stage by an average of 37.3% compared
to ToR-centric rack.

1 Introduction
Today’s production clouds organize hosts in ToR-centric
racks. Each rack hosts tens of hosts connected via a Top-
of-Rack (ToR) switch and is linked to the network core. Data-
intensive applications running in those clouds, such as graph
computing [1], data analytics [2], and deep neural network
(DNN) training [3] often operate with Bulk Synchronous
Parallel (BSP) [4] or MapReduce paradigms [2], generally
involving computation stage and communication stages (e.g.,
data shuffling and synchronization). They tend to scale the job
out across more and more racks for acceleration, resulting in a

large volume of across-rack traffic. As measured by Facebook
during 24 hours [5], an average of 87.1% of network traffic in
their datacenter needs to go out of the rack. Moreover, recent
innovations on processors and domain-specific accelerators,
such as GPUs [6, 7], and FPGAs [8], have significantly en-
hanced computing throughput, which necessitates increased
NIC capacity and network bandwidth to accommodate. Thus,
the two trends result in communication bottlenecks for inter-
rack communication, including NIC egress/ingress port, and
core network bottleneck due to oversubscription that is pre-
dominant in datacenter networks (DCN) (§2.1) .

We can address these bottlenecks intuitively with a brute-
force approach, by overprovisioning NICs for every hosts [9–
11], or switching equipments [10]. It is cost-prohibitive in
terms of power consumption and hardware expenses. Another
line [12–14] adds reconfigurable hardware to provide extra
bandwidth between the intensively communicating racks, or
to enable a reconfigurable network that changes its topology
to adapt dynamic inter-rack traffic volume. However, they
are limited by reconfiguration delay and complexity, and face
challenges in predicting inter-rack traffic pattern that is bursty
and highly dynamic [5]. Last, some job schedulers [15–20] re-
duce inter-rack traffic by scheduling jobs based on predictable
features, e.g., the data volume to send, which is hard to predict
for existing data-intensive applications (see §2.3).

By studying the traffic trace from Facebook [5] and running
real-world applications in our cluster, we find, although a
large volume of inter-rack traffic prevails [12], the hosts NIC
utilization within a rack remains low (for both ingress and
egress). The reason can be two-fold: 1) there is no network
traffic during job computing stages and the traffic volume to
send/receive during communication is highly skewed between
hosts; 2) each job has its resource requirement and emphasis,
resulting in resource fragmentation, e.g., non-distributed DNN
training jobs leave the NICs unused [21].

Inspired, a natural direction to explore is, if those underuti-
lized NICs from other hosts within a rack can be borrowed,
could inter-rack communication be accelerated? Therefore,
we propose Disaggregated Rack (DRack), a new rack architec-

USENIX Association 2025 USENIX Annual Technical Conference 1261

ture concept with the following three key designs. ➀ DRack
disaggregates all the NICs of existing hosts to form a rack-
level NIC pool which can be used by any host to accelerate
its inter-rack traffic. However, maximizing the utilization of
NIC pool capacity poses a challenge. This is because, when
writing the data from the NIC pool to the memory of destined
hosts, the NIC pool’s capacity can surpass the bandwidth
of the PCIe links at the destined hosts, or the total memory
bandwidth of their local memory, given the number of com-
municating hosts is small. Thus, ➁ DRack also disaggregates
local memory from hosts, forming a rack-level memory pool
with an aggregated bandwidth exceeding the capacity of the
NIC pool, so that data can be written/read to/from multiple
memory devices from the NIC pool with the full capacity. ➂
DRack allows host processors or accelerators (e.g., CPU) to
load and store the memory pool with memory semantics dur-
ing computation, without moving data to their local memory
first with DMA. This approach contrasts with prior works that
relied on PCIe for device pooling [22–24].

To realize the above three key designs, we find that CXL is a
perfect fit due to the following facts: 1) CXL 2.0 [25] supports
memory and IO device pooling with CXL switches which are
responsible for routing and address remapping when the host
is accessing any device attached to it. Consequently, CXL 3.0
enhances it by proposing CXL fabric, which is an interconnect
that supports rack-level resource polling (designs ➀ and ➁). 2)
CXL supports memory semantics (CXL.mem), which enables
hosts to load and store the memory pool directly throughout
the computation stage (➂).

By doing so, DRack alleviates the bottlenecks in the inter-
rack communication when running over the ToR-centric ar-
chitecture, and its new architecture complements existing
job scheduling algorithms with a better communication effi-
ciency [26, 27]. Compared to prior architectures, DRack is
static without the complexity of reconfigurability and traffic
prediction, and does not add more hardware for more band-
width across racks, while DRack can be flexible and scalable
by simply attaching more memory/NIC devices to the CXL
interconnect.

We still face several challenges in porting real application-
s/jobs and ensuring DRack efficiency (see §2.4). For example,
CXL.mem load/store to remote memory (in other hosts) ex-
hibits higher latency than accessing the local memory, which
could impact the computation efficiency. We solved them and
implemented a full functional DRack prototype with 8 cus-
tomized MPSoC FPGAs and one server connected by optical
fibers, instead of using simulator and NUMA nodes in prior
works [28–31], enabling running different applications trans-
parently on DRack with various (CXL) bandwidth and latency
configurations. We realized CXL 3.0-like memory protocols,
such as CXL.mem and CXL.io, atop an academia lightweight
conceptual hardware protocol stack [32]. We evaluated DRack
with both microbenchmarks, real data-intensive applications,
such as DNN training, graph processing, and KV store, and

ToR Rack 2ToR Rack 1

Host 1

Aggregated Switch

C M
NIC

Host 2

C M
NIC

Host 3

C M
NIC

Host 4

C M
NIC

Host 1

C M
NIC

Host 2

C M
NIC

Host 3

C M
NIC

Host 4

C M
NIC

.....

(a) Conventional Rack-centric architecture.

Agg

ToR

Edge

DRack 1

Host 1
C

NIC NIC

CXL
Switch

M

M

Host 2
C M

Host 3
C M

Host 4
C M

NIC NIC

DRack 2

Host 1
C

NIC NIC

CXL
Switch

M

M

Host 2
C M

Host 3
C M

Host 4
C M

NIC NIC

.....

(b) DRack: a logical shared memory and NIC pool
Figure 1: The architectural comparison between two racks.
CPU (c), Memory (M).

user cases like job scheduling, and show that DRack reduces
the communication time by an average of 37.3% compared
to the conventional ToR-based rack. DRack also achieves
62.2% lower p99 tail latency when running latency-sensitive
applications, e.g., Redis.

2 Background and Motivations
In this section, we first elucidate the reason why inter-rack
communication is prevalent and inevitable in conventional
rack-centric datacenter networks (DCN), and why it is critical
to the performance of data-intensive applications. Second,
we review prior approaches aimed at enhancing inter-rack
communication efficiency. Third, we reveal a unique insight
resulting from workload execution paradigms (e.g., BSP) and
job placements – the utilization of existing NICs’ full-duplex
bandwidth is low, e.g., 20%-45% reported in [21]. This insight
motivates the DRack strawman design, which decouples NICs
from their physical hosts and pools them to form a rack-level
NIC pool. Last, we discuss the use cases that can benefit from
DRack and the challenges that must be addressed to realize
DRack in practical.

2.1 Inter-rack Communication in DCNs

Although conventional DCNs, such as public clouds in Ama-
zon [33] and Tencent [34], can vary from one deployment to
another. They have one property in common – they arrange
hosts in racks as the basic unit. As shown in Figure 1(a), a
ToR switch interconnects tens of hosts via Ethernet links, all
of which are stacked within a physical rack. Racks connect
to the aggregation layer with oversubscribed uplinks. This
ToR-based rack architecture streamlines the management pro-
cess, while aiming to offer high throughput and low latency
for application traffic with a high degree of rack locality.
Inter-rack traffic is rising and inevitable. We conducted
an analysis of a public dataset from Facebook [5], which en-

1262 2025 USENIX Annual Technical Conference USENIX Association

0 20000 40000 60000 80000
Timestamp

98.6
98.8
99.0
99.2
99.4
99.6
99.8

100.0

Id
le

 h
os

ts
 (o

r N
IC

s)
 %

(a) The percentage of hosts (or NICs)
are not communicating.

0 20000 40000 60000 80000
Timestamp

0
20
40
60
80

100

Tr
af

fic
 p

er
ce

nt
ag

e
%

Frontend
Hadoop

(b) The percentage of the volume of
inter-rack traffic.

Figure 2: The network traffic patterns motivating DRack.

compasses packet-level traces gathered from both Hadoop
and Frontend production clusters over one day, sampled at a
rate of 1:30k. Each packet sample includes source and desti-
nation hosts. As depicted in Figure 2(b), an average of 86.7%
and 97.3% of Hadoop and Frontend traffic, respectively, is
directed to hosts located in different racks, thereby under-
scoring the significant demand for inter-rack communication.
This observation aligns with prior works [5, 12] and can be
attributed to the following factors:

❶ Service-based rack organization: for operation conve-
nience, a rack is typically dedicated to hosts serving a spe-
cific (Frontend) service. e.g., cache servers primarily send
responses across racks to web servers in other racks, which
issued cache read requests. ❷ Resource fragmentation: a
Hadoop (Map-Reduce) job may span multiple racks if rack re-
sources are fragmented, thereby resulting in heavy inter-rack
traffic for that job. The fragmentation occurs as the scheduler
endeavors to localize jobs within a rack [35]; second, dynamic
job churns ensure that rack resource is not always neatly
packed [36, 37]. ❸ Large scale applications: Data-intensive
applications like data analytics [2], iterative graph process-
ing [1] and machine learning [3] (ML), is scaled out across
100 to 1K of hosts [38, 39], i.e., tens or hundreds of racks, to
accelerate computation over large input dataset. Their exe-
cutions follow BSP and Map-Reduce paradigms that require
extensive data communication between racks (hosts) after
computation, e.g., gradient synchronization.

Inter-rack communication efficiency is crucial for applica-
tions. Data-intensive applications are increasingly leverag-
ing advanced computing units such as CPU, GPU and FPGA
to execute compute-intensive tasks [6–8]. This trend signifi-
cantly reduces computation time and generates data at rates ex-
ceeding hundreds of GBps, which is several orders of magni-
tude higher than NIC capacity (e.g., 100 Gbps). Consequently,
after the computation phase, each host accumulates a sub-
stantial volume of intermediate data, necessitating a bursty
transmission and a subsequent reception between racks (or
hosts) during the communication phase. When running over
ToR-based racks, this communication process traverses the
host NIC twice (for egress and ingress) and the potentially
oversubscribed uplink of the ToR twice. Therefore, enhancing
both the NIC capacity and the capacity of the oversubscribed
uplinks of ToRs is crucial for communication efficiency and
application performance.

2.2 Existing Approaches

Topology Reconfigurability. One line of prior works [12–
14] adds extra bandwidth between the most intensively com-
municating racks with extra cables, lasers, or antennas to
relieve the bottleneck at the uplinks of ToRs, which is usually
oversubscribed. Another line does not add bandwidth [12],
but builds a flexible network that changes network topology
to adapt dynamic workload communication patterns. The effi-
ciency of both approaches highly depends on the predictability
of traffic patterns, while it is challenging to identify them due
to the bursty nature of host- and rack-level outbound traf-
fic (see §2.1). The measurements in production clusters also
reveal the presence of a large number of short-lived heavy hit-
ters [5], that is, there is no more than a 50% chance that host-
and rack-level heavy hitters will persist in the next 100ms.
Brute-force hardware upgrade. To relieve the potential
bottleneck at the host’s egress bandwidth, GRIN [40] lever-
ages multi-port NICs to expand the host egress capacity, but
the improvement is constrained by the fact that the number
of additional paths is usually limited. Production GPU clus-
ters like EFLOPS [11], vClos [9], and HPN [10] bound each
GPU to a single NIC (400 Gbps) to catch the pace with the
hardware throughput. They also leverage multi-homed topol-
ogy to provide a full bisectional network core. However, they
exacerbate the link (and NIC) underutilization, given their
utilization is already low [5, 41–43]: as measured, 99% of
all links are less than 10% loaded. Moreover, this imposes
an escalated “scale tax” – power consumption, hardware and
operational expenses [44, 45].
Job placement and scheduling. To reduce inter-rack traf-
fic contention, existing cluster schedulers optimize the place-
ment of jobs close to the input data [15, 16] that is spread
over the cluster randomly in a distributed file system (e.g.,
HDFS [46]). Others schedule communication based on the
predictable features of tasks [17–20], e.g., the volume of data,
start/end time, and source and destination of the communi-
cation. However, due to the unpredictability of job traffic as
explained in §2.1, job schedulers cannot completely avoid
cross-rack traffic contention.
Takeaway. Existing reconfigurable topologies and job
schedulers cannot predict the pattern and volume accurately
due to the bursty nature of across-rack traffic of distributed
workloads, which persists with any frequency [5]. Upgrad-
ing switching hardware to meet the peak bandwidth degrades
the network utilization. The goal of this work is to seek a
cost-effective rack-level architectural design that efficiently
handles the inter-rack traffic without extra hardware for more
bandwidth or reconfiguration complexity.

2.3 Insights on NIC utilization

By analyzing the same packet-level dataset from [5] and con-
ducting real experiments with data-intensive applications, we
observed that the bandwidth utilization of existing NICs within

USENIX Association 2025 USENIX Annual Technical Conference 1263

a rack remains low – the insight motivates and carries impor-
tant implications for the design of DRack. Specifically, we
count the number of hosts sending and receiving packet sam-
ples within a rack every 1s, respectively, and averaged it over
all racks. Figure 2(a) shows over 90% of hosts (NICs) are not
sending or receiving in 1s, i.e., remain underutilized, for both
Hadoop and Frontend clusters. This observation aligns with
prior studies [5,21,41,43], The imbalanced NIC utilization is
common and can be attributed to the two factors.
Application semantics. Although all hosts schedule their
NICs during the communication stage, the data volume pro-
cessed by these NICs vary largely due to these factors:

❶ Compute Irregularity: Computation tasks are often un-
evenly distributed across hosts, leading to different compu-
tation times [47]. This irregularity results in hosts commu-
nicating at different times and NICs handling disparate in-
termediate data volumes, which are unpredictable and cause
imbalanced utilization of NICs. For example, when running
graph processing in parallel, each host processes subgraphs
with different properties on vertices and edges. This requires
varying computation times and produces different amounts of
data for synchronization. Moreover, every subgraph evolves
iteratively, increasing the unpredictability of communication
and computation times. As shown in Figure 3(a) and Fig-
ure 3(b), we run a PageRank and CC job over 8 servers and
validate data volume and the start time of communication
varies significantly. ❷ Data skewness: The distribution of
data between hosts can be uneven, causing certain NICs to
process a disproportionate amount of data compared to others.
For example, in DLRM training, input samples of a batch
for hosts exhibit heterogeneous access locality on requested
embeddings [48–50]. This leads to hosts fetching varying
numbers of distinct embeddings from other hosts’ embed-
ding tables, and resulting in the uneven generation of gradient
data for the embedding layer. In Figure 3(b), the data vol-
ume varies substantially for all applications running over 8
hosts, leading to an average NIC utilization less than 20%. We
summarize more examples in the Appendix (§A.2), highlight-
ing the generalizability of low NIC utilization across various
data-intensive applications.
Resource fragmentation. In datacenters, multiple jobs
run concurrently. To schedule them, resource fragmentation
is inevitable, as each job has its own resource requirements.
If a job can be accommodated by a single host, i.e., a non-
distributed job, the NIC of that host remains underutilized.
Additionally, BSP paradigm mandates that the NICs can be
idle during computation. As observed in production clusters,
20%-45% of machines run non-distributed jobs [21], result-
ing in underutilized NICs. These NICs could potentially be
leveraged by throughput-intensive distributed applications to
enhance NIC utilization and performance.
Implications. Given that inter-rack traffic is predominant
(§2.1) and yet NIC utilization remains low and imbalanced,
if the underutilized NICs equipped at the hosts were con-

0.0 2.5 5.0 7.5 10.0
Wall Time

0

25

50

75

100

No
rm

. T
hr

ou
gh

pu
t % H0 H1

(a) Sampling 2 host’s egress through-
put running PageRank.

PageRank CC DLRM Redis
1.0

1.5

2.0

2.5

No
rm

. D
at

a
Vo

lu
m

e

0

5

10

15

20

Ut
iliz

at
io

n
%

Average

(b) Sent data volume difference be-
tween hosts in communication stage.

Figure 3: The imbalanced NIC utilization. (testbed see § 7.1)

trollable and accessible by a different host within the same
rack, inter-rack communication can be accelerated, while the
burstiness of the traffic can be alleviated by spreading the
traffic between more NICs and paths. Moreover, resource
fragmentation due to job scheduler can be reduced if NICs
can be scheduled independently, without the need to schedule
additional computing resources on the same host.

2.4 The Benefits of DRack

DRack design principle. Driven by the implications of
large inter-rack traffic demand and the underutilization of
rack NIC ports, we propose a new rack architectural concept –
Disaggregated Rack (DRack).

At its core, DRack disaggregates NICs from host bound-
aries, consolidating them into a rack-level NIC pool accessible
by any host to transfer its inter-rack traffic. Maximizing the
utilization of the NIC pool’s capacity is challenging, as its
capacity can exceed the bandwidth of the PCIe links at the
destined hosts or the total memory bandwidth of their local
memory. For example, in many-to-one across-rack traffic, a
NIC pool of 16x200 Gbps NICs (with 16 hosts) can achieve
a receiving throughput of 3200 Gbps, which far exceeds the
500 Gbps capacity of a PCIe5x16 link on the destination host.
When performing direct memory access (DMA) from/to all
NICs, both sending and receiving operations can ultimately
be limited by the host’s PCIe link or local memory bandwidth.

Thus, the second principle of DRack is to disaggregate
system-integrated memories from all host boundaries, form-
ing a rack-level memory pool with an aggregated bandwidth
exceeding the capacity of the NIC pool. Hosts can allocate
descriptors with referenced address locations spanning all
hosts’ memory devices, facilitating distributive DMA writing
of inter-rack traffic, received from the NIC pool, across all
memory devices, not only the local memory of the destined
host. Similarly, the NIC pool performs DMA reads from mul-
tiple memory devices to achieve full bandwidth transmission.

Last, DRack allows hosts’ processors (e.g., CPU) to ac-
cess the memory pool using memory semantics, This enables
them to directly load and store of data during computation
stage, eliminating the need to initially move data to their local
memory via DMA.
User cases and benefits. DRack addresses the bottlenecks
in inter-rack communication, without the need of additional
bandwidth hardware and reconfigurability. Second, DRack is

1264 2025 USENIX Annual Technical Conference USENIX Association

M

M R

M

M R

M

M R

M

M

M

ShuffleWatcher DRack

Racks & Hosts & Compute Unit

R

NICNIC

NICNIC

NICNIC

NICNIC

Directional
Traffic

(a) DRack saves more cores.

J1 J2

J2

X

Crux

J1

J1 J1

J1 J2

J2

DRack

J1

J1 J1

NICNIC

NIC NIC

NICNIC

NICNIC

(b) DRack reduce comm. time.

Figure 4: Workflows of job schedulers on DRack.

not only orthogonal to existing job scheduling and placement
strategies, but also unleashes their performance gains.

❶ Mitigating inter-rack communication bottlenecks. 1)
NIC egress bottleneck: Recall, during the computation stage,
a substantial volume of intermediate data is produced, result-
ing in a throughput higher than the NIC capacity by several
orders. To minimize the idle time of valuable computing re-
sources, DRack allow a host to use underutilized NICs within
the same rack to boost its egress capacity like in Figure 1(b),
the host then can control multiple NICs to send packets con-
currently by passing descriptors to them, thereby mitigating
the gap between the compute hardware throughput and the
local NIC’s egress capacity. 2) Oversubscribed network
core: The NIC pool completes its transmission, as shown
in Figure 1(b), acting as the uplinks of tier 2 (ToR), in con-
trast to Figure 1(a). This is because DRack shifts rack NICs
and the above topology components, like ToR switches and
aggregated switches, up one tier compared to original ToR-
based architecture. The ToR switches effectively take on the
role of aggregated switches, while the original aggregated
switches can either be eliminated or repurposed to serve as
core switches. By appropriately wiring between the NICs
and ToR switches in Figure 1(b), DRack achieves a fully bi-
sectional bandwidth between any pair of racks, unlike the
oversubscribed network core found in ToR-based rack archi-
tecture, and does so without the need for additional switching
hardware. 3) NIC ingress bottleneck. Data is received by the
NIC pool of the destined rack, as shown in Figure 1(b), and
DMA to all rack host’ memory devices to fully exploit the
NIC pool capacity. In ToR-based racks, incast loss at the ToR
switch’s egress port can occur due to possible many-to-one
traffic and limited capacity of the host’s NIC, as the data is
only written to a single host.

❷ User cases. We show why DRack is orthogonal to exist-
ing job scheduler, and can improve them with the following
examples: 1) MapReduce jobs schedulers: We validate how
DRack improves ShuffleWatcher [27]. Figure 4(a) shows,
upon the mappers of a job running at 4 hosts are done, Shuf-
fleWatcher schedules cross-rack network shuffling with the
reducers, This requires each host to schedule the NIC and a
compute unit, P, for fetching mappers’ output from HDFS and
managing data I/O, totally 4P, if little cross-rack traffic exists
(assume accurate traffic monitor). Otherwise, ShuffleWatcher
schedules mappers of another job to replaces finished mappers.
With DRack, it only needs 1P from a host for all shuffling

tasks with reducers, as any host can concurrently access all
NICs, while leaving the remaining 3P for mappers, thereby
enhancing resource efficiency. 2) BSP-based job schedulers:
We validate how DRack improves Crux [26]. Figure 4(b)
shows that Crux prioritizes job 1 to use network core band-
width without contending with other jobs on the same uplink,
as it allocates more compute units (4P) than the others (2P).
With DRack, job 1 can use 2 NICs (1 from the other host) to
send cross-rack traffic, further reducing communication time
and minimizing idle time of computing resources.

We validate the DRack benefit in a large scale by evaluating
the above two user cases with real experiments (§7.3).

2.5 Realizing DRack

To build DRack, we explore the following techniques and
show their suitability for DRack’s design.
CXL. The Compute Express Link (CXL) standard [25]
enables memory and device pooling, which is a great fit for
realizing DRack’s memory pool and NIC pool. DRack lever-
age the fabric topology in CXL 3.0 that supports data-sharing
and switch-based pooling: a physical CXL switch can be
virtualized into multiple virtual CXL switches (VCS). Each
host sees a tree-based virtual hierarchy built with a separate
VCS, which handles address remapping for accessing the de-
vices attached in the switch. This maps devices, including
memory devices (e.g., local memory and newly-added remote
memory in CXL switches) and IO devices (e.g., NICs), along
with hosts, into a unified logical address space. CXL mem-
ory semantics (CXL.mem) enables hosts to load and store
the memory pool directly during the computation stage, un-
like prior works using PCIe interconnects for device pooling,
which requires moving data to the host’s local memory via
DMA prior to computation [22–24]. Clearly, CXL is well-
suited for DRack design in §2.4. Importantly, DRack only
uses CXL hardware (e.g., a CXL switch) without modifica-
tions, simplifying future deployment.
SR-IOV. A PCIe device in a PCIe slot (e.g., PCIe NIC)
can function as one or multiple physical functions (PFs). SR-
IOV (Single Root I/O Virtualization) [51] is a technology
that enables a PF to be virtualized into multiple virtual func-
tions (VFs). Thus, each virtual NIC (vNIC) has a copy of
dataplane and a portion of the configuration space (IO space),
i.e., Tx/Rx queue heads and VLAN QoS settings for a vNIC.
This allows different hosts to use the NIC via a vNIC. By ac-
cessing the vNIC’s IO space, we can finely control the traffic
to each vNIC, e.g., setting QoS to support priority schedul-
ing. As shown in CXL specification [25, 52], CXL.io, one of
CXL protocols, maintains backward compatibility with PCIe
standard. This ensures connectivity with conventional PCIe
devices including IO devices such as NICs, thereby inherently
supporting SR-IOV. DRack uses CXL.io for its NICs to DMA
read/write the memory pool, as well as other functions such
as device discovery, configuration, initialization, etc..
Memory Interleaving. Memory interleaving distributes

USENIX Association 2025 USENIX Annual Technical Conference 1265

memory requests by partitioning the physical address space
among multiple memory devices at uniform intervals, form-
ing an interleave set (IS). A host can possess multiple ISs. For
example, the Intel Skylake platform with two CPU sockets,
configures a unique IS for each socket by default, contain-
ing the local memory devices of the respective socket. CXL
defines the smallest continuous address partition (interleave
granularity, IG) ranging from 256B to 16 KB.
Challenges and Solutions. Although the above techniques
pave a promising substrate for DRack, there are challenges to
overcome to ensure DRack’s efficiency and practicality.

C1: CXL accesses exhibits a large latency. Hosts access
to remote memory devices within the pool (e.g., the local
memory of other hosts) with CXL.mem load and store, which
exhibit at least 2.7x latency than accessing local memory of
the same NUMA node [53]. Second, CXL.mem load and store
are synchronous, cacheline-based with limited concurrency
(e.g., 64 at most [54]), resulting in bandwidth inefficiency
compared to DMA. We introduce a cache device installed
at each host’s CXL port – DRAM cache, so that remote data
can be cached and even prefetched to hide the latency effec-
tively by exploiting the data locality during the computing
and communication stages. (see §5.2).

C2: Compatibility. DCN applications are built on the
socket and RDMA verbs programming models, which rely
on the TCP/IP and RDMA stack for communication, respec-
tively. When hosts and devices within a rack are intercon-
nected with CXL, existing applications must use CXL mem-
ory semantics for intra-rack communication. To maintain
compatibility with existing host stacks and applications, we
introduce a kernel module that seamlessly translates socket
system calls (SEND and RECV), into pass-by-reference seman-
tics (CXL.mem-based load and store) (see §5.1).

3 DRack Overview
DRack hosts support CXL, as shown in Figure 5, there is a
CXL port connected to the root complex of the CPU, which
is used to access the NIC pool’s IO space and memory pool
via CXL interconnect. The NIC pool comprises conventional
PCIe NICs, compatible with CXL. Besides existing NICs
the NIC pool can flexibly be added more NICs to enhance
capacity. Besides hosts’ local memory, the memory pool can
also be expanded with additional remote memory devices
attached in the CXL interconnects. A segment of every host’s
local memory and possible remote memory devices constitute
an interleave set of the memory pool (IS0), saving user data.
The remaining local memory becomes another interleave set,
storing the data structures (e.g., reference queues) frequently
accessed by the host (§4.2). The memory pool and NIC pool’s
IO space are mapped into a unified address space so that any
rack host can allocate, deallocate, and access them. The CXL
port of a host is connected to a cache device, which caches
hot remote data in the on-die DRAM components [55–57].
Workflow. In BSP-based job, each host has generated in-

Memory CXL port
CPU

MemoryCXL port

Host 2

Region 1

Region 0
Page

...4KB buffer 4KB buffer

managed by FM NIC NIC

Host 1

Page

...128B buffer 128B buffer

DRAM
Cache

CPU

DRAM
CacheIS1 IS2IS0 IS0

MPTCP MPTCP

CXL
Switch

Figure 5: DRack overview and its components

termediate data with its data buffers spanning all memory in
IS0, which is being synchronized with other hosts during the
communication stage. For intra-rack communication (§4.3),
where both sending and receiving hosts are within the same
rack, the sender’s kernel runtime (§5.1) translates the orig-
inal SEND into CXL.mem store, writing references (packet
pointers) into a shared queue (in IS1) accessible by the re-
ceiver. The receiver’s runtime translates the original RECV into
a CXL.mem load, loading the references and validating them
through the TCP stack. The TCP stack validation involves
sequential loads of the header of the referenced packets, po-
tentially accessing IS0 remotely. To accelerate it, the receiver
leverages the spatial locality by reading a large block into the
DRAM cache (§5.2), and subsequent access to packets will
hit the DRAM cache. Once a packet is validated, its payload
is ready for application computation. Note that, DRAM cache
also caches hot data to accelerate computation by exploring
memory access locality.

For inter-rack communication, by leveraging SR-IOV, every
host in a rack is assigned a virtual NIC (vNIC) for every
physical NIC. The sending host splits a flow into multiple
subflows with MPTCP. Each subflow is sent by a vNIC. Note
that MPTCP is responsible for distributing the data buffers
to subflows. The sender notifies every vNIC to trigger DMA
by storing the references of the data buffers to the vNIC’s
descriptor queue via MMIO. Every vNIC DMA reads the
data buffer and sends them across racks. At the receiving rack,
each vNIC DMA writes the data into its preallocated receive
buffers and stores the references of the received packets in the
completion queue in IS2. The receive buffers are uniformly
distributed across the memory devices of IS0 to utilize the
NIC pool’s capacity. The host owning the vNIC is interrupted,
which triggers its kernel (or CPU) to load those references
for TCP validation. Similarly, the DRAM cache prefetches
and caches large blocks per remote load issued by the kernel,
minimizing remote accesses during both TCP validation and
computation.

4 DRack Dataplane
This section presents the architecture of DRack and its in-
tegration with the existing DCN, then the communication
protocols for intra-rack and inter-rack data, respectively.

4.1 Architecture
DRack changes the traditional multi-tier Clos topology [58]
by inserting a CXL interconnect (e.g., CXL fabric) at the
edge tier between the hosts and NIC pools, so that every host
accesses the NIC pool with its CXL port through the CXL

1266 2025 USENIX Annual Technical Conference USENIX Association

interconnect. As a result, CXL interconnect becomes ToR tier,
and the NIC pool become the uplinks of the ToR tier, while
the original ToR switches are repurposed as the aggregation
tier. Compared to Clos topology (Figure 1(a)), it enables more
paths to transfer inter-rack traffic, and the original aggregation
tier can be simply eliminated, and the core of the network
remains the same.

Figure 1(b) shows an example of the wiring between 2
racks with each hosting 4 hosts using DRack, and the resultant
DCN topology. The wiring between racks also applies to a
general case. In a pod comprising m racks and n hosts per rack,
Each DRack’s NIC pool has n NICs, now there are n uplinks
for every pair of racks without uplink oversubscription. Thus,
rack 0 has NIC ID = 0 ∼ (n−1), rack 1 has NIC ID = n ∼
(2n−1), and rack m−1 has NIC ID = (m−1)n ∼ (mn−1).
As explained, the original ToR switches become aggregated
switches in DRack, there are m aggregated switches with
ID = 0 ∼ (m−1). NIC i is linked with the aggregated switch
(i mod m), where 0≤ i<mn. For example, when n= 20,m=
10, NICs 0, 10,..., connect to switch 0, NICs 1, 11,..., connect
to switch 1, etc.. Similarly, when n = 20,m = 8, NICs 0, 8,
16,..., connect to switch 0, NICs 1, 9, 17,..., connect to switch
1, etc.. We plot the two examples in Appendix (§A.1).

4.2 Components

CXL interconnect. DRack assumes the existence of the
CXL capabilities below based on standards [25] and existing
prototypes [59–61]. The CXL Fabric Manager (FM), a soft-
ware firmware, is responsible for managing the capabilities: 1)
setting the mapping between physical addresses and memory
devices, 2) configuring the interleave granularity (e.g., 256B
to 16KB). These capabilities are the key to efficiently utilizing
the NIC pool’s capacity by leveraging the total bandwidth of
the memory devices. FM can run on a host, a CXL switch, or
a device. We run FM on a server in the prototype (§6).
Memory Pool. The memory pool is organized as follows.
As shown in Figure 5, the memory pool is mapped to a sin-
gle Fabric physical Address Space (FAS), which includes
multiple ISs. FAS is organized as a series of coarse-grained
Sections, each with a hugepage size (2 MB). DRack groups
a segment of every host’s local memory and possible remote
memory devices into memory pool IS0, with the smallest
IG (256B) to efficiently balance the user data and memory
requests across IS0. Each host groups its remaining local
memory segment into a separate IS (ISi, where i denotes the
host ID). ISi is used to store latency-critical data structures fre-
quently accessed by host i. For example, the descriptor queues
of vNICs are accessed by the host that performs multiple load-
/store operations to update descriptors, whereas NICs only
perform a single DMA read of them in batches. In our proto-
type, 12GB of local memory is in IS0, while the remaining
4GB is in ISi.

Each IS is organized as a series of 2 MB huge pages. K
consecutive Sections are grouped into a region, K is con-

figurable, and K=512 by default. Note that region is used to
co-design with DRAM cache (§5.2) to hide the latency of the
memory pool. FM is responsible for page allocation/dealloca-
tion. The workflow is as follows.

➀ Every host allocates a Section from FM before access-
ing it to ensure data isolation. A background kernel daemon
applies and manages these Sections using buddy system:
Sections from the same region are divides into Buffers of
same size, and these Buffers are linked as a list.

➁ Applications at a host apply Buffers from the daemon,
which can be used to store application data or as receive
buffers for DMA write by NICs. Then, the daemon commits
the allocation by removing Buffers from the corresponding
list, and creating page table entries (PTE) that map applica-
tions’ virtual addresses to Buffers’ fabric addresses.

➂ When an application frees Buffers, it notifies the dae-
mon, which in turn frees the PTEs. To avoid some hosts
holding too many free Sections, The daemon periodically
deallocates excess free Sections to FM.
NIC pool. Figure 6 shows the structure and metadata of
NIC pool. To share the NIC pool between rack hosts, every
SRIOV-capable NIC is virtualized into N virtual NICs (vNIC),
with each assigned to a host. For example, Intel 82599 NIC
can support up to 64 vNICs [62]. Thus, a host can be as-
signed M vNICs and interacts with each vNIC using standard
PCIe I/O primitives: host processors configure each vNIC
using memory-mapped I/O (MMIO), vNICs access the host’s
data in the memory pool using DMA. However, the vNIC
configuration is different by incorporating the memory pool:
to interface with a vNIC, host i allocates a dedicated queue
pair (virt_queue) in its ISi, the local memory segment for
storing transmission and reception descriptors. For the receive
(RX) path, host i allocates RX buffers uniformly across IS0,
minimizing contention at a single memory device and posts
RX descriptors to the RX virt_queue prior to actual DMA
writes by vNIC. Similarly, for the transmit (TX) path, the
host allocates TX buffers uniformly across the IS0, populates
the TX descriptors with references to consecutive buffers’
addresses, and stores them in the TX virt_queue. This max-
imizes the NIC pool throughput when the vNIC performs
DMA reads during TX. Each host always uses all NICs in
the pool for TX and RX, and balances loading between NICs
with a multi-path control (see §4.3).

4.3 Communication

Intra-rack Communication. DRack’s intra-rack commu-
nication is based on CXL.mem load and store, a pass-by-
reference semantics, which reduces the communication time
by eliminating data copies in ToR-centric racks. We assume
each host has a unique ID (e.g., IP). The communication in-
volves transferring a reference to data in the memory pool
from host IDsrc to host IDdst , so that host IDdst can load/store
it. To transfer a reference, IDsrc’s processor stores a descriptor
in IDdst ’s ref_queue, with each entry containing IDdst , IDsrc,

USENIX Association 2025 USENIX Annual Technical Conference 1267

a reference, and the length it references. A IDdst allocates a
separate ref_queue for every IDsrc, denoted by ref_queue
[IDsrc], to separate descriptors from different hosts, thus each
host needs M-1 ref_queues for a rack size of M. Assuming
the application has already updated data Buffers using load/-
store during computation. Figure 6 summarizes the workflow
of an intra-rack communication between IDsrc and IDdst .

➀ IDsrc stores the descriptor into the tail entry of IDdst’s
ref_queue [IDsrc], where each queue is implemented as a
circular buffer. Each queue is associated with context registers
mapped to the FAS, such as tail pointer, and IDsrc stores to
these registers will trigger a IDdst ’s interrupt.

➁ After receiving an interrupt, IDdst’s runtime loads the
head entry of ref_queue [IDsrc], and invokes TCP stack and
application to validate flow reliability and compute with the
references sequentially. Note that DRAM cache fetches and
cache data from IS0 with a large block size (i.e.128B to 4KB)
to reduce future remote access (§5.2). The pass-by-reference
transfer is realized in Linux and transparent to applications
with socket programming model (§5.1).
Inter-rack communication. DRack relies on PCIe I/O
primitives (MMIO and DMA) to interact with the NIC pool
for inter-rack communication. This design is simple and effi-
cient, as it does not require new hardware support compared
to previous works [63–65]. To schedule a data stream be-
tween NICs, every host scatters it between all vNICs on a
packet basis, so that the NIC pool is utilized fairly for all
hosts. However, it may lead to out-of-order packet arrivals,
thus underutilizing the NIC pool due to the core network path
asymmetry [66–68]. To address it, we exploit MPTCP in ex-
isting kernel [69, 70], which can open multiple subflows with
each bounding to a vNIC. The receiving host resequences
subflows and provides network feedback to the sender, which
rebalances the load based on path conditions [69,71]. Figure 6
shows the inter-rack communication workflow.

➂ When a IDsrc has the TX Buffers and TX virt_queues
ready, IDsrc’s processor rings the doorbells of all vNICs via
CXL stores to the MMIO registers. All DMA engines of the
vNIC then fetch data from the TX Buffers based on descrip-
tors in their corresponding TX virt_queue, and perform
packetizing. Data Buffers are interleaved in the memory
pool to use the NIC pool at full capacity, and the descriptors
distributed to those TX virt_queues are decided by MPTCP.

➃ The packet stream intended for IDdst should be received
by all vNICs of IDdst uniformly. Each vNIC DMA engine
directly writes the payload to the RX Buffers specified by the
descriptors in the RX virt_queue. The IDdst is interrupted
by the vNIC via the message signaled interrupts mechanism of
PCIe as soon as the DMA engine finishes a batch of the DMA
writes. The IDdst ’s TCP stack loads the references from all RX
virt_queues with CXL.mem, and validates the reliability
of each subflow by loading the referenced packets’ headers.
After validation, the application loads and stores Buffers
during computations. The DRAM cache caches previously

DRack 1 DRack 2

SRC Host DST Host DST HostDST Host
MM

1

2

3 4

C C

CXL
Switch

NIC NIC

M

C C

CXL
Switch

NIC NIC

M

buffer

3
TX virt_queue

H

T

buffer

RX virt_queue

H

T

buffer

RX virt_queue

H

T

buffer

ref_queue[src]

T

H

Figure 6: The inter-rack(3,4) and intra-rack(1,2) communica-
tion from the SRC host to the DST host. Red and blue lines
are memory load/store and DMA read/write, respectively.

accessed blocks and is checked before every load to IS0.
Discussion. DRack employs MPTCP to evenly distribute
subflows between vNICs. However, this can incur perfor-
mance overhead when the number of NICs increases. This is
because the number of subflows increases with the number
of pooled NICs. Each subflow requires separate interrupts,
MMIO operations, and kernel processing of subflows merging.
However, CPU cores (typically exceeding pooled NIC counts)
remain underutilized during bulk data synchronization/shuf-
fling, enabling sufficient cores for NIC pool operations.

5 System Support
5.1 Software Runtime

To enable socket-based applications to use pass-by-reference
transparently, a driver below TCP/IP stack acts as an indi-
rection to orchestrate inter-/intra-rack communication with
pass-by-reference. The TCP/IP stack operates on the socket
buffer object (sk_buff), which includes a data field that con-
tains the reference to the actual data. The data can be headers
or payloads of packets, located in the memory pool. For perfor-
mance consideration, the TCP/IP stack uses the write-around
cache policy for Buffers so that data is directly written/up-
dated in memory without bringing them to the cache first.

We show a runtime workflow with an example. ➀ A socket-
based application of a host IDsrc allocates the Buffers in
memory pool and populates them with application data, be-
fore calling the send to initiate communication. ➁ The TCP
stack passes a scatter-gather list of sk_buffs wrapped with
those Buffers’ references to the driver by calling ndo_tx,
where ndo is the network device operators exposed to the TCP
stack by the driver. The first element in the list is a pointer to
a kernel Buffer storing the packet’s header (also in memory
pool), and the following elements are pointers to application
Buffers. ➂ The driver stores the references of sk_buffs to
the intended virt_queue of a vNIC (mainstream NICs sup-
port scatter-gather I/O) or a ref_queue for inter- or intra-rack
communication, respectively. For inter-rack communication,
the vNIC traverses the list and DMAs data without local-to-
pool copies.

IDdst is interrupted to read virt_queues or ref_queue
whenever a batch of new references is available, which is han-
dled by its driver. To enable TCP stack to load the referenced
data Buffers in the memory pool, IDdst wraps the references

1268 2025 USENIX Annual Technical Conference USENIX Association

DRAM Cache

memory pool Region 1 Region 0

TCP/IP

DRack
driver

TxQ

Daemon

ndo_rxndo_tx

send recv

STORE
TxQ

LOAD
RxQ

alloc
kfree

spawn

DRAM

miss

0

1

S0

Check
128Bhit

128B

Tags

4KB

4KB4KB

CXL
Loader

128B

1

2

3

tail

he
ad

head

ta
il

RxQ

Figure 7: DRAM cache’s architecture and working flow.

into sk_buffs before passing it up to the TCP stack, still no
data copy involved. When the TCP stack no longer uses those
Buffers, it hands the Buffer to the daemon for deallocation.
Discussion. Cache coherence is needed if IDsrc and IDdst
use memory sharing for intra-rack communication. However,
DRack focuses on the case where applications use message-
passing for large data synchronization, simultaneous data
accessing between IDsrc and IDdst is unnecessary, thus no
sharing issues. If IDsrc stores new data to the location of the
previously sent Buffer after calling the send API, IDsrc’s
TCP stack releases ownership of the sending Buffer, allo-
cates new Buffers from the memory pool, and updates page
tables for subsequent stores.

5.2 CXL-attached DRAM Cache.
By analyzing the TCP stack, we summarize the three key
points to guide the DRAM cache design. 1) Variable time
interval between accessing headers and payloads. The run-
time processes packet headers and data during the bottom
half of the interrupt, and the recv syscall, respectively. There-
fore, there will be a time interval between the two, where
the interval length is determined by the utilization rate of the
CPU, and the data can be evicted out of the cache. 2) Buffer
release function is explicitly called. the runtime will flush
the Buffer out of the cache once it calls release function
explicitly, 3) Variable packet granularity. The packet size
may be thousands of or dozens of bytes, like TCP SYN and
ACK. Caching data with coarse granularity leads to a low
cache utilization rate and prolongs the latency, thus different
caching granularities should be adopted.

As shown in Figure 7, we add a multi-way DRAM cache to
the system. It has a larger capacity compared to CPU caches,
which is sufficient to tackle the potential false evictions caused
by conflicts during variable intervals. The metadata (Tags) is
stored separately in the on-chip memory, so that one read can
get the whole set’s metadata. This cache space can be divided
into n parts, each of which uses a different cache granularity
(e.g., 128B and 4KB in Figure 7), and the capacity of each
part is different, but the total number of lines is the same. The
usage of DRAM cache can be summarized as follows. ➀ The
driver configures the FAS of a region – a consecutive number
of Sections, whose Buffers will be cached in one part of
DRAM cache, and the caching granularity, i.e., Buffer size.
For the first access to a Buffer in the Region➁, a miss is

Server

NIC

NIC

MPSoC

MPSoC

M

NIC

M

NIC
NICNIC

NIC NIC

M M

Inter rack
Network

CXL
Switch

MPSoC

MPSoC
CXL

Switch

MPSoC

MPSoC
CXL

Switch

MPSoC

MPSoC

CXL
Switch

FMFM
FM FM

(a) The software emulator running
on the server

CPU

M
em

ory

CXL-like
protocol

DRAM
Cache

delay

(b) key hardware components in
Customized MPSoC FPGA

H0

H1

H2

H3

H4

H5

H6

H7

4x
NIC

FP
GA

s A
rr

ay

Server

(c) Quad-rack simulating platform with 8-FPGAs array

−2 0 2 4 6 8
Address Range (log2(MiB))

0

500

1000

1500

2000
Lo

ca
l L

at
en

cy
 (n

s) local memory
local memory + fixed latency
remote memory

0

6000

12000

Re
m

ot
e

La
te

nc
y

(n
s)

(d) The memory access latency with/without added delay

Figure 8: The proof-of-concept prototype to evaluate DRack.

triggered and the Buffer is fetched from the memory pool
via CXL.io ➂. Then, the DRAM cache fills valid metadata
and evicts the victim Buffer. The following accesses to the
Buffer➁ will hit the local DRAM cache. When the runtime
decides to free Buffers, it will explicitly called the release
function that flushes the DRAM cache.

6 Implementation
Given the lack of commercial products supporting CXL 3.0,
we have developed a proof-of-concept quad-rack system pro-
totype, as shown in Figure 8(c). The prototype is used to sim-
ulate both a quad-rack DRack architecture and a quad-rack
ToR-centric architecture as the baseline (§7.1). Each rack is
equipped with two customized MPSoC FPGAs [72] serving
as hosts. Each FPGA has a quad-core CPU, two memory
channels, and four optical fiber ports. The MPSoC exports the
CPU memory bus to FPGA logic via HP/HPC ports, which
can be used to implement a CXL-like load/store. We connect
two FPGAs (in a rack) to a dual-port NIC [62] on a server.
We emulate the NIC pool, CXL interconnect in DRack, and
ToR switches in the baseline using a DPDK-based software
network emulator on the server [73].
CXL-like protocol layer. The key to emulating CXL fab-
ric in CXL 3.0 is to externalize loads and stores. This allows
applications to access remote memory devices within the

USENIX Association 2025 USENIX Annual Technical Conference 1269

memory pool transparently, enabling the seamless execution
of legacy applications. To this end, we leveraged DoCE [32], a
hardware protocol stack as the basis of our CXL-like protocol
layer. DoCE directly encapsulates all AMBA AXI on-chip
interconnect signals within an Ethernet frame which can be de-
livered via standard Ethernet infrastructure. Instead of packing
AXI signals into Ethernet packets with DoCE, we augmented
DoCE with a CXL-like protocol layer and implemented them
as a hardware module in the MPSoC FPGA (i.e., CXL-DoCE).
As shown in Figure 8(b), it transforms AXI signals into rele-
vant CXL transactions, such as MemRd, MemWr, Cmp, and
MemData defined in CXL 3.0 specification [25], before encap-
sulating CXL transactions into Ethernet packets and sending
them via an optical fiber port. Similarly, any received Ethernet
packet from the port would go through the module, which
transforms it into AXI signals to access the local address
space if that packet contains CXL-like transactions. Note that
an Ethernet packet can encapsulate transactions not limited to
CXL-like as long as the module can recognize them, e.g., the
module can interrupt the CPU if the Ethernet packet carries
an interrupt transaction.
Memory and NIC pool. We use the local memory in all
MPSoCs (16 GB) to form a shared memory pool. Any MPSoC
can access it with the above CXL-like protocols. Following
the design, we divide the local memory of every MPSoC into
two parts, 12GB joins an interleave set with 256B granular-
ity, the other 4GB does not interleave with others, so that
virt_queues and sk_bu f used can be stored locally. To em-
ulate NIC pool in the server (Figure 8(a)), we use one core
to manage a software queue to emulate a vNIC. The server’s
core can load/store a vNIC’s virt_queue or DMA read/write
data by issuing CXL-DoCE packets via the real NIC. We use
inter-processor interrupt (IPI) to forward the packet “across
rack” to another CPU core (a vNIC in the other NIC pool).
Example. Here is an example showing the memory pool
accessing in the prototype with CXL-like protocol layer. ➀
In a rack with MPSoC0 and MPSoC1, suppose MPSoC0 HP
port exports CPU load/store instructions as AXI signals, an
address decoder implemented in the FPGA uses the 8th bit of
the physical address (IG=256B) to decide the target memory
device. If bit 8 is 0, memory requests target MPSoC0’s mem-
ory; otherwise, they target MPSoC1’s one. ➁ Recall, to issue
requests to the MPSoC1, MPSoC0 leverages CXL-DoCE to
transform AXI signals into CXL transactions, e.g., MemRd,
and prepend them with an Ethernet header (containing MAC
addresses of both endpoints). Then, it sends them via on opti-
cal fiber port. ➂ As shown in Figure 8(b), the server (network
emulator) receives these Ethernet packets via optical fiber
links at its physical NICs, and routes them directly to MP-
SoC1 based on MACs. ➃ MPSoC1 receives Ethernet packets
from the optical fiber port, and transforms them into AXI
signals with CXL-DoCE, to access the local address space.
Appendix §A.3 shows an example of NIC pool accesses.
Compared to existing emulation approaches. Due to

Table 1: Key parameters of the two prototypes.

Parameter Value
DRack

Memory Pool 2×16 GB; remote 13 µs; local 2.2 µs
NIC pool 2×BGbps (2 NICs)

Host 1 GB DRAM Cache; 1 CXL port;
ToRack

ToR Switch
2B Gbps Uplink (no oversubscription)

256 KB headroom per port [79–81]
Host B Gbps NIC; 16GB memory

Common
Inter-rack

Network RTT
60 µs [82]

CPU 4-core ARM A53 CPU; 1.2 GHz
TCP/IP MTU 4 KB; XPS, RPS enabled

scarcity of CXL hardware, prior works have employed 3 em-
ulation approaches. ➀ NUMA nodes. CPUs load/store re-
mote node’s memory is emulated as accessing CXL mem-
ory [28, 31, 74]. However, this cannot adjust CXL memory
latency, and its scalability is limited by the node count. ➁ Soft-
ware simulator [75, 76], like Gem5 in full-system mode [77],
is thousands of times slower than real prototypes, unable to
simulate full application execution. ➂ FPGA-based imple-
mentation [53, 60, 78], has the flexibility to implement CXL
protocols [60, 72], and run real applications transparently.
However, FPGA has a lower operating frequency compared
to ASICs [53]. ➃ Our approach. We utilize the flexibility of
MPSoC-FPGAs to realize CXL-like protocols for resource
pooling and running real applications. To run distributed ap-
plications at scale and test them in various settings, we use
software-based emulation for flexible configurations of NIC
pool, CXL interconnects, and inter-rack network topology.
To rigorously validate DRack performance gain with low
frequency in FPGA, we focus on accurately replicating lo-
cal/remote memory access latency ratios rather than absolute
metrics, which aligns with prior FPGA-based emulation [60].
The ratio configurations are explained in §7.1.

7 Evaluations
We first evaluated DRack’s performance gain over the conven-
tional ToR-based rack using the proof-of-concept prototype
with both real-world applications (§7.2), and microbench-
marks (see Appendix §A.4). Second, we show DRack can
improve existing job schedulers (§7.3). Last, we breakdown
the performance contribution of every key components (§7.4).

7.1 Experiments Setup
We evaluate the quad rack DRack proof-of-concept prototype
(§6), and use the same implementation to build baseline sys-
tems for comparison. By default, each rack has two hosts for
both. We use ToRack to denote the baseline system—quad
ToR-based racks architecture. Table 1 summarizes the param-
eters and configuration in experiments. The memory pool of
DRack is composed of the local memory of MPSoCs. For

1270 2025 USENIX Annual Technical Conference USENIX Association

0.5 1.0
θ

100

200

300

Co
m

m
. T

im
e

Su
m

 (s
)

ToRack
DRack

(a) PageRank

250
500
750

Redis p99

0.2 0.5 0.8 1.0
θ

50
100

Redis average

La
te

nc
y

(m
s)

(b) Key-Value Store

0.5 1.0
θ

20

40

60

80

Co
m

m
. T

im
e

Su
m

 (s
)

(c) Resnet Training

0.5 1.0
θ

50

100

150

Co
m

m
. T

im
e

Su
m

 (s
)

(d) LLM Training

0.5 1.0
θ

2

4

6

8

Em
be

dd
in

g
La

ye
r

Av
g.

 L
at

en
cy

 (m
s)

(e) DLRM Inference

0

50

100
H0
H1

0 20 40
Wall Time (s)

0

50

No
rm

. T
hr

ou
gh

pu
t %

(f) PageRank

25

50

75

100

0 2 4 6
Wall Time (s)

0

50

No
rm

. T
hr

ou
gh

pu
t %

(g) Key-Value Store

0

50

100

0 5 10
Wall Time (s)

0
25
50

No
rm

. T
hr

ou
gh

pu
t %

(h) Resnet Training

0 10 20
0

50

100

0 20 40
Wall Time (s)

0

50

No
rm

. T
hr

ou
gh

pu
t %

(i) LLM Training

20

40

60

0 20 40
Wall Time (s)

0
25
50

No
rm

. T
hr

ou
gh

pu
t %

(j) DLRM Inference

Figure 9: (a)-(e) DRack’s performance gain comapred to ToRack with the increase on every NIC capacity (θ from 0 to 1). (f)-(j)
Compared to ToRack (bottom), hosts in DRack (top) can utilize the NIC pool capacity to reduce the communication time.

Table 2: Real-world Applications used for DRack evaluation.

Application Dataset
GeminiGraph [83] LiveJournal [84]

Redis Cluster [85] and
Memtier_benchmark [86]

Uniform Distribution

ResNet18 [87] Training CIFAR-10 dataset [88]
TinyStories-33M [89] Training TinyStories
MapReduce [90] WordCount Uniform Distribution

DLRM [91] Inference Criteo_dataset [92]

ToRack, we ported an example project [93] to our MPSoC
FPGA, where the CPU uses one optical fiber port as a NIC.
We set Ethernet link latency in network emulator 60µs [82].

Latency alignments. To align the latency ratio (R) between
accessing local (Dlocal) and remote memory (Dcxl) with CXL,
as shown in Figure 8(b), we add a hardware module on MP-
SoC FPGAs to add configurable cycles (λ) to local memory
accessing from CPUs, such that R = Dcxl

Dlocal+λ/cpu_ f req . Accord-
ing to the theoretical latency specified in CXL-related stan-
dards [25, 94], accessing the remote memory through a CXL
switch is expected to add 170 to 270 ns to the local memory
latency. Assuming that the local memory latency is between
50 and 100 ns, the resulting ratio should fall within 2.7 to
6.4. The real measurements of the two latencies align with
this range [53]. To illustrate the minimal performance gain
achieved by DRack, we configured the latency ratio R = 6.4,
thus adopting the maximum remote latency. In Figure 8(d),
we increase the size of the data array running pointer chasing
with Lmbench [95], until accessing it triggers a cache miss,
i.e., when the data array size is 256 MB and use the resulted
Dlocal and Dcxl to compute λ = 460.

Throughput alignments. The capacity of the emulated
NIC pool depends on the maximum achievable throughput of

the hosts in the rack, governed by the capabilities of the CPU
in the MPSoC. This is because the FPGA NIC (i.e., optical
fiber port) is not the bottleneck [93], i.e., the maximum achiev-
able throughput of an MPSoC CPU, denoted by C, cannot
saturate the NIC. Thus, the emulated NIC capacity of a host
can be set to C at most, as the MPSoC CPU cannot utilize the
capacity exceeding C. To emulate the NIC egress/ingress bot-
tleneck in the communication stage, we introduce a reducing
factor θ, thus the NIC capacity is adjusted as θ×C. As the
NIC pool is built from existing NICs of the hosts in a rack, to
have a fair comparison, the equivalent DRack’s NIC capacity
is B = θ×2C for 2-host rack. We measure C by sending raw
packets to the optical fiber port with DPDK.
7.2 Real-world Applications
We validate the performance gain of DRack compared to
ToRack with real applications with various communication
properties, as shown in Table 2.
7.2.1 Throughput-sensitive Applications

Graph Processing. We run several graph workloads in
a distributed graph engine, Gemini [83], over DRack and
ToRack. To execute it, we divided the input datasets among
the hosts of 4 racks (8 hosts), each subgraph dataset is in-
crementally fed to a host’s graph engine in batches. For ev-
ery batch or iteration, hosts run different analytics over the
input subgraph and update it iteratively. As the subgraph
processed by every host is different, the amount of data for
graph synchronization for every host can be very different,
thus necessitating different bandwidths. We summarize the
communication time of graph synchronization for PageRank,
one of the graph workloads, in Figure 9(a). DRack reduces the
communication time by an average of 58.5% in the worst case
(θ=0.125), and 32.8% in all cases. When the host throughput

USENIX Association 2025 USENIX Annual Technical Conference 1271

is eventually limited by the maximum achievable throughput
or MPSoC CPU capability (θ=1), any DRack’s host cannot
efficiently utilize the NIC pool, thus resulting in a similar
performance to ToRack’s. To show the root cause of DRack’s
performance gain, we present network utilization of one rack
normalized to the NIC pool, sampled during one run of PageR-
ank in Figure 9(f). Hosts finish iterating and updating their
subgraph, e.g., vertices and edges, asynchronously. This is
because hosts process subgraphs with varying sizes, leading
to different computation times and thus varying amounts of
data for communication. Thus, one host may use the NIC pool
exclusively during the synchronization stages. Besides, in the
time interval with shadowing in Figure 9(f), two hosts can
share the NIC pool based on the volume of flows, while the
overall utilization is close to 1.
ML Training. We train ResNet18 and TinyStories-33M
with all-reduce [96] and parameter server (PS) [97], the two
well-known distributed training architectures based on data
parallelism. For all-reduce, each host of eight sends its gradi-
ent to its right neighbor, while receiving other gradients from
its left neighbor during communication stage. For PS, we
have 4 hosts as parameter servers, while the others are work-
ers. Every worker sends 1/4 of its gradients to every PS for
synchronization and then receives globally-aggregated ones
during communication. We summarize the communication
time when running ML jobs over DRack and ToRack, respec-
tively, and show the results in Figure 9(c) 9(d). For ResNet
training, DRack reduces the communication time by 59.8%
and an average of 39.6% in the worst and all cases, respec-
tively. For LLM training, DRack reduces the communication
time by an average of 39.9%. This is because 1) for all-reduce,
only one host sends/receives data across racks, thus DRack
achieves higher inter-rack throughput by allocating the NIC
pool capacity to that host, while ToRack’s inter-rack through-
put is limited by the host’s NIC (Figure 9(h)). 2) for PS,
Since workers and PSs send and receive data in an interleaved
manner – specifically, when workers are sending, PSs are re-
ceiving, and vice versa – either can fully utilize the NIC pool
over different phases (Figure 9(i)). 3) DRack achieves a high
intra-rack throughput with pass-by-reference by removing
one data copy compared to ToRack.

7.2.2 Latency-sensitive Applications

Key-value Store. We organize three racks to form a Redis
Cluster and run clients on the remaining hosts to issue Get/Set
requests. We set up the experiment as: 1) synthetic workload
generated by Memtier_benchmark, 2) a 10:1 Get/Set ratio,
and 3) 10 M key-value pairs uniformly distributed across
3 racks, 4) a Gaussian query key distribution. We plot the
average and tail latency (i.e., 99th percentile) of the requests in
Figure 9(b). Because of the key skewness, the host in ToRack
with hot keys can be congested by imbalanced requests, i.e.,
incast, at its downlink, leading to packet losses and large tail
latency. In contrast, DRack reduces p99 and average latency

M S

M S

USER 0

USER 1

HOST
 0

M S

M S

M S

M S

USER 0

USER 1

HOST
 1

M S

M S

M S

M S

M S

M S

M S

M S

M S

M S

M

M

M

S

M

M

M

S

M

S

M

M

S

M

S

M

SM S

M

S

M

S

M

M

M

S

MM

M

SS

M M

M M

M

ToRack ShuffleWatcher DRack
Time

(a) Workflow of MapReduce tasks.

0 15 30
0

50

100

No
rm

.
Th

ro
ug

hp
ut

 % ToRack
user2
user1

0 15 30
Wall Time (s)

ShuffleWatcher

0 15 30

DRack

(b) Throughput of shuffling data.

0 10 20 30 40 50 60
0

25

50

75

100 ToRack Job 1
Job 0

0 5 10 15 20 25 30

DRack

No
rm

.
 T

hr
ou

gh
pu

t %

Wall Time (s)

(c) NIC pool improve comm. throughput.

Figure 10: DRack improves job schedulers’ performance.

by 62.2% and 29.2%, respectively. This is because a host
with hot keys can utilize the NICs of other hosts within the
same rack, which have cold keys. The incast requests are
then efficiently absorbed by the memory pool without any
loss. Subsequently, the host processes these requests using
CXL.mem. Similarly, a hot host can send the corresponding
values with the NIC pool. The allocated bandwidth from the
NIC pool is proportional to the number of requests/flows that
the host is serving, while the hot host in ToRack can only use
its limited local NIC (Figure 9(g)).
DLRM Inference. We run a deep learning recommenda-
tion model (DLRM [91]) inference task that embedding tables
are uniformly distributed across 8 hosts. We plot the average
latency of embedding layer processing in Figure 9(e). Because
of frequent access to hot vectors, the traffic load at each NIC
within the same rack is imbalanced in ToRack that network
congestion leads to higher latency and reduced throughput.
DRack reduces average latency by an average of 37.4% in all
cases, as the NIC pool’s bandwidth is proportional to the hot
vectors the host stored, as shown in Figure 9(j).

7.3 User Cases
To show the performance gain if existing job schedulers use
DRack for the job communication stage, we emulate two user
cases (§2.4), ShuffleWatcher [27] and Crux [26].
ShuffleWatcher. Figure 10(a) shows that two users of the
same priority issue a series of MapReduce jobs, each com-
prising 2 map and 2 reduce tasks. The map and reduce tasks
are placed in racks 0 and 1, respectively. Assuming there are
2 hosts in rack 0, each with 2 cores, each user rents 1 core
per host to run a mapper and shuffler, iteratively. The shuffler
begins after the mapper finishes, and then sends the mapper’s
intermediate output to the reducer in rack 1. All mappers
generate intermediate data of equal size. In ToRack without
any scheduler, the shuffling tasks of the two users send data to

1272 2025 USENIX Annual Technical Conference USENIX Association

Redis
P99 Latency

Embedding Layer
Latency

0.0

0.4

0.8

1.2

1.6
No

rm
al

ize
d

Va
lu

e
ToRack
N
N+M

N+M+C
N+M+C+P

(a) Perf. breakdown on
latency-sensitive APPs.

PageRank
Comm. Time

ResNet
Comm. Time

0.0

0.4

0.8

1.2

1.6

No
rm

al
ize

d
Va

lu
e

ToRack
N+P

N+P+M
N+P+M+C

(b) Perf. breakdown on
throughput-sensitive APPs

Figure 11: Key designs’ impact on DRack’s performance.
the reducers simultaneously, increasing the average shuffling
time. With ShuffleWatcher, the two users use the host’s NIC
to shuffle data alternately (Figure 10(b)). Specifically, user 2
delays its shuffling if user 1 occupies the NIC, while schedul-
ing another map task to reuse the CPU left by shuffling, thus
reducing the average shuffling time by half. In DRack, a single
CPU of a host can use the NIC pool to send each shuffling
task, increasing CPU utilization and reducing the average
shuffling time. Although DRack takes the same time as Shuf-
fleWatcher to complete the same number of shuffling tasks
(10 in Figure 10(a)), DRack frees up more cores for additional
map tasks, improving overall throughput by 20.8%.
Crux. We evaluated Crux on DRack with 3 jobs. Each rack
has two hosts. Job 0 (ResNet50 training) spans 4 hosts across
4 racks, while jobs 1 and 2 (ResNet18 training) each span 2
hosts across 2 racks. DRack utilizes the priority flow control
function in the optical fiber port IP to throttle the throughput
of low-priority hosts (or MPSoC). When high-priority hosts
are scheduled by Crux, the network emulator sends a pause
packet to the low-priority job’s host, causing its hardware
IP to cease packet transmission. As shown in Figures 10(c),
when running Crux in ToRack, the communication time for
job 0 is suboptimal, as it cannot leverage the NICs of jobs
1 and 2’s hosts, even if they are deprioritized and halted by
Crux. In contrast, DRack enables job 0 to leverage the NICs
of hosts assigned to lower-priority jobs, thereby reducing
communication time by 47.7%. Once job 0’s communication
stage is completed and job 1 ascends to the highest priority,
its communication can be accelerated by 49.5% with the NIC
pool, including NICs from job 0’s hosts.

7.4 Performance breakdown
We introduce several key components, including the NIC pool,
memory pool, DRAM cache, and MPTCP, to build an efficient
DRack. To determine the performance contribution of each
component, we incrementally add these components one by
one, starting from ToRack. We then evaluate the performance
gains of each incremental addition using two latency-sensitive
and two throughput-sensitive applications.

As shown in Figure 11(a), for latency-critical Redis, by
forming a NIC pool with existing NICs from ToRack, when
equipped with only the NIC pool (denoted as DRack-N), re-
duces tail latency by 32.9%. This reduction is attributed to
the fact that hot-key requests are received by the NIC pool,

distributively between the NICs. They are first buffered in the
NIC pool’s headroom before being transferred to the host’s
local memory with the CXL link. Thus, compared to the case
in ToRack, where hot-key requests are received solely by the
NIC of the host, DRack has twice the headroom (2 NICs) for
buffering those requests, significantly reducing packet loss.
By augmenting the memory pool to DRack-N (DRack-N+M),
the packet loss is further reduced, resulting in 63.9% P99
latency reduction. The DRAM cache (DRack-N+M+C) fails
to reduce the latency further because searching and reading
key-value pairs is random memory access that lacks local-
ity (DRAM cache hit rate 59.6%). MPTCP reduces the la-
tency further by 65.9% (DRack-N+M+C+P). This is because
a bursty flow is fixed to a single NIC, resulting in imbalanced
utilization of NICs. By splitting it into multiple subflows, with
each directing to a NIC, MPTCP further reduces the bursti-
ness of the flow and flow collision. The observation is similar
for DLRM inference as shown in Figure 11(a).

As shown in Figure 11(b), for data-intensive ResNet train-
ing and PageRank, by using the NIC pool and MPTCP (DRack-
N+P), the communication time is reduced by an average of
12.7%, as cross-rack traffic can be sent via 2 NICs. However,
the throughput is limited by the local memory (or CXL link)
bandwidth, thus preventing full utilization of the NIC pool.
With an increasing memory bandwidth from the memory pool
(DRack-N+P+M), the communication time is reduced by an
average of 38.1%. By introducing a DRAM cache (DRack-
N+P+M+C), the communication time is reduced by 28.6% for
ResNet training. This improvement is due to the DRAM cache
that exploits the spatial locality of memory accessing in TCP
stack and model computation, achieving hit rates exceeding
86.9%. While DRAM cache only reduces PageRank’s com-
munication time by 9.9%, its gain is limited by a cache hit
rate of only 56.2%, caused by the irregular memory accessing.

8 Conclusion
We present DRack, a novel rack architecture that provides
high inter-rack bandwidth and network utilization with a NIC
pool, and optimizes its efficiency with several novel designs
such as a shared memory pool, DRAM Cache, and MPTCP.
We built a quad-rack prototype and validated its performance
with both microbenchmarks and real applications.

Acknowledgments
We would like to thank our shepherd, Prof. Kang Chen, and
the anonymous reviewers for their valuable feedback in im-
proving the paper. The work was supported in part by the
National Key Research and Development Plan of China (No.
2022YFB4500400), National Natural Science Foundation of
China (No. 62072439, No. 62302268), the Natural Science
Foundation of Shandong Province (No. 2023HWYQ-045, No.
ZR2023QF060), and the Taishan Scholar Project of Shandong
Province (No. tsqn202312051). Ke Liu is the corresponding
author (liuke@ict.ac.cn).

USENIX Association 2025 USENIX Annual Technical Conference 1273

References

[1] G. Malewicz et al. Pregel: a system for large-scale
graph processing. In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of
Data, 2010.

[2] J. Dean and S. Ghemawat. Mapreduce: simplified data
processing on large clusters. Commun. ACM, jan 2008.

[3] W. Liu et al. A survey of deep neural network ar-
chitectures and their applications. Neurocomputing,
234:11–26, 2017.

[4] L. G. Valiant. A bridging model for parallel computa-
tion. Commun. ACM, aug 1990.

[5] A. Roy et al. Inside the social network’s (datacen-
ter) network. SIGCOMM Comput. Commun. Rev.,
45(4):123–137, August 2015.

[6] Y. Jiang et al. A unified architecture for accelerating
distributed DNN training in heterogeneous GPU/CPU
clusters. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pp.
463–479, November 2020.

[7] Z. Jia et al. A distributed multi-gpu system for fast
graph processing. Proc. VLDB Endow., 11(3):297–310,
November 2017.

[8] N. Engelhardt and H. K.-H. So. Gravf: A vertex-
centric distributed graph processing framework on fp-
gas. In 2016 26th International Conference on Field
Programmable Logic and Applications (FPL), pp. 1–4,
2016.

[9] X. Han et al. Isolated scheduling for distributed train-
ing tasks in gpu clusters, 2023.

[10] K. Qian et al. Alibaba hpn: A data center network
for large language model training. In Proceedings of
the ACM SIGCOMM 2024 Conference, pp. 691–706,
2024.

[11] J. Dong et al. Eflops: Algorithm and system co-design
for a high performance distributed training platform.
In 2020 IEEE International Symposium on High Per-
formance Computer Architecture (HPCA), 2020.

[12] W. Wang et al. RDC: Energy-Efficient data center
network congestion relief with topological reconfig-
urability at the edge. In 19th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
22), pp. 1267–1288, 2022.

[13] X. Zhou et al. Mirror mirror on the ceiling: flexible
wireless links for data centers. SIGCOMM Comput.
Commun. Rev., 42(4):443–454, August 2012.

[14] H. Liu et al. Circuit switching under the radar with
REACToR. In 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14), pp. 1–
15, April 2014.

[15] M. Zaharia et al. Delay scheduling: a simple technique
for achieving locality and fairness in cluster scheduling.
In Proceedings of the 5th European Conference on
Computer Systems, EuroSys ’10, pp. 265–278, 2010.

[16] M. Isard et al. Quincy: fair scheduling for distributed
computing clusters. In Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Prin-
ciples, SOSP ’09, pp. 261–276, 2009.

[17] F. R. Dogar et al. Decentralized task-aware scheduling
for data center networks. SIGCOMM Comput. Com-
mun. Rev., 44(4):431–442, August 2014.

[18] M. Chowdhury et al. Efficient coflow scheduling
with varys. SIGCOMM Comput. Commun. Rev.,
44(4):443–454, August 2014.

[19] H. Zhao et al. HiveD: Sharing a GPU cluster for deep
learning with guarantees. In 14th USENIX Sympo-
sium on Operating Systems Design and Implementa-
tion (OSDI 20), pp. 515–532, November 2020.

[20] Y. Zhao et al. Multi-resource interleaving for deep
learning training. In Proceedings of the ACM SIG-
COMM 2022 Conference, pp. 428–440, 2022.

[21] Y. Jiang et al. A unified architecture for accelerating
distributed DNN training in heterogeneous GPU/CPU
clusters. In 14th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI 20),
November 2020.

[22] D. Zang et al. Decentralized nic-switching architecture
using sr-iov pci express network device. IEEE Micro,
2014.

[23] C.-C. Tu et al. Secure i/o device sharing among virtual
machines on multiple hosts. In Proceedings of the
40th Annual International Symposium on Computer
Architecture, 2013.

[24] C.-C. Tu et al. Marlin: A memory-based rack area net-
work. In 2014 ACM/IEEE Symposium on Architectures
for Networking and Communications Systems (ANCS),
2014.

[25] D. D. Sharma et al. An introduction to the com-
pute express link (cxl) interconnect. arXiv preprint
arXiv:2306.11227, 2023.

[26] J. Cao et al. Crux: Gpu-efficient communication
scheduling for deep learning training. In Proceedings

1274 2025 USENIX Annual Technical Conference USENIX Association

of the ACM SIGCOMM 2024 Conference, pp. 1–15,
2024.

[27] F. Ahmad et al. ShuffleWatcher: Shuffle-aware schedul-
ing in multi-tenant MapReduce clusters. In 2014
USENIX Annual Technical Conference (USENIX ATC
14), pp. 1–13, June 2014.

[28] H. N. Schuh et al. Cc-nic: a cache-coherent interface to
the nic. In Proceedings of the 29th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 1, pp. 52–
68, New York, 2024. ACM.

[29] A. Cho et al. A case for cxl-centric server processors,
2023.

[30] R. Abdullah et al. Salus: Efficient security support
for cxl-expanded gpu memory. In 2024 IEEE Interna-
tional Symposium on High-Performance Computer Ar-
chitecture (HPCA), pp. 1–15, Piscataway, 2024. IEEE.

[31] H. A. Maruf et al. Tpp: Transparent page placement for
cxl-enabled tiered-memory. In Proceedings of the 28th
ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, Volume 3, pp. 742–755, New York, 2023. ACM.

[32] Y. Chang et al. DoCE: Direct extension of on-chip
interconnects over converged ethernet for rack-scale
memory sharing. In Proc. Workshop on Emerging
Technologies for software-defined and reconfigurable
hardware-accelerated Cloud Datacenters (ETCD),
2017.

[33] V. Persico et al. Measuring network throughput in the
cloud: The case of amazon ec2. Computer Networks,
93:408–422, 2015. Cloud Networking and Communi-
cations II.

[34] S. Shi et al. Towards scalable distributed training of
deep learning on public cloud clusters, 2020.

[35] A. Hadoop. Hadoop: Capacity scheduler, 2019.

[36] R. Panigrahy et al. Heuristics for vector bin packing.
research. microsoft. com, 2011.

[37] A. Ghodsi et al. Dominant resource fairness: Fair al-
location of multiple resource types. In 8th USENIX
symposium on networked systems design and imple-
mentation (NSDI 11), 2011.

[38] Z. Wang et al. Hi-speed dnn training with espresso:
Unleashing the full potential of gradient compression
with near-optimal usage strategies. In in European
Conference on Computer Systems (EuroSys 23), May
2023.

[39] M. Abadi et al. TensorFlow: Large-Scale Ma-
chine Learning on Heterogeneous Distributed Systems.
White paper, Google Research, 2015.

[40] A. Agache et al. Increasing datacenter network utili-
sation with grin. In Proceedings of the 12th USENIX
Conference on Networked Systems Design and Imple-
mentation, 2015.

[41] T. Benson et al. Network traffic characteristics of data
centers in the wild. In Proceedings of the 10th ACM
SIGCOMM Conference on Internet Measurement, pp.
267–280, 2010.

[42] T. Benson et al. Understanding data center traffic
characteristics. SIGCOMM Comput. Commun. Rev.,
40(1):92–99, jan 2010.

[43] C. Delimitrou et al. Echo: Recreating network traffic
maps for datacenters with tens of thousands of servers.
In 2012 IEEE International Symposium on Workload
Characterization (IISWC), pp. 14–24, 2012.

[44] H. Ballani et al. Sirius: A flat datacenter network
with nanosecond optical switching. In Proceedings
of the Annual conference of the ACM Special Interest
Group on Data Communication on the applications,
technologies, architectures, and protocols for computer
communication, pp. 782–797, 2020.

[45] W. Wang et al. {RDC}:{Energy-Efficient} data center
network congestion relief with topological reconfig-
urability at the edge. In 19th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
22), pp. 1267–1288, 2022.

[46] T. White. Hadoop: The definitive guide. 2012.

[47] J. E. Gonzalez et al. Graphx: Graph processing in
a distributed dataflow framework. In Proceedings of
the 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’14), Broomfield,
Colorado, October 2014.

[48] A. Guo et al. Software-hardware co-design of hetero-
geneous smartnic system for recommendation models
inference and training. In Proceedings of the 37th ACM
International Conference on Supercomputing, ICS ’23,
pp. 336–347, 2023.

[49] D. Mudigere et al. Software-hardware co-design for
fast and scalable training of deep learning recommen-
dation models. In Proceedings of the 49th Annual
International Symposium on Computer Architecture,
ISCA ’22, pp. 993–1011, 2022.

[50] M. Adnan et al. Accelerating recommendation system
training by leveraging popular choices. Proc. VLDB
Endow., 15(1):127–140, September 2021.

USENIX Association 2025 USENIX Annual Technical Conference 1275

[51] Y. Dong et al. High performance network virtualiza-
tion with sr-iov. Journal of Parallel and Distributed
Computing, 2012.

[52] CXL Consortium. Compute Express
Link Specification Revision 2.0. https:
//www.computeexpresslink.org/download-
the-specification.

[53] Y. Sun et al. Demystifying cxl memory with gen-
uine cxl-ready systems and devices. In Proceedings of
the 56th Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 105–121, New York, 2023.
ACM.

[54] N. Nassif et al. Sapphire rapids: The next-generation
intel xeon scalable processor. In 2022 IEEE Interna-
tional Solid-State Circuits Conference (ISSCC), vol-
ume 65, pp. 44–46. IEEE, 2022.

[55] I. Calciu et al. Rethinking Software Runtimes for
Disaggregated Memory. In Proc. of ASPLOS, 2021.

[56] Y. Zhong et al. Unimem: Redesigning disaggregated
memory within a unified local-remote memory hierar-
chy. In 2024 USENIX Annual Technical Conference,
pp. 463–477, Berkeley, 2024. USENIX Association.

[57] X. Zhang et al. Morpheus: An adaptive dram cache
with online granularity adjustment for disaggregated
memory. In 2023 IEEE 41st International Conference
on Computer Design (ICCD), pp. 134–141, Piscataway,
2023. IEEE.

[58] A. Singh et al. Jupiter rising: A decade of clos topolo-
gies and centralized control in google’s datacenter net-
work. In Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication, pp.
183–197, 2015.

[59] C. Wang et al. Cxl over ethernet: A novel fpga-based
memory disaggregation design in data centers. In 2023
IEEE 31st Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM),
2023.

[60] D. Gouk et al. Direct access, High-Performance mem-
ory disaggregation with DirectCXL. In 2022 USENIX
Annual Technical Conference (USENIX ATC 22), pp.
287–294, 2022.

[61] M. Zhang et al. Partial failure resilient memory
management system for (cxl-based) distributed shared
memory. In Proceedings of the 29th Symposium on
Operating Systems Principles, 2023.

[62] Intel. Intel® 82599eb 10 gigabit ethernet con-
troller. https://ark.intel.com/content/www/

us/en/ark/products/32207/intel-82599eb-10-
gigabit-ethernet-controller.html.

[63] Z. Wang et al. Rcmp: Reconstructing rdma-based
memory disaggregation via cxl. ACM Transactions
on Architecture and Code Optimization, 21(1):1–26,
2024.

[64] D. Gibson et al. Aquila: A unified, low-latency fabric
for datacenter networks. In 19th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI 22), April 2022.

[65] W. Lin et al. Supernic: An fpga-based, cloud-oriented
smartnic. In Proceedings of the 2024 ACM/SIGDA
International Symposium on Field Programmable Gate
Arrays, pp. 130–141, 2024.

[66] M. Alizadeh et al. Conga: distributed congestion-aware
load balancing for datacenters. In Proceedings of the
2014 ACM Conference on SIGCOMM, pp. 503–514,
2014.

[67] H. Zhang et al. Resilient datacenter load balancing in
the wild. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, pp.
253–266, 2017.

[68] N. Katta et al. Clove: How i learned to stop worrying
about the core and love the edge. In Proceedings of
the 15th ACM Workshop on Hot Topics in Networks,
pp. 155–161, 2016.

[69] D. Wischik et al. Design, implementation and eval-
uation of congestion control for multipath tcp. In
Proceedings of the 8th USENIX Conference on Net-
worked Systems Design and Implementation (NSDI

’11), Berkeley, CA, USA, March 2011.

[70] C. Raiciu et al. How hard can it be? designing and im-
plementing a deployable multipath tcp. In Proceedings
the 9th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 12), San Jose, CA,
April 2012.

[71] A. Ford et al. Rfc 8684: Tcp extensions for multipath
operation with multiple addresses. https://www.rfc-
editor.org/rfc/rfc8684.html, 2020.

[72] A. Xilinx. Zynq™ ultrascale+™ mpsoc.
https://www.xilinx.com/products/silicon-
devices/soc/zynq-ultrascale-mpsoc.html.

[73] DPDK. Data plane development kit. https://
www.dpdk.org/about/.

[74] H. Li et al. Pond: Cxl-based memory pooling systems
for cloud platforms. In Proceedings of the 28th ACM

1276 2025 USENIX Annual Technical Conference USENIX Association

https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification
https://ark.intel.com/content/www/us/en/ark/products/32207/intel-82599eb-10-gigabit-ethernet-controller.html
https://ark.intel.com/content/www/us/en/ark/products/32207/intel-82599eb-10-gigabit-ethernet-controller.html
https://ark.intel.com/content/www/us/en/ark/products/32207/intel-82599eb-10-gigabit-ethernet-controller.html
https://www.rfc-editor.org/rfc/rfc8684.html
https://www.rfc-editor.org/rfc/rfc8684.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://www.dpdk.org/about/
https://www.dpdk.org/about/

International Conference on Architectural Support for
Programming Languages and Operating Systems, Vol-
ume 2, pp. 574–587, New York, 2023. ACM.

[75] W. Huangfu et al. Beacon: Scalable near-data-
processing accelerators for genome analysis near mem-
ory pool with the cxl support. In 2022 55th IEEE/ACM
International Symposium on Microarchitecture (MI-
CRO), pp. 727–743, Piscataway, 2022. IEEE.

[76] S.-P. Yang et al. Overcoming the memory wall with
CXL-Enabled SSDs. In 2023 USENIX Annual Techni-
cal Conference (USENIX ATC 23), July 2023.

[77] J. Lowe-Power et al. The gem5 simulator: Version
20.0+. arXiv preprint arXiv:2007.03152, 2020.

[78] X. Zhang et al. Rethinking design paradigm of graph
processing system with a cxl-like memory semantic
fabric. In 2023 IEEE/ACM 23rd International Sympo-
sium on Cluster, Cloud and Internet Computing (CC-
Grid), pp. 25–35, Piscataway, 2023. IEEE.

[79] W. Bai et al. Enabling ecn in multi-service multi-
queue data centers. In Proceedings of the 13th Usenix
Conference on Networked Systems Design and Imple-
mentation (NSDI ’16), Santa Clara, CA, March 2016.

[80] W. Bai et al. Enabling ecn over generic packet schedul-
ing. In Proceedings of the 12th International on Con-
ference on Emerging Networking EXperiments and
Technologies (CoNEXT ’16), Irvine, CA, December
2016.

[81] A. von Bechtolsheim et al. Why big data needs big
buffer switches. 2016.

[82] W. Yoon et al. DiLOS: Do Not Trade Compatibility
for Performance in Memory Disaggregation. In Proc.
of EuroSys, 2023.

[83] X. Zhu et al. Gemini: A Computation-Centric dis-
tributed graph processing system. In 12th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 16), pp. 301–316, November 2016.

[84] J. Leskovec and A. Krevl. SNAP Datasets: Stan-
ford large network dataset collection. http://
snap.stanford.edu/data, June 2014.

[85] J. Carlson. Redis in action. Simon and Schuster, 2013.

[86] Redis Labs. Memtier Benchmark. https://
github.com/RedisLabs/memtier_benchmark.

[87] K. He et al. Deep residual learning for image recogni-
tion, 2015.

[88] A. Krizhevsky. Learning multiple layers of features
from tiny images. Technical report, 2009.

[89] R. Eldan and Y. Li. Tinystories: How small can lan-
guage models be and still speak coherent english?,
2023.

[90] Y. Wang. Mapreduce lite. https://github.com/
wangkuiyi/mapreduce-lite.

[91] M. Naumov et al. Deep learning recommendation
model for personalization and recommendation sys-
tems. CoRR, abs/1906.00091, 2019.

[92] O. Chapelle. Criteo dataset. https:
//www.kaggle.com/datasets/mrkmakr/criteo-
dataset.

[93] A. Xilinx. 10g axi ethernet checksum offload example
design. https://xilinx-wiki.atlassian.net/
wiki/spaces/A/pages/2425749532/10G+AXI+
Ethernet+Checksum+Offload+Example+Design.

[94] JEDEC. Jedec memory controller standard – for com-
pute express link (cxl). https://www.jedec.org/
standards-documents/docs/jesd319.

[95] L. W. McVoy et al. Lmbench: Portable tools for per-
formance analysis. In USENIX annual technical con-
ference, 1996.

[96] P. Patarasuk and X. Yuan. Bandwidth optimal all-
reduce algorithms for clusters of workstations. J. Par-
allel Distrib. Comput., 69(2):117–124, February 2009.

[97] M. Li et al. Scaling distributed machine learning with
the parameter server. In 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
14), pp. 583–598, October 2014.

[98] P. Kumar and H. H. Huang. GraphOne: A data store
for real-time analytics on evolving graphs. In 17th
USENIX Conference on File and Storage Technologies
(FAST 19), pp. 249–263, February 2019.

[99] J. He et al. Fastermoe: modeling and optimizing train-
ing of large-scale dynamic pre-trained models. In
Proceedings of the 27th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming,
PPoPP ’22, pp. 120–134, 2022.

[100] A. Dixit et al. On the impact of packet spraying in data
center networks. In 2013 proceedings ieee infocom,
pp. 2130–2138. IEEE, 2013.

[101] C. Hopps. Rfc2992: Analysis of an equal-cost multi-
path algorithm, 2000.

USENIX Association 2025 USENIX Annual Technical Conference 1277

http://snap.stanford.edu/data
http://snap.stanford.edu/data
https://github.com/RedisLabs/memtier_benchmark
https://github.com/RedisLabs/memtier_benchmark
https://github.com/wangkuiyi/mapreduce-lite
https://github.com/wangkuiyi/mapreduce-lite
https://www.kaggle.com/datasets/mrkmakr/criteo-dataset
https://www.kaggle.com/datasets/mrkmakr/criteo-dataset
https://www.kaggle.com/datasets/mrkmakr/criteo-dataset
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/2425749532/10G+AXI+Ethernet+Checksum+Offload+Example+Design
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/2425749532/10G+AXI+Ethernet+Checksum+Offload+Example+Design
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/2425749532/10G+AXI+Ethernet+Checksum+Offload+Example+Design
https://www.jedec.org/standards-documents/docs/jesd319
https://www.jedec.org/standards-documents/docs/jesd319

A Appendix

A.1 Topology Example

rack 0

CXL
Switch

N2 N4N3 N7N5N0 N6N1

ToR 0

rack 4

CXL
Switch

N26 N28N27 N31N29N24 N30N25

ToR 3

HH H H
H H H H

HH H H
H H H H

ToR 1 ToR 2

(a) 4 racks and 8 hosts per rack. (m = 4,n = 8)

rack 0

CXL
Switch

N2 N4N3 N7N5N0 N6N1

ToR 0

H

rack 15

H H H
H H

CXL
Switch

122 124123 127

H H

125120 126121

ToR 7 ToR 8 ToR 15

HH H H
H H H H

Core Switch

(b) 16 racks and 8 hosts per rack. (m = 16,n = 8)
Figure 12: Example topology with DRack. Host(H), NIC(N).

As shown in Figure 12, there exist two system configura-
tions leading to two different topologies.

➀ DRack topology has more hosts (n) than racks (m), n >
m. As shown in Figure 12(a), n = 8 and m = 4, every rack
can connect with all aggregated switches (or ToR switches in
original ToR-based architecture). Recall, NIC i is linked with
the aggregated switch (i mod m), where 0 ≤ i < mn. Thus,
NIC 0, 4, 8,.., is linked to switch 0, NIC 1, 5, 9,.., is linked to
switch 1, etc..

➁ DRack has less hosts than racks, m > n. As shown in Fig-
ure 12(b), n= 8 and m= 16, a rack can only connect with part
switches. In this case, every rack connect with 8 ToR switches,
rack 0, 2, 4,..., connects with ToR switch 0 to 7, while rack
1, 3, 5,..., connects with ToR 8 to 15. They both form two
pods, respectively. The two pods are interconnected via one
or more core switches, with the pod-to-core wiring topology
preserving the conventional structure employed in ToR-based
architectures. The wiring between NICs of a DRack and ToR
switches still follows the principle, i.e., NIC i is linked with
the aggregated switch (i mod m), where 0 ≤ i < mn.

A.2 Application semantics
Table 3 provides more application examples that can result in
irrgular computation and skewed data accessing.

A.3 An Example of NIC Pool Accessing
When a MPSoC0’s application calls send, its driver classifies
whether it targets MPSoC1 (i.e., intra-rack), or the one across

Table 3: Application Semantics

Application
Category Example Causes

Graph
Computing

Evolving
graphs [98]

Different subgraphs
running on each host

contribute varying
compute time

Database &
KV Store

Redis [85]
Imbalanced Hot keys

distribution &
Varied value size

Model
Training

MoE
Expert Parallelism

Skewed token load
on experts [99]

DLRM
Training
Inference

Embedding
layer [48]

Imbalanced Hot
Embedding lookups
on Embedding tables

racks (e.g., MPSoC3) based on the IP. For the across-rack
case, the server’s CPU is notified via a CXL-DoCE transac-
tion carrying an interrupt, sent by the driver. Then, it DMA
reads the data to the “vNIC” software queue from the MP-
SoC0’s memory via CXL.io. Packets are then sent to the
emulated network queue, delaying for propagation_delay+
queueing_delay+ packet_size

bandwidth before writing it to the software
queue of the other “vNIC”, which emulates the network delay.
For the intra-rack case, the driver stores data descriptors into
the reference queues of MPSoC1 with a CXL-like MemWr.
This also embeds interrupt within the CXL transaction to no-
tify MPSoC1’s CPU. Upon receiving the interrupt, the CPU
initiates a CXL-like memory read (MemRd) to retrieve the
data from the memory pool.

A.4 Communication Efficiency

0 2000 4000
messeage size (bytes)

250

300

350

400

La
te

nc
y

(u
s)

DRack
ToRack
W/O Cache

(a) DRack reduces intra-
rack delay via pass-by-
reference and DRAM
Cache.

1 1.5 2
Over-Subscription Ratio

0.4

0.5

0.6

0.7

0.8

0.9

No
rm

. T
hr

ou
gh

pu
t

AlltoAll
AllGather
Ring
Halving Doubling

(b) Throughput of 4 col-
lective operations across
network settings

0 2 4
Wall Time (s)

50
60
70
80
90

100
Th

ro
ug

hp
ut

 U
til

iza
tio

n%

Packets Spray
ECMP
DRack

(c) MPTCP outperforms
ECMP and packet spray.

Figure 13: Key designs’ impact on DRack’s performance.

In this section, we eliminate computations and focus on
studying the maximum communication efficiency that DRack
can boost, as well as the impact of each individual component.
Intra-rack communication. In the rack, DRack eliminates
one memory copy by using pass-by-reference, and hides the
remote memory latency via DRAM Cache. We evaluate the la-
tency reduction achieved by DRack for intra-rack communica-

1278 2025 USENIX Annual Technical Conference USENIX Association

tion including reliable validation of TCP stack. We conducted
the TCP transaction latency test using lmbench [95], which in-
volves repeatedly sending a packet filled with dummy data in
a ping-pong fashion. The latency for DRack is measured from
the moment the sender stores the packet’s reference until the
receiver receives the reference, loads its data, and completes
its TCP stack processing. As shown in Figure 13(a), DRack
achieves an average of 15.9% lower latency than ToRack’s
pass-by-value. The DRAM cache accounts for 6% of the la-
tency reduction, as the CPU will load a packet’s header for
multiple times during TCP stack processing that presents high
cache locality. Note that the major latency of pass-by-value
comes from the TCP protocol stack and controlling DMA for
data copy, while DRack eliminates the later one.
Inter-rack Throughput. DRack facilitates a range of col-
lective communications at full capacity, irrespective of the net-
work configuration, i.e., network-oblivious communication.
This property frees application designers to tailor communica-
tion collectives across network settings (e.g., oversubscription
ratio). As shown in Figure 13(b), we run four collective com-
munication operations using Gloo over 8 hosts and increase
the rack size, the number of hosts in a rack, from 2 to 4, to have
an over-subscription ratio from 1 to 2. As DRack uses the NIC
pool as the ToR layer, it provides full-bisectional bandwidth
across racks, consistently offering throughput gains for all
collectives compared to ToRack. ToRack limits the through-
put of collectives with intensive cross-rack traffic due to the
ToR’s uplinks (e.g., AlltoAll), while it cannot fully utilize
the uplink bandwidth for collectives with reduced cross-rack
traffic (e.g., ring and halving doubling).

We evaluate the necessity of MPTCP in bandwidth effi-
ciency. DRack leverages MPTCP to balance the inter-rack
traffic load between 2 available NICs. We first evaluate the
throughput with three popular traffic distribution mechanisms
(with the other DRack’s component enabled): 1) Packets
spray: scattering packets between all NICs [100], 2) ECMP:
hashing a flow to a NIC [101], 3) MPTCP. We run Gloo All-
toAll with the above mechanisms, respectively. As shown in
Figure 13(c), MPTCP fully utilizes the NIC pool capacity,
while ECMP cannot utilize the bandwidth efficiently as a
single flow can only use one NIC, even if the other NIC is
free, packet spray can result in out-of-order packet arrivals,
causing TCP congestion control that actively slows down the
throughput.

USENIX Association 2025 USENIX Annual Technical Conference 1279

	Introduction
	Background and Motivations
	Inter-rack Communication in DCNs
	Existing Approaches
	Insights on NIC utilization
	The Benefits of DRack
	Realizing DRack

	DRack Overview
	DRack Dataplane
	Architecture
	Components
	Communication

	System Support
	Software Runtime
	CXL-attached DRAM Cache.

	Implementation
	Evaluations
	Experiments Setup
	Real-world Applications
	Throughput-sensitive Applications
	Latency-sensitive Applications

	User Cases
	Performance breakdown

	Conclusion
	Appendix
	Topology Example
	Application semantics
	An Example of NIC Pool Accessing
	Communication Efficiency

